code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] ) -> Optional[Any]: return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def lowerCamelCase__ ( _lowerCamelCase : str , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]="attention" ) -> str: lowerCamelCase_ = lowerCamelCase_ = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) lowerCamelCase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowerCamelCase_ = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) lowerCamelCase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowerCamelCase_ = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) lowerCamelCase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowerCamelCase_ = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) lowerCamelCase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowerCamelCase__ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : Tuple=False ) -> Optional[int]: if split_mlp_wi: lowerCamelCase_ = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] lowerCamelCase_ = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] lowerCamelCase_ = (wi_a, wi_a) else: lowerCamelCase_ = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] lowerCamelCase_ = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def lowerCamelCase__ ( _lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] ) -> int: return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def lowerCamelCase__ ( _lowerCamelCase : dict , *, _lowerCamelCase : int , _lowerCamelCase : bool , _lowerCamelCase : bool = False ) -> str: lowerCamelCase_ = traverse_util.flatten_dict(variables['target'] ) lowerCamelCase_ = {'/'.join(_lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCamelCase_ = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , _lowerCamelCase ) lowerCamelCase_ = collections.OrderedDict() # Shared embeddings. lowerCamelCase_ = old['token_embedder/embedding'] # Encoder. for i in range(_lowerCamelCase ): # Block i, layer 0 (Self Attention). lowerCamelCase_ = tax_layer_norm_lookup(_lowerCamelCase , _lowerCamelCase , 'encoder' , 'pre_attention_layer_norm' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = tax_attention_lookup(_lowerCamelCase , _lowerCamelCase , 'encoder' , 'attention' ) lowerCamelCase_ = layer_norm lowerCamelCase_ = k.T lowerCamelCase_ = o.T lowerCamelCase_ = q.T lowerCamelCase_ = v.T # Block i, layer 1 (MLP). lowerCamelCase_ = tax_layer_norm_lookup(_lowerCamelCase , _lowerCamelCase , 'encoder' , 'pre_mlp_layer_norm' ) lowerCamelCase_ , lowerCamelCase_ = tax_mlp_lookup(_lowerCamelCase , _lowerCamelCase , 'encoder' , _lowerCamelCase ) lowerCamelCase_ = layer_norm if split_mlp_wi: lowerCamelCase_ = wi[0].T lowerCamelCase_ = wi[1].T else: lowerCamelCase_ = wi.T lowerCamelCase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase_ = tax_relpos_bias_lookup( _lowerCamelCase , _lowerCamelCase , 'encoder' ).T lowerCamelCase_ = old['encoder/encoder_norm/scale'] if not scalable_attention: lowerCamelCase_ = tax_relpos_bias_lookup( _lowerCamelCase , 0 , 'encoder' ).T lowerCamelCase_ = tax_relpos_bias_lookup( _lowerCamelCase , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(_lowerCamelCase ): # Block i, layer 0 (Self Attention). lowerCamelCase_ = tax_layer_norm_lookup(_lowerCamelCase , _lowerCamelCase , 'decoder' , 'pre_self_attention_layer_norm' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = tax_attention_lookup(_lowerCamelCase , _lowerCamelCase , 'decoder' , 'self_attention' ) lowerCamelCase_ = layer_norm lowerCamelCase_ = k.T lowerCamelCase_ = o.T lowerCamelCase_ = q.T lowerCamelCase_ = v.T # Block i, layer 1 (Cross Attention). lowerCamelCase_ = tax_layer_norm_lookup(_lowerCamelCase , _lowerCamelCase , 'decoder' , 'pre_cross_attention_layer_norm' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = tax_attention_lookup(_lowerCamelCase , _lowerCamelCase , 'decoder' , 'encoder_decoder_attention' ) lowerCamelCase_ = layer_norm lowerCamelCase_ = k.T lowerCamelCase_ = o.T lowerCamelCase_ = q.T lowerCamelCase_ = v.T # Block i, layer 2 (MLP). lowerCamelCase_ = tax_layer_norm_lookup(_lowerCamelCase , _lowerCamelCase , 'decoder' , 'pre_mlp_layer_norm' ) lowerCamelCase_ , lowerCamelCase_ = tax_mlp_lookup(_lowerCamelCase , _lowerCamelCase , 'decoder' , _lowerCamelCase ) lowerCamelCase_ = layer_norm if split_mlp_wi: lowerCamelCase_ = wi[0].T lowerCamelCase_ = wi[1].T else: lowerCamelCase_ = wi.T lowerCamelCase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase_ = tax_relpos_bias_lookup(_lowerCamelCase , _lowerCamelCase , 'decoder' ).T lowerCamelCase_ = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCamelCase_ = old['decoder/logits_dense/kernel'].T return new def lowerCamelCase__ ( _lowerCamelCase : Tuple , _lowerCamelCase : bool ) -> Tuple: lowerCamelCase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCamelCase_ = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCamelCase_ = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) lowerCamelCase_ = state_dict['shared.weight'] return state_dict def lowerCamelCase__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] ) -> Optional[Any]: lowerCamelCase_ = checkpoints.load_tax_checkpoint(_lowerCamelCase ) lowerCamelCase_ = convert_tax_to_pytorch( _lowerCamelCase , num_layers=config.num_layers , is_encoder_only=_lowerCamelCase , scalable_attention=_lowerCamelCase ) lowerCamelCase_ = make_state_dict(_lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , ) -> Optional[Any]: lowerCamelCase_ = MTaConfig.from_json_file(_lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCamelCase_ = UMTaEncoderModel(_lowerCamelCase ) else: lowerCamelCase_ = UMTaForConditionalGeneration(_lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_lowerCamelCase ) print('Done' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
549
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class a ( unittest.TestCase ): def UpperCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict ) -> str: self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for a, b in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , delta=__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[Any] ) -> int: lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def UpperCamelCase ( self : str ) -> Any: lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(__SCREAMING_SNAKE_CASE ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5e-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=__SCREAMING_SNAKE_CASE ) def accumulate_on_replica(__SCREAMING_SNAKE_CASE : Union[str, Any] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(__SCREAMING_SNAKE_CASE ) local_variables[0].assign(__SCREAMING_SNAKE_CASE ) local_variables[1].assign(__SCREAMING_SNAKE_CASE ) strategy.run(__SCREAMING_SNAKE_CASE , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(__SCREAMING_SNAKE_CASE ) def _check_local_values(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , __SCREAMING_SNAKE_CASE , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , __SCREAMING_SNAKE_CASE , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
549
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase =2 class _lowerCamelCase : """simple docstring""" def __init__( self , *, # begin keyword-only arguments __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE=None , ) -> Optional[int]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[Any] = bos, unk, pad, eos UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : str = {} UpperCamelCase__ : List[str] = self.add_symbol(__UpperCamelCase ) UpperCamelCase__ : List[Any] = self.add_symbol(__UpperCamelCase ) UpperCamelCase__ : Union[str, Any] = self.add_symbol(__UpperCamelCase ) UpperCamelCase__ : Union[str, Any] = self.add_symbol(__UpperCamelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__UpperCamelCase ) UpperCamelCase__ : Tuple = len(self.symbols ) def __eq__( self , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return self.indices == other.indices def __getitem__( self , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> str: """simple docstring""" return len(self.symbols ) def __contains__( self , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return sym in self.indices @classmethod def __SCREAMING_SNAKE_CASE ( cls , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[int] = cls() d.add_from_file(__UpperCamelCase ) return d def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" if word in self.indices and not overwrite: UpperCamelCase__ : Optional[Any] = self.indices[word] UpperCamelCase__ : Union[str, Any] = self.count[idx] + n return idx else: UpperCamelCase__ : int = len(self.symbols ) UpperCamelCase__ : Optional[Any] = idx self.symbols.append(__UpperCamelCase ) self.count.append(__UpperCamelCase ) return idx def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return 0 def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if isinstance(__UpperCamelCase , __UpperCamelCase ): try: with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__UpperCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(__UpperCamelCase ) ) return UpperCamelCase__ : Any = f.readlines() UpperCamelCase__ : Any = self._load_meta(__UpperCamelCase ) for line in lines[indices_start_line:]: try: UpperCamelCase__ ,UpperCamelCase__ : Tuple = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": UpperCamelCase__ : Any = True UpperCamelCase__ ,UpperCamelCase__ : Tuple = line.rsplit(''' ''' , 1 ) else: UpperCamelCase__ : str = False UpperCamelCase__ : Any = int(__UpperCamelCase ) UpperCamelCase__ : Tuple = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(__UpperCamelCase ) ) self.add_symbol(__UpperCamelCase , n=__UpperCamelCase , overwrite=__UpperCamelCase ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCamelCase__ : Any = dict((re.sub(R'''@@$''' , '''''' , UpperCAmelCase__ ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , UpperCAmelCase__ ), v) for k, v in d.items() ) UpperCamelCase__ : str = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] UpperCamelCase__ : str = d[k] # restore return da def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): # prep if not os.path.exists(UpperCAmelCase__ ): raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCamelCase__ : List[str] = os.path.join(UpperCAmelCase__ , '''checkpoint.pt''' ) if not os.path.isfile(UpperCAmelCase__ ): raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' ) UpperCamelCase__ : List[str] = torch.load(UpperCAmelCase__ , map_location='''cpu''' ) UpperCamelCase__ : Optional[int] = chkpt['''cfg''']['''model'''] # dicts UpperCamelCase__ : List[Any] = os.path.join(UpperCAmelCase__ , '''dict.txt''' ) if not os.path.isfile(UpperCAmelCase__ ): raise ValueError(f'''path to the file {dict_file} does not exist!''' ) UpperCamelCase__ : Union[str, Any] = Dictionary.load(UpperCAmelCase__ ) UpperCamelCase__ : Optional[Any] = rewrite_dict_keys(src_dict.indices ) UpperCamelCase__ : int = len(UpperCAmelCase__ ) UpperCamelCase__ : int = os.path.join(UpperCAmelCase__ , VOCAB_FILES_NAMES['''vocab_file'''] ) print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ , indent=UpperCAmelCase__ ) ) # merges_file (bpecodes) UpperCamelCase__ : str = os.path.join(UpperCAmelCase__ , '''bpecodes''' ) if not os.path.isfile(UpperCAmelCase__ ): raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' ) UpperCamelCase__ : Any = os.path.join(UpperCAmelCase__ , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(UpperCAmelCase__ , UpperCAmelCase__ ) # model config UpperCamelCase__ : List[Any] = os.path.join(UpperCAmelCase__ , '''config.json''' ) UpperCamelCase__ : List[Any] = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f'''Generating {biogpt_model_config_file}''' ) with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ , indent=UpperCAmelCase__ ) ) # tokenizer config UpperCamelCase__ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase__ : List[Any] = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1_0_2_4, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f'''Generating {biogpt_tokenizer_config_file}''' ) with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ , indent=UpperCAmelCase__ ) ) # model UpperCamelCase__ : Any = chkpt['''model'''] # remove unneeded keys UpperCamelCase__ : Optional[int] = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase__ : List[str] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): UpperCamelCase__ : List[Any] = model_state_dict.pop(UpperCAmelCase__ ) else: UpperCamelCase__ : Optional[Any] = model_state_dict.pop(UpperCAmelCase__ ) UpperCamelCase__ : Tuple = BioGptConfig.from_pretrained(UpperCAmelCase__ ) UpperCamelCase__ : str = BioGptForCausalLM(UpperCAmelCase__ ) # check that it loads ok model_new.load_state_dict(UpperCAmelCase__ ) # save UpperCamelCase__ : str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) print('''Conversion is done!''' ) if __name__ == "__main__": lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
715
lowerCamelCase ={"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} lowerCamelCase =["a", "b", "c", "d", "e"] def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : str = start # add current to visited visited.append(UpperCamelCase__ ) UpperCamelCase__ : int = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCamelCase__ : int = topological_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # if all neighbors visited add current to sort sort.append(UpperCamelCase__ ) # if all vertices haven't been visited select a new one to visit if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): for vertice in vertices: if vertice not in visited: UpperCamelCase__ : Optional[int] = topological_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # return sort return sort if __name__ == "__main__": lowerCamelCase =topological_sort("a", [], []) print(sort)
462
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
from math import ceil def _lowercase ( __UpperCamelCase : int = 1001 ): snake_case__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): snake_case__ = 2 * i + 1 snake_case__ = 2 * i snake_case__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowerCAmelCase : Tuple = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
214
0
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : str ): '''simple docstring''' def get_masked_lm_array(__lowerCamelCase : str ): _UpperCAmelCase : str =f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" _UpperCAmelCase : Optional[Any] =tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) if "kernel" in name: _UpperCAmelCase : int =array.transpose() return torch.from_numpy(__lowerCamelCase ) def get_encoder_array(__lowerCamelCase : str ): _UpperCAmelCase : List[str] =f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" _UpperCAmelCase : str =tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) if "kernel" in name: _UpperCAmelCase : Tuple =array.transpose() return torch.from_numpy(__lowerCamelCase ) def get_encoder_layer_array(__lowerCamelCase : int , __lowerCamelCase : str ): _UpperCAmelCase : str =f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" _UpperCAmelCase : int =tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) if "kernel" in name: _UpperCAmelCase : Tuple =array.transpose() return torch.from_numpy(__lowerCamelCase ) def get_encoder_attention_layer_array(__lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : List[str] ): _UpperCAmelCase : Tuple =f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" _UpperCAmelCase : Dict =tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : Tuple =array.reshape(__lowerCamelCase ) if "kernel" in name: _UpperCAmelCase : Dict =array.transpose() return torch.from_numpy(__lowerCamelCase ) print(f"Loading model based on config from {config_path}..." ) _UpperCAmelCase : Any =BertConfig.from_json_file(__lowerCamelCase ) _UpperCAmelCase : Optional[Any] =BertForMaskedLM(__lowerCamelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _UpperCAmelCase : BertLayer =model.bert.encoder.layer[layer_index] # Self-attention _UpperCAmelCase : BertSelfAttention =layer.attention.self _UpperCAmelCase : List[Any] =get_encoder_attention_layer_array( __lowerCamelCase , '_query_dense/kernel' , self_attn.query.weight.data.shape ) _UpperCAmelCase : Union[str, Any] =get_encoder_attention_layer_array( __lowerCamelCase , '_query_dense/bias' , self_attn.query.bias.data.shape ) _UpperCAmelCase : Union[str, Any] =get_encoder_attention_layer_array( __lowerCamelCase , '_key_dense/kernel' , self_attn.key.weight.data.shape ) _UpperCAmelCase : Any =get_encoder_attention_layer_array( __lowerCamelCase , '_key_dense/bias' , self_attn.key.bias.data.shape ) _UpperCAmelCase : Any =get_encoder_attention_layer_array( __lowerCamelCase , '_value_dense/kernel' , self_attn.value.weight.data.shape ) _UpperCAmelCase : List[str] =get_encoder_attention_layer_array( __lowerCamelCase , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output _UpperCAmelCase : BertSelfOutput =layer.attention.output _UpperCAmelCase : List[str] =get_encoder_attention_layer_array( __lowerCamelCase , '_output_dense/kernel' , self_output.dense.weight.data.shape ) _UpperCAmelCase : int =get_encoder_attention_layer_array( __lowerCamelCase , '_output_dense/bias' , self_output.dense.bias.data.shape ) _UpperCAmelCase : str =get_encoder_layer_array(__lowerCamelCase , '_attention_layer_norm/gamma' ) _UpperCAmelCase : Dict =get_encoder_layer_array(__lowerCamelCase , '_attention_layer_norm/beta' ) # Intermediate _UpperCAmelCase : BertIntermediate =layer.intermediate _UpperCAmelCase : Tuple =get_encoder_layer_array(__lowerCamelCase , '_intermediate_dense/kernel' ) _UpperCAmelCase : Any =get_encoder_layer_array(__lowerCamelCase , '_intermediate_dense/bias' ) # Output _UpperCAmelCase : BertOutput =layer.output _UpperCAmelCase : Dict =get_encoder_layer_array(__lowerCamelCase , '_output_dense/kernel' ) _UpperCAmelCase : List[Any] =get_encoder_layer_array(__lowerCamelCase , '_output_dense/bias' ) _UpperCAmelCase : Dict =get_encoder_layer_array(__lowerCamelCase , '_output_layer_norm/gamma' ) _UpperCAmelCase : Optional[Any] =get_encoder_layer_array(__lowerCamelCase , '_output_layer_norm/beta' ) # Embeddings _UpperCAmelCase : str =get_encoder_array('_position_embedding_layer/embeddings' ) _UpperCAmelCase : str =get_encoder_array('_type_embedding_layer/embeddings' ) _UpperCAmelCase : Any =get_encoder_array('_embedding_norm_layer/gamma' ) _UpperCAmelCase : str =get_encoder_array('_embedding_norm_layer/beta' ) # LM Head _UpperCAmelCase : Dict =model.cls.predictions.transform _UpperCAmelCase : Tuple =get_masked_lm_array('dense/kernel' ) _UpperCAmelCase : Tuple =get_masked_lm_array('dense/bias' ) _UpperCAmelCase : Dict =get_masked_lm_array('layer_norm/gamma' ) _UpperCAmelCase : Optional[Any] =get_masked_lm_array('layer_norm/beta' ) _UpperCAmelCase : Any =get_masked_lm_array('embedding_table' ) # Pooling _UpperCAmelCase : Union[str, Any] =BertPooler(config=__lowerCamelCase ) _UpperCAmelCase : BertPooler =get_encoder_array('_pooler_layer/kernel' ) _UpperCAmelCase : BertPooler =get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(__lowerCamelCase ) # Integration test - should load without any errors ;) _UpperCAmelCase : Dict =BertForMaskedLM.from_pretrained(__lowerCamelCase ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": lowercase =argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) lowercase =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
331
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase =logging.get_logger(__name__) lowercase ={ 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="dpr" def __init__( self , snake_case=3_0_5_2_2 , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=2 , snake_case=0.02 , snake_case=1E-1_2 , snake_case=0 , snake_case="absolute" , snake_case = 0 , **snake_case , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=snake_case , **snake_case) _UpperCAmelCase : int =vocab_size _UpperCAmelCase : Dict =hidden_size _UpperCAmelCase : List[Any] =num_hidden_layers _UpperCAmelCase : List[Any] =num_attention_heads _UpperCAmelCase : str =hidden_act _UpperCAmelCase : Optional[Any] =intermediate_size _UpperCAmelCase : Optional[Any] =hidden_dropout_prob _UpperCAmelCase : Tuple =attention_probs_dropout_prob _UpperCAmelCase : int =max_position_embeddings _UpperCAmelCase : Tuple =type_vocab_size _UpperCAmelCase : Union[str, Any] =initializer_range _UpperCAmelCase : Tuple =layer_norm_eps _UpperCAmelCase : int =projection_dim _UpperCAmelCase : List[Any] =position_embedding_type
331
1
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = IFPipeline UpperCAmelCase : List[str] = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} UpperCAmelCase : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase : Any = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowerCAmelCase_ ( self : int ): return self._get_dummy_components() def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ): if str(_UpperCAmelCase ).startswith('mps' ): _A = torch.manual_seed(_UpperCAmelCase ) else: _A = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) _A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCAmelCase_ ( self : Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def lowerCAmelCase_ ( self : Optional[int] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase_ ( self : int ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase_ ( self : int ): self._test_save_load_local() def lowerCAmelCase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCAmelCase_ ( self : Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Optional[Any] ): # if _A = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _A = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _A , _A = pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _A = None _A = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _A = IFImgaImgPipeline(**pipe_a.components ) _A = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _A = IFInpaintingPipeline(**pipe_a.components ) _A = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ): # pipeline 1 _start_torch_memory_measurement() _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = pipe_a( prompt_embeds=_UpperCAmelCase , negative_prompt_embeds=_UpperCAmelCase , num_inference_steps=2 , generator=_UpperCAmelCase , output_type='np' , ) _A = output.images[0] assert image.shape == (64, 64, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) _A = pipe_a( prompt_embeds=_UpperCAmelCase , negative_prompt_embeds=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='np' , ) _A = output.images[0] assert image.shape == (256, 256, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ): # pipeline 1 _start_torch_memory_measurement() _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = pipe_a( prompt_embeds=_UpperCAmelCase , negative_prompt_embeds=_UpperCAmelCase , image=_UpperCAmelCase , num_inference_steps=2 , generator=_UpperCAmelCase , output_type='np' , ) _A = output.images[0] assert image.shape == (64, 64, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) _A = pipe_a( prompt_embeds=_UpperCAmelCase , negative_prompt_embeds=_UpperCAmelCase , image=_UpperCAmelCase , original_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='np' , ) _A = output.images[0] assert image.shape == (256, 256, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] ): # pipeline 1 _start_torch_memory_measurement() _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(_UpperCAmelCase ) _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = pipe_a( prompt_embeds=_UpperCAmelCase , negative_prompt_embeds=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , num_inference_steps=2 , generator=_UpperCAmelCase , output_type='np' , ) _A = output.images[0] assert image.shape == (64, 64, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) _A = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_UpperCAmelCase ) _A = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(_UpperCAmelCase ) _A = pipe_a( prompt_embeds=_UpperCAmelCase , negative_prompt_embeds=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , original_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='np' , ) _A = output.images[0] assert image.shape == (256, 256, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( ) -> Optional[int]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
7
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> int: '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def _snake_case ( ) -> None: '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
7
1
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __A = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class _snake_case ( tr.AbstractTransform ): def __init__( self : Optional[Any] , UpperCAmelCase : str = " " ): __lowerCamelCase : List[str] = sentence_delimiter def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : str ): return list(UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : List[str] ): __lowerCamelCase : Any = [] for sent_idx, sentence in enumerate(UpperCAmelCase ): chars.extend(self.process_string(UpperCAmelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCAmelCase ) - 1: chars.append(self.sentence_delimiter ) return chars __A = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __A = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __A = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __A = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' __A = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowerCamelCase__ ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]=False ): if concatenate_texts: return jiwer.compute_measures( UpperCAmelCase , UpperCAmelCase , truth_transform=UpperCAmelCase , hypothesis_transform=UpperCAmelCase , )["wer"] __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : Optional[int] = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Dict = jiwer.compute_measures( UpperCAmelCase , UpperCAmelCase , truth_transform=UpperCAmelCase , hypothesis_transform=UpperCAmelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
713
"""simple docstring""" import gc import threading import time import psutil import torch class _snake_case : def __init__( self : str ): __lowerCamelCase : Optional[Any] = psutil.Process() __lowerCamelCase : List[Any] = False def lowerCamelCase__ ( self : str ): __lowerCamelCase : List[Any] = -1 while True: __lowerCamelCase : Union[str, Any] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Optional[Any] = True __lowerCamelCase : Union[str, Any] = threading.Thread(target=self.peak_monitor ) __lowerCamelCase : Optional[Any] = True self.thread.start() def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : str = False self.thread.join() return self.cpu_memory_peak __A = PeakCPUMemory() def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase : Any = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCamelCase : Optional[int] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowerCamelCase : int = torch.cuda.memory_allocated(_lowerCamelCase ) torch.cuda.reset_peak_memory_stats() return measures def lowercase_ ( _lowerCamelCase: Optional[Any] ) -> Tuple: '''simple docstring''' __lowerCamelCase : Tuple = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCamelCase : Dict = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 __lowerCamelCase : Tuple = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __lowerCamelCase : Any = (torch.cuda.memory_allocated(_lowerCamelCase ) - start_measures[str(_lowerCamelCase )]) / 2**20 __lowerCamelCase : Optional[int] = (torch.cuda.max_memory_allocated(_lowerCamelCase ) - start_measures[str(_lowerCamelCase )]) / 2**20 return measures def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: List[Any] ) -> Optional[int]: '''simple docstring''' print(F"""{description}:""" ) print(F"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(_lowerCamelCase )]:.2f}MiB""" ) __lowerCamelCase : List[Any] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
366
0
'''simple docstring''' from __future__ import annotations def _snake_case ( A , A ) -> float: lowerCAmelCase__ = sorted(numsa + numsa ) lowerCAmelCase__ , lowerCAmelCase__ = divmod(len(A ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = [float(x) for x in input('''Enter the elements of first array: ''').split()] __UpperCAmelCase = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
90
from itertools import count def A_ ( _UpperCAmelCase = 50 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f'''{solution() = }''')
671
0
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 16_000 ): '''simple docstring''' _lowerCAmelCase : str = int(round(sample_rate * max_length ) ) if len(_lowerCamelCase ) <= sample_length: return wav _lowerCAmelCase : str = randint(0 , len(_lowerCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field(default=a , metadata={'help': 'Name of a dataset from the datasets package'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'A file containing the training audio paths and labels.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'A file containing the validation audio paths and labels.'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) lowerCamelCase__ = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) lowerCamelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Name or path of preprocessor config.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def snake_case__ ( self): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", __a, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`.") def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _lowerCamelCase , _lowerCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase : str = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _lowerCAmelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. _lowerCAmelCase : Tuple = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--label_column_name` to the correct text column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _lowerCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _lowerCAmelCase : Tuple = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _lowerCAmelCase : Dict = feature_extractor.model_input_names[0] def train_transforms(_lowerCamelCase ): _lowerCAmelCase : Dict = [] for audio in batch[data_args.audio_column_name]: _lowerCAmelCase : Tuple = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : str = {model_input_name: inputs.get(_lowerCamelCase )} _lowerCAmelCase : Any = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_lowerCamelCase ): _lowerCAmelCase : List[str] = [audio["array"] for audio in batch[data_args.audio_column_name]] _lowerCAmelCase : Union[str, Any] = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : Tuple = {model_input_name: inputs.get(_lowerCamelCase )} _lowerCAmelCase : Dict = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _lowerCAmelCase : Optional[int] = raw_datasets["train"].features[data_args.label_column_name].names _lowerCAmelCase , _lowerCAmelCase : Optional[int] = {}, {} for i, label in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = str(_lowerCamelCase ) _lowerCAmelCase : List[Any] = label # Load the accuracy metric from the datasets package _lowerCAmelCase : Optional[int] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase ): _lowerCAmelCase : List[Any] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_lowerCamelCase , references=eval_pred.label_ids ) _lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel=_lowerCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Union[str, Any] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _lowerCAmelCase : Optional[int] = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _lowerCAmelCase : List[Any] = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) # Initialize our trainer _lowerCAmelCase : str = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , ) # Training if training_args.do_train: _lowerCAmelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase : Optional[int] = last_checkpoint _lowerCAmelCase : int = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCAmelCase : List[str] = trainer.evaluate() trainer.log_metrics("eval" , _lowerCamelCase ) trainer.save_metrics("eval" , _lowerCamelCase ) # Write model card and (optionally) push to hub _lowerCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) if __name__ == "__main__": main()
658
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[str] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
658
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowerCAmelCase = re.compile(R'''^(?P<major>\d+)''' R'''\.(?P<minor>\d+)''' R'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class A : UpperCamelCase_ : Union[str, Any] =42 UpperCamelCase_ : Any =None UpperCamelCase_ : Any =None UpperCamelCase_ : int =None UpperCamelCase_ : Any =None def _A (self ): __lowercase= _str_to_version_tuple(self.version_str ) def __repr__(self ): return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def _A (self ): return self.major, self.minor, self.patch def _A (self , lowerCAmelCase ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return Version(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): return other raise TypeError(f'{other} (type {type(__lowerCAmelCase )}) cannot be compared to version.' ) def __eq__(self , lowerCAmelCase ): try: __lowercase= self._validate_operand(__lowerCAmelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__(self , lowerCAmelCase ): __lowercase= self._validate_operand(__lowerCAmelCase ) return self.tuple < other.tuple def __hash__(self ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _A (cls , lowerCAmelCase ): __lowercase= {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _A (self ): return self.version_str def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' __lowercase= _VERSION_REG.match(lowercase__ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(lowercase__ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' return ".".join(str(lowercase__ ) for v in version_tuple )
230
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Optional[Any] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(snake_case, snake_case ) def __lowercase ( snake_case ): """simple docstring""" __magic_name__ , __magic_name__ :Tuple = emb.weight.shape __magic_name__ :int = nn.Linear(snake_case, snake_case, bias=snake_case ) __magic_name__ :str = emb.weight.data return lin_layer def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :int = torch.load(snake_case, map_location='''cpu''' ) __magic_name__ :Optional[Any] = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] __magic_name__ :List[Any] = mam_aaa['''model'''] remove_ignore_keys_(snake_case ) __magic_name__ :Tuple = state_dict['''encoder.embed_tokens.weight'''].shape[0] __magic_name__ :List[str] = MaMaaaConfig( vocab_size=snake_case, max_position_embeddings=1_0_2_4, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', ) __magic_name__ :int = state_dict['''decoder.embed_tokens.weight'''] __magic_name__ :List[str] = MaMaaaForConditionalGeneration(snake_case ) model.model.load_state_dict(snake_case, strict=snake_case ) __magic_name__ :List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") SCREAMING_SNAKE_CASE__ : int = parser.parse_args() SCREAMING_SNAKE_CASE__ : Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
0
0
'''simple docstring''' import numpy as np def lowerCamelCase__ ( A : List[Any] , A : int ): '''simple docstring''' return np.where(vector > 0 , _snake_case , (alpha * (np.exp(_snake_case ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowerCamelCase__ = get_logger(__name__) class UpperCamelCase ( enum.Enum ): __UpperCamelCase = '''all_checks''' __UpperCamelCase = '''basic_checks''' __UpperCamelCase = '''no_checks''' class UpperCamelCase ( _UpperCAmelCase ): pass class UpperCamelCase ( _UpperCAmelCase ): pass class UpperCamelCase ( _UpperCAmelCase ): pass class UpperCamelCase ( _UpperCAmelCase ): pass def _lowerCamelCase( __snake_case , __snake_case , __snake_case=None ) -> Optional[int]: if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(A__ ) - set(A__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(A__ ) - set(A__ ) ) ) if len(set(A__ ) - set(A__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(A__ ) - set(A__ ) ) ) __snake_case = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __snake_case = ''' for ''' + verification_name if verification_name is not None else '''''' if len(A__ ) > 0: raise NonMatchingChecksumError( f"""Checksums didn't match{for_verification_name}:\n""" f"""{bad_urls}\n""" "Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class UpperCamelCase ( _UpperCAmelCase ): pass class UpperCamelCase ( _UpperCAmelCase ): pass class UpperCamelCase ( _UpperCAmelCase ): pass class UpperCamelCase ( _UpperCAmelCase ): pass def _lowerCamelCase( __snake_case , __snake_case ) -> Dict: if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(A__ ) - set(A__ ) ) > 0: raise ExpectedMoreSplits(str(set(A__ ) - set(A__ ) ) ) if len(set(A__ ) - set(A__ ) ) > 0: raise UnexpectedSplits(str(set(A__ ) - set(A__ ) ) ) __snake_case = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(A__ ) > 0: raise NonMatchingSplitsSizesError(str(A__ ) ) logger.info("All the splits matched successfully." ) def _lowerCamelCase( __snake_case , __snake_case = True ) -> dict: if record_checksum: __snake_case = shaaaa() with open(A__ , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b"" ): m.update(A__ ) __snake_case = m.hexdigest() else: __snake_case = None return {"num_bytes": os.path.getsize(A__ ), "checksum": checksum} def _lowerCamelCase( __snake_case ) -> List[Any]: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
524
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = LayoutLMTokenizer lowerCamelCase : Any = LayoutLMTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : List[Any] = True def lowercase__ ( self : Optional[int] ): super().setUp() SCREAMING_SNAKE_CASE__ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self : Optional[int] , **_lowercase : str ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase__ ( self : Optional[Any] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : str = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Any = '''unwanted, running''' return input_text, output_text def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self : str ): pass
35
0
def _a ( lowerCamelCase__ ) -> float: return 10 - x * x def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(lowerCamelCase__ ) * equation(lowerCamelCase__ ) >= 0: raise ValueError('Wrong space!' ) lowerCamelCase_ : Any = a while (b - a) >= 0.01: # Find middle point lowerCamelCase_ : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(lowerCamelCase__ ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCamelCase__ ) * equation(lowerCamelCase__ ) < 0: lowerCamelCase_ : Optional[int] = c else: lowerCamelCase_ : str = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
144
import warnings from .generation import TFGenerationMixin class lowerCamelCase__ ( UpperCAmelCase ): # warning at import time warnings.warn( 'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ' 'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.', UpperCAmelCase, )
144
1
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _a : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCAmelCase ( lowercase ) -> Any: warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , lowercase , ) if isinstance(lowercase , torch.Tensor ): return image elif isinstance(lowercase , PIL.Image.Image ): __lowerCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __lowerCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] __lowerCAmelCase = np.concatenate(lowercase , axis=0 ) __lowerCAmelCase = np.array(lowercase ).astype(np.floataa ) / 2_55.0 __lowerCAmelCase = image.transpose(0 , 3 , 1 , 2 ) __lowerCAmelCase = 2.0 * image - 1.0 __lowerCAmelCase = torch.from_numpy(lowercase ) elif isinstance(image[0] , torch.Tensor ): __lowerCAmelCase = torch.cat(lowercase , dim=0 ) return image def _lowerCAmelCase ( lowercase ) -> Union[str, Any]: if isinstance(lowercase , torch.Tensor ): return mask elif isinstance(lowercase , PIL.Image.Image ): __lowerCAmelCase = [mask] if isinstance(mask[0] , PIL.Image.Image ): __lowerCAmelCase , __lowerCAmelCase = mask[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowerCAmelCase = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] __lowerCAmelCase = np.concatenate(lowercase , axis=0 ) __lowerCAmelCase = mask.astype(np.floataa ) / 2_55.0 __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = torch.from_numpy(lowercase ) elif isinstance(mask[0] , torch.Tensor ): __lowerCAmelCase = torch.cat(lowercase , dim=0 ) return mask class _UpperCAmelCase ( lowerCAmelCase_ ): a : UNetaDModel a : RePaintScheduler def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() self.register_modules(unet=__SCREAMING_SNAKE_CASE,scheduler=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 2_50,__SCREAMING_SNAKE_CASE = 0.0,__SCREAMING_SNAKE_CASE = 10,__SCREAMING_SNAKE_CASE = 10,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pil",__SCREAMING_SNAKE_CASE = True,): '''simple docstring''' __lowerCAmelCase = image __lowerCAmelCase = _preprocess_image(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = original_image.to(device=self.device,dtype=self.unet.dtype ) __lowerCAmelCase = _preprocess_mask(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = mask_image.to(device=self.device,dtype=self.unet.dtype ) __lowerCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(__SCREAMING_SNAKE_CASE )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __lowerCAmelCase = original_image.shape __lowerCAmelCase = randn_tensor(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,device=self.device,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,self.device ) __lowerCAmelCase = eta __lowerCAmelCase = self.scheduler.timesteps[0] + 1 __lowerCAmelCase = generator[0] if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __lowerCAmelCase = self.unet(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ).sample # compute previous image: x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ).prev_sample else: # compute the reverse: x_t-1 -> x_t __lowerCAmelCase = self.scheduler.undo_step(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = t __lowerCAmelCase = (image / 2 + 0.5).clamp(0,1 ) __lowerCAmelCase = image.cpu().permute(0,2,3,1 ).numpy() if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
689
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =TextToVideoSDPipeline a : Optional[int] =TEXT_TO_IMAGE_PARAMS a : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """np""" __lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __lowerCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowerCAmelCase = pipe.to("""cuda""" ) __lowerCAmelCase = """Spiderman is surfing""" __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames __lowerCAmelCase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
689
1
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin UpperCamelCase = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCamelCase__ : def __init__(self : Dict , _snake_case : Union[str, Any] , _snake_case : List[Any]=16 , _snake_case : str=13 , _snake_case : List[str]=7 , _snake_case : List[Any]=14 , _snake_case : Any=10 , _snake_case : int=19 , _snake_case : str=5 , _snake_case : Optional[Any]=4 , _snake_case : Optional[Any]=True , _snake_case : List[Any]=16 , _snake_case : List[str]=2 , _snake_case : List[Any]=4 , _snake_case : str=4 , _snake_case : Optional[Any]="gelu" , _snake_case : Dict=0.1 , _snake_case : Any=0.1 , _snake_case : List[Any]=[1, 2, 3, 4, 5] , _snake_case : Dict=25 , _snake_case : List[Any]=5 , ) -> Any: """simple docstring""" lowerCamelCase_ : Any = d_model lowerCamelCase_ : int = parent lowerCamelCase_ : Optional[int] = batch_size lowerCamelCase_ : List[str] = prediction_length lowerCamelCase_ : Optional[int] = context_length lowerCamelCase_ : Any = cardinality lowerCamelCase_ : Union[str, Any] = num_time_features lowerCamelCase_ : Dict = lags_sequence lowerCamelCase_ : List[str] = embedding_dimension lowerCamelCase_ : Any = is_training lowerCamelCase_ : Union[str, Any] = hidden_size lowerCamelCase_ : Union[str, Any] = num_hidden_layers lowerCamelCase_ : Union[str, Any] = num_attention_heads lowerCamelCase_ : List[str] = intermediate_size lowerCamelCase_ : Union[str, Any] = hidden_act lowerCamelCase_ : Union[str, Any] = hidden_dropout_prob lowerCamelCase_ : Optional[int] = attention_probs_dropout_prob lowerCamelCase_ : Optional[int] = context_length lowerCamelCase_ : Optional[Any] = prediction_length + label_length lowerCamelCase_ : Optional[Any] = label_length lowerCamelCase_ : List[Any] = moving_average lowerCamelCase_ : Union[str, Any] = autocorrelation_factor def UpperCAmelCase_ (self : Dict ) -> Dict: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCAmelCase_ (self : Tuple , _snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : List[Any] = config.context_length + max(config.lags_sequence ) lowerCamelCase_ : str = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCamelCase_ : Dict = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCamelCase_ : Any = floats_tensor([self.batch_size, _past_length] ) lowerCamelCase_ : Any = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCamelCase_ : int = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCamelCase_ : Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length] ) lowerCamelCase_ : Optional[int] = { 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def UpperCAmelCase_ (self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ : List[str] = self.get_config() lowerCamelCase_ : Optional[Any] = self.prepare_autoformer_inputs_dict(_snake_case ) return config, inputs_dict def UpperCAmelCase_ (self : int ) -> List[str]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : str = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase_ (self : List[Any] , _snake_case : Dict , _snake_case : str ) -> int: """simple docstring""" lowerCamelCase_ : Union[str, Any] = AutoformerModel(config=_snake_case ).to(_snake_case ).eval() lowerCamelCase_ : Any = model(**_snake_case ) lowerCamelCase_ : int = outputs.encoder_last_hidden_state lowerCamelCase_ : int = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ : Any = model.get_encoder() encoder.save_pretrained(_snake_case ) lowerCamelCase_ : List[Any] = AutoformerEncoder.from_pretrained(_snake_case ).to(_snake_case ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Tuple = model.create_network_inputs(**_snake_case ) lowerCamelCase_ , lowerCamelCase_ : Dict = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCamelCase_ : str = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCamelCase_ : Dict = encoder(inputs_embeds=_snake_case )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) lowerCamelCase_ : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCamelCase_ : Optional[Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCamelCase_ : List[Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCamelCase_ : List[Any] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ : List[Any] = model.get_decoder() decoder.save_pretrained(_snake_case ) lowerCamelCase_ : str = AutoformerDecoder.from_pretrained(_snake_case ).to(_snake_case ) lowerCamelCase_ : Union[str, Any] = decoder( trend=_snake_case , inputs_embeds=_snake_case , encoder_hidden_states=_snake_case , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCamelCase__ ( UpperCAmelCase, UpperCAmelCase, unittest.TestCase ): lowerCamelCase_ : Optional[int] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCamelCase_ : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () lowerCamelCase_ : Optional[int] = {'feature-extraction': AutoformerModel} if is_torch_available() else {} lowerCamelCase_ : str = False lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : Dict = False lowerCamelCase_ : int = False lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : Any = False def UpperCAmelCase_ (self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = AutoformerModelTester(self ) lowerCamelCase_ : Optional[int] = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def UpperCAmelCase_ (self : Dict ) -> int: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ (self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCamelCase_ : str = model_class(_snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowerCamelCase_ , lowerCamelCase_ : Optional[int] = model_class.from_pretrained(_snake_case , output_loading_info=_snake_case ) self.assertEqual(info['missing_keys'] , [] ) def UpperCAmelCase_ (self : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_snake_case ) @unittest.skip(reason='Model has no tokens embeddings' ) def UpperCAmelCase_ (self : str ) -> List[Any]: """simple docstring""" pass def UpperCAmelCase_ (self : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ : Any = inspect.signature(getattr(_snake_case , 'forward' ) ) # The main input is the name of the argument after `self` lowerCamelCase_ : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , _snake_case ) def UpperCAmelCase_ (self : str ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : List[str] = model_class(_snake_case ) lowerCamelCase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ : Dict = [*signature.parameters.keys()] lowerCamelCase_ : Dict = [ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(_snake_case )] , _snake_case ) def UpperCAmelCase_ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Tuple = True lowerCamelCase_ : List[Any] = getattr(self.model_tester , 'seq_length' , _snake_case ) lowerCamelCase_ : Optional[Any] = getattr(self.model_tester , 'decoder_seq_length' , _snake_case ) lowerCamelCase_ : Any = getattr(self.model_tester , 'encoder_seq_length' , _snake_case ) lowerCamelCase_ : List[Any] = getattr(self.model_tester , 'd_model' , _snake_case ) lowerCamelCase_ : Union[str, Any] = getattr(self.model_tester , 'num_attention_heads' , _snake_case ) lowerCamelCase_ : Optional[int] = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCamelCase_ : int = True lowerCamelCase_ : int = False lowerCamelCase_ : int = True lowerCamelCase_ : Union[str, Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowerCamelCase_ : Tuple = model(**self._prepare_for_class(_snake_case , _snake_case ) ) lowerCamelCase_ : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ : int = True lowerCamelCase_ : Tuple = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowerCamelCase_ : int = model(**self._prepare_for_class(_snake_case , _snake_case ) ) lowerCamelCase_ : Dict = outputs.encoder_attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCamelCase_ : Any = len(_snake_case ) lowerCamelCase_ : List[str] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(_snake_case , _snake_case ) # decoder attentions lowerCamelCase_ : List[Any] = outputs.decoder_attentions self.assertIsInstance(_snake_case , (list, tuple) ) self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCamelCase_ : Union[str, Any] = outputs.cross_attentions self.assertIsInstance(_snake_case , (list, tuple) ) self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCamelCase_ : int = True lowerCamelCase_ : int = True lowerCamelCase_ : List[str] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowerCamelCase_ : Union[str, Any] = model(**self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + 2 , len(_snake_case ) ) lowerCamelCase_ : Tuple = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCAmelCase_ (self : int ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def _a ( lowerCamelCase__="train-batch.pt" ) -> int: lowerCamelCase_ : Optional[Any] = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=lowerCamelCase__ , repo_type='dataset' ) lowerCamelCase_ : Optional[int] = torch.load(lowerCamelCase__ , map_location=lowerCamelCase__ ) return batch @require_torch @slow class lowerCamelCase__ ( unittest.TestCase ): def UpperCAmelCase_ (self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ : Optional[int] = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_snake_case ) lowerCamelCase_ : Union[str, Any] = prepare_batch() with torch.no_grad(): lowerCamelCase_ : Any = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] lowerCamelCase_ : Any = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , _snake_case ) lowerCamelCase_ : List[str] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=_snake_case ) self.assertTrue(torch.allclose(output[0, :3, :3] , _snake_case , atol=_snake_case ) ) def UpperCAmelCase_ (self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ : Dict = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_snake_case ) lowerCamelCase_ : Optional[int] = prepare_batch('val-batch.pt' ) with torch.no_grad(): lowerCamelCase_ : Dict = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state lowerCamelCase_ : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , _snake_case ) lowerCamelCase_ : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=_snake_case ) self.assertTrue(torch.allclose(output[0, :3, :3] , _snake_case , atol=_snake_case ) ) def UpperCAmelCase_ (self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ : Optional[Any] = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_snake_case ) lowerCamelCase_ : Tuple = prepare_batch('val-batch.pt' ) with torch.no_grad(): lowerCamelCase_ : Optional[Any] = model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) lowerCamelCase_ : Optional[int] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , _snake_case ) lowerCamelCase_ : Union[str, Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=_snake_case ) lowerCamelCase_ : List[str] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _snake_case , rtol=1e-1 ) )
144
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__(self : int , _snake_case : Union[str, Any] , _snake_case : Union[str, Any]=3 , _snake_case : Tuple=32 , _snake_case : Any=3 , _snake_case : List[Any]=10 , _snake_case : List[Any]=[10, 20, 30, 40] , _snake_case : Union[str, Any]=[1, 1, 2, 1] , _snake_case : Tuple=True , _snake_case : Any=True , _snake_case : Optional[Any]="relu" , _snake_case : str=3 , _snake_case : Tuple=None , ) -> Any: """simple docstring""" lowerCamelCase_ : Tuple = parent lowerCamelCase_ : Tuple = batch_size lowerCamelCase_ : Any = image_size lowerCamelCase_ : Union[str, Any] = num_channels lowerCamelCase_ : str = embeddings_size lowerCamelCase_ : List[str] = hidden_sizes lowerCamelCase_ : str = depths lowerCamelCase_ : int = is_training lowerCamelCase_ : str = use_labels lowerCamelCase_ : Optional[Any] = hidden_act lowerCamelCase_ : List[str] = num_labels lowerCamelCase_ : List[str] = scope lowerCamelCase_ : List[Any] = len(_snake_case ) def UpperCAmelCase_ (self : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ : str = self.get_config() return config, pixel_values def UpperCAmelCase_ (self : List[str] ) -> Optional[int]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase_ (self : Optional[Any] , _snake_case : Any , _snake_case : Any ) -> List[str]: """simple docstring""" lowerCamelCase_ : Optional[Any] = FlaxRegNetModel(config=_snake_case ) lowerCamelCase_ : str = model(_snake_case ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ (self : Tuple , _snake_case : Any , _snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ : int = self.num_labels lowerCamelCase_ : int = FlaxRegNetForImageClassification(config=_snake_case ) lowerCamelCase_ : Any = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ (self : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Optional[Any] = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ : int = config_and_inputs lowerCamelCase_ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase__ ( UpperCAmelCase, unittest.TestCase ): lowerCamelCase_ : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCamelCase_ : int = False lowerCamelCase_ : str = False lowerCamelCase_ : Any = False def UpperCAmelCase_ (self : Optional[Any] ) -> None: """simple docstring""" lowerCamelCase_ : str = FlaxRegNetModelTester(self ) lowerCamelCase_ : Tuple = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def UpperCAmelCase_ (self : str ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ (self : int ) -> Optional[int]: """simple docstring""" return def UpperCAmelCase_ (self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase_ (self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def UpperCAmelCase_ (self : str ) -> int: """simple docstring""" pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def UpperCAmelCase_ (self : List[Any] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ (self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Optional[Any] = model_class(_snake_case ) lowerCamelCase_ : int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ : Dict = [*signature.parameters.keys()] lowerCamelCase_ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def UpperCAmelCase_ (self : Tuple ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : int , _snake_case : Dict , _snake_case : Optional[Any] ): lowerCamelCase_ : Optional[Any] = model_class(_snake_case ) lowerCamelCase_ : Dict = model(**self._prepare_for_class(_snake_case , _snake_case ) ) lowerCamelCase_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ : Dict = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) lowerCamelCase_ , lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Dict = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ : Tuple = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def UpperCAmelCase_ (self : Any ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ : Tuple = self._prepare_for_class(_snake_case , _snake_case ) lowerCamelCase_ : Dict = model_class(_snake_case ) @jax.jit def model_jitted(_snake_case : Optional[Any] , **_snake_case : Tuple ): return model(pixel_values=_snake_case , **_snake_case ) with self.subTest('JIT Enabled' ): lowerCamelCase_ : str = model_jitted(**_snake_case ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCamelCase_ : List[Any] = model_jitted(**_snake_case ).to_tuple() self.assertEqual(len(_snake_case ) , len(_snake_case ) ) for jitted_output, output in zip(_snake_case , _snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( ) -> str: lowerCamelCase_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowerCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ (self : Optional[Any] ) -> List[str]: """simple docstring""" return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def UpperCAmelCase_ (self : Tuple ) -> str: """simple docstring""" lowerCamelCase_ : Dict = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) lowerCamelCase_ : List[str] = self.default_image_processor lowerCamelCase_ : str = prepare_img() lowerCamelCase_ : int = image_processor(images=_snake_case , return_tensors='np' ) lowerCamelCase_ : Union[str, Any] = model(**_snake_case ) # verify the logits lowerCamelCase_ : Any = (1, 1000) self.assertEqual(outputs.logits.shape , _snake_case ) lowerCamelCase_ : Optional[int] = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4 ) )
144
1
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A_ ( A__ ): '''simple docstring''' def __init__( self: Any , a: Any , a: Optional[int] ): super().__init__() # make sure scheduler can always be converted to DDIM __lowerCamelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self: List[Any] , a: Any = 1 , a: List[Any] = None , a: Optional[int] = 0.0 , a: Union[str, Any] = 50 , a: Union[str, Any] = None , a: Tuple = "pil" , a: List[str] = True , ): if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): __lowerCamelCase : Tuple = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __lowerCamelCase : Dict = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __lowerCamelCase : Optional[int] = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowerCamelCase : Any = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __lowerCamelCase : Any = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample __lowerCamelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase : int = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
669
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ = None ): '''simple docstring''' if components is None: UpperCamelCase__ :List[Any] = [] UpperCamelCase__ :Optional[Any] = list(UpperCamelCase_ ) def __len__( self ): '''simple docstring''' return len(self.__components ) def __str__( self ): '''simple docstring''' return "(" + ",".join(map(UpperCamelCase_ , self.__components ) ) + ")" def __add__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Any = len(self ) if size == len(UpperCamelCase_ ): UpperCamelCase__ :Dict = [self.__components[i] + other.component(UpperCamelCase_ ) for i in range(UpperCamelCase_ )] return Vector(UpperCamelCase_ ) else: raise Exception('''must have the same size''' ) def __sub__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = len(self ) if size == len(UpperCamelCase_ ): UpperCamelCase__ :List[str] = [self.__components[i] - other.component(UpperCamelCase_ ) for i in range(UpperCamelCase_ )] return Vector(UpperCamelCase_ ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self , UpperCamelCase_ ): '''simple docstring''' ... @overload def __mul__( self , UpperCamelCase_ ): '''simple docstring''' ... def __mul__( self , UpperCamelCase_ ): '''simple docstring''' if isinstance(UpperCamelCase_ , (float, int) ): UpperCamelCase__ :Optional[Any] = [c * other for c in self.__components] return Vector(UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(self ) == len(UpperCamelCase_ ): UpperCamelCase__ :Optional[int] = len(self ) UpperCamelCase__ :List[Any] = [self.__components[i] * other.component(UpperCamelCase_ ) for i in range(UpperCamelCase_ )] return sum(UpperCamelCase_ ) else: # error case raise Exception('''invalid operand!''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' return Vector(self.__components ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) UpperCamelCase__ :Optional[int] = value def lowerCAmelCase__ ( self ): '''simple docstring''' if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) UpperCamelCase__ :List[str] = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = False ): '''simple docstring''' UpperCamelCase__ :List[Any] = self * other UpperCamelCase__ :Optional[int] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def a ( __a ) -> Vector: '''simple docstring''' assert isinstance(__a , __a ) return Vector([0] * dimension ) def a ( __a , __a ) -> Vector: '''simple docstring''' assert isinstance(__a , __a ) and (isinstance(__a , __a )) UpperCamelCase__ :str = [0] * dimension UpperCamelCase__ :Tuple = 1 return Vector(__a ) def a ( __a , __a , __a ) -> Vector: '''simple docstring''' assert ( isinstance(__a , __a ) and isinstance(__a , __a ) and (isinstance(__a , (int, float) )) ) return x * scalar + y def a ( __a , __a , __a ) -> Vector: '''simple docstring''' random.seed(__a ) UpperCamelCase__ :Optional[Any] = [random.randint(__a , __a ) for _ in range(__a )] return Vector(__a ) class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = matrix UpperCamelCase__ :Union[str, Any] = w UpperCamelCase__ :Optional[int] = h def __str__( self ): '''simple docstring''' UpperCamelCase__ :Dict = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , UpperCamelCase_ ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): UpperCamelCase__ :int = [] for i in range(self.__height ): UpperCamelCase__ :int = [ self.__matrix[i][j] + other.component(UpperCamelCase_ , UpperCamelCase_ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase_ ) return Matrix(UpperCamelCase_ , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self , UpperCamelCase_ ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): UpperCamelCase__ :Optional[Any] = [] for i in range(self.__height ): UpperCamelCase__ :Optional[int] = [ self.__matrix[i][j] - other.component(UpperCamelCase_ , UpperCamelCase_ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase_ ) return Matrix(UpperCamelCase_ , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self , UpperCamelCase_ ): '''simple docstring''' ... @overload def __mul__( self , UpperCamelCase_ ): '''simple docstring''' ... def __mul__( self , UpperCamelCase_ ): '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ): # matrix-vector if len(UpperCamelCase_ ) == self.__width: UpperCamelCase__ :Any = zero_vector(self.__height ) for i in range(self.__height ): UpperCamelCase__ :Any = [ self.__matrix[i][j] * other.component(UpperCamelCase_ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase_ , sum(UpperCamelCase_ ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(UpperCamelCase_ , (int, float) ): # matrix-scalar UpperCamelCase__ :Union[str, Any] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase_ , self.__width , self.__height ) return None def lowerCAmelCase__ ( self ): '''simple docstring''' return self.__height def lowerCAmelCase__ ( self ): '''simple docstring''' return self.__width def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: UpperCamelCase__ :Tuple = value else: raise Exception('''change_component: indices out of bounds''' ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) UpperCamelCase__ :str = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase_ ) ): UpperCamelCase__ :Union[str, Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase_ , self.__width - 1 , self.__height - 1 ).determinant() def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase_ , UpperCamelCase_ ) else: raise Exception('''Indices out of bounds''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCamelCase__ :Optional[Any] = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase_ ) for y in range(self.__width ) ] return sum(UpperCamelCase_ ) def a ( __a ) -> Matrix: '''simple docstring''' UpperCamelCase__ :list[list[float]] = [[0] * n for _ in range(__a )] return Matrix(__a , __a , __a ) def a ( __a , __a , __a , __a ) -> Matrix: '''simple docstring''' random.seed(__a ) UpperCamelCase__ :list[list[float]] = [ [random.randint(__a , __a ) for _ in range(__a )] for _ in range(__a ) ] return Matrix(__a , __a , __a )
189
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
190
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __UpperCAmelCase , unittest.TestCase ): _lowerCamelCase = FunnelTokenizer _lowerCamelCase = FunnelTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def lowerCAmelCase__ ( self ): super().setUp() __magic_name__ = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): __magic_name__ = '''UNwant\u00E9d,running''' __magic_name__ = '''unwanted, running''' return input_text, output_text def lowerCAmelCase__ ( self ): __magic_name__ = self.tokenizer_class(self.vocab_file ) __magic_name__ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCamelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: __magic_name__ = tokenizer('''UNwant\u00E9d,running''' ) __magic_name__ = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) __magic_name__ = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
190
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase_ = logging.getLogger(__name__) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ): """simple docstring""" return (preds == labels).mean() @dataclass class _a : '''simple docstring''' A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _a : '''simple docstring''' A : str = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) A : str = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) A : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' ,__UpperCamelCase ) # Set seed set_seed(training_args.seed ) try: SCREAMING_SNAKE_CASE : Optional[Any] = processors[data_args.task_name]() SCREAMING_SNAKE_CASE : List[Any] = processor.get_labels() SCREAMING_SNAKE_CASE : Optional[Any] = len(__UpperCamelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=__UpperCamelCase ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,) SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool('.ckpt' in model_args.model_name_or_path ) ,config=__UpperCamelCase ,cache_dir=model_args.cache_dir ,) # Get datasets SCREAMING_SNAKE_CASE : List[str] = ( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=__UpperCamelCase ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) SCREAMING_SNAKE_CASE : str = ( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=__UpperCamelCase ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def compute_metrics(__UpperCamelCase: EvalPrediction ) -> Dict: SCREAMING_SNAKE_CASE : Any = np.argmax(p.predictions ,axis=1 ) return {"acc": simple_accuracy(__UpperCamelCase ,p.label_ids )} # Data collator SCREAMING_SNAKE_CASE : str = DataCollatorWithPadding(__UpperCamelCase ,pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE : Union[str, Any] = Trainer( model=__UpperCamelCase ,args=__UpperCamelCase ,train_dataset=__UpperCamelCase ,eval_dataset=__UpperCamelCase ,compute_metrics=__UpperCamelCase ,data_collator=__UpperCamelCase ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE : List[str] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) SCREAMING_SNAKE_CASE : Any = trainer.evaluate() SCREAMING_SNAKE_CASE : Any = os.path.join(training_args.output_dir ,'eval_results.txt' ) if trainer.is_world_master(): with open(__UpperCamelCase ,'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' ,__UpperCamelCase ,__UpperCamelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(__UpperCamelCase ) return results def lowercase__( __UpperCamelCase: Tuple ): """simple docstring""" main() if __name__ == "__main__": main()
28
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A ) def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet( A, A, A, A, A, A, A, A, A, A, A, ) # merge samples if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A, A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, ) idx += 1 SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}" @classmethod def UpperCamelCase_ ( cls, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path while os.path.isdir(A ): SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A ) controlnets.append(A ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}" logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." ) if len(A ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(A )
28
1
import numpy as np lowerCamelCase_ = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class __lowerCamelCase : def __init__( self ) -> None: snake_case_ = np.array(lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> np.ndarray: snake_case_ , snake_case_ = np.where(letter == self.SQUARE ) snake_case_ = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase ) -> str: snake_case_ = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCAmelCase_ ( self , lowerCamelCase ) -> str: snake_case_ = message.lower() snake_case_ = message.replace(""" """ , """""" ) snake_case_ = message.replace("""j""" , """i""" ) snake_case_ = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): snake_case_ = self.letter_to_numbers(message[letter_index] ) snake_case_ = numbers[0] snake_case_ = numbers[1] snake_case_ = first_step.reshape(2 * len(lowerCamelCase ) ) snake_case_ = """""" for numbers_index in range(len(lowerCamelCase ) ): snake_case_ = int(second_step[numbers_index * 2] ) snake_case_ = int(second_step[(numbers_index * 2) + 1] ) snake_case_ = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) snake_case_ = encoded_message + letter return encoded_message def lowerCAmelCase_ ( self , lowerCamelCase ) -> str: snake_case_ = message.lower() message.replace(""" """ , """""" ) snake_case_ = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): snake_case_ = self.letter_to_numbers(message[letter_index] ) snake_case_ = numbers[0] snake_case_ = numbers[1] snake_case_ = first_step.reshape((2, len(lowerCamelCase )) ) snake_case_ = """""" for numbers_index in range(len(lowerCamelCase ) ): snake_case_ = int(second_step[0, numbers_index] ) snake_case_ = int(second_step[1, numbers_index] ) snake_case_ = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) snake_case_ = decoded_message + letter return decoded_message
161
from typing import Any def UpperCamelCase( lowercase_ ) -> list[Any]: '''simple docstring''' if not input_list: return [] snake_case_ = [input_list.count(lowercase_ ) for value in input_list] snake_case_ = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
161
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ :Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ :List[Any] = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class A( lowerCamelCase__ ): """simple docstring""" A = "big_bird" def __init__( self , SCREAMING_SNAKE_CASE__=5_03_58 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu_new" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=40_96 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=66 , SCREAMING_SNAKE_CASE__="block_sparse" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=64 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: """simple docstring""" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , sep_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) _UpperCamelCase :Optional[int] = vocab_size _UpperCamelCase :Dict = max_position_embeddings _UpperCamelCase :Union[str, Any] = hidden_size _UpperCamelCase :Tuple = num_hidden_layers _UpperCamelCase :int = num_attention_heads _UpperCamelCase :str = intermediate_size _UpperCamelCase :List[str] = hidden_act _UpperCamelCase :Optional[int] = hidden_dropout_prob _UpperCamelCase :Optional[Any] = attention_probs_dropout_prob _UpperCamelCase :Optional[int] = initializer_range _UpperCamelCase :Tuple = type_vocab_size _UpperCamelCase :Dict = layer_norm_eps _UpperCamelCase :str = use_cache _UpperCamelCase :List[Any] = rescale_embeddings _UpperCamelCase :str = attention_type _UpperCamelCase :Any = use_bias _UpperCamelCase :Dict = block_size _UpperCamelCase :List[Any] = num_random_blocks _UpperCamelCase :int = classifier_dropout class A( lowerCamelCase__ ): """simple docstring""" @property def _UpperCamelCase( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCamelCase :int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase :Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
355
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :List[str] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_28, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_42, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } _UpperCamelCase :Union[str, Any] = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 1_28, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 1_42, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase( self ) -> Any: """simple docstring""" _UpperCamelCase :Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) _UpperCamelCase :Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase( self ) -> str: """simple docstring""" _UpperCamelCase :Union[str, Any] = np.random.randn(3 , 4 ) _UpperCamelCase :Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) _UpperCamelCase :int = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase( self ) -> Dict: """simple docstring""" _UpperCamelCase :Dict = np.random.randn(3 , 4 ) _UpperCamelCase :List[str] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) _UpperCamelCase :int = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Dict = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase( self ) -> str: """simple docstring""" _UpperCamelCase :int = np.random.randn(3 , 4 ) _UpperCamelCase :Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) _UpperCamelCase :Dict = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Dict = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) _UpperCamelCase :Dict = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :Union[str, Any] = np.random.randn(3 , 4 ) _UpperCamelCase :Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) _UpperCamelCase :str = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :str = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :Optional[int] = np.random.randn(3 , 4 ) _UpperCamelCase :Dict = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) _UpperCamelCase :Union[str, Any] = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Optional[int] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :List[str] = np.random.randn(3 , 4 ) _UpperCamelCase :str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) _UpperCamelCase :Dict = np.random.randn(3 , 4 , 5 ) _UpperCamelCase :Union[str, Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :Dict = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) _UpperCamelCase :List[Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :str = np.random.randn(1 , 3 , 4 ) _UpperCamelCase :Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) _UpperCamelCase :List[str] = np.random.randn(1 , 4 , 1 , 5 ) _UpperCamelCase :List[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :str = np.random.randn(1 , 3 , 4 ) _UpperCamelCase :str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) _UpperCamelCase :str = np.random.randn(1 , 4 , 1 , 5 ) _UpperCamelCase :str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase :Union[str, Any] = np.random.randn(1 , 3 , 4 ) _UpperCamelCase :Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) _UpperCamelCase :Dict = np.random.randn(1 , 4 , 1 , 5 ) _UpperCamelCase :int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :List[str] = np.random.randn(3 , 4 ) _UpperCamelCase :Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase :str = np.random.randn(3 , 4 ) _UpperCamelCase :int = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase( self ) -> List[Any]: """simple docstring""" _UpperCamelCase :Tuple = np.random.randn(3 , 4 ) _UpperCamelCase :str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
355
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
567
0
'''simple docstring''' def lowerCamelCase__ ( _A ): if num < 0: return False a : int = num a : int = 0 while num > 0: a : Tuple = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
526
'''simple docstring''' import numpy as np def lowerCamelCase__ ( _A ): return 1 / (1 + np.exp(-vector )) def lowerCamelCase__ ( _A ): return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
526
1
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __UpperCamelCase : int = 'src/transformers' __UpperCamelCase : Optional[Any] = 'docs/source/en' __UpperCamelCase : Union[str, Any] = '.' def A ( _lowercase , _lowercase , _lowercase ) -> Dict: with open(_lowercase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE : Any = f.readlines() # Find the start prompt. SCREAMING_SNAKE_CASE : List[Any] = 0 while not lines[start_index].startswith(_lowercase ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE : Tuple = start_index while not lines[end_index].startswith(_lowercase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __UpperCamelCase : Tuple = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. __UpperCamelCase : Union[str, Any] = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __UpperCamelCase : Dict = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __UpperCamelCase : Tuple = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. __UpperCamelCase : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) def A ( _lowercase ) -> str: SCREAMING_SNAKE_CASE : Tuple = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , _lowercase ) return [m.group(0 ) for m in matches] def A ( _lowercase , _lowercase ) -> Any: SCREAMING_SNAKE_CASE : Union[str, Any] = 2 if text == '''✅''' or text == '''❌''' else len(_lowercase ) SCREAMING_SNAKE_CASE : Tuple = (width - text_length) // 2 SCREAMING_SNAKE_CASE : List[str] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def A ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE : List[Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } SCREAMING_SNAKE_CASE : Optional[int] = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. SCREAMING_SNAKE_CASE : List[Any] = collections.defaultdict(_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = collections.defaultdict(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = collections.defaultdict(_lowercase ) SCREAMING_SNAKE_CASE : Any = collections.defaultdict(_lowercase ) SCREAMING_SNAKE_CASE : int = collections.defaultdict(_lowercase ) # Let's lookup through all transformers object (once). for attr_name in dir(_lowercase ): SCREAMING_SNAKE_CASE : Any = None if attr_name.endswith('''Tokenizer''' ): SCREAMING_SNAKE_CASE : Optional[int] = slow_tokenizers SCREAMING_SNAKE_CASE : Any = attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): SCREAMING_SNAKE_CASE : str = fast_tokenizers SCREAMING_SNAKE_CASE : Union[str, Any] = attr_name[:-13] elif _re_tf_models.match(_lowercase ) is not None: SCREAMING_SNAKE_CASE : Optional[Any] = tf_models SCREAMING_SNAKE_CASE : int = _re_tf_models.match(_lowercase ).groups()[0] elif _re_flax_models.match(_lowercase ) is not None: SCREAMING_SNAKE_CASE : Any = flax_models SCREAMING_SNAKE_CASE : str = _re_flax_models.match(_lowercase ).groups()[0] elif _re_pt_models.match(_lowercase ) is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = pt_models SCREAMING_SNAKE_CASE : Optional[Any] = _re_pt_models.match(_lowercase ).groups()[0] if lookup_dict is not None: while len(_lowercase ) > 0: if attr_name in model_name_to_prefix.values(): SCREAMING_SNAKE_CASE : Optional[Any] = True break # Try again after removing the last word in the name SCREAMING_SNAKE_CASE : Dict = ''''''.join(camel_case_split(_lowercase )[:-1] ) # Let's build that table! SCREAMING_SNAKE_CASE : Union[str, Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) SCREAMING_SNAKE_CASE : int = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). SCREAMING_SNAKE_CASE : Optional[Any] = [len(_lowercase ) + 2 for c in columns] SCREAMING_SNAKE_CASE : str = max([len(_lowercase ) for name in model_names] ) + 2 # Build the table per se SCREAMING_SNAKE_CASE : Any = '''|''' + '''|'''.join([_center_text(_lowercase , _lowercase ) for c, w in zip(_lowercase , _lowercase )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" SCREAMING_SNAKE_CASE : str = {True: '''✅''', False: '''❌'''} for name in model_names: SCREAMING_SNAKE_CASE : Union[str, Any] = model_name_to_prefix[name] SCREAMING_SNAKE_CASE : List[Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_lowercase , _lowercase ) for l, w in zip(_lowercase , _lowercase )] ) + "|\n" return table def A ( _lowercase=False ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : int = _find_text_in_file( filename=os.path.join(_lowercase , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) SCREAMING_SNAKE_CASE : Optional[int] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_lowercase , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __UpperCamelCase : str = parser.parse_args() check_model_table(args.fix_and_overwrite)
713
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""")) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""") @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ]) class lowercase__ ( unittest.TestCase): def __A ( self : Any ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=UpperCamelCase__ , ) assert hasattr(self , '''env''' ) def __A ( self : str , UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = f"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings SCREAMING_SNAKE_CASE : Any = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=UpperCamelCase__ , instance_count=UpperCamelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase__ , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase__ , py_version='''py36''' , ) def __A ( self : Optional[Any] , UpperCamelCase__ : List[str] ): '''simple docstring''' TrainingJobAnalytics(UpperCamelCase__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __A ( self : Tuple , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.create_estimator(UpperCamelCase__ ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE : List[str] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE : List[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , UpperCamelCase__ )
34
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class UpperCAmelCase : def __init__( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=1_3 , __lowerCamelCase : str=7 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=True , __lowerCamelCase : int=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=9_9 , __lowerCamelCase : str=3_2 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Optional[Any]=3_7 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Any=5_1_2 , __lowerCamelCase : Any=1_6 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Optional[int]=0.0_2 , __lowerCamelCase : Any=3 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[str]=0 , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope _snake_case = projection_dim def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) _snake_case = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Tuple ): """simple docstring""" _snake_case = TFDPRContextEncoder(config=__lowerCamelCase ) _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) _snake_case = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) _snake_case = model(__lowerCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = TFDPRQuestionEncoder(config=__lowerCamelCase ) _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) _snake_case = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) _snake_case = model(__lowerCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = TFDPRReader(config=__lowerCamelCase ) _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Any = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) A__ : Optional[int] = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} A__ : List[Any] = False A__ : Any = False A__ : Optional[int] = False A__ : Optional[Any] = False A__ : str = False def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = TFDPRModelTester(self ) _snake_case = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__lowerCamelCase ) def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__lowerCamelCase ) @slow def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFDPRContextEncoder.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFDPRContextEncoder.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFDPRQuestionEncoder.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFDPRReader.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class UpperCAmelCase ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) _snake_case = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] _snake_case = model(__lowerCamelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _snake_case = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
103
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowercase : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=10 , SCREAMING_SNAKE_CASE__ : Tuple=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE__ : Any=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="relu" , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : Any=None , ) -> Optional[int]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(SCREAMING_SNAKE_CASE__ ) def a ( self : Any ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def a ( self : Union[str, Any] ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: __lowerCAmelCase = RegNetModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = RegNetForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Tuple = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : int = False def a ( self : Union[str, Any] ) -> List[Any]: __lowerCAmelCase = RegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : Union[str, Any] ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def a ( self : str ) -> Union[str, Any]: pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def a ( self : List[str] ) -> int: pass def a ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=SCREAMING_SNAKE_CASE__ ) for name, module in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def a ( self : Union[str, Any] ) -> Any: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): __lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCAmelCase = layer_type __lowerCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : Any ) -> Optional[Any]: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = RegNetModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def UpperCamelCase_ ( ) -> Dict: '''simple docstring''' __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def a ( self : List[Any] ) -> Dict: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
427
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) UpperCamelCase__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase__ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ = model(snake_case_ )['last_hidden_state'].detach() self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case_ , atol=1E-3 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) UpperCamelCase__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase__ = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ = model(snake_case_ )['last_hidden_state'].detach() self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case_ , atol=1E-3 ) )
20
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
1
import socket def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __UpperCAmelCase : int = socket.gethostname() __UpperCAmelCase : Optional[int] = 12312 sock.connect((host, port) ) sock.send(b'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: __UpperCAmelCase : List[Any] = sock.recv(1024 ) if not data: break out_file.write(lowercase_ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
462
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase = 16 lowerCAmelCase = 32 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 16 , lowercase_ = "bert-base-cased" ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(lowercase_ ) __UpperCAmelCase : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase : Dict = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowercase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase : List[str] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowercase_ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) __UpperCAmelCase : Any = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' model.eval() __UpperCAmelCase : Optional[int] = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase : Any = model(**lowercase_ ) __UpperCAmelCase : Optional[int] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase_ ) - 1: __UpperCAmelCase : Optional[int] = predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCAmelCase : List[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) __UpperCAmelCase : Union[str, Any] = metric.compute() return eval_metric["accuracy"] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase : Optional[Any] = config['''lr'''] __UpperCAmelCase : List[Any] = int(config['''num_epochs'''] ) __UpperCAmelCase : Dict = int(config['''seed'''] ) __UpperCAmelCase : Tuple = int(config['''batch_size'''] ) __UpperCAmelCase : Any = args.model_name_or_path set_seed(lowercase_ ) __UpperCAmelCase , __UpperCAmelCase : Tuple = get_dataloaders(lowercase_ , lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase : List[str] = AutoModelForSequenceClassification.from_pretrained(lowercase_ , return_dict=lowercase_ ) # Instantiate optimizer __UpperCAmelCase : str = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __UpperCAmelCase : int = optimizer_cls(params=model.parameters() , lr=lowercase_ ) if accelerator.state.deepspeed_plugin is not None: __UpperCAmelCase : int = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : str = (len(lowercase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __UpperCAmelCase : List[str] = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=0 , num_training_steps=lowercase_ , ) else: __UpperCAmelCase : Union[str, Any] = DummyScheduler(lowercase_ , total_num_steps=lowercase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # We need to keep track of how many total steps we have iterated over __UpperCAmelCase : Tuple = 0 # We also need to keep track of the stating epoch so files are named properly __UpperCAmelCase : Any = 0 __UpperCAmelCase : Tuple = evaluate.load('''glue''' , '''mrpc''' ) __UpperCAmelCase : Any = num_epochs if args.partial_train_epoch is not None: __UpperCAmelCase : Any = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __UpperCAmelCase : List[Any] = args.resume_from_checkpoint.split('''epoch_''' )[1] __UpperCAmelCase : Union[str, Any] = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __UpperCAmelCase : Tuple = int(lowercase_ ) + 1 __UpperCAmelCase : Optional[int] = evaluation_loop(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) accelerator.print('''resumed checkpoint performance:''' , lowercase_ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f"state_{starting_epoch-1}.json" ) , '''r''' ) as f: __UpperCAmelCase : str = json.load(lowercase_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __UpperCAmelCase : Tuple = {} for epoch in range(lowercase_ , lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): __UpperCAmelCase : Dict = model(**lowercase_ ) __UpperCAmelCase : Union[str, Any] = outputs.loss __UpperCAmelCase : Tuple = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __UpperCAmelCase : Optional[Any] = f"epoch_{epoch}" __UpperCAmelCase : Optional[Any] = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) __UpperCAmelCase : Any = evaluation_loop(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = accuracy __UpperCAmelCase : Dict = lr_scheduler.get_lr()[0] __UpperCAmelCase : List[str] = optimizer.param_groups[0]['''lr'''] __UpperCAmelCase : List[Any] = epoch __UpperCAmelCase : Any = overall_step accelerator.print(f"epoch {epoch}:" , lowercase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"state_{epoch}.json" ) , '''w''' ) as f: json.dump(lowercase_ , lowercase_ ) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowercase_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowercase_ , ) parser.add_argument( '''--output_dir''' , type=lowercase_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=lowercase_ , default=lowercase_ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=lowercase_ , default=lowercase_ , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=lowercase_ , default=2 , help='''Number of train epochs.''' , ) __UpperCAmelCase : Optional[int] = parser.parse_args() __UpperCAmelCase : str = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
462
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "lilt" def __init__(self : Optional[int] , UpperCAmelCase_ : List[str]=30_522 , UpperCAmelCase_ : Tuple=768 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : str=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-1_2 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : List[Any]="absolute" , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : int=1_024 , **UpperCAmelCase_ : Optional[Any] , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: int =num_hidden_layers lowerCamelCase__: int =num_attention_heads lowerCamelCase__: Optional[int] =hidden_act lowerCamelCase__: int =intermediate_size lowerCamelCase__: str =hidden_dropout_prob lowerCamelCase__: List[Any] =attention_probs_dropout_prob lowerCamelCase__: List[Any] =max_position_embeddings lowerCamelCase__: Union[str, Any] =type_vocab_size lowerCamelCase__: Dict =initializer_range lowerCamelCase__: Tuple =layer_norm_eps lowerCamelCase__: Tuple =position_embedding_type lowerCamelCase__: Dict =classifier_dropout lowerCamelCase__: Union[str, Any] =channel_shrink_ratio lowerCamelCase__: List[str] =max_ad_position_embeddings
437
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "tf_padding")) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "depth_multiplier")) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : Any=0.25 , UpperCAmelCase_ : int=8 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : Any=6 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Dict="relu6" , UpperCAmelCase_ : Optional[int]=1_280 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : Optional[int]=None , ) ->Dict: '''simple docstring''' lowerCamelCase__: Any =parent lowerCamelCase__: Optional[Any] =batch_size lowerCamelCase__: List[str] =num_channels lowerCamelCase__: Dict =image_size lowerCamelCase__: Tuple =depth_multiplier lowerCamelCase__: Tuple =depth_divisible_by lowerCamelCase__: List[str] =min_depth lowerCamelCase__: List[str] =expand_ratio lowerCamelCase__: Union[str, Any] =tf_padding lowerCamelCase__: Optional[Any] =output_stride lowerCamelCase__: Tuple =first_layer_is_expansion lowerCamelCase__: Any =finegrained_output lowerCamelCase__: Union[str, Any] =hidden_act lowerCamelCase__: Union[str, Any] =last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier) lowerCamelCase__: int =classifier_dropout_prob lowerCamelCase__: List[str] =use_labels lowerCamelCase__: Any =is_training lowerCamelCase__: Dict =num_labels lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: List[Any] =scope def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: Dict =None lowerCamelCase__: int =None if self.use_labels: lowerCamelCase__: List[str] =ids_tensor([self.batch_size] , self.num_labels) lowerCamelCase__: List[Any] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) lowerCamelCase__: Any =self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[int]: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]) ->int: '''simple docstring''' lowerCamelCase__: List[str] =MobileNetVaModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Dict =model(UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__: int =self.num_labels lowerCamelCase__: Optional[int] =MobileNetVaForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Tuple =model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.num_labels lowerCamelCase__: List[str] =MobileNetVaForSemanticSegmentation(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Any =model(UpperCAmelCase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase__: List[str] =model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =config_and_inputs lowerCamelCase__: Tuple ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =MobileNetVaModelTester(self) lowerCamelCase__: Union[str, Any] =MobileNetVaConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds") def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings") def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not output attentions") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: Tuple =[*signature.parameters.keys()] lowerCamelCase__: Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str): lowerCamelCase__: List[str] =model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): lowerCamelCase__: Any =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) lowerCamelCase__: Optional[Any] =outputs.hidden_states lowerCamelCase__: List[str] =16 self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Union[str, Any] =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__: Optional[int] =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->List[Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]: '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: Optional[int] =MobileNetVaModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" lowerCamelCase__: List[Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[str]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224") if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224").to(UpperCAmelCase_) lowerCamelCase__: Dict =self.default_image_processor lowerCamelCase__: str =prepare_img() lowerCamelCase__: int =image_processor(images=UpperCAmelCase_ , return_tensors="pt").to(UpperCAmelCase_) # forward pass with torch.no_grad(): lowerCamelCase__: str =model(**UpperCAmelCase_) # verify the logits lowerCamelCase__: Optional[Any] =torch.Size((1, 1_001)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) lowerCamelCase__: List[str] =torch.tensor([0.2445, -1.1993, 0.1905]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4)) @slow def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") lowerCamelCase__: str =model.to(UpperCAmelCase_) lowerCamelCase__: List[Any] =MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") lowerCamelCase__: int =prepare_img() lowerCamelCase__: int =image_processor(images=UpperCAmelCase_ , return_tensors="pt").to(UpperCAmelCase_) # forward pass with torch.no_grad(): lowerCamelCase__: str =model(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =outputs.logits # verify the logits lowerCamelCase__: Optional[int] =torch.Size((1, 21, 65, 65)) self.assertEqual(logits.shape , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=UpperCAmelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase_ , atol=1E-4))
437
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Union[str, Any] = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __lowercase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
564
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = '''segformer''' def __init__( self : Optional[Any] , A_ : Tuple=3 , A_ : int=4 , A_ : int=[2, 2, 2, 2] , A_ : Any=[8, 4, 2, 1] , A_ : str=[32, 64, 160, 256] , A_ : str=[7, 3, 3, 3] , A_ : Dict=[4, 2, 2, 2] , A_ : List[str]=[1, 2, 5, 8] , A_ : Union[str, Any]=[4, 4, 4, 4] , A_ : Union[str, Any]="gelu" , A_ : int=0.0 , A_ : Tuple=0.0 , A_ : List[str]=0.1 , A_ : Tuple=0.02 , A_ : Optional[Any]=0.1 , A_ : int=1E-6 , A_ : Optional[int]=256 , A_ : Tuple=255 , **A_ : str , ) -> str: super().__init__(**A_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( '''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be''' ''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , A_ , ) __snake_case = num_channels __snake_case = num_encoder_blocks __snake_case = depths __snake_case = sr_ratios __snake_case = hidden_sizes __snake_case = patch_sizes __snake_case = strides __snake_case = mlp_ratios __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = drop_path_rate __snake_case = layer_norm_eps __snake_case = decoder_hidden_size __snake_case = kwargs.get('''reshape_last_stage''' , A_ ) __snake_case = semantic_loss_ignore_index class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = version.parse('''1.11''' ) @property def lowercase ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase ( self : List[Any] ) -> float: return 1E-4 @property def lowercase ( self : Any ) -> int: return 12
564
1
__a : Any = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> int: """simple docstring""" __A = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} __A = Stack() __A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowercase ) elif i == ")": # RULE 4 __A = operator_stack.peek() operator_stack.pop() __A = operand_stack.peek() operand_stack.pop() __A = operand_stack.peek() operand_stack.pop() __A = operators[opr](__lowercase , __lowercase ) operand_stack.push(__lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __a : Union[str, Any] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
199
def _SCREAMING_SNAKE_CASE ( __lowercase : List[Any] , __lowercase : Dict , __lowercase : str ) -> Dict: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__lowercase , n - 1 , __lowercase ) * a) % mod else: __A = binary_exponentiation(__lowercase , n / 2 , __lowercase ) return (b * b) % mod # a prime number __a : Union[str, Any] = 701 __a : Dict = 1000000000 __a : Union[str, Any] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
199
1
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __SCREAMING_SNAKE_CASE ( yaml.SafeLoader ): def __magic_name__ ( self : Any , __lowercase : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : str =[self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE__ : Optional[int] =[tuple(__lowercase ) if isinstance(__lowercase , __lowercase ) else key for key in keys] SCREAMING_SNAKE_CASE__ : Optional[int] =Counter(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =[key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"Got duplicate yaml keys: {duplicate_keys}" ) def __magic_name__ ( self : Dict , __lowercase : Any , __lowercase : str=False ) -> int: SCREAMING_SNAKE_CASE__ : Union[str, Any] =super().construct_mapping(__lowercase , deep=__lowercase ) self._check_no_duplicates_on_constructed_node(__lowercase ) return mapping def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE__ : List[str] =full_content[1:].index('''---''' ) + 1 SCREAMING_SNAKE_CASE__ : str ='''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(UpperCamelCase__ ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): # class attributes snake_case_ = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def __magic_name__ ( cls : Optional[int] , __lowercase : Path ) -> "DatasetMetadata": with open(__lowercase , encoding='''utf-8''' ) as readme_file: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =_split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__lowercase ) else: return cls() def __magic_name__ ( self : int , __lowercase : Path ) -> int: if path.exists(): with open(__lowercase , encoding='''utf-8''' ) as readme_file: SCREAMING_SNAKE_CASE__ : Optional[int] =readme_file.read() else: SCREAMING_SNAKE_CASE__ : List[str] =None SCREAMING_SNAKE_CASE__ : Union[str, Any] =self._to_readme(__lowercase ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(__lowercase ) def __magic_name__ ( self : int , __lowercase : Optional[str] = None ) -> str: if readme_content is not None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =_split_yaml_from_readme(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] ='''---\n''' + self.to_yaml_string() + '''---\n''' + content else: SCREAMING_SNAKE_CASE__ : Optional[Any] ='''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def __magic_name__ ( cls : Union[str, Any] , __lowercase : str ) -> "DatasetMetadata": SCREAMING_SNAKE_CASE__ : Tuple =yaml.load(__lowercase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE__ : Optional[Any] ={ (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__lowercase ) def __magic_name__ ( self : Optional[int] ) -> str: return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__lowercase , allow_unicode=__lowercase , encoding='''utf-8''' , ).decode('''utf-8''' ) a_ = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser a_ = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') a_ = ap.parse_args() a_ = Path(args.readme_filepath) a_ = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
296
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
296
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Optional[Any] =(DPMSolverSinglestepScheduler,) lowerCamelCase : Optional[Any] =(("num_inference_steps", 25),) def SCREAMING_SNAKE_CASE ( self : str , **lowerCAmelCase : str ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """prediction_type""": """epsilon""", """thresholding""": False, """sample_max_value""": 1.0, """algorithm_type""": """dpmsolver++""", """solver_type""": """midpoint""", """lambda_min_clipped""": -float("""inf""" ), """variance_type""": None, } config.update(**lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Union[str, Any]=0 , **lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) __lowerCAmelCase : List[str] = kwargs.pop("""num_inference_steps""" , lowerCAmelCase ) __lowerCAmelCase : Any = self.dummy_sample __lowerCAmelCase : Dict = 0.1 * sample __lowerCAmelCase : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase : Any = self.get_scheduler_config(**lowerCAmelCase ) __lowerCAmelCase : Any = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals __lowerCAmelCase : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) __lowerCAmelCase : Dict = scheduler_class.from_pretrained(lowerCAmelCase ) new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals __lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase : Tuple = sample, sample for t in range(lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase : Any = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample __lowerCAmelCase : Union[str, Any] = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : List[str]=0 , **lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = dict(self.forward_default_kwargs ) __lowerCAmelCase : Union[str, Any] = kwargs.pop("""num_inference_steps""" , lowerCAmelCase ) __lowerCAmelCase : Optional[int] = self.dummy_sample __lowerCAmelCase : Dict = 0.1 * sample __lowerCAmelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase : Optional[int] = self.get_scheduler_config() __lowerCAmelCase : List[Any] = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) __lowerCAmelCase : Dict = scheduler_class.from_pretrained(lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample __lowerCAmelCase : Optional[int] = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : str=None , **lowerCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" if scheduler is None: __lowerCAmelCase : Dict = self.scheduler_classes[0] __lowerCAmelCase : Dict = self.get_scheduler_config(**lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = scheduler_class(**lowerCAmelCase ) __lowerCAmelCase : List[str] = self.scheduler_classes[0] __lowerCAmelCase : int = self.get_scheduler_config(**lowerCAmelCase ) __lowerCAmelCase : Any = scheduler_class(**lowerCAmelCase ) __lowerCAmelCase : str = 10 __lowerCAmelCase : str = self.dummy_model() __lowerCAmelCase : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Optional[Any] = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : int = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: """simple docstring""" __lowerCAmelCase : str = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase : Union[str, Any] = 50 __lowerCAmelCase : Union[str, Any] = self.dummy_model() __lowerCAmelCase : Any = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase : Dict = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : str = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample __lowerCAmelCase : List[str] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase : int = self.full_loop(scheduler=lowerCAmelCase ) __lowerCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 __lowerCAmelCase : Optional[Any] = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase : Any = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase : List[str] = self.full_loop(scheduler=lowerCAmelCase ) __lowerCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , algorithm_type="""dpmsolver++""" , solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) __lowerCAmelCase : Optional[Any] = self.full_loop( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) assert not torch.isnan(lowerCAmelCase ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" self.check_over_configs(lower_order_final=lowerCAmelCase ) self.check_over_configs(lower_order_final=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float("""inf""" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: """simple docstring""" self.check_over_configs(variance_type=lowerCAmelCase ) self.check_over_configs(variance_type="""learned_range""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCAmelCase , time_step=0 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.full_loop() __lowerCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: """simple docstring""" __lowerCAmelCase : List[Any] = self.full_loop(use_karras_sigmas=lowerCAmelCase ) __lowerCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.full_loop(prediction_type="""v_prediction""" ) __lowerCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.full_loop(prediction_type="""v_prediction""" , use_karras_sigmas=lowerCAmelCase ) __lowerCAmelCase : List[str] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[str] = self.scheduler_classes[0] __lowerCAmelCase : Union[str, Any] = self.get_scheduler_config(thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase : str = scheduler_class(**lowerCAmelCase ) __lowerCAmelCase : List[str] = 10 __lowerCAmelCase : str = self.dummy_model() __lowerCAmelCase : List[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
702
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(a_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase ) self.check_model_type(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : List[Any] = {}, {} if padding is not None: __lowerCAmelCase : List[Any] = padding if truncation is not None: __lowerCAmelCase : int = truncation if top_k is not None: __lowerCAmelCase : int = top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[int] , lowerCAmelCase : Union["Image.Image", str] , lowerCAmelCase : str = None , **lowerCAmelCase : List[str] ) -> Any: """simple docstring""" if isinstance(lowerCAmelCase , (Image.Image, str) ) and isinstance(lowerCAmelCase , lowerCAmelCase ): __lowerCAmelCase : Any = {"""image""": image, """question""": question} else: __lowerCAmelCase : List[str] = image __lowerCAmelCase : str = super().__call__(lowerCAmelCase , **lowerCAmelCase ) return results def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Union[str, Any]=False ) -> Any: """simple docstring""" __lowerCAmelCase : int = load_image(inputs["""image"""] ) __lowerCAmelCase : Optional[Any] = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=lowerCAmelCase , truncation=lowerCAmelCase ) __lowerCAmelCase : List[Any] = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) return model_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.model(**lowerCAmelCase ) return model_outputs def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]=5 ) -> Union[str, Any]: """simple docstring""" if top_k > self.model.config.num_labels: __lowerCAmelCase : Any = self.model.config.num_labels if self.framework == "pt": __lowerCAmelCase : Optional[Any] = model_outputs.logits.sigmoid()[0] __lowerCAmelCase ,__lowerCAmelCase : Tuple = probs.topk(lowerCAmelCase ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) __lowerCAmelCase : Any = scores.tolist() __lowerCAmelCase : int = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase , lowerCAmelCase )]
218
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : List[Any] ={ """configuration_bridgetower""": [ """BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BridgeTowerConfig""", """BridgeTowerTextConfig""", """BridgeTowerVisionConfig""", ], """processing_bridgetower""": ["""BridgeTowerProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] =["""BridgeTowerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict =[ """BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""", """BridgeTowerForContrastiveLearning""", """BridgeTowerForImageAndTextRetrieval""", """BridgeTowerForMaskedLM""", """BridgeTowerModel""", """BridgeTowerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys A_ : Optional[int] =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
483
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging A_ : List[Any] ="""\ """ A_ : Optional[Any] =""" Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ A_ : Any =""" Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION) class lowercase_ ( datasets.Metric): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 16 , _UpperCAmelCase = True , _UpperCAmelCase=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": a_ = """cuda""" else: a_ = """cuda""" if torch.cuda.is_available() else """cpu""" a_ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) a_ = model.to(_UpperCAmelCase ) a_ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: a_ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_UpperCAmelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" a_ = model.config.max_length - 1 else: a_ = model.config.max_length a_ = tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase ) a_ = encodings["""input_ids"""] a_ = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." a_ = [] a_ = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ): a_ = min(start_index + batch_size , len(_UpperCAmelCase ) ) a_ = encoded_texts[start_index:end_index] a_ = attn_masks[start_index:end_index] if add_start_token: a_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase ) a_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) a_ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 ) a_ = encoded_batch with torch.no_grad(): a_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits a_ = out_logits[..., :-1, :].contiguous() a_ = labels[..., 1:].contiguous() a_ = attn_mask[..., 1:].contiguous() a_ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
483
1
import math class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__=0 ): # a graph with Node 0,1,...,N-1 A : List[str] = n A : Tuple = [ [math.inf for j in range(0, __a )] for i in range(0, __a ) ] # adjacency matrix for weight A : Union[str, Any] = [ [math.inf for j in range(0, __a )] for i in range(0, __a ) ] # dp[i][j] stores minimum distance from i to j def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Union[str, Any] = w def _lowerCAmelCase ( self ): for k in range(0, self.n ): for i in range(0, self.n ): for j in range(0, self.n ): A : List[Any] = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j] ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): return self.dp[u][v] if __name__ == "__main__": SCREAMING_SNAKE_CASE_:List[str] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
717
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = LongformerTokenizer __lowerCamelCase : List[Any] = True __lowerCamelCase : Optional[Any] = LongformerTokenizerFast __lowerCamelCase : Tuple = True def _lowerCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] A : Dict = dict(zip(lowerCamelCase__, range(len(lowerCamelCase__ ) ) ) ) A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] A : Optional[Any] = {"""unk_token""": """<unk>"""} A : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) A : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + """\n""" ) with open(self.merges_file, """w""", encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase__ ) ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Tuple = """lower newer""" A : List[Any] = """lower newer""" return input_text, output_text def _lowerCAmelCase ( self ): A : Tuple = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) A : List[str] = """lower newer""" A : int = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] A : List[str] = tokenizer.tokenize(lowerCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) A : Any = tokens + [tokenizer.unk_token] A : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ), lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""", add_special_tokens=lowerCamelCase__ ), [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""", add_special_tokens=lowerCamelCase__ ), [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2], ) @slow def _lowerCAmelCase ( self ): A : Dict = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) A : Tuple = tokenizer.encode("""sequence builders""", add_special_tokens=lowerCamelCase__ ) A : List[str] = tokenizer.encode("""multi-sequence build""", add_special_tokens=lowerCamelCase__ ) A : Any = tokenizer.encode( """sequence builders""", add_special_tokens=lowerCamelCase__, add_prefix_space=lowerCamelCase__ ) A : str = tokenizer.encode( """sequence builders""", """multi-sequence build""", add_special_tokens=lowerCamelCase__, add_prefix_space=lowerCamelCase__ ) A : str = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) A : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__, lowerCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowerCAmelCase ( self ): A : str = self.get_tokenizer() A : List[Any] = """Encode this sequence.""" A : Tuple = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments A : Tuple = tokenizer.encode(lowerCamelCase__, add_special_tokens=lowerCamelCase__, add_prefix_space=lowerCamelCase__ ) A : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCamelCase__, lowerCamelCase__ ) A : Any = tokenizer.encode(lowerCamelCase__, add_special_tokens=lowerCamelCase__, add_prefix_space=lowerCamelCase__ ) A : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCamelCase__, lowerCamelCase__ ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) A : Optional[Any] = tokenizer.encode(lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) A : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCamelCase__, lowerCamelCase__ ) # Testing spaces after special tokens A : List[str] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(lowerCamelCase__, lstrip=lowerCamelCase__, rstrip=lowerCamelCase__ )} ) # mask token has a left space A : Union[str, Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) A : str = """Encode <mask> sequence""" A : str = """Encode <mask>sequence""" A : List[Any] = tokenizer.encode(lowerCamelCase__ ) A : str = encoded.index(lowerCamelCase__ ) A : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCamelCase__, lowerCamelCase__ ) A : Any = tokenizer.encode(lowerCamelCase__ ) A : List[str] = encoded.index(lowerCamelCase__ ) A : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): pass def _lowerCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A : List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__, **lowerCamelCase__ ) A : List[Any] = self.tokenizer_class.from_pretrained(lowerCamelCase__, **lowerCamelCase__ ) A : str = """A, <mask> AllenNLP sentence.""" A : Dict = tokenizer_r.encode_plus(lowerCamelCase__, add_special_tokens=lowerCamelCase__, return_token_type_ids=lowerCamelCase__ ) A : List[str] = tokenizer_p.encode_plus(lowerCamelCase__, add_special_tokens=lowerCamelCase__, return_token_type_ids=lowerCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ), sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ), sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ), ) A : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) A : int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""], [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""], [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCamelCase__, ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowerCamelCase__, ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _lowerCAmelCase ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): A : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=lowerCamelCase__, add_prefix_space=lowerCamelCase__, trim_offsets=lowerCamelCase__ ) A : List[str] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) A : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""], lowerCamelCase__ ) self.assertEqual(post_processor_state["""add_prefix_space"""], lowerCamelCase__ ) self.assertEqual(post_processor_state["""trim_offsets"""], lowerCamelCase__ ) def _lowerCAmelCase ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` A : Union[str, Any] = f'''{text_of_1_token} {text_of_1_token}''' A : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__, use_fast=lowerCamelCase__, add_prefix_space=lowerCamelCase__, trim_offsets=lowerCamelCase__ ) A : Optional[Any] = tokenizer_r(lowerCamelCase__, return_offsets_mapping=lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0], (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1], (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )), ) A : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__, use_fast=lowerCamelCase__, add_prefix_space=lowerCamelCase__, trim_offsets=lowerCamelCase__ ) A : int = tokenizer_r(lowerCamelCase__, return_offsets_mapping=lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0], (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1], (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )), ) A : List[Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__, use_fast=lowerCamelCase__, add_prefix_space=lowerCamelCase__, trim_offsets=lowerCamelCase__ ) A : str = tokenizer_r(lowerCamelCase__, return_offsets_mapping=lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0], (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1], (len(lowerCamelCase__ ), len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )), ) A : Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__, use_fast=lowerCamelCase__, add_prefix_space=lowerCamelCase__, trim_offsets=lowerCamelCase__ ) A : List[Any] = tokenizer_r(lowerCamelCase__, return_offsets_mapping=lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0], (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1], (len(lowerCamelCase__ ), len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )), ) A : Optional[Any] = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) A : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__, use_fast=lowerCamelCase__, add_prefix_space=lowerCamelCase__, trim_offsets=lowerCamelCase__ ) A : str = tokenizer_r(lowerCamelCase__, return_offsets_mapping=lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(lowerCamelCase__ ) + 1, 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )), ) A : Any = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__, use_fast=lowerCamelCase__, add_prefix_space=lowerCamelCase__, trim_offsets=lowerCamelCase__ ) A : Union[str, Any] = tokenizer_r(lowerCamelCase__, return_offsets_mapping=lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(lowerCamelCase__ ), 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )), ) A : Any = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__, use_fast=lowerCamelCase__, add_prefix_space=lowerCamelCase__, trim_offsets=lowerCamelCase__ ) A : Optional[int] = tokenizer_r(lowerCamelCase__, return_offsets_mapping=lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(lowerCamelCase__ ), 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )), )
520
0
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Any =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } SCREAMING_SNAKE_CASE_: Union[str, Any] =[ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Tuple ) -> str: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ) if weight_type is not None: UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ).shape else: UpperCAmelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCAmelCase_ = None for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True elif name.split("." )[0] == "proj": UpperCAmelCase_ = fairseq_model.proj UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(snake_case_ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: UpperCAmelCase_ = "weight" else: UpperCAmelCase_ = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : str , snake_case_ : List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = emb.weight.shape UpperCAmelCase_ = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) UpperCAmelCase_ = emb.weight.data return lin_layer def lowerCAmelCase_ ( snake_case_ : Any ) -> List[Any]: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [line.split(" " )[0] for line in lines] UpperCAmelCase_ = len(snake_case_ ) UpperCAmelCase_ = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(snake_case_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : str , snake_case_ : Optional[int] , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = WavaVecaConfig.from_pretrained(snake_case_ ) UpperCAmelCase_ = SpeechaTextaConfig.from_pretrained( snake_case_ , vocab_size=snake_case_ , decoder_layers=snake_case_ , do_stable_layer_norm=snake_case_ ) UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) UpperCAmelCase_ = model[0].eval() # set weights for wav2vec2 encoder UpperCAmelCase_ = WavaVecaModel(snake_case_ ) UpperCAmelCase_ = recursively_load_weights_wavaveca(model.encoder , snake_case_ ) UpperCAmelCase_ = SpeechaTextaForCausalLM(snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=snake_case_ ) # set output linear layer unexpected_keys.remove("embed_out" ) UpperCAmelCase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCAmelCase_ = SpeechEncoderDecoderModel(encoder=snake_case_ , decoder=snake_case_ ) UpperCAmelCase_ = False # add projection layer UpperCAmelCase_ = nn.Parameter(projection_layer.weight ) UpperCAmelCase_ = nn.Parameter(projection_layer.bias ) UpperCAmelCase_ = create_vocab_dict(snake_case_ ) with open(os.path.join(snake_case_ , "vocab.json" ) , "w" ) as fp: json.dump(snake_case_ , snake_case_ ) UpperCAmelCase_ = SpeechaTextaTokenizer(os.path.join(snake_case_ , "vocab.json" ) ) tokenizer.save_pretrained(snake_case_ ) UpperCAmelCase_ = hf_wavavec.config.to_dict() UpperCAmelCase_ = tokenizer.pad_token_id UpperCAmelCase_ = tokenizer.bos_token_id UpperCAmelCase_ = tokenizer.eos_token_id UpperCAmelCase_ = "speech_to_text_2" UpperCAmelCase_ = "wav2vec2" UpperCAmelCase_ = SpeechEncoderDecoderConfig.from_dict(snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) feature_extractor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_02_24, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') SCREAMING_SNAKE_CASE_: Tuple =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
78
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->None: '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
590
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = StableDiffusionSAGPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : int = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) _lowerCAmelCase : Any = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=__a, set_alpha_to_one=__a, ) torch.manual_seed(0) _lowerCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) _lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) _lowerCAmelCase : List[str] = CLIPTextModel(__a) _lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") _lowerCAmelCase : Optional[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def snake_case__ ( self, __a, __a=0): '''simple docstring''' if str(__a).startswith("mps"): _lowerCAmelCase : Any = torch.manual_seed(__a) else: _lowerCAmelCase : int = torch.Generator(device=__a).manual_seed(__a) _lowerCAmelCase : Tuple = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") _lowerCAmelCase : str = sag_pipe.to(__a) sag_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "." _lowerCAmelCase : Tuple = torch.manual_seed(0) _lowerCAmelCase : List[Any] = sag_pipe( [prompt], generator=__a, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np") _lowerCAmelCase : Any = output.images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[str] = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") _lowerCAmelCase : List[Any] = sag_pipe.to(__a) sag_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : List[str] = "." _lowerCAmelCase : List[str] = torch.manual_seed(0) _lowerCAmelCase : Optional[int] = sag_pipe( [prompt], generator=__a, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np") _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") _lowerCAmelCase : int = sag_pipe.to(__a) sag_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[Any] = "." _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0) _lowerCAmelCase : List[str] = sag_pipe( [prompt], width=768, height=512, generator=__a, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np", ) _lowerCAmelCase : Any = output.images assert image.shape == (1, 512, 768, 3)
658
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
658
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A__ : List[Any] = logging.get_logger(__name__) def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=False ) -> List[Any]: __lowerCamelCase : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple=False ) -> Optional[int]: for i in range(config.num_hidden_layers ): if base_model: __lowerCamelCase : str = '' else: __lowerCamelCase : str = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase : Optional[int] = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) __lowerCamelCase : Union[str, Any] = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] __lowerCamelCase : str = in_proj_bias[: config.hidden_size] __lowerCamelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] __lowerCamelCase : str = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Tuple: __lowerCamelCase : Dict = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__a , __a ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ) -> List[str]: __lowerCamelCase : Dict = dct.pop(__a ) __lowerCamelCase : Optional[Any] = val def UpperCAmelCase__ ( ) -> List[Any]: __lowerCamelCase : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase : List[str] = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] ) -> str: __lowerCamelCase : Tuple = ViTConfig() __lowerCamelCase : Dict = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": __lowerCamelCase : int = True __lowerCamelCase : str = int(vit_name[-12:-10] ) __lowerCamelCase : int = int(vit_name[-9:-6] ) else: __lowerCamelCase : Dict = 10_00 __lowerCamelCase : List[str] = 'huggingface/label-files' __lowerCamelCase : List[Any] = 'imagenet-1k-id2label.json' __lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase : Optional[Any] = {int(__a ): v for k, v in idalabel.items()} __lowerCamelCase : Union[str, Any] = idalabel __lowerCamelCase : Optional[int] = {v: k for k, v in idalabel.items()} __lowerCamelCase : List[str] = int(vit_name[-6:-4] ) __lowerCamelCase : List[Any] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): __lowerCamelCase : Any = 1_92 __lowerCamelCase : Tuple = 7_68 __lowerCamelCase : str = 12 __lowerCamelCase : Union[str, Any] = 3 elif vit_name[9:].startswith('small' ): __lowerCamelCase : str = 3_84 __lowerCamelCase : Any = 15_36 __lowerCamelCase : str = 12 __lowerCamelCase : List[Any] = 6 else: pass else: if vit_name[4:].startswith('small' ): __lowerCamelCase : List[Any] = 7_68 __lowerCamelCase : Optional[int] = 23_04 __lowerCamelCase : Tuple = 8 __lowerCamelCase : Optional[int] = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): __lowerCamelCase : Union[str, Any] = 10_24 __lowerCamelCase : Optional[int] = 40_96 __lowerCamelCase : Dict = 24 __lowerCamelCase : Optional[Any] = 16 elif vit_name[4:].startswith('huge' ): __lowerCamelCase : Dict = 12_80 __lowerCamelCase : List[str] = 51_20 __lowerCamelCase : List[str] = 32 __lowerCamelCase : List[str] = 16 # load original model from timm __lowerCamelCase : Optional[int] = timm.create_model(__a , pretrained=__a ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowerCamelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(__a ) __lowerCamelCase : Tuple = create_rename_keys(__a , __a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , __a ) # load HuggingFace model if vit_name[-5:] == "in21k": __lowerCamelCase : Optional[int] = ViTModel(__a ).eval() else: __lowerCamelCase : Optional[Any] = ViTForImageClassification(__a ).eval() model.load_state_dict(__a ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: __lowerCamelCase : int = DeiTImageProcessor(size=config.image_size ) else: __lowerCamelCase : str = ViTImageProcessor(size=config.image_size ) __lowerCamelCase : Any = image_processor(images=prepare_img() , return_tensors='pt' ) __lowerCamelCase : List[Any] = encoding['pixel_values'] __lowerCamelCase : Union[str, Any] = model(__a ) if base_model: __lowerCamelCase : Dict = timm_model.forward_features(__a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__a , outputs.pooler_output , atol=1e-3 ) else: __lowerCamelCase : Optional[int] = timm_model(__a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__a , outputs.logits , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__a ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__a ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
13
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ : Any = logging.get_logger(__name__) def A_ (__a ): '''simple docstring''' A_ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: A_ = 128 elif "12-12" in model_name: A_ = 12 A_ = 12 elif "14-14" in model_name: A_ = 14 A_ = 14 elif "16-16" in model_name: A_ = 16 A_ = 16 else: raise ValueError("Model not supported" ) A_ = "huggingface/label-files" if "speech-commands" in model_name: A_ = 35 A_ = "speech-commands-v2-id2label.json" else: A_ = 527 A_ = "audioset-id2label.json" A_ = json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) A_ = {int(__a ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} return config def A_ (__a ): '''simple docstring''' if "module.v" in name: A_ = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: A_ = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: A_ = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: A_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: A_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: A_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: A_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: A_ = name.replace("attn" , "attention.self" ) if "norm1" in name: A_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: A_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: A_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A_ = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: A_ = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: A_ = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: A_ = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def A_ (__a , __a ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A_ = orig_state_dict.pop(__a ) if "qkv" in key: A_ = key.split("." ) A_ = int(key_split[3] ) A_ = config.hidden_size if "weight" in key: A_ = val[:dim, :] A_ = val[dim : dim * 2, :] A_ = val[-dim:, :] else: A_ = val[:dim] A_ = val[dim : dim * 2] A_ = val[-dim:] else: A_ = val return orig_state_dict def A_ (__a ): '''simple docstring''' A_ = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(__a , __a ) @torch.no_grad() def A_ (__a , __a , __a=False ): '''simple docstring''' A_ = get_audio_spectrogram_transformer_config(__a ) A_ = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict A_ = model_name_to_url[model_name] A_ = torch.hub.load_state_dict_from_url(__a , map_location="cpu" ) # remove some keys remove_keys(__a ) # rename some keys A_ = convert_state_dict(__a , __a ) # load 🤗 model A_ = ASTForAudioClassification(__a ) model.eval() model.load_state_dict(__a ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 A_ = -4.2677393 if "speech-commands" not in model_name else -6.845978 A_ = 4.5689974 if "speech-commands" not in model_name else 5.5654526 A_ = 1024 if "speech-commands" not in model_name else 128 A_ = ASTFeatureExtractor(mean=__a , std=__a , max_length=__a ) if "speech-commands" in model_name: A_ = load_dataset("speech_commands" , "v0.02" , split="validation" ) A_ = dataset[0]["audio"]["array"] else: A_ = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) A_ , A_ = torchaudio.load(__a ) A_ = waveform.squeeze().numpy() A_ = feature_extractor(__a , sampling_rate=1_6000 , return_tensors="pt" ) # forward pass A_ = model(**__a ) A_ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": A_ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": A_ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": A_ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": A_ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": A_ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": A_ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": A_ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": A_ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , __a , atol=1e-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__a ).mkdir(exist_ok=__a ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__a ) print(f'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(__a ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(f'MIT/{model_name}' ) feature_extractor.push_to_hub(f'MIT/{model_name}' ) if __name__ == "__main__": UpperCamelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCamelCase_ : List[str] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
115
0
'''simple docstring''' import numpy as np from transformers import Pipeline def __UpperCamelCase ( snake_case ) -> Optional[int]: '''simple docstring''' __A = np.max(snake_case , axis=-1 , keepdims=snake_case ) __A = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case ) class _lowerCAmelCase( _a): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self , **UpperCAmelCase )-> Dict: __A = {} if "second_text" in kwargs: __A = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase=None )-> Optional[int]: return self.tokenizer(UpperCAmelCase , text_pair=UpperCAmelCase , return_tensors=self.framework ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> List[Any]: return self.model(**UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Tuple: __A = model_outputs.logits[0].numpy() __A = softmax(UpperCAmelCase ) __A = np.argmax(UpperCAmelCase ) __A = self.model.config.idalabel[best_class] __A = probabilities[best_class].item() __A = logits.tolist() return {"label": label, "score": score, "logits": logits}
705
_UpperCamelCase : Optional[int] = 8.31_44_62 # Unit - J mol-1 K-1 def __UpperCamelCase ( snake_case , snake_case , snake_case ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __UpperCamelCase ( snake_case , snake_case , snake_case ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
341
0
from __future__ import annotations from random import choice def __a ( A__ : int ): return choice(A__ ) def __a ( A__ : list[int] , A__ : int ): SCREAMING_SNAKE_CASE = random_pivot(A__ ) # partition based on pivot # linear time SCREAMING_SNAKE_CASE = [e for e in lst if e < pivot] SCREAMING_SNAKE_CASE = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(A__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(A__ ) < k - 1: return kth_number(A__ , k - len(A__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
16
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=2 , snake_case_=9_9 , snake_case_=0 , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=2 , snake_case_=0.02 , snake_case_=2 , snake_case_=4 , snake_case_="last" , snake_case_=True , snake_case_=None , snake_case_=0 , ) -> Any: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_lengths _a = use_token_type_ids _a = use_labels _a = gelu_activation _a = sinusoidal_embeddings _a = causal _a = asm _a = n_langs _a = vocab_size _a = n_special _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = summary_type _a = use_proj _a = scope _a = bos_token_id def __lowerCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_input_lengths: _a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , 2 ).float() _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowerCAmelCase ( self ) -> str: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Optional[int]: _a = XLMModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , lengths=snake_case_ , langs=snake_case_ ) _a = model(snake_case_ , langs=snake_case_ ) _a = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Union[str, Any]: _a = XLMWithLMHeadModel(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> str: _a = XLMForQuestionAnsweringSimple(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) _a = model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ ) _a = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Optional[int]: _a = XLMForQuestionAnswering(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) _a = model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , p_mask=snake_case_ , ) _a = model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , ) ((_a) , ) = result_with_labels.to_tuple() _a = model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ ) ((_a) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Tuple: _a = XLMForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ ) _a = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Union[str, Any]: _a = self.num_labels _a = XLMForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _a = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> str: _a = self.num_choices _a = XLMForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class A ( a , a , a , unittest.TestCase ): __UpperCAmelCase : str = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase : int = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __UpperCAmelCase : List[Any] = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_=False ) -> List[Any]: _a = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def __lowerCAmelCase ( self ) -> Dict: _a = XLMModelTester(self ) _a = ConfigTester(self , config_class=snake_case_ , emb_dim=3_7 ) def __lowerCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case_ ) def __lowerCAmelCase ( self ) -> Dict: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=False , snake_case_=1 ) -> Dict: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertListEqual( [isinstance(snake_case_ , snake_case_ ) for iter_attentions in attentions] , [True] * len(snake_case_ ) ) self.assertEqual(len(snake_case_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case_ ): # adds PAD dummy token _a = min_length + idx + 1 _a = min_length + idx + 1 _a = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case_ ) ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=False , snake_case_=1 ) -> Dict: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertListEqual( [isinstance(snake_case_ , snake_case_ ) for iter_hidden_states in hidden_states] , [True] * len(snake_case_ ) , ) self.assertEqual(len(snake_case_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case_ ): # adds PAD dummy token _a = min_length + idx + 1 _a = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case_ ) , ) pass @slow def __lowerCAmelCase ( self ) -> Optional[Any]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = XLMModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(snake_case_ ) _a = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=snake_case_ ) # the president _a = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _a = model.generate(snake_case_ , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case_ )
131
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __a ( unittest.TestCase ): SCREAMING_SNAKE_CASE = JukeboxTokenizer SCREAMING_SNAKE_CASE = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCamelCase ( self : int)-> Optional[Any]: import torch __lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""") __lowerCAmelCase =tokenizer(**self.metas)["""input_ids"""] # fmt: off __lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 10_69, 11]]), torch.tensor([[0, 0, 0, 10_69, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2])) @require_torch def UpperCamelCase ( self : Optional[Any])-> Tuple: import torch __lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""") __lowerCAmelCase =tokenizer(**self.metas)["""input_ids"""] # fmt: off __lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2]))
456
import math from numpy import inf from scipy.integrate import quad def __lowerCAmelCase ( __lowerCamelCase : float ) -> float: if num <= 0: raise ValueError("""math domain error""" ) return quad(__lowerCamelCase , 0 , __lowerCamelCase , args=(__lowerCamelCase) )[0] def __lowerCAmelCase ( __lowerCamelCase : float , __lowerCamelCase : float ) -> float: return math.pow(__lowerCamelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
456
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } lowerCAmelCase__ = { '''xlm-roberta-base''': 512, '''xlm-roberta-large''': 512, '''xlm-roberta-large-finetuned-conll02-dutch''': 512, '''xlm-roberta-large-finetuned-conll02-spanish''': 512, '''xlm-roberta-large-finetuned-conll03-english''': 512, '''xlm-roberta-large-finetuned-conll03-german''': 512, } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] =["input_ids", "attention_mask"] def __init__( self , snake_case__ , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__ = None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Any = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token lowerCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) lowerCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase : Union[str, Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : int = len(self.sp_model ) + self.fairseq_offset lowerCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.__dict__.copy() lowerCAmelCase : Tuple = None lowerCAmelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase : Union[str, Any] = {} lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] lowerCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , snake_case__ ): """simple docstring""" return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase : Tuple = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self , snake_case__ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: lowerCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
645
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
645
1
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) lowerCamelCase_ = str(bin(__UpperCamelCase ) ) binary_number += "0" * shift_amount return binary_number def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) lowerCamelCase_ = str(bin(__UpperCamelCase ) )[2:] if shift_amount >= len(__UpperCamelCase ): return "0b0" lowerCamelCase_ = binary_number[: len(__UpperCamelCase ) - shift_amount] return "0b" + shifted_binary_number def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number lowerCamelCase_ = '0' + str(bin(__UpperCamelCase ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number lowerCamelCase_ = len(bin(__UpperCamelCase )[3:] ) # Find 2's complement of number lowerCamelCase_ = bin(abs(__UpperCamelCase ) - (1 << binary_number_length) )[3:] lowerCamelCase_ = ( '1' + '0' * (binary_number_length - len(__UpperCamelCase )) + binary_number ) if shift_amount >= len(__UpperCamelCase ): return "0b" + binary_number[0] * len(__UpperCamelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__UpperCamelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self , SCREAMING_SNAKE_CASE_ = 768 , ) -> Optional[int]: '''simple docstring''' super().__init__() lowerCamelCase_ = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = nn.Parameter(torch.ones(1 , SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = nn.Parameter(self.mean.to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = nn.Parameter(self.std.to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) ) return self def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = (embeds * self.std) + self.mean return embeds
384
0
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __a = "sshleifer/bart-tiny-random" __a = "patrickvonplaten/t5-tiny-random" @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase ( self : Optional[int] ): return AutoConfig.from_pretrained(snake_case_ ) def lowerCamelCase ( self : int ): snake_case__ , *snake_case__ : Optional[Any] = create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowerCamelCase ( self : Optional[int] ): snake_case__ , *snake_case__ : Tuple = create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=1 , d=snake_case_ ) def lowerCamelCase ( self : str ): snake_case__ , *snake_case__ : Union[str, Any] = create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=1 , d=snake_case_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowerCamelCase ( self : Tuple ): snake_case__ , *snake_case__ : Dict = create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowerCamelCase ( self : Optional[Any] ): with self.assertRaises(snake_case_ ): create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=snake_case_ , d=snake_case_ )
374
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : Any , snake_case_ : List[Any] , snake_case_ : Union[str, Any]=13 , snake_case_ : Optional[int]=3 , snake_case_ : List[Any]=True , snake_case_ : Dict=True , snake_case_ : Optional[Any]=0.1 , snake_case_ : Tuple=0.1 , snake_case_ : Dict=224 , snake_case_ : Dict=1_000 , snake_case_ : Tuple=[3, 3, 6, 4] , snake_case_ : Tuple=[48, 56, 112, 220] , ): snake_case__ : str = parent snake_case__ : Dict = batch_size snake_case__ : Dict = num_channels snake_case__ : Any = is_training snake_case__ : Union[str, Any] = use_labels snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : List[str] = num_labels snake_case__ : Any = image_size snake_case__ : str = layer_depths snake_case__ : Union[str, Any] = embed_dims def lowerCamelCase ( self : Tuple ): snake_case__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : int = None if self.use_labels: snake_case__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : str ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=snake_case_ , layer_scale_init_value=1E-5 , ) def lowerCamelCase ( self : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : List[str] ): snake_case__ : Dict = SwiftFormerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : List[str] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase ( self : List[Any] , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[int] ): snake_case__ : Optional[int] = self.num_labels snake_case__ : Union[str, Any] = SwiftFormerForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Optional[Any] = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) snake_case__ : Union[str, Any] = SwiftFormerForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Any = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : List[Any] ): ((snake_case__) , (snake_case__) , (snake_case__)) : Union[str, Any] = self.prepare_config_and_inputs() snake_case__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowercase = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase ( self : Tuple ): snake_case__ : Optional[Any] = SwiftFormerModelTester(self ) snake_case__ : Union[str, Any] = ConfigTester( self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def lowerCamelCase ( self : Optional[Any] ): pass def lowerCamelCase ( self : Union[str, Any] ): snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(snake_case_ ) snake_case__ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def lowerCamelCase ( self : List[str] ): snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(snake_case_ ) snake_case__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCamelCase ( self : List[Any] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase ( self : Tuple ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def lowerCamelCase ( self : List[str] ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Union[str, Any] = SwiftFormerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : List[Any] ): def check_hidden_states_output(snake_case_ : str , snake_case_ : Tuple , snake_case_ : List[Any] ): snake_case__ : Optional[Any] = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): snake_case__ : Tuple = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : Optional[Any] = outputs.hidden_states snake_case__ : List[Any] = 8 self.assertEqual(len(snake_case_ ) , snake_case_ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(snake_case_ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : str = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): def _config_zero_init(snake_case_ : Optional[Any] ): snake_case__ : Union[str, Any] = copy.deepcopy(snake_case_ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(snake_case_ , snake_case_ , 1E-1_0 ) if isinstance(getattr(snake_case_ , snake_case_ , snake_case_ ) , snake_case_ ): snake_case__ : List[str] = _config_zero_init(getattr(snake_case_ , snake_case_ ) ) setattr(snake_case_ , snake_case_ , snake_case_ ) return configs_no_init snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[str] = _config_zero_init(snake_case_ ) for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(config=snake_case_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase ( self : Tuple ): pass def __snake_case( ) -> Optional[int]: snake_case__ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase ( self : List[str] ): return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def lowerCamelCase ( self : List[Any] ): snake_case__ : str = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(snake_case_ ) snake_case__ : Dict = self.default_image_processor snake_case__ : Optional[Any] = prepare_img() snake_case__ : Union[str, Any] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(**snake_case_ ) # verify the logits snake_case__ : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : int = torch.tensor([[-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
374
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase = logging.getLogger(__name__) @dataclass class UpperCAmelCase : '''simple docstring''' __magic_name__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __magic_name__ : Optional[str] = field( default=snake_case__ , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __magic_name__ : Optional[str] = field( default=snake_case__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __magic_name__ : Optional[str] = field( default=snake_case__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__ : bool = field(default=snake_case__ , metadata={"help": "Whether tp freeze the encoder."}) __magic_name__ : bool = field(default=snake_case__ , metadata={"help": "Whether to freeze the embeddings."}) @dataclass class UpperCAmelCase : '''simple docstring''' __magic_name__ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}) __magic_name__ : Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__ : Optional[int] = field( default=1_024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__ : Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__ : Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__ : Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__ : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."}) __magic_name__ : Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."}) __magic_name__ : Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."}) __magic_name__ : Optional[str] = field(default=snake_case__ , metadata={"help": "Source language id for translation."}) __magic_name__ : Optional[str] = field(default=snake_case__ , metadata={"help": "Target language id for translation."}) __magic_name__ : Optional[int] = field(default=snake_case__ , metadata={"help": "# num_beams to use for evaluation."}) __magic_name__ : bool = field( default=snake_case__ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , F"""{split}_results.json""" ) ) def UpperCAmelCase_ ( ): '''simple docstring''' a_ =HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a_ , a_ , a_ =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a_ , a_ , a_ =parser.parse_args_into_dataclasses() check_output_dir(_SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a_ =("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) a_ =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a_ =AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_SCREAMING_SNAKE_CASE , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: a_ =model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_SCREAMING_SNAKE_CASE , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a_ =tokenizer.lang_code_to_id[data_args.tgt_lang] else: a_ =tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_SCREAMING_SNAKE_CASE ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) a_ =SeqaSeqDataset # Get datasets a_ =( dataset_class( _SCREAMING_SNAKE_CASE , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) a_ =( dataset_class( _SCREAMING_SNAKE_CASE , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) a_ =( dataset_class( _SCREAMING_SNAKE_CASE , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer a_ =( build_compute_metrics_fn(data_args.task , _SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate else None ) a_ =SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , data_args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , data_collator=SeqaSeqDataCollator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) a_ ={} # Training if training_args.do_train: logger.info("*** Train ***" ) a_ =trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) a_ =train_result.metrics a_ =data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) a_ =trainer.evaluate(metric_key_prefix="val" ) a_ =data_args.n_val a_ =round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) if training_args.do_predict: logger.info("*** Predict ***" ) a_ =trainer.predict(test_dataset=_SCREAMING_SNAKE_CASE , metric_key_prefix="test" ) a_ =test_output.metrics a_ =data_args.n_test if trainer.is_world_process_zero(): a_ =round(metrics["test_loss"] , 4 ) handle_metrics("test" , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate: a_ =tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) a_ =lmap(str.strip , _SCREAMING_SNAKE_CASE ) write_txt_file(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def UpperCAmelCase_ ( lowercase__ ): '''simple docstring''' main() if __name__ == "__main__": main()
702
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline lowercase = '''path-to-your-trained-model''' lowercase = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') lowercase = '''A photo of sks dog in a bucket''' lowercase = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
41
0
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __A ( lowerCAmelCase_ , lowerCAmelCase_=False ): _UpperCAmelCase : Any = OmegaConf.load(_A ) if display: print(yaml.dump(OmegaConf.to_container(_A ) ) ) return config def __A ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None ): if conf_path is None: _UpperCAmelCase : Tuple = """./model_checkpoints/vqgan_only.yaml""" _UpperCAmelCase : Any = load_config(_A , display=_A ) _UpperCAmelCase : Any = VQModel(**config.model.params ) if ckpt_path is None: _UpperCAmelCase : Union[str, Any] = """./model_checkpoints/vqgan_only.pt""" _UpperCAmelCase : int = torch.load(_A , map_location=_A ) if ".ckpt" in ckpt_path: _UpperCAmelCase : Optional[Any] = sd["""state_dict"""] model.load_state_dict(_A , strict=_A ) model.to(_A ) del sd return model def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = model.encode(_A ) print(f"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _UpperCAmelCase : int = model.decode(_A ) return xrec def __A ( lowerCAmelCase_ , lowerCAmelCase_=False ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = string.rsplit(""".""" , 1 ) if reload: _UpperCAmelCase : Optional[int] = importlib.import_module(_A ) importlib.reload(_A ) return getattr(importlib.import_module(_A , package=_A ) , cls ) def __A ( lowerCAmelCase_ ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True ): _UpperCAmelCase : Tuple = instantiate_from_config(_A ) if sd is not None: model.load_state_dict(_A ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if ckpt: _UpperCAmelCase : int = torch.load(_A , map_location="""cpu""" ) _UpperCAmelCase : List[str] = pl_sd["""global_step"""] print(f"loaded model from global step {global_step}." ) else: _UpperCAmelCase : Optional[int] = {"""state_dict""": None} _UpperCAmelCase : Any = None _UpperCAmelCase : Tuple = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=_A , eval_mode=_A )["""model"""] return model, global_step
414
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class a_ : def __init__( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict=13 , __UpperCamelCase : Tuple=7 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : List[str]=True , __UpperCamelCase : str=99 , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : Union[str, Any]=5 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : List[str]=5_12 , __UpperCamelCase : Union[str, Any]=16 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : List[str]=3 , __UpperCamelCase : Optional[Any]=4 , __UpperCamelCase : str=None , ) ->Dict: '''simple docstring''' _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def _snake_case ( self : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : str ) ->Any: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def _snake_case ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = LlamaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , ) ->Tuple: '''simple docstring''' _UpperCAmelCase = True _UpperCAmelCase = LlamaModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : int , ) ->Dict: '''simple docstring''' _UpperCAmelCase = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : int , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : Dict , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # first forward pass _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase , ) _UpperCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["""hidden_states"""][0] _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["""hidden_states"""][0] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def _snake_case ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a : Optional[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () a : Any = (LlamaForCausalLM,) if is_torch_available() else () a : Union[str, Any] = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) a : str = False a : List[str] = False def _snake_case ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = LlamaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def _snake_case ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : Dict ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _snake_case ( self : int ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def _snake_case ( self : Tuple ) ->int: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = input_dict["""input_ids"""] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCamelCase ) _UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = """single_label_classification""" _UpperCAmelCase = input_dict["""input_ids"""] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCamelCase ) _UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = """multi_label_classification""" _UpperCAmelCase = input_dict["""input_ids"""] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCamelCase ) _UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def _snake_case ( self : Dict ) ->int: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _snake_case ( self : int , __UpperCamelCase : Tuple ) ->List[Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ids_tensor([1, 10] , config.vocab_size ) _UpperCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _UpperCAmelCase = LlamaModel(__UpperCamelCase ) original_model.to(__UpperCamelCase ) original_model.eval() _UpperCAmelCase = original_model(__UpperCamelCase ).last_hidden_state _UpperCAmelCase = original_model(__UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _UpperCAmelCase = {"""type""": scaling_type, """factor""": 1_0.0} _UpperCAmelCase = LlamaModel(__UpperCamelCase ) scaled_model.to(__UpperCamelCase ) scaled_model.eval() _UpperCAmelCase = scaled_model(__UpperCamelCase ).last_hidden_state _UpperCAmelCase = scaled_model(__UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _snake_case ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _UpperCAmelCase = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) _UpperCAmelCase = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _UpperCAmelCase = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _UpperCAmelCase = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _snake_case ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _UpperCAmelCase = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) _UpperCAmelCase = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 _UpperCAmelCase = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _UpperCAmelCase = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _snake_case ( self : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _UpperCAmelCase = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) _UpperCAmelCase = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 _UpperCAmelCase = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _UpperCAmelCase = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def _snake_case ( self : str ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _UpperCAmelCase = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) _UpperCAmelCase = model(torch.tensor(__UpperCamelCase ) ) _UpperCAmelCase = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off _UpperCAmelCase = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def _snake_case ( self : Tuple ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" _UpperCAmelCase = """Simply put, the theory of relativity states that """ _UpperCAmelCase = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , return_tensors="""pt""" ) _UpperCAmelCase = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCamelCase ) # greedy generation outputs _UpperCAmelCase = model.generate(__UpperCamelCase , max_new_tokens=64 , top_p=__UpperCamelCase , temperature=1 , do_sample=__UpperCamelCase ) _UpperCAmelCase = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
555
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCamelCase : def __init__( self , a_ , ): lowerCAmelCase : str = parent lowerCAmelCase : int = 13 lowerCAmelCase : Optional[int] = 7 lowerCAmelCase : str = True lowerCAmelCase : Optional[int] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Optional[Any] = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Any = False lowerCAmelCase : Any = False lowerCAmelCase : Dict = False lowerCAmelCase : int = 2 lowerCAmelCase : Optional[int] = 99 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Optional[int] = 32 lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : Dict = 4 lowerCAmelCase : List[str] = 0.1 lowerCAmelCase : str = 0.1 lowerCAmelCase : Dict = 512 lowerCAmelCase : Union[str, Any] = 16 lowerCAmelCase : Dict = 2 lowerCAmelCase : Optional[Any] = 0.02 lowerCAmelCase : str = 3 lowerCAmelCase : Optional[int] = 4 lowerCAmelCase : List[str] = "last" lowerCAmelCase : List[str] = True lowerCAmelCase : List[Any] = None lowerCAmelCase : Optional[int] = 0 def _lowerCamelCase ( self ): lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowerCAmelCase : Tuple = None if self.use_input_lengths: lowerCAmelCase : Any = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase : str = None if self.use_token_type_ids: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase : str = None lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : List[str] = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): lowerCAmelCase : List[Any] = TFFlaubertModel(config=a_ ) lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} lowerCAmelCase : List[Any] = model(a_ ) lowerCAmelCase : int = [input_ids, input_mask] lowerCAmelCase : Optional[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): lowerCAmelCase : int = TFFlaubertWithLMHeadModel(a_ ) lowerCAmelCase : str = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} lowerCAmelCase : List[str] = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): lowerCAmelCase : Optional[Any] = TFFlaubertForQuestionAnsweringSimple(a_ ) lowerCAmelCase : List[str] = {"input_ids": input_ids, "lengths": input_lengths} lowerCAmelCase : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): lowerCAmelCase : Any = TFFlaubertForSequenceClassification(a_ ) lowerCAmelCase : List[str] = {"input_ids": input_ids, "lengths": input_lengths} lowerCAmelCase : str = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): lowerCAmelCase : Tuple = self.num_labels lowerCAmelCase : Tuple = TFFlaubertForTokenClassification(config=a_ ) lowerCAmelCase : str = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase : Optional[int] = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): lowerCAmelCase : Any = self.num_choices lowerCAmelCase : Tuple = TFFlaubertForMultipleChoice(config=a_ ) lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(a_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(a_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(a_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCAmelCase : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ): lowerCAmelCase : Any = self.prepare_config_and_inputs() ( lowerCAmelCase ) : Tuple = config_and_inputs lowerCAmelCase : Dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class lowerCamelCase ( _A , _A , unittest.TestCase ): snake_case_ = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable snake_case_ = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self ): lowerCAmelCase : Dict = TFFlaubertModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=a_ , emb_dim=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*a_ ) @slow def _lowerCamelCase ( self ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : str = TFFlaubertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): lowerCAmelCase : Tuple = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) lowerCAmelCase : Optional[Any] = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowerCAmelCase : Tuple = model(a_ )[0] lowerCAmelCase : Union[str, Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , a_ ) # compare the actual values for a slice. lowerCAmelCase : Optional[Any] = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
708
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( _A ): def __init__( self , *a_ , **a_ ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , a_ , ) super().__init__(*a_ , **a_ )
551
0
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version A = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize A = '''\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } ''' A = '''\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. ''' A = ''' Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self : List[Any] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] ,reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] ,) def _lowerCamelCase ( self : Dict ,UpperCamelCase : List[Any] ) -> Dict: import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def _lowerCamelCase ( self : Union[str, Any] ,UpperCamelCase : Optional[int] ,UpperCamelCase : Optional[int] ,UpperCamelCase : Any=0.9 ,UpperCamelCase : List[str]=3 ,UpperCamelCase : str=0.5 ) -> Any: if NLTK_VERSION >= version.Version('3.6.5' ): _lowercase : Dict = [ meteor_score.single_meteor_score( word_tokenize(UpperCAmelCase_ ) ,word_tokenize(UpperCAmelCase_ ) ,alpha=UpperCAmelCase_ ,beta=UpperCAmelCase_ ,gamma=UpperCAmelCase_ ) for ref, pred in zip(UpperCAmelCase_ ,UpperCAmelCase_ ) ] else: _lowercase : Optional[Any] = [ meteor_score.single_meteor_score(UpperCAmelCase_ ,UpperCAmelCase_ ,alpha=UpperCAmelCase_ ,beta=UpperCAmelCase_ ,gamma=UpperCAmelCase_ ) for ref, pred in zip(UpperCAmelCase_ ,UpperCAmelCase_ ) ] return {"meteor": np.mean(UpperCAmelCase_ )}
125
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
580
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _a (_UpperCAmelCase): """simple docstring""" SCREAMING_SNAKE_CASE = 'vivit' def __init__( self , A__=2_24 , A__=32 , A__=[2, 16, 16] , A__=3 , A__=7_68 , A__=12 , A__=12 , A__=30_72 , A__="gelu_fast" , A__=0.0 , A__=0.0 , A__=0.02 , A__=1E-06 , A__=True , **A__ , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = num_frames _SCREAMING_SNAKE_CASE = tubelet_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = qkv_bias super().__init__(**__UpperCamelCase )
718
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , A__ = None , A__ = None , **A__ , ) -> Optional[int]: super().__init__(self , **A__ ) _SCREAMING_SNAKE_CASE = repo_info _SCREAMING_SNAKE_CASE = token _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: if self.dir_cache is None: _SCREAMING_SNAKE_CASE = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _SCREAMING_SNAKE_CASE = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(A__ ): {"""name""": str(A__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCamelCase ( self , A__ , A__ = "rb" , **A__ , ) -> Optional[int]: if not isinstance(self.repo_info , A__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) _SCREAMING_SNAKE_CASE = hf_hub_url(self.repo_info.id , A__ , revision=self.repo_info.sha ) return fsspec.open( A__ , mode=A__ , headers=get_authentication_headers_for_url(A__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def UpperCamelCase ( self , A__ , **A__ ) -> str: self._get_dirs() _SCREAMING_SNAKE_CASE = self._strip_protocol(A__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A__ ) def UpperCamelCase ( self , A__ , A__=False , **A__ ) -> List[Any]: self._get_dirs() _SCREAMING_SNAKE_CASE = PurePosixPath(path.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = {} for p, f in self.dir_cache.items(): _SCREAMING_SNAKE_CASE = PurePosixPath(p.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = p.parent if root == path: _SCREAMING_SNAKE_CASE = f _SCREAMING_SNAKE_CASE = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
0
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: List[Any] )-> List[str]: _snake_case : List[Any] = args.log_outputs _snake_case : List[Any] = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric _snake_case : List[str] = load_metric('wer' ) _snake_case : int = load_metric('cer' ) # compute metrics _snake_case : Tuple = wer.compute(references=result['target'] , predictions=result['prediction'] ) _snake_case : Optional[Any] = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results _snake_case : Any = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCamelCase__ ) with open(F"""{dataset_id}_eval_results.txt""" , 'w' ) as f: f.write(lowerCamelCase__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: _snake_case : Dict = F"""log_{dataset_id}_predictions.txt""" _snake_case : List[Any] = F"""log_{dataset_id}_targets.txt""" with open(lowerCamelCase__ , 'w' ) as p, open(lowerCamelCase__ , 'w' ) as t: # mapping function to write output def write_to_file(lowerCAmelCase: Dict , lowerCAmelCase: int ): p.write(F"""{i}""" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F"""{i}""" + '\n' ) t.write(batch['target'] + '\n' ) result.map(lowerCamelCase__ , with_indices=lowerCamelCase__ ) def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> Optional[int]: _snake_case : List[Any] = '[,?.!\-\;\:\"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training _snake_case : str = re.sub(lowerCamelCase__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! _snake_case : List[Any] = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: _snake_case : Any = ' '.join(text.split(lowerCamelCase__ ) ) return text def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> Optional[Any]: _snake_case : List[Any] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor _snake_case : Union[str, Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) _snake_case : int = feature_extractor.sampling_rate # resample audio _snake_case : List[str] = dataset.cast_column('audio' , Audio(sampling_rate=lowerCamelCase__ ) ) # load eval pipeline if args.device is None: _snake_case : int = 0 if torch.cuda.is_available() else -1 _snake_case : Optional[int] = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCAmelCase: Any ): _snake_case : int = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) _snake_case : Dict = prediction['text'] _snake_case : Any = normalize_text(batch['sentence'] ) return batch # run inference on all examples _snake_case : Dict = dataset.map(lowerCamelCase__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) lowerCAmelCase_ = parser.parse_args() main(args)
411
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = MgpstrTokenizer UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Tuple = {} UpperCamelCase_ : List[str] = False def _SCREAMING_SNAKE_CASE ( self : Dict ): super().setUp() # fmt: off lowerCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowerCAmelCase__ = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case__ ) + """\n""" ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Tuple ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Dict ): lowerCAmelCase__ = """tester""" lowerCAmelCase__ = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): pass def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.get_tokenizers(do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) lowerCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=snake_case__ ) self.assertEqual(len(snake_case__ ) , 1 ) lowerCAmelCase__ = tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) self.assertTrue(special_token not in decoded ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ , lowerCAmelCase__ = self.get_input_output_texts(snake_case__ ) lowerCAmelCase__ = tokenizer.tokenize(snake_case__ ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(snake_case__ ) lowerCAmelCase__ = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertNotEqual(len(snake_case__ ) , 0 ) lowerCAmelCase__ = tokenizer.decode(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , snake_case__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): pass
644
0
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers __SCREAMING_SNAKE_CASE :str = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def UpperCAmelCase_ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(__lowercase ) ) _UpperCAmelCase = os.path.join(__lowercase , "words.txt" ) _UpperCAmelCase = "" with open(__lowercase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] _UpperCAmelCase = [ word for word in [sum(ord(__lowercase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__lowercase ) if __name__ == "__main__": print(solution())
119
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def UpperCAmelCase_ ( __lowercase : List[str] ) -> int: '''simple docstring''' _UpperCAmelCase = SwinvaConfig() _UpperCAmelCase = swinva_name.split("_" ) _UpperCAmelCase = name_split[1] if "to" in name_split[3]: _UpperCAmelCase = int(name_split[3][-3:] ) else: _UpperCAmelCase = int(name_split[3] ) if "to" in name_split[2]: _UpperCAmelCase = int(name_split[2][-2:] ) else: _UpperCAmelCase = int(name_split[2][6:] ) if model_size == "tiny": _UpperCAmelCase = 96 _UpperCAmelCase = (2, 2, 6, 2) _UpperCAmelCase = (3, 6, 12, 24) elif model_size == "small": _UpperCAmelCase = 96 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (3, 6, 12, 24) elif model_size == "base": _UpperCAmelCase = 128 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (4, 8, 16, 32) else: _UpperCAmelCase = 192 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (6, 12, 24, 48) if "to" in swinva_name: _UpperCAmelCase = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _UpperCAmelCase = 2_1841 _UpperCAmelCase = "huggingface/label-files" _UpperCAmelCase = "imagenet-22k-id2label.json" _UpperCAmelCase = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase = {int(__lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} else: _UpperCAmelCase = 1000 _UpperCAmelCase = "huggingface/label-files" _UpperCAmelCase = "imagenet-1k-id2label.json" _UpperCAmelCase = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase = {int(__lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = img_size _UpperCAmelCase = num_classes _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size return config def UpperCAmelCase_ ( __lowercase : str ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name: _UpperCAmelCase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _UpperCAmelCase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: _UpperCAmelCase = "encoder." + name if "attn.proj" in name: _UpperCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _UpperCAmelCase = name.replace("attn" , "attention.self" ) if "norm1" in name: _UpperCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _UpperCAmelCase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _UpperCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _UpperCAmelCase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: _UpperCAmelCase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: _UpperCAmelCase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: _UpperCAmelCase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: _UpperCAmelCase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": _UpperCAmelCase = "layernorm.weight" if name == "norm.bias": _UpperCAmelCase = "layernorm.bias" if "head" in name: _UpperCAmelCase = name.replace("head" , "classifier" ) else: _UpperCAmelCase = "swinv2." + name return name def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _UpperCAmelCase = orig_state_dict.pop(__lowercase ) if "mask" in key: continue elif "qkv" in key: _UpperCAmelCase = key.split("." ) _UpperCAmelCase = int(key_split[1] ) _UpperCAmelCase = int(key_split[3] ) _UpperCAmelCase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCAmelCase = val[:dim, :] _UpperCAmelCase = val[dim : dim * 2, :] _UpperCAmelCase = val[-dim:, :] else: _UpperCAmelCase = val[:dim] _UpperCAmelCase = val[ dim : dim * 2 ] _UpperCAmelCase = val[-dim:] else: _UpperCAmelCase = val return orig_state_dict def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = timm.create_model(__lowercase , pretrained=__lowercase ) timm_model.eval() _UpperCAmelCase = get_swinva_config(__lowercase ) _UpperCAmelCase = SwinvaForImageClassification(__lowercase ) model.eval() _UpperCAmelCase = convert_state_dict(timm_model.state_dict() , __lowercase ) model.load_state_dict(__lowercase ) _UpperCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) _UpperCAmelCase = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) _UpperCAmelCase = image_processor(images=__lowercase , return_tensors="pt" ) _UpperCAmelCase = timm_model(inputs["pixel_values"] ) _UpperCAmelCase = model(**__lowercase ).logits assert torch.allclose(__lowercase , __lowercase , atol=1E-3 ) print(f'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowercase ) model.push_to_hub( repo_path_or_name=Path(__lowercase , __lowercase ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
119
1
def lowerCamelCase__ ( __lowerCAmelCase : list[list[float]] ): """simple docstring""" lowerCAmelCase_ = [] for data in source_data: for i, el in enumerate(_snake_case ): if len(_snake_case ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_snake_case ) ) return data_lists def lowerCamelCase__ ( __lowerCAmelCase : list[list[float]] , __lowerCAmelCase : list[int] ): """simple docstring""" lowerCAmelCase_ = [] for dlist, weight in zip(_snake_case , _snake_case ): lowerCAmelCase_ = min(_snake_case ) lowerCAmelCase_ = max(_snake_case ) lowerCAmelCase_ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCAmelCase_ = F"""Invalid weight of {weight:f} provided""" raise ValueError(_snake_case ) score_lists.append(_snake_case ) return score_lists def lowerCamelCase__ ( __lowerCAmelCase : list[list[float]] ): """simple docstring""" lowerCAmelCase_ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_snake_case ): lowerCAmelCase_ = final_scores[j] + ele return final_scores def lowerCamelCase__ ( __lowerCAmelCase : list[list[float]] , __lowerCAmelCase : list[int] ): """simple docstring""" lowerCAmelCase_ = get_data(_snake_case ) lowerCAmelCase_ = calculate_each_score(_snake_case , _snake_case ) lowerCAmelCase_ = generate_final_scores(_snake_case ) # append scores to source data for i, ele in enumerate(_snake_case ): source_data[i].append(_snake_case ) return source_data
290
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] SCREAMING_SNAKE_CASE__ = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
267
0
'''simple docstring''' import warnings from functools import wraps from typing import Callable def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: @wraps(UpperCAmelCase__ ) def _inner_fn(*__A , **__A ): warnings.warn( (F'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , UpperCAmelCase__ , ) return fn(*UpperCAmelCase__ , **UpperCAmelCase__ ) return _inner_fn
710
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope def lowerCamelCase ( self ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = LlamaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): """simple docstring""" _snake_case = True _snake_case = LlamaModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): """simple docstring""" _snake_case = LlamaForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): """simple docstring""" _snake_case = True _snake_case = True _snake_case = LlamaForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # first forward pass _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ , ) _snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case = torch.cat([input_mask, next_mask] , dim=-1 ) _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , )['hidden_states'][0] _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , )['hidden_states'][0] # select random slice _snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() _snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __lowercase = (LlamaForCausalLM,) if is_torch_available() else () __lowercase = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) __lowercase = False __lowercase = False def lowerCamelCase ( self ): """simple docstring""" _snake_case = LlamaModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = 3 _snake_case = input_dict['input_ids'] _snake_case = input_ids.ne(1 ).to(lowerCAmelCase_ ) _snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _snake_case = LlamaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = 3 _snake_case = 'single_label_classification' _snake_case = input_dict['input_ids'] _snake_case = input_ids.ne(1 ).to(lowerCAmelCase_ ) _snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _snake_case = LlamaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = 3 _snake_case = 'multi_label_classification' _snake_case = input_dict['input_ids'] _snake_case = input_ids.ne(1 ).to(lowerCAmelCase_ ) _snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _snake_case = LlamaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCamelCase ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = ids_tensor([1, 10] , config.vocab_size ) _snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _snake_case = LlamaModel(lowerCAmelCase_ ) original_model.to(lowerCAmelCase_ ) original_model.eval() _snake_case = original_model(lowerCAmelCase_ ).last_hidden_state _snake_case = original_model(lowerCAmelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _snake_case = {'type': scaling_type, 'factor': 10.0} _snake_case = LlamaModel(lowerCAmelCase_ ) scaled_model.to(lowerCAmelCase_ ) scaled_model.eval() _snake_case = scaled_model(lowerCAmelCase_ ).last_hidden_state _snake_case = scaled_model(lowerCAmelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-5 ) ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _snake_case = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) _snake_case = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _snake_case = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _snake_case = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCAmelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _snake_case = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) _snake_case = model(torch.tensor(lowerCAmelCase_ ) ) # Expected mean on dim = -1 _snake_case = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _snake_case = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCAmelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _snake_case = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) _snake_case = model(torch.tensor(lowerCAmelCase_ ) ) # Expected mean on dim = -1 _snake_case = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _snake_case = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _snake_case = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) _snake_case = model(torch.tensor(lowerCAmelCase_ ) ) _snake_case = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase_ , atol=1E-2 , rtol=1E-2 ) # fmt: off _snake_case = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCAmelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' _snake_case = 'Simply put, the theory of relativity states that ' _snake_case = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) _snake_case = tokenizer.encode(lowerCAmelCase_ , return_tensors='pt' ) _snake_case = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=lowerCAmelCase_ ) # greedy generation outputs _snake_case = model.generate(lowerCAmelCase_ , max_new_tokens=64 , top_p=lowerCAmelCase_ , temperature=1 , do_sample=lowerCAmelCase_ ) _snake_case = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
542
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : List[Any]=18 , UpperCAmelCase : Optional[int]=30 , UpperCAmelCase : Any=400 , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=True , ): A_ = size if size is not None else {"height": 18, "width": 18} A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size A_ = apply_ocr def __A ( self : str ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Any = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __A ( self : Any ): A_ = LayoutLMvaImageProcessingTester(self ) @property def __A ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Tuple ): A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase , "apply_ocr" ) ) def __A ( self : Any ): A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __A ( self : Optional[int] ): pass def __A ( self : List[str] ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , UpperCAmelCase ) self.assertIsInstance(encoding.boxes , UpperCAmelCase ) # Test batched A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __A ( self : Union[str, Any] ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __A ( self : Dict ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __A ( self : Tuple ): # with apply_OCR = True A_ = LayoutLMvaImageProcessor() from datasets import load_dataset A_ = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) A_ = Image.open(ds[0]["file"] ).convert("RGB" ) A_ = image_processing(UpperCAmelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 A_ = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 A_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCAmelCase ) self.assertListEqual(encoding.boxes , UpperCAmelCase ) # with apply_OCR = False A_ = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) A_ = image_processing(UpperCAmelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
86
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def _UpperCAmelCase ( A , A , A , A , A ): '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase__ =getattr(A , A ) if weight_type is not None: UpperCAmelCase__ =getattr(A , A ).shape else: UpperCAmelCase__ =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ =value elif weight_type == "weight_g": UpperCAmelCase__ =value elif weight_type == "weight_v": UpperCAmelCase__ =value elif weight_type == "bias": UpperCAmelCase__ =value else: UpperCAmelCase__ =value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _UpperCAmelCase ( A , A , A ): '''simple docstring''' UpperCAmelCase__ =[] UpperCAmelCase__ =fairseq_model.state_dict() UpperCAmelCase__ =hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ =False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase__ =True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ ="sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase__ =True if "*" in mapped_key: UpperCAmelCase__ =name.split(A )[0].split("." )[-2] UpperCAmelCase__ =mapped_key.replace("*" , A ) if "weight_g" in name: UpperCAmelCase__ ="weight_g" elif "weight_v" in name: UpperCAmelCase__ ="weight_v" elif "weight" in name: UpperCAmelCase__ ="weight" elif "bias" in name: UpperCAmelCase__ ="bias" else: UpperCAmelCase__ =None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _UpperCAmelCase ( A , A , A , A , A ): '''simple docstring''' UpperCAmelCase__ =full_name.split("conv_layers." )[-1] UpperCAmelCase__ =name.split("." ) UpperCAmelCase__ =int(items[0] ) UpperCAmelCase__ =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase__ =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A ) def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =SEWConfig() if is_finetuned: UpperCAmelCase__ =model.wav_encoder.wav_model.cfg else: UpperCAmelCase__ =model.cfg UpperCAmelCase__ =fs_config.conv_bias UpperCAmelCase__ =eval(fs_config.conv_feature_layers ) UpperCAmelCase__ =[x[0] for x in conv_layers] UpperCAmelCase__ =[x[1] for x in conv_layers] UpperCAmelCase__ =[x[2] for x in conv_layers] UpperCAmelCase__ ="gelu" UpperCAmelCase__ ="layer" if fs_config.extractor_mode == "layer_norm" else "group" UpperCAmelCase__ =0.0 UpperCAmelCase__ =fs_config.activation_fn.name UpperCAmelCase__ =fs_config.encoder_embed_dim UpperCAmelCase__ =0.02 UpperCAmelCase__ =fs_config.encoder_ffn_embed_dim UpperCAmelCase__ =1e-5 UpperCAmelCase__ =fs_config.encoder_layerdrop UpperCAmelCase__ =fs_config.encoder_attention_heads UpperCAmelCase__ =fs_config.conv_pos_groups UpperCAmelCase__ =fs_config.conv_pos UpperCAmelCase__ =len(A ) UpperCAmelCase__ =fs_config.encoder_layers UpperCAmelCase__ =fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: UpperCAmelCase__ =model.cfg UpperCAmelCase__ =fs_config.final_dropout UpperCAmelCase__ =fs_config.layerdrop UpperCAmelCase__ =fs_config.activation_dropout UpperCAmelCase__ =fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 UpperCAmelCase__ =fs_config.attention_dropout UpperCAmelCase__ =fs_config.dropout_input UpperCAmelCase__ =fs_config.dropout UpperCAmelCase__ =fs_config.mask_channel_length UpperCAmelCase__ =fs_config.mask_channel_prob UpperCAmelCase__ =fs_config.mask_length UpperCAmelCase__ =fs_config.mask_prob UpperCAmelCase__ ="Wav2Vec2FeatureExtractor" UpperCAmelCase__ ="Wav2Vec2CTCTokenizer" return config @torch.no_grad() def _UpperCAmelCase ( A , A , A=None , A=None , A=True ): '''simple docstring''' if is_finetuned: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: UpperCAmelCase__ =SEWConfig.from_pretrained(A ) else: UpperCAmelCase__ =convert_config(model[0] , A ) UpperCAmelCase__ =model[0].eval() UpperCAmelCase__ =True if config.feat_extract_norm == "layer" else False UpperCAmelCase__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) if is_finetuned: if dict_path: UpperCAmelCase__ =Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ =target_dict.pad_index UpperCAmelCase__ =target_dict.bos_index UpperCAmelCase__ =target_dict.pad_index UpperCAmelCase__ =target_dict.bos_index UpperCAmelCase__ =target_dict.eos_index UpperCAmelCase__ =len(target_dict.symbols ) UpperCAmelCase__ =os.path.join(A , "vocab.json" ) if not os.path.isdir(A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(A ) ) return os.makedirs(A , exist_ok=A ) with open(A , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , A ) UpperCAmelCase__ =WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=A , ) UpperCAmelCase__ =WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) UpperCAmelCase__ =SEWForCTC(A ) else: UpperCAmelCase__ =SEWModel(A ) feature_extractor.save_pretrained(A ) recursively_load_weights(A , A , A ) hf_model.save_pretrained(A ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase_ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
625
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowercase_ ( _A : str ): """simple docstring""" lowerCamelCase__ : str = analyze_text(__UpperCamelCase ) lowerCamelCase__ : Any = list(" " + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : str = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : Tuple = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : str = single_char_strings[ch] lowerCamelCase__ : List[Any] = my_str / all_sum my_fir_sum += prob * math.loga(__UpperCamelCase ) # entropy formula. # print entropy print(F"{round(-1 * my_fir_sum ):.1f}" ) # two len string lowerCamelCase__ : str = sum(two_char_strings.values() ) lowerCamelCase__ : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : str = cha + cha if sequence in two_char_strings: lowerCamelCase__ : Any = two_char_strings[sequence] lowerCamelCase__ : Optional[int] = int(__UpperCamelCase ) / all_sum my_sec_sum += prob * math.loga(__UpperCamelCase ) # print second entropy print(F"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(F"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def lowercase_ ( _A : str ): """simple docstring""" lowerCamelCase__ : str = Counter() # type: ignore lowerCamelCase__ : int = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__UpperCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
720
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A : Union[str, Any] = logging.get_logger(__name__) A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : """simple docstring""" A__ = field( default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)}) A__ = field( default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}) A__ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A__ = field( default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) A__ = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) A__ = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) A__ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"}) A__ = field( default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}) A__ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"}) class _lowercase ( lowercase__): """simple docstring""" A__ = "train" A__ = "dev" class _lowercase ( lowercase__): """simple docstring""" A__ = 42 A__ = 42 A__ = 42 A__ = 42 def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ): '''simple docstring''' lowerCamelCase__ : List[str] = args lowerCamelCase__ : Tuple = is_language_sensitive lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__lowerCamelCase , __lowerCamelCase ): try: lowerCamelCase__ : List[str] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase__ : str = mode # Load data features from cache or dataset file lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1" lowerCamelCase__ : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : List[str] = cached_features_file + ".lock" with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache: lowerCamelCase__ : str = time.time() lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase__ : Optional[Any] = self.old_features["features"] lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" " future run" ) else: if mode == Split.dev: lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir ) lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features( examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , ) lowerCamelCase__ : int = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : List[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.features[i] lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase__ : List[str] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
5
0
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset a = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) a = dataset.iloc[:, 1:2].values a = dataset.iloc[:, 2].values a , a , a , a = train_test_split(X, y, test_size=0.2, random_state=0) a = PolynomialFeatures(degree=4) a = poly_reg.fit_transform(X) a = LinearRegression() pol_reg.fit(X_poly, y) def lowercase () -> Union[str, Any]: '''simple docstring''' plt.scatter(snake_case__ , snake_case__ , color="""red""" ) plt.plot(snake_case__ , pol_reg.predict(poly_reg.fit_transform(snake_case__ ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
169
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'efficientformer' def __init__( self : Any , lowerCAmelCase : List[int] = [3, 2, 6, 4] , lowerCAmelCase : List[int] = [48, 96, 224, 448] , lowerCAmelCase : List[bool] = [True, True, True, True] , lowerCAmelCase : int = 448 , lowerCAmelCase : int = 32 , lowerCAmelCase : int = 4 , lowerCAmelCase : int = 7 , lowerCAmelCase : int = 5 , lowerCAmelCase : int = 8 , lowerCAmelCase : int = 4 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 16 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 1 , lowerCAmelCase : bool = True , lowerCAmelCase : bool = True , lowerCAmelCase : float = 1e-5 , lowerCAmelCase : str = "gelu" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 1e-12 , lowerCAmelCase : int = 224 , lowerCAmelCase : float = 1e-05 , **lowerCAmelCase : int , ): super().__init__(**lowerCAmelCase ) lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = hidden_sizes lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = depths lowerCAmelCase = mlp_expansion_ratio lowerCAmelCase = downsamples lowerCAmelCase = dim lowerCAmelCase = key_dim lowerCAmelCase = attention_ratio lowerCAmelCase = resolution lowerCAmelCase = pool_size lowerCAmelCase = downsample_patch_size lowerCAmelCase = downsample_stride lowerCAmelCase = downsample_pad lowerCAmelCase = drop_path_rate lowerCAmelCase = num_metaad_blocks lowerCAmelCase = distillation lowerCAmelCase = use_layer_scale lowerCAmelCase = layer_scale_init_value lowerCAmelCase = image_size lowerCAmelCase = batch_norm_eps
169
1
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" return "".join(sorted(__magic_name__ ) ) def __UpperCAmelCase ( __magic_name__ )-> list[str]: """simple docstring""" return word_by_signature[signature(__magic_name__ )] __lowerCamelCase : str = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') __lowerCamelCase : Optional[int] = sorted({word.strip().lower() for word in data.splitlines()}) __lowerCamelCase : Optional[int] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __lowerCamelCase : Any = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
656
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 ) snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 ) snake_case_ : Tuple = Accelerator() snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class a__ ( a__ ): '''simple docstring''' lowercase__ : torch.FloatTensor class a__ ( a__ , a__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCamelCase_ = 16 , lowerCamelCase_ = 88 , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = 1 , lowerCamelCase_ = 0.0 , lowerCamelCase_ = 32 , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = "geglu" , lowerCamelCase_ = True , lowerCamelCase_ = True , ) -> Tuple: super().__init__() lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = attention_head_dim lowerCAmelCase__ = num_attention_heads * attention_head_dim lowerCAmelCase__ = in_channels lowerCAmelCase__ = torch.nn.GroupNorm(num_groups=lowerCamelCase_ , num_channels=lowerCamelCase_ , eps=1e-6 , affine=lowerCamelCase_ ) lowerCAmelCase__ = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) # 3. Define transformers blocks lowerCAmelCase__ = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dropout=lowerCamelCase_ , cross_attention_dim=lowerCamelCase_ , activation_fn=lowerCamelCase_ , attention_bias=lowerCamelCase_ , double_self_attention=lowerCamelCase_ , norm_elementwise_affine=lowerCamelCase_ , ) for d in range(lowerCamelCase_ ) ] ) lowerCAmelCase__ = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=1 , lowerCamelCase_=None , lowerCamelCase_ = True , ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = hidden_states.shape lowerCAmelCase__ = batch_frames // num_frames lowerCAmelCase__ = hidden_states lowerCAmelCase__ = hidden_states[None, :].reshape(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCAmelCase__ = self.norm(lowerCamelCase_ ) lowerCAmelCase__ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = self.proj_in(lowerCamelCase_ ) # 2. Blocks for block in self.transformer_blocks: lowerCAmelCase__ = block( lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , timestep=lowerCamelCase_ , cross_attention_kwargs=lowerCamelCase_ , class_labels=lowerCamelCase_ , ) # 3. Output lowerCAmelCase__ = self.proj_out(lowerCamelCase_ ) lowerCAmelCase__ = ( hidden_states[None, None, :] .reshape(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCAmelCase__ = hidden_states.reshape(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCamelCase_ )
90
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path __UpperCamelCase : int = quote(_lowerCAmelCase ) return hfh.hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" , revision=_lowerCAmelCase )
327
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> Optional[Any]: A__ = "ZinengTang/tvlt-base" A__ = tempfile.mkdtemp() def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> Tuple: return TvltImageProcessor.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> int: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def snake_case__ ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def snake_case__ ( self ) -> Any: A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) A__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _UpperCAmelCase ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def snake_case__ ( self ) -> Tuple: A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) A__ = np.ones([12000] ) A__ = feature_extractor(_UpperCAmelCase , return_tensors="np" ) A__ = processor(audio=_UpperCAmelCase , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self ) -> Any: A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) A__ = np.ones([3, 224, 224] ) A__ = image_processor(_UpperCAmelCase , return_tensors="np" ) A__ = processor(images=_UpperCAmelCase , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self ) -> List[Any]: A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) A__ = np.ones([12000] ) A__ = np.ones([3, 224, 224] ) A__ = processor(audio=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def snake_case__ ( self ) -> Optional[int]: A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
714
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: super().__init__() # make sure scheduler can always be converted to DDIM A__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = 50 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "pil" , SCREAMING_SNAKE_CASE__ = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE__ ): A__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: A__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) A__ = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A__ = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A__ = self.scheduler.step( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , use_clipped_model_output=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) A__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
562
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=False ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCamelCase : Optional[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=False ) -> Optional[int]: for i in range(config.num_hidden_layers ): if base_model: __lowerCamelCase : List[str] = '' else: __lowerCamelCase : List[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase : Optional[Any] = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) __lowerCamelCase : Optional[Any] = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : List[Any] = in_proj_weight[ : config.hidden_size, : ] __lowerCamelCase : Dict = in_proj_bias[: config.hidden_size] __lowerCamelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] __lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> List[str]: __lowerCamelCase : Any = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Any ) -> Tuple: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. __lowerCamelCase : List[Any] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ) -> str: __lowerCamelCase : Any = dct.pop(UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = val def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) -> str: __lowerCamelCase : Dict = ViTMSNConfig() __lowerCamelCase : Dict = 10_00 __lowerCamelCase : Optional[Any] = 'datasets/huggingface/label-files' __lowerCamelCase : Tuple = 'imagenet-1k-id2label.json' __lowerCamelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ ) , 'r' ) ) __lowerCamelCase : Tuple = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} __lowerCamelCase : Any = idalabel __lowerCamelCase : str = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __lowerCamelCase : Union[str, Any] = 3_84 __lowerCamelCase : Tuple = 15_36 __lowerCamelCase : int = 6 elif "l16" in checkpoint_url: __lowerCamelCase : Any = 10_24 __lowerCamelCase : int = 40_96 __lowerCamelCase : int = 24 __lowerCamelCase : Any = 16 __lowerCamelCase : List[str] = 0.1 elif "b4" in checkpoint_url: __lowerCamelCase : Union[str, Any] = 4 elif "l7" in checkpoint_url: __lowerCamelCase : str = 7 __lowerCamelCase : Union[str, Any] = 10_24 __lowerCamelCase : List[Any] = 40_96 __lowerCamelCase : Union[str, Any] = 24 __lowerCamelCase : Optional[Any] = 16 __lowerCamelCase : Optional[Any] = 0.1 __lowerCamelCase : Optional[Any] = ViTMSNModel(UpperCAmelCase_ ) __lowerCamelCase : int = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location='cpu' )['target_encoder'] __lowerCamelCase : List[Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCAmelCase_ ) __lowerCamelCase : List[Any] = create_rename_keys(UpperCAmelCase_ , base_model=UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ , base_model=UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() __lowerCamelCase : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase : Optional[Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) __lowerCamelCase : str = ViTImageProcessor( size=config.image_size , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ ) __lowerCamelCase : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) __lowerCamelCase : int = model(**UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __lowerCamelCase : Optional[Any] = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: __lowerCamelCase : List[Any] = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: __lowerCamelCase : str = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: __lowerCamelCase : int = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: __lowerCamelCase : Dict = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCAmelCase_ , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : int = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
13
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = flatten_dict(lowerCAmelCase_ ) return flax_params def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } __SCREAMING_SNAKE_CASE = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __SCREAMING_SNAKE_CASE = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __SCREAMING_SNAKE_CASE = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __SCREAMING_SNAKE_CASE = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"layer.\1" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"layer.\1" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = flax_dict[key] __SCREAMING_SNAKE_CASE = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __SCREAMING_SNAKE_CASE = torch.from_numpy(converted_dict[key].T ) else: __SCREAMING_SNAKE_CASE = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_flax_param(lowerCAmelCase_ ) if not use_large: __SCREAMING_SNAKE_CASE = PixaStructVisionConfig() __SCREAMING_SNAKE_CASE = PixaStructTextConfig() else: __SCREAMING_SNAKE_CASE = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) __SCREAMING_SNAKE_CASE = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) __SCREAMING_SNAKE_CASE = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = PixaStructForConditionalGeneration(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = rename_and_convert_flax_params(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) __SCREAMING_SNAKE_CASE = PixaStructImageProcessor() __SCREAMING_SNAKE_CASE = PixaStructProcessor(image_processor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) if use_large: __SCREAMING_SNAKE_CASE = 4096 __SCREAMING_SNAKE_CASE = True # mkdir if needed os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) print("Model saved in {}".format(lowerCAmelCase_ ) ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') a__ : Optional[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
0
class _SCREAMING_SNAKE_CASE : def __init__( self ) -> List[Any]: lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> int: self.add_vertex(lowercase ) self.add_vertex(lowercase ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda lowercase : e[2] ) for i in range(len(lowercase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self ) -> Any: lowerCamelCase_ = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f'{head} -> {tail} == {weight}\n' return string.rstrip("\n" ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return self.adjacency.keys() @staticmethod def SCREAMING_SNAKE_CASE_( lowercase=None , lowercase=None ) -> Optional[int]: lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(lowercase ) for edge in edges: g.add_edge(*lowercase ) return g class _SCREAMING_SNAKE_CASE : def __init__( self ) -> Tuple: lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self ) -> Any: return len(self.parent ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[Any]: if item in self.parent: return self.find(lowercase ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[Any]: if item not in self.parent: return self.make_set(lowercase ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> List[str]: lowerCamelCase_ = self.find(lowercase ) lowerCamelCase_ = self.find(lowercase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def SCREAMING_SNAKE_CASE_( lowercase ) -> Dict: lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(lowercase ) lowerCamelCase_ = union_find.find(lowercase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(lowercase ) != union_find.find(lowercase ): union_find.union(lowercase , lowercase ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=lowercase ) return mst
313
import numpy as np def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = int(np.ceil((x_end - xa) / h ) ) lowerCamelCase_ = np.zeros((n + 1,) ) lowerCamelCase_ = ya lowerCamelCase_ = xa for k in range(lowerCamelCase__ ): lowerCamelCase_ = f(lowerCamelCase__ , y[k] ) lowerCamelCase_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCamelCase_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCamelCase_ = f(x + h , y[k] + h * ka ) lowerCamelCase_ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
313
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> str: UpperCAmelCase_ : int = params UpperCAmelCase_ : Dict = np.array(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = np.array([len(_UpperCamelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , _UpperCamelCase ) -> Optional[Any]: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> str: return len(self.lengths ) def __UpperCAmelCase ( self ) -> str: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : int = self.params.max_model_input_size UpperCAmelCase_ : Optional[int] = self.lengths > max_len logger.info(f"Splitting {sum(_UpperCamelCase )} too long sequences." ) def divide_chunks(_UpperCamelCase , _UpperCamelCase ): return [l[i : i + n] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase )] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Any = [] if self.params.mlm: UpperCAmelCase_ , UpperCAmelCase_ : int = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: UpperCAmelCase_ : int = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: UpperCAmelCase_ : List[Any] = np.insert(_UpperCamelCase , 0 , _UpperCamelCase ) if sub_s[-1] != sep_id: UpperCAmelCase_ : List[str] = np.insert(_UpperCamelCase , len(_UpperCamelCase ) , _UpperCamelCase ) assert len(_UpperCamelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_UpperCamelCase ) new_tok_ids.extend(_UpperCamelCase ) new_lengths.extend([len(_UpperCamelCase ) for l in sub_seqs] ) UpperCAmelCase_ : Optional[int] = np.array(_UpperCamelCase ) UpperCAmelCase_ : Tuple = np.array(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Optional[int] = len(self ) UpperCAmelCase_ : int = self.lengths > 1_1 UpperCAmelCase_ : List[str] = self.token_ids[indices] UpperCAmelCase_ : Union[str, Any] = self.lengths[indices] UpperCAmelCase_ : Optional[Any] = len(self ) logger.info(f"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def __UpperCAmelCase ( self ) -> Dict: if "unk_token" not in self.params.special_tok_ids: return else: UpperCAmelCase_ : List[Any] = self.params.special_tok_ids['unk_token'] UpperCAmelCase_ : Optional[int] = len(self ) UpperCAmelCase_ : List[str] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) UpperCAmelCase_ : Optional[int] = (unk_occs / self.lengths) < 0.5 UpperCAmelCase_ : Optional[Any] = self.token_ids[indices] UpperCAmelCase_ : Optional[int] = self.lengths[indices] UpperCAmelCase_ : List[str] = len(self ) logger.info(f"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def __UpperCAmelCase ( self ) -> List[str]: if not self.params.is_master: return logger.info(f"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: UpperCAmelCase_ : int = [t[0] for t in batch] UpperCAmelCase_ : Optional[Any] = [t[1] for t in batch] assert len(_UpperCamelCase ) == len(_UpperCamelCase ) # Max for paddings UpperCAmelCase_ : Optional[int] = max(_UpperCamelCase ) # Pad token ids if self.params.mlm: UpperCAmelCase_ : List[Any] = self.params.special_tok_ids['pad_token'] else: UpperCAmelCase_ : Union[str, Any] = self.params.special_tok_ids['unk_token'] UpperCAmelCase_ : Optional[Any] = [list(t.astype(_UpperCamelCase ) ) + [pad_idx] * (max_seq_len_ - len(_UpperCamelCase )) for t in token_ids] assert len(tk_ ) == len(_UpperCamelCase ) assert all(len(_UpperCamelCase ) == max_seq_len_ for t in tk_ ) UpperCAmelCase_ : int = torch.tensor(tk_ ) # (bs, max_seq_len_) UpperCAmelCase_ : Dict = torch.tensor(_UpperCamelCase ) # (bs) return tk_t, lg_t
406
from math import isqrt def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): UpperCAmelCase_ : List[Any] = False return [i for i in range(2 , __snake_case ) if is_prime[i]] def lowercase__ ( __snake_case : int = 10**8 ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = calculate_prime_numbers(max_number // 2 ) UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : int = 0 UpperCAmelCase_ : Union[str, Any] = len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
406
1
"""simple docstring""" from __future__ import annotations def _lowerCamelCase ( lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
128
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __snake_case = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) requires_backends(self , """decord""" ) self.check_model_type(lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ) -> Optional[int]: lowercase__ : int = {} if frame_sampling_rate is not None: lowercase__ : Optional[Any] = frame_sampling_rate if num_frames is not None: lowercase__ : List[str] = num_frames lowercase__ : str = {} if top_k is not None: lowercase__ : Any = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=1 ) -> Optional[Any]: if num_frames is None: lowercase__ : Dict = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase__ : Tuple = BytesIO(requests.get(lowerCamelCase__ ).content ) lowercase__ : int = VideoReader(lowerCamelCase__ ) videoreader.seek(0 ) lowercase__ : Optional[int] = 0 lowercase__ : Optional[int] = num_frames * frame_sampling_rate - 1 lowercase__ : Optional[Any] = np.linspace(lowerCamelCase__ , lowerCamelCase__ , num=lowerCamelCase__ , dtype=np.intaa ) lowercase__ : Union[str, Any] = videoreader.get_batch(lowerCamelCase__ ).asnumpy() lowercase__ : Optional[int] = list(lowerCamelCase__ ) lowercase__ : Optional[int] = self.image_processor(lowerCamelCase__ , return_tensors=self.framework ) return model_inputs def UpperCAmelCase__( self , lowerCamelCase__ ) -> Optional[Any]: lowercase__ : int = self.model(**lowerCamelCase__ ) return model_outputs def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__=5 ) -> Any: if top_k > self.model.config.num_labels: lowercase__ : int = self.model.config.num_labels if self.framework == "pt": lowercase__ : List[Any] = model_outputs.logits.softmax(-1 )[0] lowercase__ , lowercase__ : int = probs.topk(lowerCamelCase__ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) lowercase__ : str = scores.tolist() lowercase__ : List[str] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase__ , lowerCamelCase__ )]
128
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class a : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=33 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = parent __SCREAMING_SNAKE_CASE: Any = batch_size __SCREAMING_SNAKE_CASE: Dict = seq_length __SCREAMING_SNAKE_CASE: List[Any] = is_training __SCREAMING_SNAKE_CASE: List[Any] = use_input_mask __SCREAMING_SNAKE_CASE: str = use_token_type_ids __SCREAMING_SNAKE_CASE: Any = use_labels __SCREAMING_SNAKE_CASE: Optional[int] = vocab_size __SCREAMING_SNAKE_CASE: Dict = hidden_size __SCREAMING_SNAKE_CASE: Dict = num_hidden_layers __SCREAMING_SNAKE_CASE: Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE: str = intermediate_size __SCREAMING_SNAKE_CASE: str = hidden_act __SCREAMING_SNAKE_CASE: Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE: Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE: Any = max_position_embeddings __SCREAMING_SNAKE_CASE: Optional[Any] = type_vocab_size __SCREAMING_SNAKE_CASE: List[Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE: Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE: Union[str, Any] = num_labels __SCREAMING_SNAKE_CASE: List[str] = num_choices __SCREAMING_SNAKE_CASE: List[Any] = scope def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE: int = None if self.use_input_mask: __SCREAMING_SNAKE_CASE: Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE: Optional[Any] = None __SCREAMING_SNAKE_CASE: Optional[int] = None __SCREAMING_SNAKE_CASE: Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE: List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE: str = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE: Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ): """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = EsmModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Union[str, Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = model(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = EsmForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Optional[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = self.num_labels __SCREAMING_SNAKE_CASE: List[Any] = EsmForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: int = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ): int = config_and_inputs __SCREAMING_SNAKE_CASE: Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( __lowercase ,__lowercase ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : Optional[int] = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : int = () SCREAMING_SNAKE_CASE__ : Optional[int] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = True def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = EsmModelTester(self ) __SCREAMING_SNAKE_CASE: List[str] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def snake_case_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE: Any = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def snake_case_ ( self ): """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE: Optional[int] = EsmModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __SCREAMING_SNAKE_CASE: int = EsmEmbeddings(config=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __SCREAMING_SNAKE_CASE: Optional[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __SCREAMING_SNAKE_CASE: Any = create_position_ids_from_input_ids(_lowerCAmelCase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_lowerCAmelCase , _lowerCAmelCase ) ) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = self.model_tester.prepare_config_and_inputs()[0] __SCREAMING_SNAKE_CASE: Dict = EsmEmbeddings(config=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[int] = torch.empty(2 , 4 , 30 ) __SCREAMING_SNAKE_CASE: List[str] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __SCREAMING_SNAKE_CASE: str = torch.as_tensor([expected_single_positions, expected_single_positions] ) __SCREAMING_SNAKE_CASE: Optional[Any] = embeddings.create_position_ids_from_inputs_embeds(_lowerCAmelCase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_lowerCAmelCase , _lowerCAmelCase ) ) ) @unittest.skip('''Esm does not support embedding resizing''' ) def snake_case_ ( self ): """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def snake_case_ ( self ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case_ ( self ): """simple docstring""" pass @require_torch class a ( __lowercase ): @slow def snake_case_ ( self ): """simple docstring""" with torch.no_grad(): __SCREAMING_SNAKE_CASE: Optional[int] = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() __SCREAMING_SNAKE_CASE: Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE: str = model(_lowerCAmelCase )[0] __SCREAMING_SNAKE_CASE: Union[str, Any] = 33 __SCREAMING_SNAKE_CASE: Dict = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[int] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def snake_case_ ( self ): """simple docstring""" with torch.no_grad(): __SCREAMING_SNAKE_CASE: Dict = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() __SCREAMING_SNAKE_CASE: Dict = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __SCREAMING_SNAKE_CASE: Union[str, Any] = model(_lowerCAmelCase )[0] # compare the actual values for a slice. __SCREAMING_SNAKE_CASE: Optional[int] = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) )
202
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( __lowercase ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ : List[Any] = ConsistencyModelPipeline SCREAMING_SNAKE_CASE__ : Any = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt SCREAMING_SNAKE_CASE__ : Optional[int] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def snake_case_ ( self , _lowerCAmelCase=False ): """simple docstring""" if class_cond: __SCREAMING_SNAKE_CASE: List[Any] = self.dummy_cond_unet else: __SCREAMING_SNAKE_CASE: Tuple = self.dummy_uncond_unet # Default to CM multistep sampler __SCREAMING_SNAKE_CASE: Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE: List[str] = { '''unet''': unet, '''scheduler''': scheduler, } return components def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): """simple docstring""" if str(_lowerCAmelCase ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE: List[str] = torch.manual_seed(_lowerCAmelCase ) else: __SCREAMING_SNAKE_CASE: List[str] = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE: Optional[int] = self.get_dummy_components() __SCREAMING_SNAKE_CASE: Optional[Any] = ConsistencyModelPipeline(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[int] = self.get_dummy_inputs(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = pipe(**_lowerCAmelCase ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE: int = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE: Optional[Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE: str = self.get_dummy_components(class_cond=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = ConsistencyModelPipeline(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Dict = self.get_dummy_inputs(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Dict = 0 __SCREAMING_SNAKE_CASE: Optional[Any] = pipe(**_lowerCAmelCase ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE: Optional[Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE: Optional[Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE: Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE: Tuple = ConsistencyModelPipeline(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[str] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[Any] = self.get_dummy_inputs(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = 1 __SCREAMING_SNAKE_CASE: Union[str, Any] = None __SCREAMING_SNAKE_CASE: List[str] = pipe(**_lowerCAmelCase ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE: Tuple = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE: Optional[Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE: Optional[Any] = self.get_dummy_components(class_cond=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[Any] = ConsistencyModelPipeline(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = self.get_dummy_inputs(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = 1 __SCREAMING_SNAKE_CASE: List[Any] = None __SCREAMING_SNAKE_CASE: Tuple = 0 __SCREAMING_SNAKE_CASE: List[str] = pipe(**_lowerCAmelCase ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE: List[Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE: Any = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , _lowerCAmelCase=0 , _lowerCAmelCase=False , _lowerCAmelCase="cpu" , _lowerCAmelCase=torch.floataa , _lowerCAmelCase=(1, 3, 64, 64) ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = torch.manual_seed(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Dict = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __SCREAMING_SNAKE_CASE: Dict = self.get_fixed_latents(seed=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase , shape=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = latents return inputs def snake_case_ ( self , _lowerCAmelCase=0 , _lowerCAmelCase="cpu" , _lowerCAmelCase=torch.floataa , _lowerCAmelCase=(1, 3, 64, 64) ): """simple docstring""" if type(_lowerCAmelCase ) == str: __SCREAMING_SNAKE_CASE: List[Any] = torch.device(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Dict = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase ) return latents def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE: Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE: Optional[int] = ConsistencyModelPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) pipe.to(torch_device=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = self.get_inputs() __SCREAMING_SNAKE_CASE: List[Any] = pipe(**_lowerCAmelCase ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE: Dict = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE: Any = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE: str = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE: Union[str, Any] = ConsistencyModelPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) pipe.to(torch_device=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[str] = self.get_inputs() __SCREAMING_SNAKE_CASE: Union[str, Any] = 1 __SCREAMING_SNAKE_CASE: List[Any] = None __SCREAMING_SNAKE_CASE: Optional[int] = pipe(**_lowerCAmelCase ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE: Dict = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE: Any = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE: Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE: List[Any] = ConsistencyModelPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) pipe.to(torch_device=_lowerCAmelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = self.get_inputs(get_fixed_latents=_lowerCAmelCase , device=_lowerCAmelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_lowerCAmelCase , enable_math=_lowerCAmelCase , enable_mem_efficient=_lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Dict = pipe(**_lowerCAmelCase ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE: List[Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE: Optional[int] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE: List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE: List[Any] = ConsistencyModelPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) pipe.to(torch_device=_lowerCAmelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = self.get_inputs(get_fixed_latents=_lowerCAmelCase , device=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = 1 __SCREAMING_SNAKE_CASE: List[Any] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_lowerCAmelCase , enable_math=_lowerCAmelCase , enable_mem_efficient=_lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Optional[int] = pipe(**_lowerCAmelCase ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE: Tuple = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE: Tuple = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
202
1
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = TransfoXLTokenizer __UpperCamelCase = False __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: Dict = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] snake_case: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: str = '<unk> UNwanted , running' snake_case: int = '<unk> unwanted, running' return input_text, output_text def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [0, 4, 8, 7] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = TransfoXLTokenizer(lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = TransfoXLTokenizer(lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = TransfoXLTokenizer(lower_case=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' snake_case: Optional[int] = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: List[Any] = len(SCREAMING_SNAKE_CASE__ ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
692
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = "PoolFormerConfig" # Base docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = [1, 512, 7, 7] # Image classification docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = "tabby, tabby cat" __UpperCAmelCase = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCAmelCase_ ( __A : Tuple , __A : float = 0.0 , __A : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input snake_case: Union[str, Any] = 1 - drop_prob snake_case: List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case: List[Any] = keep_prob + torch.rand(__A , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case: Any = input.div(__A ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' super().__init__() snake_case: List[str] = drop_prob def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def _UpperCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' super().__init__() snake_case: List[str] = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case: List[str] = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) snake_case: Union[str, Any] = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.projection(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: str = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = ACTaFN[config.hidden_act] else: snake_case: int = config.hidden_act def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.act_fn(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.drop(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets snake_case: Union[str, Any] = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() snake_case: Optional[Any] = config.use_layer_scale if config.use_layer_scale: snake_case: Any = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.use_layer_scale: snake_case: str = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case: str = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = () snake_case: Dict = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case: Any = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = (output,) + outputs return outputs else: snake_case: Optional[Any] = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection snake_case: Union[str, Any] = pooling_output + hidden_states snake_case: List[Any] = () # Second residual connection inside the PoolFormerOutput block snake_case: List[str] = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: Dict = hidden_states + layer_output snake_case: Optional[Any] = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = config # stochastic depth decay rule snake_case: List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case: Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case: List[Any] = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks snake_case: str = [] snake_case: int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case: List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) snake_case: Tuple = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' snake_case: str = () if output_hidden_states else None snake_case: Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case: Dict = layers # Get patch embeddings from hidden_states snake_case: int = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = blk(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = layer_outputs[0] if output_hidden_states: snake_case: List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = PoolFormerConfig __UpperCamelCase = "poolformer" __UpperCamelCase = "pixel_values" __UpperCamelCase = True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = value __UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = config snake_case: Tuple = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def _UpperCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case: Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Any = nn.Linear(config.hidden_size , config.hidden_size ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = config.num_labels snake_case: str = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm snake_case: int = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case: Dict = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case: Optional[Any] = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: Any = outputs[0] snake_case: str = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) snake_case: Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case: Tuple = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case: Dict = 'single_label_classification' else: snake_case: List[str] = 'multi_label_classification' if self.config.problem_type == "regression": snake_case: Union[str, Any] = MSELoss() if self.num_labels == 1: snake_case: List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case: int = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": snake_case: Union[str, Any] = CrossEntropyLoss() snake_case: Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case: int = BCEWithLogitsLoss() snake_case: Optional[int] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: snake_case: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
692
1
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = TransfoXLTokenizer _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> Any: super().setUp() snake_case : List[Any] = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def UpperCAmelCase ( self , **A ) -> Any: snake_case : Union[str, Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Any = """<unk> UNwanted , running""" snake_case : int = """<unk> unwanted, running""" return input_text, output_text def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=A ) snake_case : Union[str, Any] = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(A , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [0, 4, 8, 7] ) def UpperCAmelCase ( self ) -> Dict: snake_case : Optional[int] = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def UpperCAmelCase ( self ) -> str: snake_case : Any = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase ( self ) -> int: snake_case : List[str] = TransfoXLTokenizer(lower_case=A ) snake_case : int = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" snake_case : int = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(A ) , A ) self.assertEqual(tokenizer.convert_tokens_to_string(A ) , A ) def UpperCAmelCase ( self ) -> str: snake_case : Optional[int] = self.get_tokenizer() snake_case : int = len(A ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(A ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
587
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: snake_case : Optional[int] = WavaVecaForSequenceClassification.from_pretrained(lowercase ,config=lowercase ) snake_case : List[Any] = downstream_dict["""projector.weight"""] snake_case : Any = downstream_dict["""projector.bias"""] snake_case : Optional[Any] = downstream_dict["""model.post_net.linear.weight"""] snake_case : List[str] = downstream_dict["""model.post_net.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Any]: snake_case : Union[str, Any] = WavaVecaForAudioFrameClassification.from_pretrained(lowercase ,config=lowercase ) snake_case : Tuple = downstream_dict["""model.linear.weight"""] snake_case : Optional[int] = downstream_dict["""model.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: snake_case : Tuple = WavaVecaForXVector.from_pretrained(lowercase ,config=lowercase ) snake_case : str = downstream_dict["""connector.weight"""] snake_case : Tuple = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case : List[Any] = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] snake_case : Dict = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] snake_case : Optional[int] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] snake_case : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] snake_case : int = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] snake_case : str = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] snake_case : Union[str, Any] = downstream_dict["""objective.W"""] return model @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> str: snake_case : Optional[int] = torch.load(lowercase ,map_location="""cpu""" ) snake_case : int = checkpoint["""Downstream"""] snake_case : str = WavaVecaConfig.from_pretrained(lowercase ) snake_case : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( lowercase ,return_attention_mask=lowercase ,do_normalize=lowercase ) snake_case : str = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): snake_case : Union[str, Any] = convert_classification(lowercase ,lowercase ,lowercase ) elif arch.endswith("""ForAudioFrameClassification""" ): snake_case : str = convert_diarization(lowercase ,lowercase ,lowercase ) elif arch.endswith("""ForXVector""" ): snake_case : Any = convert_xvector(lowercase ,lowercase ,lowercase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: snake_case : Tuple = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCamelCase : Optional[Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
587
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowerCAmelCase : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowerCAmelCase : Union[str, Any] = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above lowerCAmelCase : Optional[int] = tf_top_k_top_p_filtering(UpperCamelCase_ , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) lowerCAmelCase : Union[str, Any] = output[output != -float('''inf''' )] lowerCAmelCase : Union[str, Any] = tf.cast( tf.where(tf.not_equal(UpperCamelCase_ , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1E-12 ) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) @require_tf class snake_case_( unittest.TestCase , a__ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): __UpperCamelCase = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowerCamelCase__ ( self : Any ): # TF-only test: tf.saved_model export lowerCAmelCase : Any = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Any = 2 class snake_case_( tf.Module ): def __init__( self : Any , UpperCamelCase_ : Optional[Any] ): super(UpperCamelCase_ , self ).__init__() lowerCAmelCase : List[str] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : List[Any] = self.model.generate( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , max_new_tokens=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , ) return {"sequences": outputs["sequences"]} lowerCAmelCase : Tuple = [[2, 0], [1_0_2, 1_0_3]] lowerCAmelCase : Dict = [[1, 0], [1, 1]] lowerCAmelCase : str = DummyModel(model=UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={'''serving_default''': dummy_model.serving} ) lowerCAmelCase : Union[str, Any] = tf.saved_model.load(UpperCamelCase_ ).signatures['''serving_default'''] for batch_size in range(1 , len(UpperCamelCase_ ) + 1 ): lowerCAmelCase : List[str] = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } lowerCAmelCase : Dict = serving_func(**UpperCamelCase_ )['''sequences'''] lowerCAmelCase : Tuple = test_model.generate(**UpperCamelCase_ , max_new_tokens=UpperCamelCase_ ) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Any ): # TF-only test: tf.saved_model export lowerCAmelCase : str = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : List[Any] = 1 lowerCAmelCase : Dict = 2 class snake_case_( tf.Module ): def __init__( self : Dict , UpperCamelCase_ : str ): super(UpperCamelCase_ , self ).__init__() lowerCAmelCase : int = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : List[Any] = self.model.generate( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , max_new_tokens=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , ) return {"sequences": outputs["sequences"]} lowerCAmelCase : Optional[int] = [[2], [1_0_2, 1_0_3]] lowerCAmelCase : Tuple = [[1], [1, 1]] lowerCAmelCase : Optional[int] = DummyModel(model=UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={'''serving_default''': dummy_model.serving} ) lowerCAmelCase : List[Any] = tf.saved_model.load(UpperCamelCase_ ).signatures['''serving_default'''] for input_row in range(len(UpperCamelCase_ ) ): lowerCAmelCase : Optional[Any] = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } lowerCAmelCase : Union[str, Any] = serving_func(**UpperCamelCase_ )['''sequences'''] lowerCAmelCase : Optional[Any] = test_model.generate(**UpperCamelCase_ , max_new_tokens=UpperCamelCase_ ) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) @slow @require_tensorflow_text def lowerCamelCase__ ( self : int ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=UpperCamelCase_ ) class snake_case_( tf.keras.layers.Layer ): def __init__( self : Any ): super().__init__() lowerCAmelCase : Union[str, Any] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCamelCase_ , '''spiece.model''' ) , '''rb''' ).read() ) lowerCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Dict , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : List[Any] ): lowerCAmelCase : str = self.tokenizer.tokenize(UpperCamelCase_ ) lowerCAmelCase, lowerCAmelCase : Dict = text.pad_model_inputs( UpperCamelCase_ , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) lowerCAmelCase : Dict = self.model.generate(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) return self.tokenizer.detokenize(UpperCamelCase_ ) lowerCAmelCase : Dict = CompleteSentenceTransformer() lowerCAmelCase : List[Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) lowerCAmelCase : Dict = complete_model(UpperCamelCase_ ) lowerCAmelCase : int = tf.keras.Model(UpperCamelCase_ , UpperCamelCase_ ) keras_model.save(UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Has PT equivalent: this test relies on random sampling lowerCAmelCase : Dict = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } lowerCAmelCase : int = 1_4 lowerCAmelCase : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Union[str, Any] = '''Hello, my dog is cute and''' lowerCAmelCase : List[Any] = tokenizer(UpperCamelCase_ , return_tensors='''tf''' ) lowerCAmelCase : List[Any] = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Union[str, Any] = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) lowerCAmelCase : Any = model.generate(**UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowerCAmelCase : int = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) lowerCAmelCase : str = model.generate(**UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowerCamelCase__ ( self : Dict ): # Has PT equivalent: ample use of framework-specific code lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) lowerCAmelCase : Dict = '''Hugging Face is a technology company based in New York and Paris.''' lowerCAmelCase : Tuple = bart_tokenizer(UpperCamelCase_ , return_tensors='''tf''' ).input_ids lowerCAmelCase : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) lowerCAmelCase : Optional[int] = bart_model.generate(UpperCamelCase_ ).numpy() class snake_case_( a__ ): def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : Dict ): return super().call(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Any = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) lowerCAmelCase : Tuple = bart_model.generate(UpperCamelCase_ , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(UpperCamelCase_ , UpperCamelCase_ ) ) class snake_case_( bart_model.model.encoder.__class__ ): def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : int ): return super().call(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : str = FakeEncoder(bart_model.config , bart_model.model.shared ) lowerCAmelCase : Union[str, Any] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCAmelCase : Optional[Any] = bart_model.generate(UpperCamelCase_ ).numpy() with self.assertRaises(UpperCamelCase_ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCamelCase_ , foo='''bar''' )
637
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int , UpperCamelCase_ : int ): lowerCAmelCase : str = 3 lowerCAmelCase : Tuple = 2_5_0 lowerCAmelCase : Optional[Any] = ids_tensor((batch_size, length) , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self._get_tensors(5 ) lowerCAmelCase : Union[str, Any] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : Any = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = MaxLengthCriteria(max_length=1_0 ) lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : str = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase, lowerCAmelCase : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase, lowerCAmelCase : str = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : Dict = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self._get_tensors(5 ) lowerCAmelCase : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : List[str] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase__ ( self : str ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) lowerCAmelCase : str = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
637
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger("transformers.models.speecht5") def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ): """simple docstring""" hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float() SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float() model.save_pretrained(__UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( a_ , a_ , a_ , a_="attention"): snake_case_ = params[f'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] snake_case_ = params[f'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] snake_case_ = params[f'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] snake_case_ = params[f'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def __UpperCAmelCase ( a_ , a_ , a_ , a_=False): if split_mlp_wi: snake_case_ = params[f'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] snake_case_ = params[f'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] snake_case_ = (wi_a, wi_a) else: snake_case_ = params[f'''{prefix}/layers_{i}/mlp/wi/kernel'''] snake_case_ = params[f'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def __UpperCAmelCase ( a_ , a_ , a_ , a_): return params[f'''{prefix}/layers_{i}/{layer_name}/scale'''] def __UpperCAmelCase ( a_ , *, a_ , a_): snake_case_ = traverse_util.flatten_dict(variables['target']) snake_case_ = {'/'.join(a_): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi snake_case_ = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , a_) snake_case_ = collections.OrderedDict() # Shared embeddings. snake_case_ = old['token_embedder/embedding'] # Encoder. for i in range(a_): # Block i, layer 0 (Self Attention). snake_case_ = tax_layer_norm_lookup(a_ , a_ , 'encoder' , 'pre_attention_layer_norm') snake_case_ , snake_case_ , snake_case_ , snake_case_ = tax_attention_lookup(a_ , a_ , 'encoder' , 'attention') snake_case_ = layer_norm snake_case_ = k.T snake_case_ = o.T snake_case_ = q.T snake_case_ = v.T # Block i, layer 1 (MLP). snake_case_ = tax_layer_norm_lookup(a_ , a_ , 'encoder' , 'pre_mlp_layer_norm') snake_case_ , snake_case_ = tax_mlp_lookup(a_ , a_ , 'encoder' , a_) snake_case_ = layer_norm if split_mlp_wi: snake_case_ = wi[0].T snake_case_ = wi[1].T else: snake_case_ = wi.T snake_case_ = wo.T snake_case_ = old[ 'encoder/relpos_bias/rel_embedding' ].T snake_case_ = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(a_): # Block i, layer 0 (Self Attention). snake_case_ = tax_layer_norm_lookup(a_ , a_ , 'decoder' , 'pre_self_attention_layer_norm') snake_case_ , snake_case_ , snake_case_ , snake_case_ = tax_attention_lookup(a_ , a_ , 'decoder' , 'self_attention') snake_case_ = layer_norm snake_case_ = k.T snake_case_ = o.T snake_case_ = q.T snake_case_ = v.T # Block i, layer 1 (Cross Attention). snake_case_ = tax_layer_norm_lookup(a_ , a_ , 'decoder' , 'pre_cross_attention_layer_norm') snake_case_ , snake_case_ , snake_case_ , snake_case_ = tax_attention_lookup(a_ , a_ , 'decoder' , 'encoder_decoder_attention') snake_case_ = layer_norm snake_case_ = k.T snake_case_ = o.T snake_case_ = q.T snake_case_ = v.T # Block i, layer 2 (MLP). snake_case_ = tax_layer_norm_lookup(a_ , a_ , 'decoder' , 'pre_mlp_layer_norm') snake_case_ , snake_case_ = tax_mlp_lookup(a_ , a_ , 'decoder' , a_) snake_case_ = layer_norm if split_mlp_wi: snake_case_ = wi[0].T snake_case_ = wi[1].T else: snake_case_ = wi.T snake_case_ = wo.T snake_case_ = old['decoder/decoder_norm/scale'] snake_case_ = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: snake_case_ = old['decoder/logits_dense/kernel'].T return new def __UpperCAmelCase ( a_ , a_): snake_case_ = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()]) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: snake_case_ = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: snake_case_ = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.') snake_case_ = state_dict['shared.weight'] return state_dict def __UpperCAmelCase ( a_ , a_ , a_ , a_): snake_case_ = checkpoints.load_tax_checkpoint(a_) snake_case_ = convert_tax_to_pytorch(a_ , num_layers=config.num_layers , is_encoder_only=a_) snake_case_ = make_state_dict(a_ , a_) model.load_state_dict(a_ , strict=a_) def __UpperCAmelCase ( a_ , a_ , a_ , a_ = False): snake_case_ = TaConfig.from_json_file(a_) print(f'''Building PyTorch model from configuration: {config}''') # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: snake_case_ = TaEncoderModel(a_) else: snake_case_ = TaForConditionalGeneration(a_) # Load weights from tf checkpoint load_tax_weights_in_ta(a_ , a_ , a_ , a_) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''') model.save_pretrained(a_) # Verify that we can load the checkpoint. model.from_pretrained(a_) print('Done') if __name__ == "__main__": lowercase = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) lowercase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
198
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='blip_text_model' def __init__( self : Any , a : Any=3_0524 , a : List[Any]=768 , a : List[Any]=768 , a : Optional[int]=3072 , a : Dict=768 , a : Optional[Any]=12 , a : str=8 , a : Tuple=512 , a : Dict="gelu" , a : List[Any]=1e-12 , a : Union[str, Any]=0.0 , a : List[str]=0.0 , a : Optional[Any]=0.02 , a : Optional[int]=3_0522 , a : Tuple=2 , a : Tuple=0 , a : Union[str, Any]=102 , a : Optional[int]=True , a : Any=True , **a : str , ) -> str: """simple docstring""" super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , sep_token_id=a , **a , ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : int = encoder_hidden_size SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : str = projection_dim SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : str = layer_norm_eps SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = is_decoder SCREAMING_SNAKE_CASE : int = use_cache @classmethod def __UpperCamelCase ( cls : str , a : Union[str, os.PathLike] , **a : List[str] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = cls.get_config_dict(a , **a ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a , **a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='blip_vision_model' def __init__( self : Union[str, Any] , a : Any=768 , a : Tuple=3072 , a : Dict=512 , a : Any=12 , a : Optional[Any]=12 , a : Any=384 , a : Tuple=16 , a : Dict="gelu" , a : Dict=1e-5 , a : Union[str, Any]=0.0 , a : Tuple=1e-10 , **a : Dict , ) -> Any: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = projection_dim SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout SCREAMING_SNAKE_CASE : Dict = layer_norm_eps SCREAMING_SNAKE_CASE : str = hidden_act @classmethod def __UpperCamelCase ( cls : int , a : Union[str, os.PathLike] , **a : List[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": SCREAMING_SNAKE_CASE : List[str] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a , **a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='blip' lowerCamelCase__ =True def __init__( self : List[Any] , a : Any=None , a : List[Any]=None , a : Any=512 , a : List[str]=2.6592 , a : str=256 , **a : List[str] , ) -> Dict: """simple docstring""" super().__init__(**a ) if text_config is None: SCREAMING_SNAKE_CASE : str = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE : List[str] = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) SCREAMING_SNAKE_CASE : Optional[Any] = BlipTextConfig(**a ) SCREAMING_SNAKE_CASE : Dict = BlipVisionConfig(**a ) SCREAMING_SNAKE_CASE : Any = self.vision_config.hidden_size SCREAMING_SNAKE_CASE : List[Any] = projection_dim SCREAMING_SNAKE_CASE : Dict = logit_scale_init_value SCREAMING_SNAKE_CASE : str = 1.0 SCREAMING_SNAKE_CASE : Optional[int] = 0.02 SCREAMING_SNAKE_CASE : str = image_text_hidden_size @classmethod def __UpperCamelCase ( cls : Optional[int] , a : BlipTextConfig , a : BlipVisionConfig , **a : str ) -> List[Any]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : List[Any] = self.text_config.to_dict() SCREAMING_SNAKE_CASE : int = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Dict = self.__class__.model_type return output
193
class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = size SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * size SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * size @staticmethod def __UpperCamelCase ( a : int ) -> int: """simple docstring""" return index | (index + 1) @staticmethod def __UpperCamelCase ( a : int ) -> int: """simple docstring""" return (index & (index + 1)) - 1 def __UpperCamelCase ( self : Any , a : int , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = value while index < self.size: SCREAMING_SNAKE_CASE : Dict = self.get_prev(a ) + 1 if current_left_border == index: SCREAMING_SNAKE_CASE : Optional[int] = value else: SCREAMING_SNAKE_CASE : Tuple = max(a , a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_next(a ) def __UpperCamelCase ( self : Optional[int] , a : int , a : int ) -> int: """simple docstring""" right -= 1 # Because of right is exclusive SCREAMING_SNAKE_CASE : Optional[int] = 0 while left <= right: SCREAMING_SNAKE_CASE : List[Any] = self.get_prev(a ) if left <= current_left: SCREAMING_SNAKE_CASE : List[Any] = max(a , self.tree[right] ) SCREAMING_SNAKE_CASE : str = current_left else: SCREAMING_SNAKE_CASE : List[str] = max(a , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
193
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[str] = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
394
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __A : Optional[Any] = logging.getLogger(__name__) def lowerCAmelCase_ ( ): a__ = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=a , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=a , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=a , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=a , default=1000 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=a , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=a , type=a , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=a , default=512 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=a , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) a__ = parser.parse_args() return args def lowerCAmelCase_ ( a : int ): def fn(a : int ): return tokenizer(examples['text'] ) return fn def lowerCAmelCase_ ( a : str ): a__ = [] for i in range(len(tokenized_data['input_ids'] ) ): a__ = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } a__ = tf.train.Features(feature=a ) a__ = tf.train.Example(features=a ) a__ = example.SerializeToString() records.append(a ) return records def lowerCAmelCase_ ( a : Any ): a__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: a__ = min(len(a ) , args.limit ) a__ = dataset.select(range(a ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) a__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) a__ = os.path.join(args.output_dir , args.split ) if not os.path.exists(a ): os.makedirs(a ) else: a__ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. a__ = tokenize_function(a ) a__ = dataset.map(a , batched=a , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(a : Optional[Any] ): # Concatenate all texts. a__ = {k: sum(examples[k] , [] ) for k in examples.keys()} a__ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 a__ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. a__ = { k: [t[i : i + args.max_length] for i in range(0 , a , args.max_length )] for k, t in concatenated_examples.items() } return result a__ = dataset_tokenized.map(a , batched=a , batch_size=1000 , num_proc=4 ) a__ = 0 a__ = 0 for shard in range(0 , len(a ) , args.shard_size ): a__ = grouped_dataset[shard : shard + args.shard_size] a__ = len(dataset_snapshot['input_ids'] ) a__ = os.path.join(a , f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) a__ = get_serialized_examples(a ) with tf.io.TFRecordWriter(a ) as out_file: for i in range(len(a ) ): a__ = serialized_examples[i] out_file.write(a ) print('Wrote file {} containing {} records'.format(a , a ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' , 'w' ) as f: print(f'''Total {args.split} records: {total_records}''' , file=a ) if __name__ == "__main__": __A : str = parse_args() main(args)
394
1
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __SCREAMING_SNAKE_CASE (__snake_case ): """simple docstring""" def __init__( self : Tuple ): _a = [] def UpperCamelCase__ ( self : Tuple , __a : Tuple , __a : Tuple , __a : Tuple , **__a : Any ): self.events.append("on_init_end" ) def UpperCamelCase__ ( self : Optional[Any] , __a : List[str] , __a : Union[str, Any] , __a : Dict , **__a : Optional[Any] ): self.events.append("on_train_begin" ) def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : List[str] , __a : Optional[int] , **__a : List[Any] ): self.events.append("on_train_end" ) def UpperCamelCase__ ( self : List[str] , __a : Optional[int] , __a : Union[str, Any] , __a : Optional[int] , **__a : Any ): self.events.append("on_epoch_begin" ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple , __a : Tuple , __a : Union[str, Any] , **__a : List[str] ): self.events.append("on_epoch_end" ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict , __a : Any , __a : Dict , **__a : str ): self.events.append("on_step_begin" ) def UpperCamelCase__ ( self : Tuple , __a : Union[str, Any] , __a : Tuple , __a : Tuple , **__a : Tuple ): self.events.append("on_step_end" ) def UpperCamelCase__ ( self : Any , __a : str , __a : int , __a : List[Any] , **__a : Optional[int] ): self.events.append("on_evaluate" ) def UpperCamelCase__ ( self : List[Any] , __a : List[str] , __a : Tuple , __a : str , **__a : List[Any] ): self.events.append("on_predict" ) def UpperCamelCase__ ( self : Any , __a : Union[str, Any] , __a : Any , __a : Tuple , **__a : Any ): self.events.append("on_save" ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[int] , __a : List[str] , **__a : Union[str, Any] ): self.events.append("on_log" ) def UpperCamelCase__ ( self : List[str] , __a : List[Any] , __a : Union[str, Any] , __a : Any , **__a : str ): self.events.append("on_prediction_step" ) @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): _a = tempfile.mkdtemp() def UpperCamelCase__ ( self : Optional[Any] ): shutil.rmtree(self.output_dir ) def UpperCamelCase__ ( self : List[Any] , __a : Any=0 , __a : Dict=0 , __a : List[Any]=64 , __a : Optional[Any]=64 , __a : Optional[Any]=None , __a : List[str]=False , **__a : List[Any] ): _a = RegressionDataset(length=A_ ) _a = RegressionDataset(length=A_ ) _a = RegressionModelConfig(a=A_ , b=A_ ) _a = RegressionPreTrainedModel(A_ ) _a = TrainingArguments(self.output_dir , disable_tqdm=A_ , report_to=[] , **A_ ) return Trainer( A_ , A_ , train_dataset=A_ , eval_dataset=A_ , callbacks=A_ , ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Tuple , __a : Tuple ): self.assertEqual(len(A_ ) , len(A_ ) ) # Order doesn't matter _a = sorted(A_ , key=lambda __a : cb.__name__ if isinstance(A_ , A_ ) else cb.__class__.__name__ ) _a = sorted(A_ , key=lambda __a : cb.__name__ if isinstance(A_ , A_ ) else cb.__class__.__name__ ) for cba, cba in zip(A_ , A_ ): if isinstance(A_ , A_ ) and isinstance(A_ , A_ ): self.assertEqual(A_ , A_ ) elif isinstance(A_ , A_ ) and not isinstance(A_ , A_ ): self.assertEqual(A_ , cba.__class__ ) elif not isinstance(A_ , A_ ) and isinstance(A_ , A_ ): self.assertEqual(cba.__class__ , A_ ) else: self.assertEqual(A_ , A_ ) def UpperCamelCase__ ( self : Dict , __a : Optional[int] ): _a = ["on_init_end", "on_train_begin"] _a = 0 _a = len(trainer.get_eval_dataloader() ) _a = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(A_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def UpperCamelCase__ ( self : List[str] ): _a = self.get_trainer() _a = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # Callbacks passed at init are added to the default callbacks _a = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _a = self.get_trainer(disable_tqdm=A_ ) _a = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) def UpperCamelCase__ ( self : Dict ): _a = DEFAULT_CALLBACKS.copy() + [ProgressCallback] _a = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(A_ ) expected_callbacks.remove(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) _a = self.get_trainer() _a = trainer.pop_callback(A_ ) self.assertEqual(cb.__class__ , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) trainer.add_callback(A_ ) expected_callbacks.insert(0 , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # We can also add, pop, or remove by instance _a = self.get_trainer() _a = trainer.callback_handler.callbacks[0] trainer.remove_callback(A_ ) expected_callbacks.remove(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) _a = self.get_trainer() _a = trainer.callback_handler.callbacks[0] _a = trainer.pop_callback(A_ ) self.assertEqual(A_ , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) trainer.add_callback(A_ ) expected_callbacks.insert(0 , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) def UpperCamelCase__ ( self : Tuple ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=A_ ) _a = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _a = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # Independent log/save/eval _a = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() _a = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) _a = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() _a = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) _a = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() _a = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) _a = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() _a = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # A bit of everything _a = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() _a = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: _a = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(A_ ) in warn_mock.call_args[0][0]
716
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( lowercase : str , lowercase : int , lowercase : Any , lowercase : Any ) -> Any: # Initialise PyTorch model _a = FunnelConfig.from_json_file(lowercase ) print(F'Building PyTorch model from configuration: {config}' ) _a = FunnelBaseModel(lowercase ) if base_model else FunnelModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowercase , lowercase , lowercase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowercase ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
521
0
from __future__ import annotations def UpperCamelCase ( _UpperCAmelCase : int | str ) -> bool: '''simple docstring''' _lowercase : str = str(_UpperCAmelCase ) return n == n[::-1] def UpperCamelCase ( _UpperCAmelCase : int = 100_0000 ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = 0 for i in range(1 , _UpperCAmelCase ): if is_palindrome(_UpperCAmelCase ) and is_palindrome(bin(_UpperCAmelCase ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
461
from dataclasses import dataclass, field from typing import Optional @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) _A = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) _A = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) _A = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) _A = field(default=2 , metadata={"help": "Batch size for training."} ) _A = field(default=2 , metadata={"help": "Batch size for evaluation."} ) _A = field(default=0.1 , metadata={"help": "Value of weight decay."} ) _A = field( default=10000 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) _A = field(default=2e-4 , metadata={"help": "Learning rate fo training."} ) _A = field(default="cosine" , metadata={"help": "Learning rate."} ) _A = field( default=750 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) _A = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) _A = field( default=__snake_case , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) _A = field(default=50000 , metadata={"help": "Maximum number of training steps."} ) _A = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _A = field(default=1024 , metadata={"help": "Sequence lengths used for training."} ) _A = field(default=1 , metadata={"help": "Training seed."} ) _A = field( default=1024 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) _A = field( default=__snake_case , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) _A = field(default=__snake_case , metadata={"help": "If True the data is pretokenized."} ) @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) _A = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) _A = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) _A = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _A = field(default=1024 , metadata={"help": "Length of sequences to be evaluated."} ) _A = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) _A = field(default=__snake_case , metadata={"help": "Number of workers used for code evaluation."} ) _A = field( default=__snake_case , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) _A = field( default=__snake_case , metadata={"help": "Sample from the language model's output distribution."} ) _A = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) _A = field(default=256 , metadata={"help": "Maximum number of newly generated tokens."} ) _A = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) _A = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) _A = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) _A = field( default=200 , metadata={"help": "Number of completions to generate for each sample."} ) _A = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) _A = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) _A = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) _A = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class __lowercase : _A = field( default=__snake_case , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) _A = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) _A = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) _A = field( default=100000 , metadata={"help": "Number of files to save per JSON output file."} ) _A = field(default="content" , metadata={"help": "Column containing text data to process."} ) _A = field( default=1000 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) _A = field( default=100 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) _A = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) _A = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) _A = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) _A = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) _A = field( default=__snake_case , metadata={"help": "If True, near-duplicate samples are removed."} ) _A = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class __lowercase : _A = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) _A = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) _A = field(default="content" , metadata={"help": "Column containing text data to process."} ) _A = field(default=200000 , metadata={"help": "Number of examples to train tokenizer on."} ) _A = field( default=32768 , metadata={"help": "Number of examples to train the tokenizer on."} ) _A = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) _A = field(default=__snake_case , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) _A = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) _A = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) _A = field(default=__snake_case , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class __lowercase : _A = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) _A = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) _A = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) _A = field(default=__snake_case , metadata={"help": "Push saved tokenizer to the hub."} )
461
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ): # Load configuration defined in the metadata file with open(lowerCAmelCase__ ) as metadata_file: a__ : Union[str, Any] = json.load(lowerCAmelCase__ ) a__ : str = LukeConfig(use_entity_aware_attention=lowerCAmelCase__ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path a__ : Tuple = torch.load(lowerCAmelCase__ , map_location='''cpu''' )['''module'''] # Load the entity vocab file a__ : str = load_original_entity_vocab(lowerCAmelCase__ ) # add an entry for [MASK2] a__ : List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 a__ : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks a__ : Union[str, Any] = AddedToken('''<ent>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) a__ : Union[str, Any] = AddedToken('''<ent2>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''r''' ) as f: a__ : Union[str, Any] = json.load(lowerCAmelCase__ ) a__ : List[str] = '''MLukeTokenizer''' with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) # Initialize the embeddings of the special tokens a__ : Optional[int] = tokenizer.convert_tokens_to_ids(['''@'''] )[0] a__ : str = tokenizer.convert_tokens_to_ids(['''#'''] )[0] a__ : Any = state_dict['''embeddings.word_embeddings.weight'''] a__ : str = word_emb[ent_init_index].unsqueeze(0 ) a__ : Optional[int] = word_emb[enta_init_index].unsqueeze(0 ) a__ : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: a__ : Union[str, Any] = state_dict[bias_name] a__ : Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) a__ : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) a__ : List[str] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a__ : List[Any] = F'encoder.layer.{layer_index}.attention.self.' a__ : str = state_dict[prefix + matrix_name] a__ : Optional[Any] = state_dict[prefix + matrix_name] a__ : Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a__ : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] a__ : Union[str, Any] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) a__ : List[str] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' a__ : List[Any] = state_dict['''entity_predictions.bias'''] a__ : str = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) a__ : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) a__ : Optional[Any] = LukeForMaskedLM(config=lowerCAmelCase__ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) a__ : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): a__ : Dict = state_dict[key] else: a__ : List[Any] = state_dict[key] a__ : List[str] = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if set(lowerCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowerCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs a__ : Any = MLukeTokenizer.from_pretrained(lowerCAmelCase__ , task='''entity_classification''' ) a__ : Optional[int] = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' a__ : List[str] = (0, 9) a__ : Tuple = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors='''pt''' ) a__ : Tuple = model(**lowerCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base a__ : Union[str, Any] = torch.Size((1, 33, 768) ) a__ : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base a__ : Tuple = torch.Size((1, 1, 768) ) a__ : Any = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction a__ : List[Any] = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) a__ : Tuple = '''Tokyo is the capital of <mask>.''' a__ : str = (24, 30) a__ : Tuple = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors='''pt''' ) a__ : Any = model(**lowerCAmelCase__ ) a__ : Optional[int] = encoding['''input_ids'''][0].tolist() a__ : Dict = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) a__ : int = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase__ ) a__ : Optional[int] = outputs.entity_logits[0][0].argmax().item() a__ : Union[str, Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(lowerCAmelCase__ ) ) model.save_pretrained(lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : str ): a__ : int = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] a__ : Optional[Any] = [json.loads(lowerCAmelCase__ ) for line in open(lowerCAmelCase__ )] a__ : Any = {} for entry in data: a__ : Tuple = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: a__ : Union[str, Any] = entity_id break a__ : Dict = F'{language}:{entity_name}' a__ : Dict = entity_id return new_mapping if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
709
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ): # Load configuration defined in the metadata file with open(lowerCAmelCase__ ) as metadata_file: a__ : Union[str, Any] = json.load(lowerCAmelCase__ ) a__ : str = LukeConfig(use_entity_aware_attention=lowerCAmelCase__ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path a__ : Tuple = torch.load(lowerCAmelCase__ , map_location='''cpu''' )['''module'''] # Load the entity vocab file a__ : str = load_original_entity_vocab(lowerCAmelCase__ ) # add an entry for [MASK2] a__ : List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 a__ : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks a__ : Union[str, Any] = AddedToken('''<ent>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) a__ : Union[str, Any] = AddedToken('''<ent2>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''r''' ) as f: a__ : Union[str, Any] = json.load(lowerCAmelCase__ ) a__ : List[str] = '''MLukeTokenizer''' with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) # Initialize the embeddings of the special tokens a__ : Optional[int] = tokenizer.convert_tokens_to_ids(['''@'''] )[0] a__ : str = tokenizer.convert_tokens_to_ids(['''#'''] )[0] a__ : Any = state_dict['''embeddings.word_embeddings.weight'''] a__ : str = word_emb[ent_init_index].unsqueeze(0 ) a__ : Optional[int] = word_emb[enta_init_index].unsqueeze(0 ) a__ : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: a__ : Union[str, Any] = state_dict[bias_name] a__ : Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) a__ : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) a__ : List[str] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a__ : List[Any] = F'encoder.layer.{layer_index}.attention.self.' a__ : str = state_dict[prefix + matrix_name] a__ : Optional[Any] = state_dict[prefix + matrix_name] a__ : Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a__ : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] a__ : Union[str, Any] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) a__ : List[str] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' a__ : List[Any] = state_dict['''entity_predictions.bias'''] a__ : str = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) a__ : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) a__ : Optional[Any] = LukeForMaskedLM(config=lowerCAmelCase__ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) a__ : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): a__ : Dict = state_dict[key] else: a__ : List[Any] = state_dict[key] a__ , a__ : List[str] = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if set(lowerCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowerCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs a__ : Any = MLukeTokenizer.from_pretrained(lowerCAmelCase__ , task='''entity_classification''' ) a__ : Optional[int] = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' a__ : List[str] = (0, 9) a__ : Tuple = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors='''pt''' ) a__ : Tuple = model(**lowerCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base a__ : Union[str, Any] = torch.Size((1, 33, 768) ) a__ : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base a__ : Tuple = torch.Size((1, 1, 768) ) a__ : Any = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction a__ : List[Any] = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) a__ : Tuple = '''Tokyo is the capital of <mask>.''' a__ : str = (24, 30) a__ : Tuple = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors='''pt''' ) a__ : Any = model(**lowerCAmelCase__ ) a__ : Optional[int] = encoding['''input_ids'''][0].tolist() a__ : Dict = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) a__ : int = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase__ ) a__ : Optional[int] = outputs.entity_logits[0][0].argmax().item() a__ : Union[str, Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(lowerCAmelCase__ ) ) model.save_pretrained(lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : str ): a__ : int = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] a__ : Optional[Any] = [json.loads(lowerCAmelCase__ ) for line in open(lowerCAmelCase__ )] a__ : Any = {} for entry in data: a__ : Tuple = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: a__ : Union[str, Any] = entity_id break a__ : Dict = F'{language}:{entity_name}' a__ : Dict = entity_id return new_mapping if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
340
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( __A ): _lowerCAmelCase : Union[str, Any] = (PNDMScheduler,) _lowerCAmelCase : List[str] = (('num_inference_steps', 5_0),) def __lowercase ( self : List[Any] , **lowerCAmelCase__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def __lowercase ( self : Optional[int] , lowerCAmelCase__ : List[str]=0 , **lowerCAmelCase__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('''num_inference_steps''' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = self.dummy_sample SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 * sample SCREAMING_SNAKE_CASE : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = scheduler_class.from_pretrained(lowerCAmelCase__ ) new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : Optional[Any] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE : Dict = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE : int = new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE : List[Any] = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowercase ( self : Optional[int] ): """simple docstring""" pass def __lowercase ( self : List[str] , lowerCAmelCase__ : Optional[int]=0 , **lowerCAmelCase__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''num_inference_steps''' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 * sample SCREAMING_SNAKE_CASE : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = scheduler_class.from_pretrained(lowerCAmelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE : int = dummy_past_residuals[:] SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE : str = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE : List[str] = new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowercase ( self : Optional[int] , **lowerCAmelCase__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = scheduler_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = 10 SCREAMING_SNAKE_CASE : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample return sample def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : int = kwargs.pop('''num_inference_steps''' , lowerCAmelCase__ ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : str = scheduler_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample SCREAMING_SNAKE_CASE : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowerCAmelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase__ , '''set_timesteps''' ): SCREAMING_SNAKE_CASE : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE : Dict = dummy_past_residuals[:] SCREAMING_SNAKE_CASE : Any = scheduler.step_prk(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE : str = scheduler.step_prk(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step_plms(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE : int = scheduler.step_plms(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowercase ( self : Dict ): """simple docstring""" for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def __lowercase ( self : List[Any] ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[Any] = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def __lowercase ( self : Dict ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def __lowercase ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def __lowercase ( self : Optional[Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def __lowercase ( self : Any ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCAmelCase__ ) def __lowercase ( self : Optional[Any] ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowerCAmelCase__ ) def __lowercase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : str = self.dummy_sample SCREAMING_SNAKE_CASE : Tuple = 0.1 * sample SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): SCREAMING_SNAKE_CASE : Dict = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample def __lowercase ( self : Optional[int] ): """simple docstring""" with self.assertRaises(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.full_loop() SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def __lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.full_loop(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : List[str] = torch.sum(torch.abs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : List[str] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) SCREAMING_SNAKE_CASE : List[str] = torch.sum(torch.abs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def __lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) SCREAMING_SNAKE_CASE : Optional[int] = torch.sum(torch.abs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Dict = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
527
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
0
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) UpperCAmelCase__ : str = precision UpperCAmelCase__ : List[Any] = ceil(precision / 14 ) UpperCAmelCase__ : List[str] = 426880 * Decimal(10005 ).sqrt() UpperCAmelCase__ : List[Any] = 1 UpperCAmelCase__ : List[Any] = 13591409 UpperCAmelCase__ : Optional[int] = Decimal(__UpperCamelCase ) for k in range(1 , __UpperCamelCase ): UpperCAmelCase__ : Any = factorial(6 * k ) // (factorial(3 * k ) * factorial(__UpperCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(F"The first {n} digits of pi is: {pi(n)}")
718
"""simple docstring""" from __future__ import annotations from typing import Any class __lowercase : def __init__( self : Optional[int] ,A : int ,A : int ,A : float = 0 ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = row, column UpperCAmelCase__ : int = [[default_value for c in range(A )] for r in range(A )] def __str__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier UpperCAmelCase__ : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: UpperCAmelCase__ : Optional[int] = max(A ,len(str(A ) ) ) UpperCAmelCase__ : int = f"%{max_element_length}s" # Make string and return def single_line(A : list[float] ) -> str: nonlocal string_format_identifier UpperCAmelCase__ : List[str] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(A ) for row_vector in self.array ) return s def __repr__( self : Dict ): '''simple docstring''' return str(self ) def __lowercase ( self : int ,A : tuple[int, int] ): '''simple docstring''' if not (isinstance(A ,(list, tuple) ) and len(A ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Optional[int] ,A : tuple[int, int] ): '''simple docstring''' assert self.validate_indicies(A ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[Any] ,A : tuple[int, int] ,A : float ): '''simple docstring''' assert self.validate_indicies(A ) UpperCAmelCase__ : str = value def __add__( self : Any ,A : Matrix ): '''simple docstring''' assert isinstance(A ,A ) assert self.row == another.row and self.column == another.column # Add UpperCAmelCase__ : Optional[int] = Matrix(self.row ,self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ : Union[str, Any] = self[r, c] + another[r, c] return result def __neg__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = Matrix(self.row ,self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ : int = -self[r, c] return result def __sub__( self : str ,A : Matrix ): '''simple docstring''' return self + (-another) def __mul__( self : Union[str, Any] ,A : int | float | Matrix ): '''simple docstring''' if isinstance(A ,(int, float) ): # Scalar multiplication UpperCAmelCase__ : Dict = Matrix(self.row ,self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ : Any = self[r, c] * another return result elif isinstance(A ,A ): # Matrix multiplication assert self.column == another.row UpperCAmelCase__ : Optional[int] = Matrix(self.row ,another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: UpperCAmelCase__ : Union[str, Any] = f"Unsupported type given for another ({type(A )})" raise TypeError(A ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = Matrix(self.column ,self.row ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ : Optional[int] = self[r, c] return result def __lowercase ( self : Any ,A : Matrix ,A : Matrix ): '''simple docstring''' assert isinstance(A ,A ) and isinstance(A ,A ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCAmelCase__ : Optional[Any] = v.transpose() UpperCAmelCase__ : Union[str, Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : List[str] = Matrix(3 , 3 , 0 ) for i in range(3 ): UpperCAmelCase__ : List[str] = 1 print(F"a^(-1) is {ainv}" ) # u, v UpperCAmelCase__ : List[Any] = Matrix(3 , 1 , 0 ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = 1, 2, -3 UpperCAmelCase__ : List[str] = Matrix(3 , 1 , 0 ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(__UpperCamelCase , __UpperCamelCase )}" ) def lowerCAmelCase ( ): '''simple docstring''' import doctest doctest.testmod() testa()
194
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract A_: Dict = logging.get_logger(__name__) def __lowerCAmelCase ( _A ,_A ,_A ): """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def __lowerCAmelCase ( _A ,_A ,_A = None ): """simple docstring""" _lowercase = tesseract_config if tesseract_config is not None else """""" # apply OCR _lowercase = to_pil_image(_A ) _lowercase , _lowercase = pil_image.size _lowercase = pytesseract.image_to_data(_A ,lang=_A ,output_type="""dict""" ,config=_A ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates _lowercase = [idx for idx, word in enumerate(_A ) if not word.strip()] _lowercase = [word for idx, word in enumerate(_A ) if idx not in irrelevant_indices] _lowercase = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] _lowercase = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] _lowercase = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] _lowercase = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _lowercase = [] for x, y, w, h in zip(_A ,_A ,_A ,_A ): _lowercase = [x, y, x + w, y + h] actual_boxes.append(_A ) # finally, normalize the bounding boxes _lowercase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_A ,_A ,_A ) ) assert len(_A ) == len(_A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _lowercase ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = ['pixel_values'] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = "" , **UpperCAmelCase , ): '''simple docstring''' super().__init__(**UpperCAmelCase ) _lowercase = size if size is not None else {"""height""": 224, """width""": 224} _lowercase = get_size_dict(UpperCAmelCase ) _lowercase = do_resize _lowercase = size _lowercase = resample _lowercase = apply_ocr _lowercase = ocr_lang _lowercase = tesseract_config def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = None , **UpperCAmelCase , ): '''simple docstring''' _lowercase = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _lowercase = (size["""height"""], size["""width"""]) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ): '''simple docstring''' _lowercase = do_resize if do_resize is not None else self.do_resize _lowercase = size if size is not None else self.size _lowercase = get_size_dict(UpperCAmelCase ) _lowercase = resample if resample is not None else self.resample _lowercase = apply_ocr if apply_ocr is not None else self.apply_ocr _lowercase = ocr_lang if ocr_lang is not None else self.ocr_lang _lowercase = tesseract_config if tesseract_config is not None else self.tesseract_config _lowercase = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. _lowercase = [to_numpy_array(UpperCAmelCase ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) _lowercase = [] _lowercase = [] for image in images: _lowercase , _lowercase = apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: _lowercase = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _lowercase = [flip_channel_order(UpperCAmelCase ) for image in images] _lowercase = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] _lowercase = BatchFeature(data={"""pixel_values""": images} , tensor_type=UpperCAmelCase ) if apply_ocr: _lowercase = words_batch _lowercase = boxes_batch return data
398
import numpy as np def __lowerCAmelCase ( _A ,_A ,_A = 1E-12 ,_A = 100 ,): """simple docstring""" assert np.shape(_A )[0] == np.shape(_A )[1] # Ensure proper dimensionality. assert np.shape(_A )[0] == np.shape(_A )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_A ) == np.iscomplexobj(_A ) _lowercase = np.iscomplexobj(_A ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_A ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _lowercase = False _lowercase = 0 _lowercase = 0 _lowercase = 1E12 while not convergence: # Multiple matrix by the vector. _lowercase = np.dot(_A ,_A ) # Normalize the resulting output vector. _lowercase = w / np.linalg.norm(_A ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _lowercase = vector.conj().T if is_complex else vector.T _lowercase = np.dot(_A ,np.dot(_A ,_A ) ) # Check convergence. _lowercase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _lowercase = True _lowercase = lambda_ if is_complex: _lowercase = np.real(lambda_ ) return lambda_, vector def __lowerCAmelCase ( ): """simple docstring""" _lowercase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _lowercase = np.array([41, 4, 20] ) _lowercase = real_input_matrix.astype(np.complexaaa ) _lowercase = np.triu(1J * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _lowercase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _lowercase = real_input_matrix _lowercase = real_vector elif problem_type == "complex": _lowercase = complex_input_matrix _lowercase = complex_vector # Our implementation. _lowercase , _lowercase = power_iteration(_A ,_A ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _lowercase , _lowercase = np.linalg.eigh(_A ) # Last eigenvalue is the maximum one. _lowercase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _lowercase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_A ) - np.abs(_A ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
398
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : str = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Union[str, Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __UpperCamelCase : Any = MBartTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = vocab_file UpperCamelCase : List[str] = False if not self.vocab_file else True UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : List[str] = src_lang UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = src_lang UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = [] UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
709
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase : Optional[int] = 500000 __UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__) __UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ ) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ ) def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCamelCase : List[str] = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ ) def tokenize(SCREAMING_SNAKE_CASE_ : Dict ): return tokenizer(examples['''text'''] ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''numpy''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''pandas''' ): UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
643
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
74
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = '''▁''' UpperCAmelCase_ : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} UpperCAmelCase_ : List[Any] = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } UpperCAmelCase_ : Any = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } UpperCAmelCase_ : Optional[Any] = { '''ernie-m-base''': 5_1_4, '''ernie-m-large''': 5_1_4, } UpperCAmelCase_ : List[Any] = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : List[str] = ["input_ids"] lowercase : Tuple = VOCAB_FILES_NAMES lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self , _A , _A=None , _A=False , _A="utf8" , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A = None , **_A , ): '''simple docstring''' _SCREAMING_SNAKE_CASE ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , vocab_file=_A , encoding=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) _SCREAMING_SNAKE_CASE =do_lower_case _SCREAMING_SNAKE_CASE =sentencepiece_model_ckpt _SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: _SCREAMING_SNAKE_CASE =self.load_vocab(filepath=_A ) else: _SCREAMING_SNAKE_CASE ={self.sp_model.id_to_piece(_A ): id for id in range(self.sp_model.get_piece_size() )} _SCREAMING_SNAKE_CASE ={v: k for k, v in self.vocab.items()} def UpperCamelCase_ ( self , _A ): '''simple docstring''' if text is None: return None _SCREAMING_SNAKE_CASE =self.tokenize(_A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ='''''', [] for i, ch in enumerate(_A ): if ch in self.SP_CHAR_MAPPING: _SCREAMING_SNAKE_CASE =self.SP_CHAR_MAPPING.get(_A ) else: _SCREAMING_SNAKE_CASE =unicodedata.normalize('''NFKC''' , _A ) if self.is_whitespace(_A ): continue normalized_text += ch char_mapping.extend([i] * len(_A ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =normalized_text, [], 0 if self.do_lower_case: _SCREAMING_SNAKE_CASE =text.lower() for token in split_tokens: if token[:1] == "▁": _SCREAMING_SNAKE_CASE =token[1:] _SCREAMING_SNAKE_CASE =text[offset:].index(_A ) + offset _SCREAMING_SNAKE_CASE =start + len(_A ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) _SCREAMING_SNAKE_CASE =end return token_mapping @property def UpperCamelCase_ ( self ): '''simple docstring''' return len(self.vocab ) def UpperCamelCase_ ( self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.__dict__.copy() _SCREAMING_SNAKE_CASE =None return state def __setstate__( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase_ ( self , _A ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(_A , _A ) for c in text) ) def UpperCamelCase_ ( self , _A , _A=False , _A=6_4 , _A=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: _SCREAMING_SNAKE_CASE =True if self.sp_model_kwargs.get('''alpha''' ) is not None: _SCREAMING_SNAKE_CASE =self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: _SCREAMING_SNAKE_CASE =self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: _SCREAMING_SNAKE_CASE =self.sp_model.EncodeAsPieces(_A ) else: _SCREAMING_SNAKE_CASE =self.sp_model.SampleEncodeAsPieces(_A , _A , _A ) _SCREAMING_SNAKE_CASE =[] for pi, piece in enumerate(_A ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_A ) and pi != 0: new_pieces.append(_A ) continue else: continue _SCREAMING_SNAKE_CASE =0 for i, chunk in enumerate(_A ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_A ) or self.is_punct(_A ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_A ) _SCREAMING_SNAKE_CASE =i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _SCREAMING_SNAKE_CASE =i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _SCREAMING_SNAKE_CASE =i if len(_A ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.convert_ids_to_tokens(_A ) _SCREAMING_SNAKE_CASE =''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self , _A ): '''simple docstring''' return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self , _A ): '''simple docstring''' return self.reverse_vocab.get(_A , self.unk_token ) def UpperCamelCase_ ( self , _A , _A=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _SCREAMING_SNAKE_CASE =[self.cls_token_id] _SCREAMING_SNAKE_CASE =[self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase_ ( self , _A , _A=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase_ ( self , _A , _A=None , _A=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] def UpperCamelCase_ ( self , _A , _A = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(_A ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_A ) + 1) + [1] * (len(_A ) + 3) def UpperCamelCase_ ( self , _A ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase_ ( self , _A ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase_ ( self , _A ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase_ ( self , _A ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_A ) == 1: _SCREAMING_SNAKE_CASE =unicodedata.category(_A ) if cat == "Zs": return True return False def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE ={} with io.open(_A , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(_A ): _SCREAMING_SNAKE_CASE =line.rstrip('''\n''' ) _SCREAMING_SNAKE_CASE =int(_A ) return token_to_idx def UpperCamelCase_ ( self , _A , _A = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE =0 if os.path.isdir(_A ): _SCREAMING_SNAKE_CASE =os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: _SCREAMING_SNAKE_CASE =(filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) _SCREAMING_SNAKE_CASE =token_index writer.write(token + '''\n''' ) index += 1 _SCREAMING_SNAKE_CASE =os.path.join(_A , '''sentencepiece.bpe.model''' ) with open(_A , '''wb''' ) as fi: _SCREAMING_SNAKE_CASE =self.sp_model.serialized_model_proto() fi.write(_A ) return (vocab_file,)
255
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : '''simple docstring''' @staticmethod def a_ ( *__lowerCAmelCase : Any , **__lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class A (unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = MODEL_FOR_OBJECT_DETECTION_MAPPING def a_ ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def a_ ( self : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict ) -> Any: """simple docstring""" A__ = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( _SCREAMING_SNAKE_CASE , { """score""": ANY(_SCREAMING_SNAKE_CASE ), """label""": ANY(_SCREAMING_SNAKE_CASE ), """box""": {"""xmin""": ANY(_SCREAMING_SNAKE_CASE ), """ymin""": ANY(_SCREAMING_SNAKE_CASE ), """xmax""": ANY(_SCREAMING_SNAKE_CASE ), """ymax""": ANY(_SCREAMING_SNAKE_CASE )}, } , ) import datasets A__ = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) A__ = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] A__ = object_detector(_SCREAMING_SNAKE_CASE , threshold=0.0 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for outputs in batch_outputs: self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( _SCREAMING_SNAKE_CASE , { """score""": ANY(_SCREAMING_SNAKE_CASE ), """label""": ANY(_SCREAMING_SNAKE_CASE ), """box""": {"""xmin""": ANY(_SCREAMING_SNAKE_CASE ), """ymin""": ANY(_SCREAMING_SNAKE_CASE ), """xmax""": ANY(_SCREAMING_SNAKE_CASE ), """ymax""": ANY(_SCREAMING_SNAKE_CASE )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def a_ ( self : Any ) -> int: """simple docstring""" pass @require_torch def a_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" A__ = """hf-internal-testing/tiny-detr-mobilenetsv3""" A__ = AutoModelForObjectDetection.from_pretrained(_SCREAMING_SNAKE_CASE ) A__ = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) A__ = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) A__ = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ] , ) A__ = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], ] , ) @require_torch @slow def a_ ( self : Dict ) -> List[str]: """simple docstring""" A__ = """facebook/detr-resnet-50""" A__ = AutoModelForObjectDetection.from_pretrained(_SCREAMING_SNAKE_CASE ) A__ = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) A__ = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) A__ = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) A__ = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def a_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" A__ = """facebook/detr-resnet-50""" A__ = pipeline("""object-detection""" , model=_SCREAMING_SNAKE_CASE ) A__ = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) A__ = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def a_ ( self : str ) -> int: """simple docstring""" A__ = 0.9_9_8_5 A__ = """facebook/detr-resnet-50""" A__ = pipeline("""object-detection""" , model=_SCREAMING_SNAKE_CASE ) A__ = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=_SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) @require_torch @require_pytesseract @slow def a_ ( self : Tuple ) -> Optional[int]: """simple docstring""" A__ = """Narsil/layoutlmv3-finetuned-funsd""" A__ = 0.9_9_9_3 A__ = pipeline("""object-detection""" , model=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE ) A__ = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, ] , )
713
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A : Dict = datasets.logging.get_logger(__name__) A : Optional[Any] = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' A : int = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' A : Union[str, Any] = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def __lowerCamelCase ( __a :Dict , __a :int , __a :int=False , __a :Optional[Any]=False , __a :int=True , __a :Optional[int]=False , __a :Dict="dummy_doc" ) -> Any: """simple docstring""" A__ = {doc: key_lines} A__ = {doc: sys_lines} A__ = {} A__ = 0 A__ = 0 A__ = 0 A__ = 0 A__ = 0 A__ = 0 A__ , A__ = reader.get_doc_mentions(__a , key_doc_lines[doc] , __a ) key_singletons_num += singletons_num if NP_only or min_span: A__ = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) A__ , A__ = reader.get_doc_mentions(__a , sys_doc_lines[doc] , __a ) sys_singletons_num += singletons_num if NP_only or min_span: A__ = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) if remove_nested: A__ , A__ = reader.remove_nested_coref_mentions(__a , __a ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters A__ , A__ = reader.remove_nested_coref_mentions(__a , __a ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters A__ = reader.get_mention_assignments(__a , __a ) A__ = reader.get_mention_assignments(__a , __a ) A__ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( """Number of resulting singleton clusters in the key """ F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' """files, respectively""" ) return doc_coref_infos def __lowerCamelCase ( __a :Any , __a :Union[str, Any] , __a :List[str] , __a :Dict , __a :str , __a :Tuple , __a :Union[str, Any] ) -> Optional[int]: """simple docstring""" A__ = get_coref_infos(__a , __a , __a , __a , __a , __a ) A__ = {} A__ = 0 A__ = 0 for name, metric in metrics: A__ , A__ , A__ = evaluator.evaluate_documents(__a , __a , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(1_0 ) , F'Recall: {recall * 1_0_0:.2f}' , F' Precision: {precision * 1_0_0:.2f}' , F' F1: {fa * 1_0_0:.2f}' , ) if conll_subparts_num == 3: A__ = (conll / 3) * 1_0_0 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"""conll_score""": conll} ) return output_scores def __lowerCamelCase ( __a :int ) -> List[Any]: """simple docstring""" A__ = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: A__ = line.split()[5] if not parse_col == "-": A__ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A (datasets.Metric ): '''simple docstring''' def a_ ( self : int ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def a_ ( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : int=False ) -> Optional[int]: """simple docstring""" A__ = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: A__ = util.check_gold_parse_annotation(__lowerCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" A__ = evaluate( key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , ) return score
247
0
'''simple docstring''' import qiskit def __snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): __UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __UpperCAmelCase = qiskit.QuantumCircuit(lowerCAmelCase , lowerCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __UpperCAmelCase = qiskit.execute(lowerCAmelCase , lowerCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase ) if __name__ == "__main__": print(f"Total count for various states are: {single_qubit_measure(1, 1)}")
396
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _UpperCamelCase : Dict = logging.get_logger(__name__) def __snake_case ( lowerCAmelCase : bool , lowerCAmelCase : bool ): def run_func(lowerCAmelCase : List[Any] ): @wraps(lowerCAmelCase ) def run_in_eager_mode(*lowerCAmelCase : Dict , **lowerCAmelCase : Dict ): return func(*lowerCAmelCase , **lowerCAmelCase ) @wraps(lowerCAmelCase ) @tf.function(experimental_compile=lowerCAmelCase ) def run_in_graph_mode(*lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any] ): return func(*lowerCAmelCase , **lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): __UpperCAmelCase = random.Random() __UpperCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _lowercase( _lowerCamelCase ): """simple docstring""" __lowerCamelCase = 42 __lowerCamelCase = 42 __lowerCamelCase = "TensorFlow" @property def snake_case ( self: Optional[Any] ): return tf.__version__ def snake_case ( self: List[Any] ,a: str ,a: int ,a: int ): # initialize GPU on separate process __UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) __UpperCAmelCase = self._prepare_inference_func(a ,a ,a ) return self._measure_speed(_inference ) def snake_case ( self: int ,a: str ,a: int ,a: int ): __UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) __UpperCAmelCase = self._prepare_train_func(a ,a ,a ) return self._measure_speed(_train ) def snake_case ( self: int ,a: str ,a: int ,a: int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,a ) __UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) __UpperCAmelCase = self._prepare_inference_func(a ,a ,a ) return self._measure_memory(_inference ) def snake_case ( self: Tuple ,a: str ,a: int ,a: int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,a ) __UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) __UpperCAmelCase = self._prepare_train_func(a ,a ,a ) return self._measure_memory(_train ) def snake_case ( self: Dict ,a: str ,a: int ,a: int ): __UpperCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) __UpperCAmelCase = ( hasattr(a ,'architectures' ) and isinstance(config.architectures ,a ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __UpperCAmelCase = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model __UpperCAmelCase = __import__('transformers' ,fromlist=[model_class] ) __UpperCAmelCase = getattr(a ,a ) __UpperCAmelCase = model_cls(a ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: __UpperCAmelCase = TF_MODEL_MAPPING[config.__class__](a ) # encoder-decoder has vocab size saved differently __UpperCAmelCase = config.vocab_size if hasattr(a ,'vocab_size' ) else config.encoder.vocab_size __UpperCAmelCase = random_input_ids(a ,a ,a ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_forward(): return model(a ,decoder_input_ids=a ,training=a ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_forward(): return model(a ,training=a ) __UpperCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def snake_case ( self: List[Any] ,a: str ,a: int ,a: int ): __UpperCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) __UpperCAmelCase = ( hasattr(a ,'architectures' ) and isinstance(config.architectures ,a ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __UpperCAmelCase = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model __UpperCAmelCase = __import__('transformers' ,fromlist=[model_class] ) __UpperCAmelCase = getattr(a ,a ) __UpperCAmelCase = model_cls(a ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: __UpperCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a ) # encoder-decoder has vocab size saved differently __UpperCAmelCase = config.vocab_size if hasattr(a ,'vocab_size' ) else config.encoder.vocab_size __UpperCAmelCase = random_input_ids(a ,a ,a ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_train(): __UpperCAmelCase = model(a ,decoder_input_ids=a ,labels=a ,training=a )[0] __UpperCAmelCase = tf.gradients(a ,model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_train(): __UpperCAmelCase = model(a ,labels=a ,training=a )[0] __UpperCAmelCase = tf.gradients(a ,model.trainable_variables ) return gradients __UpperCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def snake_case ( self: int ,a: Union[str, Any] ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(a ,repeat=1 ,number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __UpperCAmelCase = timeit.repeat( a ,repeat=self.args.repeat ,number=10 ,) return min(a ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def snake_case ( self: List[str] ,a: Callable[[], None] ): logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) __UpperCAmelCase = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) __UpperCAmelCase = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() __UpperCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __UpperCAmelCase = nvml.nvmlDeviceGetMemoryInfo(a ) __UpperCAmelCase = meminfo.used __UpperCAmelCase = Memory(a ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) __UpperCAmelCase = None else: __UpperCAmelCase = measure_peak_memory_cpu(a ) __UpperCAmelCase = Memory(a ) if isinstance(a ,a ) else memory_bytes if self.args.trace_memory_line_by_line: __UpperCAmelCase = stop_memory_tracing(a ) if memory is None: __UpperCAmelCase = summary.total else: __UpperCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
396
1
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class snake_case__ : def __init__( self : Optional[Any] , _A : Dict , _A : List[Any]=1_00 , _A : Optional[int]=13 , _A : Dict=30 , _A : List[str]=2 , _A : List[str]=3 , _A : int=True , _A : Union[str, Any]=True , _A : Tuple=32 , _A : Any=4 , _A : Optional[Any]=4 , _A : Any=37 , _A : Any="gelu" , _A : Any=0.1 , _A : Tuple=0.1 , _A : Optional[Any]=10 , _A : Any=0.02 , _A : str=3 , _A : Tuple=None , _A : Optional[Any]=[0, 1, 2, 3] , ) -> Any: UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : str = 1_00 UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : int = patch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : List[str] = is_training UpperCAmelCase_ : str = use_labels UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = type_sequence_label_size UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = scope UpperCAmelCase_ : Union[str, Any] = out_indices UpperCAmelCase_ : Optional[int] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : Optional[int] = (image_size // patch_size) ** 2 UpperCAmelCase_ : Optional[int] = num_patches + 1 def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Any = None if self.use_labels: UpperCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def A ( self : List[str] ) -> List[Any]: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def A ( self : Optional[int] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = BeitModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Dict , _A : Optional[int] , _A : Any , _A : List[Any] , _A : int ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = BeitForMaskedImageModeling(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def A ( self : Optional[int] , _A : List[Any] , _A : Dict , _A : Optional[Any] , _A : List[str] ) -> str: UpperCAmelCase_ : str = self.type_sequence_label_size UpperCAmelCase_ : List[Any] = BeitForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : Optional[Any] = BeitForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : List[Any] , _A : Optional[int] , _A : List[Any] , _A : str , _A : Optional[int] ) -> Any: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Optional[int] = BeitForSemanticSegmentation(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : List[str] = model(_A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase_ : Any = model(_A , labels=_A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Any = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = config_and_inputs UpperCAmelCase_ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) a_ = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) a_ = False a_ = False a_ = False def A ( self : int ) -> Dict: UpperCAmelCase_ : List[str] = BeitModelTester(self ) UpperCAmelCase_ : Optional[int] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def A ( self : Any ) -> List[str]: pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def A ( self : Union[str, Any] ) -> List[Any]: pass def A ( self : Optional[Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def A ( self : str ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[str] = model_class(_A ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : List[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def A ( self : str ) -> int: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def A ( self : Optional[int] ) -> List[str]: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) def A ( self : List[Any] ) -> int: if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_A ), BeitForMaskedImageModeling]: continue UpperCAmelCase_ : Optional[int] = model_class(_A ) model.to(_A ) model.train() UpperCAmelCase_ : Optional[int] = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCAmelCase_ : str = model(**_A ).loss loss.backward() def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_A ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase_ : List[str] = model_class(_A ) model.gradient_checkpointing_enable() model.to(_A ) model.train() UpperCAmelCase_ : List[str] = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCAmelCase_ : List[str] = model(**_A ).loss loss.backward() def A ( self : Union[str, Any] ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = _config_zero_init(_A ) for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(config=_A ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def A ( self : List[Any] ) -> Optional[int]: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = BeitModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Optional[Any] ) -> Union[str, Any]: return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def A ( self : str ) -> str: UpperCAmelCase_ : Any = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Dict = image_processor(images=_A , return_tensors='''pt''' ).pixel_values.to(_A ) # prepare bool_masked_pos UpperCAmelCase_ : List[str] = torch.ones((1, 1_96) , dtype=torch.bool ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : List[str] = model(pixel_values=_A , bool_masked_pos=_A ) UpperCAmelCase_ : Tuple = outputs.logits # verify the logits UpperCAmelCase_ : str = torch.Size((1, 1_96, 81_92) ) self.assertEqual(logits.shape , _A ) UpperCAmelCase_ : Dict = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(_A ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _A , atol=1e-2 ) ) @slow def A ( self : Union[str, Any] ) -> Dict: UpperCAmelCase_ : str = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(_A ) UpperCAmelCase_ : Dict = self.default_image_processor UpperCAmelCase_ : List[Any] = prepare_img() UpperCAmelCase_ : Union[str, Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) UpperCAmelCase_ : Any = outputs.logits # verify the logits UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(logits.shape , _A ) UpperCAmelCase_ : List[str] = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(_A ) self.assertTrue(torch.allclose(logits[0, :3] , _A , atol=1e-4 ) ) UpperCAmelCase_ : Dict = 2_81 self.assertEqual(logits.argmax(-1 ).item() , _A ) @slow def A ( self : List[str] ) -> int: UpperCAmelCase_ : str = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( _A ) UpperCAmelCase_ : List[Any] = self.default_image_processor UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Union[str, Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Tuple = model(**_A ) UpperCAmelCase_ : Dict = outputs.logits # verify the logits UpperCAmelCase_ : Any = torch.Size((1, 2_18_41) ) self.assertEqual(logits.shape , _A ) UpperCAmelCase_ : List[Any] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(_A ) self.assertTrue(torch.allclose(logits[0, :3] , _A , atol=1e-4 ) ) UpperCAmelCase_ : Tuple = 23_96 self.assertEqual(logits.argmax(-1 ).item() , _A ) @slow def A ( self : Dict ) -> List[str]: UpperCAmelCase_ : Tuple = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) UpperCAmelCase_ : int = model.to(_A ) UpperCAmelCase_ : List[Any] = BeitImageProcessor(do_resize=_A , size=6_40 , do_center_crop=_A ) UpperCAmelCase_ : List[Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Tuple = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : str = model(**_A ) UpperCAmelCase_ : Dict = outputs.logits # verify the logits UpperCAmelCase_ : Optional[int] = torch.Size((1, 1_50, 1_60, 1_60) ) self.assertEqual(logits.shape , _A ) UpperCAmelCase_ : Optional[Any] = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: UpperCAmelCase_ : Optional[int] = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=_A , ) else: UpperCAmelCase_ : Optional[Any] = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=_A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _A , atol=1e-4 ) ) @slow def A ( self : int ) -> Optional[Any]: UpperCAmelCase_ : Dict = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) UpperCAmelCase_ : Optional[int] = model.to(_A ) UpperCAmelCase_ : Any = BeitImageProcessor(do_resize=_A , size=6_40 , do_center_crop=_A ) UpperCAmelCase_ : Tuple = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[int] = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(**_A ) UpperCAmelCase_ : Dict = outputs.logits.detach().cpu() UpperCAmelCase_ : Tuple = image_processor.post_process_semantic_segmentation(outputs=_A , target_sizes=[(5_00, 3_00)] ) UpperCAmelCase_ : List[Any] = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _A ) UpperCAmelCase_ : List[str] = image_processor.post_process_semantic_segmentation(outputs=_A ) UpperCAmelCase_ : List[str] = torch.Size((1_60, 1_60) ) self.assertEqual(segmentation[0].shape , _A )
216
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( A : str , A : List[Any] , A : Tuple ) -> str: return params[F"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def __UpperCAmelCase ( A : int , A : Any , A : Dict , A : Any="attention" ) -> Union[str, Any]: UpperCAmelCase_ : Dict = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) UpperCAmelCase_ : int = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCAmelCase_ : Dict = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) UpperCAmelCase_ : Optional[int] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCAmelCase_ : List[Any] = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) UpperCAmelCase_ : int = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCAmelCase_ : Tuple = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) UpperCAmelCase_ : List[Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( A : Optional[Any] , A : Tuple , A : Optional[int] , A : str=False ) -> Dict: if split_mlp_wi: UpperCAmelCase_ : List[Any] = params[F"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] UpperCAmelCase_ : str = params[F"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] UpperCAmelCase_ : Tuple = (wi_a, wi_a) else: UpperCAmelCase_ : List[str] = params[F"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] UpperCAmelCase_ : Dict = params[F"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def __UpperCAmelCase ( A : Tuple , A : int , A : Optional[Any] , A : int ) -> Dict: return params[F"{prefix}/{prefix}/{layer_name}/scale"][:, i] def __UpperCAmelCase ( A : dict , *, A : int , A : bool , A : bool = False ) -> Any: UpperCAmelCase_ : int = traverse_util.flatten_dict(variables['''target'''] ) UpperCAmelCase_ : Optional[int] = {'''/'''.join(A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCAmelCase_ : int = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , A ) UpperCAmelCase_ : Any = collections.OrderedDict() # Shared embeddings. UpperCAmelCase_ : int = old['''token_embedder/embedding'''] # Encoder. for i in range(A ): # Block i, layer 0 (Self Attention). UpperCAmelCase_ : List[str] = tax_layer_norm_lookup(A , A , '''encoder''' , '''pre_attention_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = tax_attention_lookup(A , A , '''encoder''' , '''attention''' ) UpperCAmelCase_ : int = layer_norm UpperCAmelCase_ : Union[str, Any] = k.T UpperCAmelCase_ : str = o.T UpperCAmelCase_ : List[Any] = q.T UpperCAmelCase_ : Dict = v.T # Block i, layer 1 (MLP). UpperCAmelCase_ : str = tax_layer_norm_lookup(A , A , '''encoder''' , '''pre_mlp_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = tax_mlp_lookup(A , A , '''encoder''' , A ) UpperCAmelCase_ : List[Any] = layer_norm if split_mlp_wi: UpperCAmelCase_ : Dict = wi[0].T UpperCAmelCase_ : Dict = wi[1].T else: UpperCAmelCase_ : Tuple = wi.T UpperCAmelCase_ : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase_ : Optional[Any] = tax_relpos_bias_lookup( A , A , '''encoder''' ).T UpperCAmelCase_ : Any = old['''encoder/encoder_norm/scale'''] if not scalable_attention: UpperCAmelCase_ : Optional[Any] = tax_relpos_bias_lookup( A , 0 , '''encoder''' ).T UpperCAmelCase_ : List[str] = tax_relpos_bias_lookup( A , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(A ): # Block i, layer 0 (Self Attention). UpperCAmelCase_ : Optional[int] = tax_layer_norm_lookup(A , A , '''decoder''' , '''pre_self_attention_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = tax_attention_lookup(A , A , '''decoder''' , '''self_attention''' ) UpperCAmelCase_ : int = layer_norm UpperCAmelCase_ : Any = k.T UpperCAmelCase_ : Optional[int] = o.T UpperCAmelCase_ : List[Any] = q.T UpperCAmelCase_ : str = v.T # Block i, layer 1 (Cross Attention). UpperCAmelCase_ : str = tax_layer_norm_lookup(A , A , '''decoder''' , '''pre_cross_attention_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = tax_attention_lookup(A , A , '''decoder''' , '''encoder_decoder_attention''' ) UpperCAmelCase_ : Any = layer_norm UpperCAmelCase_ : Optional[Any] = k.T UpperCAmelCase_ : Union[str, Any] = o.T UpperCAmelCase_ : List[str] = q.T UpperCAmelCase_ : Any = v.T # Block i, layer 2 (MLP). UpperCAmelCase_ : Dict = tax_layer_norm_lookup(A , A , '''decoder''' , '''pre_mlp_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = tax_mlp_lookup(A , A , '''decoder''' , A ) UpperCAmelCase_ : Optional[int] = layer_norm if split_mlp_wi: UpperCAmelCase_ : Optional[int] = wi[0].T UpperCAmelCase_ : int = wi[1].T else: UpperCAmelCase_ : Any = wi.T UpperCAmelCase_ : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase_ : List[str] = tax_relpos_bias_lookup(A , A , '''decoder''' ).T UpperCAmelCase_ : Optional[Any] = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCAmelCase_ : int = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( A : Tuple , A : bool ) -> List[str]: UpperCAmelCase_ : str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCAmelCase_ : Optional[Any] = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCAmelCase_ : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) UpperCAmelCase_ : int = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( A : Any , A : Optional[Any] , A : Optional[Any] , A : str , A : Optional[int] ) -> Dict: UpperCAmelCase_ : List[str] = checkpoints.load_tax_checkpoint(A ) UpperCAmelCase_ : str = convert_tax_to_pytorch( A , num_layers=config.num_layers , is_encoder_only=A , scalable_attention=A ) UpperCAmelCase_ : Union[str, Any] = make_state_dict(A , A ) model.load_state_dict(A , strict=A ) def __UpperCAmelCase ( A : str , A : int , A : List[str] , A : bool = False , A : bool = False , ) -> Any: UpperCAmelCase_ : Union[str, Any] = MTaConfig.from_json_file(A ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCAmelCase_ : Dict = UMTaEncoderModel(A ) else: UpperCAmelCase_ : Dict = UMTaForConditionalGeneration(A ) # Load weights from tf checkpoint load_tax_weights_in_ta(A , A , A , A , A ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(A ) # Verify that we can load the checkpoint. model.from_pretrained(A ) print('''Done''' ) if __name__ == "__main__": _UpperCamelCase : Optional[Any] = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) _UpperCamelCase : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
216
1
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __UpperCAmelCase = logging.get_logger(__name__) def lowercase__ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict ) -> Optional[int]: '''simple docstring''' try: with open(lowerCAmelCase__ , "rb" ) as flax_state_f: a__ : int = from_bytes(lowerCAmelCase__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowerCAmelCase__ ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase__ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights a__ : str = flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase__ : x.dtype == jnp.bfloataa , lowerCAmelCase__ ) ).values() if any(lowerCAmelCase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) a__ : List[Any] = jax.tree_util.tree_map( lambda lowerCAmelCase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCAmelCase__ ) a__ : Tuple = "" a__ : Any = flatten_dict(lowerCAmelCase__ , sep="." ) a__ : str = pt_model.state_dict() # keep track of unexpected & missing keys a__ : Optional[int] = [] a__ : List[Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): a__ : Optional[Any] = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: a__ : Optional[int] = flax_key_tuple_array[:-1] + ["weight"] a__ : Tuple = jnp.transpose(lowerCAmelCase__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": a__ : Dict = flax_key_tuple_array[:-1] + ["weight"] a__ : Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": a__ : List[str] = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowerCAmelCase__ ): a__ : str = ( flax_key_tuple_string.replace("_0" , ".0" ) .replace("_1" , ".1" ) .replace("_2" , ".2" ) .replace("_3" , ".3" ) .replace("_4" , ".4" ) .replace("_5" , ".5" ) .replace("_6" , ".6" ) .replace("_7" , ".7" ) .replace("_8" , ".8" ) .replace("_9" , ".9" ) ) a__ : int = ".".join(lowerCAmelCase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict a__ : Tuple = np.asarray(lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ , np.ndarray ) else flax_tensor a__ : Any = torch.from_numpy(lowerCAmelCase__ ) # remove from missing keys missing_keys.remove(lowerCAmelCase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCAmelCase__ ) pt_model.load_state_dict(lowerCAmelCase__ ) # re-transform missing_keys to list a__ : str = list(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(lowerCAmelCase__ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) return pt_model
642
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''spiece.model'''} __UpperCAmelCase = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class __UpperCAmelCase ( _UpperCamelCase ): def __init__( self : str , a_ : Dict , a_ : List[str]=False , a_ : Any=True , a_ : int=False , a_ : Union[str, Any]="<s>" , a_ : Optional[int]="</s>" , a_ : int="<unk>" , a_ : List[Any]="<sep>" , a_ : Dict="<pad>" , a_ : Any="<cls>" , a_ : Optional[Any]="<mask>" , a_ : int=["<eop>", "<eod>"] , a_ : Optional[Dict[str, Any]] = None , **a_ : int , ) -> None: '''simple docstring''' a__ : List[str] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token a__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , additional_special_tokens=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) a__ : Union[str, Any] = 3 a__ : Dict = do_lower_case a__ : Union[str, Any] = remove_space a__ : int = keep_accents a__ : str = vocab_file a__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) a__ : Optional[int] = jieba a__ : Optional[int] = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> List[str]: '''simple docstring''' a__ : Tuple = self.__dict__.copy() a__ : Union[str, Any] = None return state def __setstate__( self : Tuple , a_ : int ) -> List[str]: '''simple docstring''' a__ : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__ : str = {} a__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self : List[Any] , a_ : Optional[Any] ) -> List[str]: '''simple docstring''' if self.remove_space: a__ : Union[str, Any] = " ".join(inputs.strip().split() ) else: a__ : Optional[Any] = inputs a__ : List[str] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: a__ : Union[str, Any] = unicodedata.normalize("NFKD" , a_ ) a__ : Union[str, Any] = "".join([c for c in outputs if not unicodedata.combining(a_ )] ) if self.do_lower_case: a__ : List[Any] = outputs.lower() return outputs def UpperCAmelCase ( self : Any , a_ : str ) -> List[str]: '''simple docstring''' a__ : Optional[Any] = self.preprocess_text(a_ ) a__ : Dict = self.sp_model.encode(a_ , out_type=a_ ) a__ : Optional[Any] = [] for piece in pieces: if len(a_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): a__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(a_ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a__ : List[str] = cur_pieces[1:] else: a__ : List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a_ ) else: new_pieces.append(a_ ) return new_pieces def UpperCAmelCase ( self : int , a_ : Dict ) -> int: '''simple docstring''' return self.sp_model.PieceToId(a_ ) def UpperCAmelCase ( self : Dict , a_ : Tuple ) -> List[Any]: '''simple docstring''' return self.sp_model.IdToPiece(a_ ) def UpperCAmelCase ( self : Union[str, Any] , a_ : List[Any] ) -> str: '''simple docstring''' a__ : Optional[Any] = "".join(a_ ).replace(a_ , " " ).strip() return out_string def UpperCAmelCase ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[Any] = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase ( self : int , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1, 1] return ([0] * len(a_ )) + [1, 1] def UpperCAmelCase ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[str] = [self.sep_token_id] a__ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase ( self : Dict , a_ : str , a_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return a__ : Optional[int] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: a__ : int = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,) def UpperCAmelCase ( self : str , *a_ : Union[str, Any] , **a_ : Any ) -> int: '''simple docstring''' a__ : Optional[int] = super()._decode(*a_ , **a_ ) a__ : Tuple = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
642
1
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=3_2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=1_0 , SCREAMING_SNAKE_CASE=[1_0, 2_0, 3_0, 4_0] , SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="relu" , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , ) -> Optional[int]: a__ = parent a__ = batch_size a__ = image_size a__ = num_channels a__ = embeddings_size a__ = hidden_sizes a__ = depths a__ = is_training a__ = use_labels a__ = hidden_act a__ = num_labels a__ = scope a__ = len(SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Dict: a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.num_labels ) a__ = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Dict: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: a__ = RegNetModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model(SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: a__ = self.num_labels a__ = RegNetForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ) -> Any: a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" _lowercase : int = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () _lowercase : Dict = ( {'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification} if is_torch_available() else {} ) _lowercase : Any = False _lowercase : List[Any] = False _lowercase : List[str] = False _lowercase : Dict = False def _UpperCAmelCase ( self ) -> Union[str, Any]: a__ = RegNetModelTester(self ) a__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> int: return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: pass def _UpperCAmelCase ( self ) -> Optional[Any]: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(SCREAMING_SNAKE_CASE ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> str: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(config=SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def _UpperCAmelCase ( self ) -> str: def check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): a__ = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) a__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__ = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: a__ = layer_type a__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Union[str, Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = RegNetModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __a ( ): a__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ) -> Dict: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> List[str]: a__ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(SCREAMING_SNAKE_CASE ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): a__ = model(**SCREAMING_SNAKE_CASE ) # verify the logits a__ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) a__ = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
148
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1_2 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=9_9 , SCREAMING_SNAKE_CASE=3_2 , SCREAMING_SNAKE_CASE=3_2 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=3_7 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=5_1_2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=None , ) -> Union[str, Any]: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_mask a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = projection_dim a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = dropout a__ = attention_dropout a__ = max_position_embeddings a__ = initializer_range a__ = scope a__ = bos_token_id def _UpperCAmelCase ( self ) -> str: a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: a__ = input_mask.numpy() a__ , a__ = input_mask.shape a__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE ): a__ = 1 a__ = 0 a__ = self.get_config() return config, input_ids, tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Dict: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: a__ = TFBlipTextModel(config=SCREAMING_SNAKE_CASE ) a__ = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) a__ = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ) -> Tuple: a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowercase , unittest.TestCase ): """simple docstring""" _lowercase : List[str] = (TFBlipTextModel,) if is_tf_available() else () _lowercase : Optional[int] = False _lowercase : Dict = False _lowercase : str = False def _UpperCAmelCase ( self ) -> Union[str, Any]: a__ = BlipTextModelTester(self ) a__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> int: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Union[str, Any]: pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @slow def _UpperCAmelCase ( self ) -> Any: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = TFBlipTextModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE=True ) -> Tuple: super().test_pt_tf_model_equivalence(allow_missing_keys=SCREAMING_SNAKE_CASE )
148
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = False ) -> str: UpperCamelCase_ = scheduler UpperCamelCase_ = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] UpperCamelCase_ = split_batches UpperCamelCase_ = step_with_optimizer UpperCamelCase_ = GradientState() def _UpperCAmelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCamelCase_ = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: return self.scheduler.get_last_lr() def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.scheduler.state_dict() def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]: self.scheduler.load_state_dict(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: return self.scheduler.get_lr() def _UpperCAmelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[Any]: return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
23
def lowercase( UpperCamelCase_ = 100 ) -> int: '''simple docstring''' UpperCamelCase = n * (n + 1) * (2 * n + 1) / 6 UpperCamelCase = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'''{solution() = }''')
537
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] __A = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def __A ( _lowercase ): '''simple docstring''' _A = torch.load(_lowercase , map_location='''cpu''' ) return sd def __A ( _lowercase , _lowercase , _lowercase=rename_keys_prefix ): '''simple docstring''' _A = OrderedDict() _A = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _A = key for name_pair in rename_keys_prefix: _A = new_key.replace(name_pair[0] , name_pair[1] ) _A = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _A = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def __A ( _lowercase , _lowercase ): '''simple docstring''' assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: _A = '''pretraining''' if "vcr" in checkpoint_path: _A = {'''visual_embedding_dim''': 5_12} elif "vqa_advanced" in checkpoint_path: _A = {'''visual_embedding_dim''': 20_48} elif "vqa" in checkpoint_path: _A = {'''visual_embedding_dim''': 20_48} elif "nlvr" in checkpoint_path: _A = {'''visual_embedding_dim''': 10_24} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: _A = {'''visual_embedding_dim''': 5_12} _A = '''multichoice''' elif "vqa_advanced" in checkpoint_path: _A = {'''visual_embedding_dim''': 20_48} _A = '''vqa_advanced''' elif "vqa" in checkpoint_path: _A = {'''visual_embedding_dim''': 20_48, '''num_labels''': 31_29} _A = '''vqa''' elif "nlvr" in checkpoint_path: _A = { '''visual_embedding_dim''': 10_24, '''num_labels''': 2, } _A = '''nlvr''' _A = VisualBertConfig(**_lowercase ) # Load State Dict _A = load_state_dict(_lowercase ) _A = get_new_dict(_lowercase , _lowercase ) if model_type == "pretraining": _A = VisualBertForPreTraining(_lowercase ) elif model_type == "vqa": _A = VisualBertForQuestionAnswering(_lowercase ) elif model_type == "nlvr": _A = VisualBertForVisualReasoning(_lowercase ) elif model_type == "multichoice": _A = VisualBertForMultipleChoice(_lowercase ) model.load_state_dict(_lowercase ) # Save Checkpoints Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') __A = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
711
def __A ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _A = mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase ) else: _A = max( mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase ) , mf_knapsack(i - 1 , _lowercase , _lowercase , j - wt[i - 1] ) + val[i - 1] , ) _A = val return f[i][j] def __A ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: _A = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: _A = dp[i - 1][w_] return dp[n][w_], dp def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not (isinstance(_lowercase , (list, tuple) ) and isinstance(_lowercase , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) _A = len(_lowercase ) if num_items != len(_lowercase ): _A = ( '''The number of weights must be the same as the number of values.\n''' f"""But got {num_items} weights and {len(_lowercase )} values""" ) raise ValueError(_lowercase ) for i in range(_lowercase ): if not isinstance(wt[i] , _lowercase ): _A = ( '''All weights must be integers but got weight of ''' f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(_lowercase ) _A ,_A = knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) _A = set() _construct_solution(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) return optimal_val, example_optional_set def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_lowercase , _lowercase , i - 1 , _lowercase , _lowercase ) else: optimal_set.add(_lowercase ) _construct_solution(_lowercase , _lowercase , i - 1 , j - wt[i - 1] , _lowercase ) if __name__ == "__main__": __A = [3, 2, 4, 4] __A = [4, 3, 2, 3] __A = 4 __A = 6 __A = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] __A , __A = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 __A , __A = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
62
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = TextToVideoSDPipeline UpperCAmelCase : List[str] = TEXT_TO_IMAGE_PARAMS UpperCAmelCase : int = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. UpperCAmelCase : Any = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def lowerCAmelCase_ ( self : Optional[Any] ): torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) _A = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) _A = CLIPTextModel(_UpperCAmelCase ) _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int=0 ): if str(_UpperCAmelCase ).startswith('mps' ): _A = torch.manual_seed(_UpperCAmelCase ) else: _A = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) _A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def lowerCAmelCase_ ( self : Optional[Any] ): _A = 'cpu' # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = TextToVideoSDPipeline(**_UpperCAmelCase ) _A = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = self.get_dummy_inputs(_UpperCAmelCase ) _A = 'np' _A = sd_pipe(**_UpperCAmelCase ).frames _A = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _A = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self : Any ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCAmelCase_ ( self : int ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowerCAmelCase_ ( self : Optional[Any] ): pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowerCAmelCase_ ( self : Optional[int] ): pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def lowerCAmelCase_ ( self : Optional[int] ): pass def lowerCAmelCase_ ( self : Union[str, Any] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ): _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) _A = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _A = pipe.to('cuda' ) _A = 'Spiderman is surfing' _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=25 , output_type='pt' ).frames _A = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def lowerCAmelCase_ ( self : Dict ): _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) _A = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _A = pipe.to('cuda' ) _A = 'Spiderman is surfing' _A = torch.Generator(device='cpu' ).manual_seed(0 ) _A = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='pt' ).frames _A = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
7
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __A = TypeVar("T") def lowercase__ ( A_: int ) -> int: """simple docstring""" return (position - 1) // 2 def lowercase__ ( A_: int ) -> int: """simple docstring""" return (2 * position) + 1 def lowercase__ ( A_: int ) -> int: """simple docstring""" return (2 * position) + 2 class _A ( Generic[T] ): """simple docstring""" def __init__( self : List[str] ) -> None: __UpperCAmelCase =[] __UpperCAmelCase ={} __UpperCAmelCase =0 def __len__( self : str ) -> int: return self.elements def __repr__( self : Dict ) -> str: return str(self.heap ) def _a ( self : Optional[int] ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) __UpperCAmelCase =self.elements self.elements += 1 self._bubble_up(__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __UpperCAmelCase , __UpperCAmelCase =self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __UpperCAmelCase , __UpperCAmelCase =self.heap[0] self._bubble_down(__SCREAMING_SNAKE_CASE ) return elem def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: # Update the weight of the given key __UpperCAmelCase =self.position_map[elem] __UpperCAmelCase =(elem, weight) if position > 0: __UpperCAmelCase =get_parent_position(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase =self.heap[parent_position] if parent_weight > weight: self._bubble_up(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] __UpperCAmelCase =self.position_map[elem] if curr_pos == 0: return None __UpperCAmelCase =get_parent_position(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase , __UpperCAmelCase =self.heap[curr_pos] __UpperCAmelCase , __UpperCAmelCase =self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_up(__SCREAMING_SNAKE_CASE ) return None def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] __UpperCAmelCase =self.position_map[elem] __UpperCAmelCase , __UpperCAmelCase =self.heap[curr_pos] __UpperCAmelCase =get_child_left_position(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =get_child_right_position(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements and child_right_position < self.elements: __UpperCAmelCase , __UpperCAmelCase =self.heap[child_left_position] __UpperCAmelCase , __UpperCAmelCase =self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements: __UpperCAmelCase , __UpperCAmelCase =self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) else: return None if child_right_position < self.elements: __UpperCAmelCase , __UpperCAmelCase =self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) return None def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None: # Swap the nodes at the given positions __UpperCAmelCase =self.heap[nodea_pos][0] __UpperCAmelCase =self.heap[nodea_pos][0] __UpperCAmelCase , __UpperCAmelCase =( self.heap[nodea_pos], self.heap[nodea_pos], ) __UpperCAmelCase =nodea_pos __UpperCAmelCase =nodea_pos class _A ( Generic[T] ): """simple docstring""" def __init__( self : List[Any] ) -> None: __UpperCAmelCase ={} __UpperCAmelCase =0 def __repr__( self : Tuple ) -> str: return str(self.connections ) def __len__( self : str ) -> int: return self.nodes def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: __UpperCAmelCase ={} self.nodes += 1 def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__SCREAMING_SNAKE_CASE ) self.add_node(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =weight __UpperCAmelCase =weight def lowercase__ ( A_: GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: """simple docstring""" __UpperCAmelCase ={node: maxsize for node in graph.connections} __UpperCAmelCase ={node: None for node in graph.connections} __UpperCAmelCase =MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(A_ , A_ ) if priority_queue.is_empty(): return dist, parent # initialization __UpperCAmelCase =priority_queue.extract_min() __UpperCAmelCase =0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __UpperCAmelCase =dist[node] + graph.connections[node][neighbour] priority_queue.update_key(A_ , dist[neighbour] ) __UpperCAmelCase =node # running prim's algorithm while not priority_queue.is_empty(): __UpperCAmelCase =priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __UpperCAmelCase =dist[node] + graph.connections[node][neighbour] priority_queue.update_key(A_ , dist[neighbour] ) __UpperCAmelCase =node return dist, parent
68
0
"""simple docstring""" __SCREAMING_SNAKE_CASE : Any = 256 # Modulus to hash a string __SCREAMING_SNAKE_CASE : int = 1_000_003 def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: snake_case_ = len(_SCREAMING_SNAKE_CASE ) snake_case_ = len(_SCREAMING_SNAKE_CASE ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(_SCREAMING_SNAKE_CASE ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _a ( ) -> None: snake_case_ = """abc1abc12""" snake_case_ = """alskfjaldsabc1abc1abc12k23adsfabcabc""" snake_case_ = """alskfjaldsk23adsfabcabc""" assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test 2) snake_case_ = """ABABX""" snake_case_ = """ABABZABABYABABX""" assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test 3) snake_case_ = """AAAB""" snake_case_ = """ABAAAAAB""" assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test 4) snake_case_ = """abcdabcy""" snake_case_ = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test 5) snake_case_ = """Lü""" snake_case_ = """Lüsai""" assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = """Lue""" assert not rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
2
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: str = VQModel __lowercase: Union[str, Any] = """sample""" @property def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[str]=(32, 32) ) ->Tuple: """simple docstring""" snake_case_ = 4 snake_case_ = 3 snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) return {"sample": image} @property def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" return (3, 32, 32) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase_ ) snake_case_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" snake_case_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(UpperCAmelCase_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) snake_case_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) snake_case_ = image.to(UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = model(UpperCAmelCase_ ).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
2
1
'''simple docstring''' from typing import Any class __magic_name__ : def __init__( self : Optional[Any] ,_UpperCAmelCase : Any ): _a : str = data _a : Optional[int] = None class __magic_name__ : def __init__( self : int ): _a : Optional[Any] = None def __lowercase ( self : List[str] ): _a : List[Any] = self.head while temp is not None: print(temp.data ,end=' ' ) _a : Dict = temp.next print() def __lowercase ( self : Dict ,_UpperCAmelCase : Any ): _a : Union[str, Any] = Node(_UpperCAmelCase ) _a : Tuple = self.head _a : Optional[Any] = new_node def __lowercase ( self : str ,_UpperCAmelCase : str ,_UpperCAmelCase : str ): if node_data_a == node_data_a: return else: _a : Optional[Any] = self.head while node_a is not None and node_a.data != node_data_a: _a : str = node_a.next _a : int = self.head while node_a is not None and node_a.data != node_data_a: _a : Any = node_a.next if node_a is None or node_a is None: return _a , _a : Optional[Any] = node_a.data, node_a.data if __name__ == "__main__": __lowerCAmelCase = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
358
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
358
1
"""simple docstring""" def A ( snake_case__ ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) SCREAMING_SNAKE_CASE__ = sum(snake_case__ ) / len(snake_case__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
616
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
616
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
322
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCamelCase__ = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): '''simple docstring''' def __init__( self : int , *UpperCamelCase : Optional[Any] , **UpperCamelCase : int ): """simple docstring""" warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
322
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0.9 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase__ : Dict = size if size is not None else {"""shortest_edge""": 30} lowercase__ : List[Any] = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} lowercase__ : List[str] = parent lowercase__ : Tuple = batch_size lowercase__ : List[str] = num_channels lowercase__ : Optional[Any] = min_resolution lowercase__ : Tuple = max_resolution lowercase__ : str = do_resize_and_center_crop lowercase__ : Union[str, Any] = size lowercase__ : Tuple = crop_pct lowercase__ : List[str] = crop_size lowercase__ : Union[str, Any] = do_normalize lowercase__ : Optional[Any] = image_mean lowercase__ : int = image_std def lowercase__ ( self): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Any = PoolFormerImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = PoolFormerImageProcessingTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize_and_center_crop""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """crop_pct""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std""")) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 30}) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30}) lowercase__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase__ : str = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) # Test not batched input lowercase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase__ : str = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase__ : str = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
700
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' if components is None: lowercase__ : List[str] = [] lowercase__ : Dict = list(SCREAMING_SNAKE_CASE_) def __len__( self): '''simple docstring''' return len(self.__components) def __str__( self): '''simple docstring''' return "(" + ",".join(map(SCREAMING_SNAKE_CASE_ , self.__components)) + ")" def __add__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[Any] = len(self) if size == len(SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = [self.__components[i] + other.component(SCREAMING_SNAKE_CASE_) for i in range(SCREAMING_SNAKE_CASE_)] return Vector(SCREAMING_SNAKE_CASE_) else: raise Exception("""must have the same size""") def __sub__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = len(self) if size == len(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = [self.__components[i] - other.component(SCREAMING_SNAKE_CASE_) for i in range(SCREAMING_SNAKE_CASE_)] return Vector(SCREAMING_SNAKE_CASE_) else: # error case raise Exception("""must have the same size""") @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , (float, int)): lowercase__ : Optional[int] = [c * other for c in self.__components] return Vector(SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and len(self) == len(SCREAMING_SNAKE_CASE_): lowercase__ : Dict = len(self) lowercase__ : Optional[Any] = [self.__components[i] * other.component(SCREAMING_SNAKE_CASE_) for i in range(SCREAMING_SNAKE_CASE_)] return sum(SCREAMING_SNAKE_CASE_) else: # error case raise Exception("""invalid operand!""") def lowercase__ ( self): '''simple docstring''' return Vector(self.__components) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and -len(self.__components) <= i < len(self.__components): return self.__components[i] else: raise Exception("""index out of range""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' assert -len(self.__components) <= pos < len(self.__components) lowercase__ : List[Any] = value def lowercase__ ( self): '''simple docstring''' if len(self.__components) == 0: raise Exception("""Vector is empty""") lowercase__ : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(SCREAMING_SNAKE_CASE_)) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False): '''simple docstring''' lowercase__ : Union[str, Any] = self * other lowercase__ : Optional[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den)) else: return math.acos(num / den) def UpperCamelCase ( lowercase_ ) -> Vector: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) return Vector([0] * dimension ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> Vector: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) and (isinstance(lowercase_ , lowercase_ )) lowercase__ : Union[str, Any] = [0] * dimension lowercase__ : Any = 1 return Vector(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Vector: '''simple docstring''' assert ( isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) and (isinstance(lowercase_ , (int, float) )) ) return x * scalar + y def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Vector: '''simple docstring''' random.seed(lowercase_ ) lowercase__ : int = [random.randint(lowercase_ , lowercase_ ) for _ in range(lowercase_ )] return Vector(lowercase_ ) class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = matrix lowercase__ : Any = w lowercase__ : Any = h def __str__( self): '''simple docstring''' lowercase__ : str = """""" for i in range(self.__height): ans += "|" for j in range(self.__width): if j < self.__width - 1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans def __add__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): lowercase__ : Tuple = [] for i in range(self.__height): lowercase__ : Tuple = [ self.__matrix[i][j] + other.component(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for j in range(self.__width) ] matrix.append(SCREAMING_SNAKE_CASE_) return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height) else: raise Exception("""matrix must have the same dimension!""") def __sub__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): lowercase__ : Optional[int] = [] for i in range(self.__height): lowercase__ : List[str] = [ self.__matrix[i][j] - other.component(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for j in range(self.__width) ] matrix.append(SCREAMING_SNAKE_CASE_) return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height) else: raise Exception("""matrices must have the same dimension!""") @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): # matrix-vector if len(SCREAMING_SNAKE_CASE_) == self.__width: lowercase__ : List[Any] = zero_vector(self.__height) for i in range(self.__height): lowercase__ : Union[str, Any] = [ self.__matrix[i][j] * other.component(SCREAMING_SNAKE_CASE_) for j in range(self.__width) ] ans.change_component(SCREAMING_SNAKE_CASE_ , sum(SCREAMING_SNAKE_CASE_)) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""") elif isinstance(SCREAMING_SNAKE_CASE_ , (int, float)): # matrix-scalar lowercase__ : Tuple = [ [self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height) ] return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height) return None def lowercase__ ( self): '''simple docstring''' return self.__height def lowercase__ ( self): '''simple docstring''' return self.__width def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: lowercase__ : Tuple = value else: raise Exception("""change_component: indices out of bounds""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""") lowercase__ : List[Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(SCREAMING_SNAKE_CASE_)): lowercase__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(SCREAMING_SNAKE_CASE_ , self.__width - 1 , self.__height - 1).determinant() def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""") if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else: raise Exception("""Indices out of bounds""") def lowercase__ ( self): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""") if self.__height < 1: raise Exception("""Matrix has no element""") elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowercase__ : Optional[int] = [ self.__matrix[0][y] * self.cofactor(0 , SCREAMING_SNAKE_CASE_) for y in range(self.__width) ] return sum(SCREAMING_SNAKE_CASE_) def UpperCamelCase ( lowercase_ ) -> Matrix: '''simple docstring''' lowercase__ : list[list[float]] = [[0] * n for _ in range(lowercase_ )] return Matrix(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Matrix: '''simple docstring''' random.seed(lowercase_ ) lowercase__ : list[list[float]] = [ [random.randint(lowercase_ , lowercase_ ) for _ in range(lowercase_ )] for _ in range(lowercase_ ) ] return Matrix(lowercase_ , lowercase_ , lowercase_ )
495
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Dict ='''efficientnet''' def __init__( self :Any, snake_case :int = 3, snake_case :int = 600, snake_case :float = 2.0, snake_case :float = 3.1, snake_case :int = 8, snake_case :List[int] = [3, 3, 5, 3, 5, 5, 3], snake_case :List[int] = [32, 16, 24, 40, 80, 112, 192], snake_case :List[int] = [16, 24, 40, 80, 112, 192, 320], snake_case :List[int] = [], snake_case :List[int] = [1, 2, 2, 2, 1, 2, 1], snake_case :List[int] = [1, 2, 2, 3, 3, 4, 1], snake_case :List[int] = [1, 6, 6, 6, 6, 6, 6], snake_case :float = 0.2_5, snake_case :str = "swish", snake_case :int = 2560, snake_case :str = "mean", snake_case :float = 0.0_2, snake_case :float = 0.0_0_1, snake_case :float = 0.9_9, snake_case :float = 0.5, snake_case :float = 0.2, **snake_case :List[Any], ): """simple docstring""" super().__init__(**snake_case) _lowercase =num_channels _lowercase =image_size _lowercase =width_coefficient _lowercase =depth_coefficient _lowercase =depth_divisor _lowercase =kernel_sizes _lowercase =in_channels _lowercase =out_channels _lowercase =depthwise_padding _lowercase =strides _lowercase =num_block_repeats _lowercase =expand_ratios _lowercase =squeeze_expansion_ratio _lowercase =hidden_act _lowercase =hidden_dim _lowercase =pooling_type _lowercase =initializer_range _lowercase =batch_norm_eps _lowercase =batch_norm_momentum _lowercase =dropout_rate _lowercase =drop_connect_rate _lowercase =sum(snake_case) * 4 class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : List[Any] =version.parse('''1.11''' ) @property def UpperCamelCase__ ( self :Tuple): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" return 1e-5
181
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any, snake_case :Optional[int], snake_case :Optional[Any]=7, snake_case :str=3, snake_case :Optional[int]=18, snake_case :str=30, snake_case :List[Any]=400, snake_case :Any=True, snake_case :Dict=None, snake_case :Any=True, snake_case :Dict=None, snake_case :List[Any]=True, snake_case :Optional[int]=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], snake_case :Any=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], snake_case :int=True, ): """simple docstring""" _lowercase =size if size is not None else {'height': 224, 'width': 224} _lowercase =crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowercase =parent _lowercase =batch_size _lowercase =num_channels _lowercase =image_size _lowercase =min_resolution _lowercase =max_resolution _lowercase =do_resize _lowercase =size _lowercase =do_center_crop _lowercase =crop_size _lowercase =do_normalize _lowercase =image_mean _lowercase =image_std _lowercase =do_convert_rgb def UpperCamelCase__ ( self :Any): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCamelCase__ ( self :Dict, snake_case :List[Any]=False, snake_case :Any=False, snake_case :Union[str, Any]=False): """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _lowercase =[] for i in range(self.batch_size): image_inputs.append( np.random.randint( 255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uinta)) else: _lowercase =[] for i in range(self.batch_size): _lowercase , _lowercase =np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2) image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uinta)) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _lowercase =[Image.fromarray(np.moveaxis(snake_case, 0, -1)) for x in image_inputs] if torchify: _lowercase =[torch.from_numpy(snake_case) for x in image_inputs] return image_inputs @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( _a , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : List[Any] =ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self :Dict): """simple docstring""" _lowercase =ChineseCLIPImageProcessingTester(self, do_center_crop=snake_case) @property def UpperCamelCase__ ( self :Dict): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" _lowercase =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(snake_case, 'do_resize')) self.assertTrue(hasattr(snake_case, 'size')) self.assertTrue(hasattr(snake_case, 'do_center_crop')) self.assertTrue(hasattr(snake_case, 'center_crop')) self.assertTrue(hasattr(snake_case, 'do_normalize')) self.assertTrue(hasattr(snake_case, 'image_mean')) self.assertTrue(hasattr(snake_case, 'image_std')) self.assertTrue(hasattr(snake_case, 'do_convert_rgb')) def UpperCamelCase__ ( self :List[str]): """simple docstring""" _lowercase =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {'height': 224, 'width': 224}) self.assertEqual(image_processor.crop_size, {'height': 18, 'width': 18}) _lowercase =self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {'shortest_edge': 42}) self.assertEqual(image_processor.crop_size, {'height': 84, 'width': 84}) def UpperCamelCase__ ( self :Tuple): """simple docstring""" pass def UpperCamelCase__ ( self :Any): """simple docstring""" _lowercase =self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase =self.image_processor_tester.prepare_inputs(equal_resolution=snake_case) for image in image_inputs: self.assertIsInstance(snake_case, Image.Image) # Test not batched input _lowercase =image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _lowercase =image_processing(snake_case, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def UpperCamelCase__ ( self :List[str]): """simple docstring""" _lowercase =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowercase =self.image_processor_tester.prepare_inputs(equal_resolution=snake_case, numpify=snake_case) for image in image_inputs: self.assertIsInstance(snake_case, np.ndarray) # Test not batched input _lowercase =image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _lowercase =image_processing(snake_case, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" _lowercase =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase =self.image_processor_tester.prepare_inputs(equal_resolution=snake_case, torchify=snake_case) for image in image_inputs: self.assertIsInstance(snake_case, torch.Tensor) # Test not batched input _lowercase =image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _lowercase =image_processing(snake_case, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( _a , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Optional[Any] =ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self :Dict): """simple docstring""" _lowercase =ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=snake_case) _lowercase =3 @property def UpperCamelCase__ ( self :Tuple): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self :Tuple): """simple docstring""" _lowercase =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(snake_case, 'do_resize')) self.assertTrue(hasattr(snake_case, 'size')) self.assertTrue(hasattr(snake_case, 'do_center_crop')) self.assertTrue(hasattr(snake_case, 'center_crop')) self.assertTrue(hasattr(snake_case, 'do_normalize')) self.assertTrue(hasattr(snake_case, 'image_mean')) self.assertTrue(hasattr(snake_case, 'image_std')) self.assertTrue(hasattr(snake_case, 'do_convert_rgb')) def UpperCamelCase__ ( self :Dict): """simple docstring""" pass def UpperCamelCase__ ( self :str): """simple docstring""" _lowercase =self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase =self.image_processor_tester.prepare_inputs(equal_resolution=snake_case) for image in image_inputs: self.assertIsInstance(snake_case, Image.Image) # Test not batched input _lowercase =image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _lowercase =image_processing(snake_case, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), )
181
1
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(__magic_name__ ): for j in range(__magic_name__ ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase :Optional[int] = [[float("""inf""" ) for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): for j in range(__magic_name__ ): UpperCamelCase :List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__magic_name__ ): # looping through rows of graph array for i in range(__magic_name__ ): # looping through columns of graph array for j in range(__magic_name__ ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): UpperCamelCase :Tuple = dist[i][k] + dist[k][j] _print_dist(__magic_name__ , __magic_name__ ) return dist, v if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = int(input('''Enter number of vertices: ''')) UpperCAmelCase_ : str = int(input('''Enter number of edges: ''')) UpperCAmelCase_ : List[str] = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): UpperCAmelCase_ : Dict = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) UpperCAmelCase_ : List[Any] = int(input('''Enter source:''')) UpperCAmelCase_ : Any = int(input('''Enter destination:''')) UpperCAmelCase_ : Optional[int] = float(input('''Enter weight:''')) UpperCAmelCase_ : List[str] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
705
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase_ : Any = sys.version_info >= (3, 10) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str=None , __magic_name__ : Any=None ) -> Any: """simple docstring""" return field(default_factory=lambda: default , metadata=__magic_name__ ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int snake_case__ : float snake_case__ : str snake_case__ : bool @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int = 4_2 snake_case__ : str = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : bool = False snake_case__ : bool = True snake_case__ : Optional[bool] = None class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[Any] = """titi""" snake_case__ : Optional[Any] = """toto""" class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : str = """titi""" snake_case__ : Tuple = """toto""" snake_case__ : Tuple = 4_2 @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : BasicEnum = "toto" def _A ( self : str ): UpperCamelCase :List[Any] = BasicEnum(self.foo ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : MixedTypeEnum = "toto" def _A ( self : str ): UpperCamelCase :List[str] = MixedTypeEnum(self.foo ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : Optional[int] = None snake_case__ : Optional[float] = field(default=_a , metadata={"""help""": """help message"""} ) snake_case__ : Optional[str] = None snake_case__ : Optional[List[str]] = list_field(default=[] ) snake_case__ : Optional[List[int]] = list_field(default=[] ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : List[int] = list_field(default=[] ) snake_case__ : List[int] = list_field(default=[1, 2, 3] ) snake_case__ : List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) snake_case__ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : List[int] = field() snake_case__ : str = field() snake_case__ : BasicEnum = field() def _A ( self : Dict ): UpperCamelCase :List[str] = BasicEnum(self.required_enum ) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int snake_case__ : "BasicEnum" = field() snake_case__ : "Optional[bool]" = None snake_case__ : "str" = field(default="""toto""" , metadata={"""help""": """help message"""} ) snake_case__ : "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : bool = False snake_case__ : bool = True snake_case__ : bool | None = None @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int | None = None snake_case__ : float | None = field(default=_a , metadata={"""help""": """help message"""} ) snake_case__ : str | None = None snake_case__ : list[str] | None = list_field(default=[] ) snake_case__ : list[int] | None = list_field(default=[] ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Dict , __lowerCamelCase : argparse.ArgumentParser , __lowerCamelCase : argparse.ArgumentParser ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCamelCase :List[Any] = {k: v for k, v in vars(__lowerCamelCase ).items() if k != """container"""} UpperCamelCase :Union[str, Any] = {k: v for k, v in vars(__lowerCamelCase ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , __lowerCamelCase ) and yy.get("""choices""" , __lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](__lowerCamelCase ) , yy["""type"""](__lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[Any] ): UpperCamelCase :List[Any] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("""--bar""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("""--baz""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("""--flag""" , type=__lowerCamelCase , default=__lowerCamelCase , const=__lowerCamelCase , nargs="""?""" ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :str = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((UpperCamelCase) , ) :List[Any] = parser.parse_args_into_dataclasses(__lowerCamelCase , look_for_args_file=__lowerCamelCase ) self.assertFalse(example.flag ) def _A ( self : str ): UpperCamelCase :Union[str, Any] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=__lowerCamelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=__lowerCamelCase , help="""help message""" ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__lowerCamelCase , default=__lowerCamelCase , const=__lowerCamelCase , nargs="""?""" ) expected.add_argument("""--baz""" , type=__lowerCamelCase , default=__lowerCamelCase , const=__lowerCamelCase , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=__lowerCamelCase , dest="""baz""" ) expected.add_argument("""--opt""" , type=__lowerCamelCase , default=__lowerCamelCase ) UpperCamelCase :Tuple = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__lowerCamelCase ) for dataclass_type in dataclass_types: UpperCamelCase :Union[str, Any] = HfArgumentParser(__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Tuple = parser.parse_args([] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) UpperCamelCase :Any = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) UpperCamelCase :Optional[int] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) UpperCamelCase :List[Any] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) UpperCamelCase :Optional[int] = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , baz=__lowerCamelCase , opt=__lowerCamelCase ) ) def _A ( self : Any ): UpperCamelCase :Optional[int] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Tuple = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCamelCase :str = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCamelCase :str = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCamelCase :Tuple = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCamelCase :Optional[int] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) UpperCamelCase :List[Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _A ( self : List[str] ): @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : Literal["titi", "toto", 4_2] = "toto" UpperCamelCase :Optional[Any] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :List[str] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCamelCase :int = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCamelCase :List[str] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def _A ( self : Tuple ): UpperCamelCase :Any = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :int = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=__lowerCamelCase ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=__lowerCamelCase ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__lowerCamelCase ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[Any] = parser.parse_args([] ) self.assertEqual( __lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCamelCase :Tuple = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(__lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def _A ( self : Optional[Any] ): UpperCamelCase :Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=__lowerCamelCase , type=__lowerCamelCase ) expected.add_argument("""--bar""" , default=__lowerCamelCase , type=__lowerCamelCase , help="""help message""" ) expected.add_argument("""--baz""" , default=__lowerCamelCase , type=__lowerCamelCase ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=__lowerCamelCase ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=__lowerCamelCase ) UpperCamelCase :List[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__lowerCamelCase ) for dataclass_type in dataclass_types: UpperCamelCase :List[Any] = HfArgumentParser(__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Tuple = parser.parse_args([] ) self.assertEqual(__lowerCamelCase , Namespace(foo=__lowerCamelCase , bar=__lowerCamelCase , baz=__lowerCamelCase , ces=[] , des=[] ) ) UpperCamelCase :List[str] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(__lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def _A ( self : Any ): UpperCamelCase :Any = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Dict = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument("""--required_str""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__lowerCamelCase , ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : List[Any] ): UpperCamelCase :Dict = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__lowerCamelCase , required=__lowerCamelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__lowerCamelCase , ) expected.add_argument("""--opt""" , type=__lowerCamelCase , default=__lowerCamelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=__lowerCamelCase , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__lowerCamelCase ) self.argparsersEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Any ): UpperCamelCase :Optional[int] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Optional[int] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } UpperCamelCase :List[str] = parser.parse_dict(__lowerCamelCase )[0] UpperCamelCase :Union[str, Any] = BasicExample(**__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : List[str] ): UpperCamelCase :Optional[Any] = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(__lowerCamelCase , parser.parse_dict , __lowerCamelCase , allow_extra_keys=__lowerCamelCase ) def _A ( self : List[str] ): UpperCamelCase :Tuple = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Dict = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :int = os.path.join(__lowerCamelCase , """temp_json""" ) os.mkdir(__lowerCamelCase ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] UpperCamelCase :Dict = BasicExample(**__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :Tuple = HfArgumentParser(__lowerCamelCase ) UpperCamelCase :Any = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :Any = os.path.join(__lowerCamelCase , """temp_yaml""" ) os.mkdir(__lowerCamelCase ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] UpperCamelCase :List[str] = BasicExample(**__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : Optional[int] ): UpperCamelCase :Optional[Any] = HfArgumentParser(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase )
590
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Union[str, Any] = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A : int = logging.get_logger(__name__) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase=False ) -> Optional[int]: '''simple docstring''' __snake_case = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __snake_case = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> int: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __snake_case = "" else: __snake_case = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __snake_case = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case = in_proj_weight[ : config.hidden_size, : ] __snake_case = in_proj_bias[: config.hidden_size] __snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case = in_proj_weight[ -config.hidden_size :, : ] __snake_case = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( _lowerCAmelCase ) -> List[str]: '''simple docstring''' __snake_case = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: '''simple docstring''' __snake_case = dct.pop(_lowerCAmelCase ) __snake_case = val def _lowerCAmelCase ( ) -> Any: '''simple docstring''' __snake_case = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True ) -> int: '''simple docstring''' __snake_case = ViTConfig() # patch_size if model_name[-1] == "8": __snake_case = 8 # set labels if required if not base_model: __snake_case = 1000 __snake_case = "huggingface/label-files" __snake_case = "imagenet-1k-id2label.json" __snake_case = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) __snake_case = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __snake_case = 384 __snake_case = 1536 __snake_case = 12 __snake_case = 6 # load original model from torch hub __snake_case = torch.hub.load("facebookresearch/dino:main" , _lowerCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys __snake_case = original_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) __snake_case = create_rename_keys(_lowerCAmelCase , base_model=_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if base_model: __snake_case = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ).eval() else: __snake_case = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor __snake_case = ViTImageProcessor() __snake_case = image_processor(images=prepare_img() , return_tensors="pt" ) __snake_case = encoding["pixel_values"] __snake_case = model(_lowerCAmelCase ) if base_model: __snake_case = original_model(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: __snake_case = original_model(_lowerCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) A : Any = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
371
1
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=1000 ) -> Any: '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __SCREAMING_SNAKE_CASE = n - 1 __SCREAMING_SNAKE_CASE = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __SCREAMING_SNAKE_CASE = 0 while count < prec: __SCREAMING_SNAKE_CASE = random.randint(2 , n - 1 ) __SCREAMING_SNAKE_CASE = bin_exp_mod(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if b != 1: __SCREAMING_SNAKE_CASE = True for _ in range(__UpperCAmelCase ): if b == n - 1: __SCREAMING_SNAKE_CASE = False break __SCREAMING_SNAKE_CASE = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": a = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
710
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' require_version(deps[pkg] , __UpperCAmelCase )
13
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """lxmert""" UpperCamelCase = {} def __init__( self :Union[str, Any] , lowerCamelCase_ :Union[str, Any]=3_05_22 , lowerCamelCase_ :Any=7_68 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :Dict=95_00 , lowerCamelCase_ :List[Any]=16_00 , lowerCamelCase_ :int=4_00 , lowerCamelCase_ :List[str]=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :Optional[Any]=2 , lowerCamelCase_ :str=0.0_2 , lowerCamelCase_ :int=1E-12 , lowerCamelCase_ :Any=9 , lowerCamelCase_ :int=5 , lowerCamelCase_ :Union[str, Any]=5 , lowerCamelCase_ :Tuple=20_48 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :str=6.6_7 , lowerCamelCase_ :str=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :List[str]=True , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :Tuple=True , **lowerCamelCase_ :Any , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = num_qa_labels SCREAMING_SNAKE_CASE : Tuple = num_object_labels SCREAMING_SNAKE_CASE : Optional[Any] = num_attr_labels SCREAMING_SNAKE_CASE : int = l_layers SCREAMING_SNAKE_CASE : str = x_layers SCREAMING_SNAKE_CASE : List[Any] = r_layers SCREAMING_SNAKE_CASE : Dict = visual_feat_dim SCREAMING_SNAKE_CASE : Optional[int] = visual_pos_dim SCREAMING_SNAKE_CASE : str = visual_loss_normalizer SCREAMING_SNAKE_CASE : List[Any] = task_matched SCREAMING_SNAKE_CASE : Optional[int] = task_mask_lm SCREAMING_SNAKE_CASE : Optional[int] = task_obj_predict SCREAMING_SNAKE_CASE : Dict = task_qa SCREAMING_SNAKE_CASE : Tuple = visual_obj_loss SCREAMING_SNAKE_CASE : int = visual_attr_loss SCREAMING_SNAKE_CASE : Union[str, Any] = visual_feat_loss SCREAMING_SNAKE_CASE : Tuple = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**lowerCamelCase_ )
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """mra""" def __init__( self :int , lowerCamelCase_ :Optional[int]=5_02_65 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :int=1E-5 , lowerCamelCase_ :List[Any]="absolute" , lowerCamelCase_ :str=4 , lowerCamelCase_ :List[str]="full" , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :List[str]=0 , lowerCamelCase_ :List[Any]=2 , **lowerCamelCase_ :str , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = block_per_row SCREAMING_SNAKE_CASE : Optional[int] = approx_mode SCREAMING_SNAKE_CASE : List[Any] = initial_prior_first_n_blocks SCREAMING_SNAKE_CASE : Union[str, Any] = initial_prior_diagonal_n_blocks
698
1
"""simple docstring""" from PIL import Image def snake_case__ ( __lowerCamelCase : Image , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[str] =(259 * (level + 255)) / (255 * (259 - level)) def contrast(__lowerCamelCase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 _lowercase : str =change_contrast(img, 1_7_0) cont_img.save("image_data/lena_high_contrast.png", format="png")
702
"""simple docstring""" _lowercase : Optional[Any] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
625
0
from itertools import count def _A (UpperCamelCase : int = 50 ) ->int: '''simple docstring''' lowerCamelCase__ : int = [1] * min_block_length for n in count(UpperCamelCase ): fill_count_functions.append(1 ) for block_length in range(UpperCamelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(F'''{solution() = }''')
157
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __A ( A_ ): UpperCamelCase :List[str] = '''gpt_neo''' UpperCamelCase :Tuple = ['''past_key_values'''] UpperCamelCase :Optional[int] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__(self , __magic_name__=50257 , __magic_name__=2048 , __magic_name__=2048 , __magic_name__=24 , __magic_name__=[[["global", "local"], 12]] , __magic_name__=16 , __magic_name__=None , __magic_name__=256 , __magic_name__="gelu_new" , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.1 , __magic_name__=1E-5 , __magic_name__=0.02 , __magic_name__=True , __magic_name__=50256 , __magic_name__=50256 , **__magic_name__ , ): lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : str = hidden_size lowerCamelCase__ : List[Any] = num_layers lowerCamelCase__ : List[Any] = num_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : str = window_size lowerCamelCase__ : List[Any] = activation_function lowerCamelCase__ : Any = resid_dropout lowerCamelCase__ : Dict = embed_dropout lowerCamelCase__ : str = attention_dropout lowerCamelCase__ : str = classifier_dropout lowerCamelCase__ : str = layer_norm_epsilon lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : int = use_cache lowerCamelCase__ : List[Any] = bos_token_id lowerCamelCase__ : int = eos_token_id lowerCamelCase__ : str = attention_types lowerCamelCase__ : List[str] = self.expand_attention_types_params(__magic_name__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) @staticmethod def _snake_case (__magic_name__ ): lowerCamelCase__ : Optional[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _A (UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple ) ->int: '''simple docstring''' import torch lowerCamelCase__ : Any = input.size() lowerCamelCase__ : Tuple = len(UpperCamelCase ) lowerCamelCase__ : str = shape[dimension] lowerCamelCase__ : Optional[int] = torch.arange(0 , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Optional[Any] = torch.div(sizedim - size , UpperCamelCase , rounding_mode="""floor""" ) + 1 lowerCamelCase__ : Tuple = torch.arange(UpperCamelCase ) + low_indices[:min_length][:, None] lowerCamelCase__ : Dict = [slice(UpperCamelCase )] * rank lowerCamelCase__ : Union[str, Any] = indices lowerCamelCase__ : Optional[int] = input[s] lowerCamelCase__ : int = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase ) def _A (UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ) ->Tuple: '''simple docstring''' import torch lowerCamelCase__ : List[Any] = torch.arange(1 , UpperCamelCase ) lowerCamelCase__ : Any = torch.remainder(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Optional[int] = remainders == 0 lowerCamelCase__ : List[str] = candidates[divisor_indices] lowerCamelCase__ : List[Any] = torch.max(UpperCamelCase ) return largest_divisor, torch.div(UpperCamelCase , UpperCamelCase , rounding_mode="""floor""" ) class __A ( A_ ): @property def _snake_case (self ): lowerCamelCase__ : str = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) lowerCamelCase__ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase__ : int = {0: """batch""", 1: """sequence"""} return common_inputs @property def _snake_case (self ): return self._config.num_heads def _snake_case (self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ): lowerCamelCase__ : Union[str, Any] = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ ,lowerCamelCase__ : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ : Any = seqlen + 2 lowerCamelCase__ : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase__ : Dict = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] lowerCamelCase__ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase__ : int = ordered_inputs["""attention_mask"""].dtype lowerCamelCase__ : List[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def _snake_case (self ): return 13
157
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCAmelCase = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCAmelCase = [0, 2_5, 5_0] __UpperCAmelCase = [2_5, 5_0, 7_5] __UpperCAmelCase = fuzz.membership.trimf(X, abca) __UpperCAmelCase = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCAmelCase = np.ones(7_5) __UpperCAmelCase = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) __UpperCAmelCase = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCAmelCase = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCAmelCase = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCAmelCase = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCAmelCase = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCAmelCase = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCAmelCase = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCAmelCase = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
701
def A_ ( lowercase_ , lowercase_ ) ->int: """simple docstring""" if len(lowercase_ ) != len(lowercase_ ): raise ValueError('String lengths must match!' ) SCREAMING_SNAKE_CASE = 0 for chara, chara in zip(lowercase_ , lowercase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
259
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
"""simple docstring""" def lowercase__ ( lowerCamelCase : int , lowerCamelCase : int ) -> int: return int(input_a == input_a == 0 ) def lowercase__ ( ) -> None: print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F"| 0 | 0 | {nor_gate(0 , 0 )} |" ) print(F"| 0 | 1 | {nor_gate(0 , 1 )} |" ) print(F"| 1 | 0 | {nor_gate(1 , 0 )} |" ) print(F"| 1 | 1 | {nor_gate(1 , 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
308
1
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowercase__ ( snake_case__ ): _UpperCAmelCase :Optional[int] = ["vqvae"] def __init__( self : Optional[int] , snake_case__ : AutoencoderKL , snake_case__ : UNetaDConditionModel , snake_case__ : Mel , snake_case__ : Union[DDIMScheduler, DDPMScheduler] , ): super().__init__() self.register_modules(unet=snake_case__ , scheduler=snake_case__ , mel=snake_case__ , vqvae=snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): return 50 if isinstance(self.scheduler , snake_case__ ) else 1000 @torch.no_grad() def __call__( self : List[str] , snake_case__ : int = 1 , snake_case__ : str = None , snake_case__ : np.ndarray = None , snake_case__ : int = 0 , snake_case__ : int = 0 , snake_case__ : int = None , snake_case__ : torch.Generator = None , snake_case__ : float = 0 , snake_case__ : float = 0 , snake_case__ : torch.Generator = None , snake_case__ : float = 0 , snake_case__ : torch.Tensor = None , snake_case__ : torch.Tensor = None , snake_case__ : Any=True , ): lowerCamelCase_ : Dict =steps or self.get_default_steps() self.scheduler.set_timesteps(snake_case__ ) lowerCamelCase_ : Optional[Any] =step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCamelCase_ : List[Any] =(self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCamelCase_ : Any =randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=snake_case__ , device=self.device , ) lowerCamelCase_ : Union[str, Any] =noise lowerCamelCase_ : Optional[Any] =None if audio_file is not None or raw_audio is not None: self.mel.load_audio(snake_case__ , snake_case__ ) lowerCamelCase_ : Optional[Any] =self.mel.audio_slice_to_image(snake_case__ ) lowerCamelCase_ : Any =np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) lowerCamelCase_ : Tuple =(input_image / 255) * 2 - 1 lowerCamelCase_ : str =torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCamelCase_ : str =self.vqvae.encode(torch.unsqueeze(snake_case__ , 0 ) ).latent_dist.sample( generator=snake_case__ )[0] lowerCamelCase_ : Any =self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCamelCase_ : Any =self.scheduler.add_noise(snake_case__ , snake_case__ , self.scheduler.timesteps[start_step - 1] ) lowerCamelCase_ : Tuple =( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCamelCase_ : List[str] =int(mask_start_secs * pixels_per_second ) lowerCamelCase_ : Union[str, Any] =int(mask_end_secs * pixels_per_second ) lowerCamelCase_ : Any =self.scheduler.add_noise(snake_case__ , snake_case__ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , snake_case__ ): lowerCamelCase_ : str =self.unet(snake_case__ , snake_case__ , snake_case__ )["sample"] else: lowerCamelCase_ : Tuple =self.unet(snake_case__ , snake_case__ )["sample"] if isinstance(self.scheduler , snake_case__ ): lowerCamelCase_ : List[Any] =self.scheduler.step( model_output=snake_case__ , timestep=snake_case__ , sample=snake_case__ , eta=snake_case__ , generator=snake_case__ , )["prev_sample"] else: lowerCamelCase_ : Optional[int] =self.scheduler.step( model_output=snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ , )["prev_sample"] if mask is not None: if mask_start > 0: lowerCamelCase_ : List[str] =mask[:, step, :, :mask_start] if mask_end > 0: lowerCamelCase_ : Any =mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCamelCase_ : Tuple =1 / self.vqvae.config.scaling_factor * images lowerCamelCase_ : str =self.vqvae.decode(snake_case__ )["sample"] lowerCamelCase_ : Dict =(images / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ : Optional[int] =images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowerCamelCase_ : Any =(images * 255).round().astype("uint8" ) lowerCamelCase_ : Optional[Any] =list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(snake_case__ , mode="RGB" ).convert("L" ) for _ in images) ) lowerCamelCase_ : Optional[int] =[self.mel.image_to_audio(snake_case__ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(snake_case__ )[:, np.newaxis, :] ) , **ImagePipelineOutput(snake_case__ ) ) @torch.no_grad() def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : List[Image.Image] , snake_case__ : int = 50 ): assert isinstance(self.scheduler , snake_case__ ) self.scheduler.set_timesteps(snake_case__ ) lowerCamelCase_ : List[str] =np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) lowerCamelCase_ : List[Any] =(sample / 255) * 2 - 1 lowerCamelCase_ : List[str] =torch.Tensor(snake_case__ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowerCamelCase_ : int =t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCamelCase_ : str =self.scheduler.alphas_cumprod[t] lowerCamelCase_ : Optional[int] =( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCamelCase_ : Optional[Any] =1 - alpha_prod_t lowerCamelCase_ : Any =self.unet(snake_case__ , snake_case__ )["sample"] lowerCamelCase_ : Optional[int] =(1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCamelCase_ : Dict =(sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCamelCase_ : List[Any] =sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase__ ( snake_case__ : torch.Tensor , snake_case__ : torch.Tensor , snake_case__ : float ): lowerCamelCase_ : str =acos(torch.dot(torch.flatten(snake_case__ ) , torch.flatten(snake_case__ ) ) / torch.norm(snake_case__ ) / torch.norm(snake_case__ ) ) return sin((1 - alpha) * theta ) * xa / sin(snake_case__ ) + sin(alpha * theta ) * xa / sin(snake_case__ )
721
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowercase__ ( snake_case__ ): _UpperCAmelCase :BigBirdConfig _UpperCAmelCase :jnp.dtype = jnp.floataa _UpperCAmelCase :bool = True def UpperCAmelCase__ ( self : Union[str, Any] ): super().setup() lowerCamelCase_ : List[Any] =nn.Dense(5 , dtype=self.dtype ) def __call__( self : str , *snake_case__ : Optional[int] , **snake_case__ : List[str] ): lowerCamelCase_ : List[str] =super().__call__(*snake_case__ , **snake_case__ ) lowerCamelCase_ : Any =self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowercase__ ( snake_case__ ): _UpperCAmelCase :str = FlaxBigBirdForNaturalQuestionsModule def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] ) -> Dict: def cross_entropy(lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=None ): lowerCamelCase_ : List[str] =logits.shape[-1] lowerCamelCase_ : Tuple =(labels[..., None] == jnp.arange(lowerCamelCase__ )[None]).astype("f4" ) lowerCamelCase_ : Any =jax.nn.log_softmax(lowerCamelCase__ , axis=-1 ) lowerCamelCase_ : str =-jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCamelCase_ : int =reduction(lowerCamelCase__ ) return loss lowerCamelCase_ : str =partial(lowerCamelCase__ , reduction=jnp.mean ) lowerCamelCase_ : Union[str, Any] =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : int =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : int =cross_entropy(lowerCamelCase__ , lowerCamelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowercase__ : _UpperCAmelCase :str = "google/bigbird-roberta-base" _UpperCAmelCase :int = 3000 _UpperCAmelCase :int = 10500 _UpperCAmelCase :int = 128 _UpperCAmelCase :int = 3 _UpperCAmelCase :int = 1 _UpperCAmelCase :int = 5 # tx_args _UpperCAmelCase :float = 3e-5 _UpperCAmelCase :float = 0.0 _UpperCAmelCase :int = 20000 _UpperCAmelCase :float = 0.00_95 _UpperCAmelCase :str = "bigbird-roberta-natural-questions" _UpperCAmelCase :str = "training-expt" _UpperCAmelCase :str = "data/nq-training.jsonl" _UpperCAmelCase :str = "data/nq-validation.jsonl" def UpperCAmelCase__ ( self : List[Any] ): os.makedirs(self.base_dir , exist_ok=snake_case__ ) lowerCamelCase_ : List[Any] =os.path.join(self.base_dir , self.save_dir ) lowerCamelCase_ : str =self.batch_size_per_device * jax.device_count() @dataclass class lowercase__ : _UpperCAmelCase :int _UpperCAmelCase :int = 4096 # no dynamic padding on TPUs def __call__( self : int , snake_case__ : str ): lowerCamelCase_ : Any =self.collate_fn(snake_case__ ) lowerCamelCase_ : Tuple =jax.tree_util.tree_map(snake_case__ , snake_case__ ) return batch def UpperCAmelCase__ ( self : Dict , snake_case__ : Any ): lowerCamelCase_ , lowerCamelCase_ : Any =self.fetch_inputs(features["input_ids"] ) lowerCamelCase_ : Optional[int] ={ "input_ids": jnp.array(snake_case__ , dtype=jnp.intaa ), "attention_mask": jnp.array(snake_case__ , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def UpperCAmelCase__ ( self : List[str] , snake_case__ : list ): lowerCamelCase_ : Dict =[self._fetch_inputs(snake_case__ ) for ids in input_ids] return zip(*snake_case__ ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : list ): lowerCamelCase_ : Any =[1 for _ in range(len(snake_case__ ) )] while len(snake_case__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str=None ) -> Tuple: if seed is not None: lowerCamelCase_ : List[Any] =dataset.shuffle(seed=lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) // batch_size ): lowerCamelCase_ : Any =dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCamelCase__ ) @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : Tuple , **lowerCamelCase__ : int ) -> str: def loss_fn(lowerCamelCase__ : Optional[int] ): lowerCamelCase_ : Any =model_inputs.pop("start_labels" ) lowerCamelCase_ : Dict =model_inputs.pop("end_labels" ) lowerCamelCase_ : Union[str, Any] =model_inputs.pop("pooled_labels" ) lowerCamelCase_ : Optional[Any] =state.apply_fn(**lowerCamelCase__ , params=lowerCamelCase__ , dropout_rng=lowerCamelCase__ , train=lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Tuple =outputs return state.loss_fn( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) lowerCamelCase_ , lowerCamelCase_ : Any =jax.random.split(lowerCamelCase__ ) lowerCamelCase_ : str =jax.value_and_grad(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =grad_fn(state.params ) lowerCamelCase_ : int =jax.lax.pmean({"loss": loss} , axis_name="batch" ) lowerCamelCase_ : Optional[Any] =jax.lax.pmean(lowerCamelCase__ , "batch" ) lowerCamelCase_ : str =state.apply_gradients(grads=lowerCamelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCamelCase__ : int , **lowerCamelCase__ : str ) -> List[str]: lowerCamelCase_ : List[str] =model_inputs.pop("start_labels" ) lowerCamelCase_ : str =model_inputs.pop("end_labels" ) lowerCamelCase_ : int =model_inputs.pop("pooled_labels" ) lowerCamelCase_ : List[Any] =state.apply_fn(**lowerCamelCase__ , params=state.params , train=lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[Any] =outputs lowerCamelCase_ : List[Any] =state.loss_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class lowercase__ ( train_state.TrainState ): _UpperCAmelCase :Callable = struct.field(pytree_node=snake_case__ ) @dataclass class lowercase__ : _UpperCAmelCase :Args _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :Callable _UpperCAmelCase :wandb _UpperCAmelCase :Callable = None def UpperCAmelCase__ ( self : str , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : List[Any]=None ): lowerCamelCase_ : Union[str, Any] =model.params lowerCamelCase_ : Tuple =TrainState.create( apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , loss_fn=snake_case__ , ) if ckpt_dir is not None: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =restore_checkpoint(snake_case__ , snake_case__ ) lowerCamelCase_ : Optional[Any] ={ "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } lowerCamelCase_ , lowerCamelCase_ : List[str] =build_tx(**snake_case__ ) lowerCamelCase_ : str =train_state.TrainState( step=snake_case__ , apply_fn=model.__call__ , params=snake_case__ , tx=snake_case__ , opt_state=snake_case__ , ) lowerCamelCase_ : Any =args lowerCamelCase_ : Optional[Any] =data_collator lowerCamelCase_ : int =lr lowerCamelCase_ : List[Any] =params lowerCamelCase_ : Tuple =jax_utils.replicate(snake_case__ ) return state def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ): lowerCamelCase_ : Union[str, Any] =self.args lowerCamelCase_ : List[Any] =len(snake_case__ ) // args.batch_size lowerCamelCase_ : Tuple =jax.random.PRNGKey(0 ) lowerCamelCase_ : int =jax.random.split(snake_case__ , jax.device_count() ) for epoch in range(args.max_epochs ): lowerCamelCase_ : str =jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase_ : int =get_batched_dataset(snake_case__ , args.batch_size , seed=snake_case__ ) lowerCamelCase_ : Any =0 for batch in tqdm(snake_case__ , total=snake_case__ , desc=F"""Running EPOCH-{epoch}""" ): lowerCamelCase_ : Dict =self.data_collator(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict =self.train_step_fn(snake_case__ , snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: lowerCamelCase_ : int =jax_utils.unreplicate(state.step ) lowerCamelCase_ : Any =running_loss.item() / i lowerCamelCase_ : Tuple =self.scheduler_fn(state_step - 1 ) lowerCamelCase_ : Tuple =self.evaluate(snake_case__ , snake_case__ ) lowerCamelCase_ : Optional[Any] ={ "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(snake_case__ ) ) self.logger.log(snake_case__ , commit=snake_case__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=snake_case__ ) def UpperCAmelCase__ ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): lowerCamelCase_ : Union[str, Any] =get_batched_dataset(snake_case__ , self.args.batch_size ) lowerCamelCase_ : str =len(snake_case__ ) // self.args.batch_size lowerCamelCase_ : int =jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase_ : Any =0 for batch in tqdm(snake_case__ , total=snake_case__ , desc="Evaluating ... " ): lowerCamelCase_ : str =self.data_collator(snake_case__ ) lowerCamelCase_ : Tuple =self.val_step_fn(snake_case__ , **snake_case__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def UpperCAmelCase__ ( self : List[str] , snake_case__ : str , snake_case__ : Any ): lowerCamelCase_ : int =jax_utils.unreplicate(snake_case__ ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... " ) self.model_save_fn(snake_case__ , params=state.params ) with open(os.path.join(snake_case__ , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(snake_case__ , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(snake_case__ , "data_collator.joblib" ) ) with open(os.path.join(snake_case__ , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , snake_case__ ) print("DONE" ) def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ) -> Dict: print(F"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(lowerCamelCase__ , "flax_model.msgpack" ) , "rb" ) as f: lowerCamelCase_ : List[Any] =from_bytes(state.params , f.read() ) with open(os.path.join(lowerCamelCase__ , "opt_state.msgpack" ) , "rb" ) as f: lowerCamelCase_ : Tuple =from_bytes(state.opt_state , f.read() ) lowerCamelCase_ : Union[str, Any] =joblib.load(os.path.join(lowerCamelCase__ , "args.joblib" ) ) lowerCamelCase_ : str =joblib.load(os.path.join(lowerCamelCase__ , "data_collator.joblib" ) ) with open(os.path.join(lowerCamelCase__ , "training_state.json" ) , "r" ) as f: lowerCamelCase_ : Union[str, Any] =json.load(lowerCamelCase__ ) lowerCamelCase_ : str =training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] ) -> str: lowerCamelCase_ : Tuple =num_train_steps - warmup_steps lowerCamelCase_ : Any =optax.linear_schedule(init_value=lowerCamelCase__ , end_value=lowerCamelCase__ , transition_steps=lowerCamelCase__ ) lowerCamelCase_ : int =optax.linear_schedule(init_value=lowerCamelCase__ , end_value=1e-7 , transition_steps=lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str] ) -> List[str]: def weight_decay_mask(lowerCamelCase__ : List[Any] ): lowerCamelCase_ : Any =traverse_util.flatten_dict(lowerCamelCase__ ) lowerCamelCase_ : Tuple ={k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =scheduler_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : List[str] =optax.adamw(learning_rate=lowerCamelCase__ , weight_decay=lowerCamelCase__ , mask=lowerCamelCase__ ) return tx, lr
244
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = get_activation('''swish''' ) self.assertIsInstance(_UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase( self ): _UpperCAmelCase = get_activation('''silu''' ) self.assertIsInstance(_UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase( self ): _UpperCAmelCase = get_activation('''mish''' ) self.assertIsInstance(_UpperCamelCase , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase( self ): _UpperCAmelCase = get_activation('''gelu''' ) self.assertIsInstance(_UpperCamelCase , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
32
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ = logging.get_logger(__name__) A__ = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : Optional[Any] = "layoutlmv3" def __init__( self: Tuple , __UpperCamelCase: List[Any]=5_02_65 , __UpperCamelCase: Union[str, Any]=7_68 , __UpperCamelCase: Optional[int]=12 , __UpperCamelCase: List[str]=12 , __UpperCamelCase: List[Any]=30_72 , __UpperCamelCase: Union[str, Any]="gelu" , __UpperCamelCase: Union[str, Any]=0.1 , __UpperCamelCase: Union[str, Any]=0.1 , __UpperCamelCase: List[Any]=5_12 , __UpperCamelCase: int=2 , __UpperCamelCase: Union[str, Any]=0.02 , __UpperCamelCase: Dict=1E-5 , __UpperCamelCase: int=1 , __UpperCamelCase: Dict=0 , __UpperCamelCase: Tuple=2 , __UpperCamelCase: Any=10_24 , __UpperCamelCase: Union[str, Any]=1_28 , __UpperCamelCase: Dict=1_28 , __UpperCamelCase: Any=True , __UpperCamelCase: Any=32 , __UpperCamelCase: int=1_28 , __UpperCamelCase: List[str]=64 , __UpperCamelCase: Union[str, Any]=2_56 , __UpperCamelCase: int=True , __UpperCamelCase: Optional[int]=True , __UpperCamelCase: Union[str, Any]=True , __UpperCamelCase: Union[str, Any]=2_24 , __UpperCamelCase: Tuple=3 , __UpperCamelCase: Any=16 , __UpperCamelCase: List[Any]=None , **__UpperCamelCase: str , ): '''simple docstring''' super().__init__( vocab_size=__UpperCamelCase , hidden_size=__UpperCamelCase , num_hidden_layers=__UpperCamelCase , num_attention_heads=__UpperCamelCase , intermediate_size=__UpperCamelCase , hidden_act=__UpperCamelCase , hidden_dropout_prob=__UpperCamelCase , attention_probs_dropout_prob=__UpperCamelCase , max_position_embeddings=__UpperCamelCase , type_vocab_size=__UpperCamelCase , initializer_range=__UpperCamelCase , layer_norm_eps=__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) __magic_name__ = max_ad_position_embeddings __magic_name__ = coordinate_size __magic_name__ = shape_size __magic_name__ = has_relative_attention_bias __magic_name__ = rel_pos_bins __magic_name__ = max_rel_pos __magic_name__ = has_spatial_attention_bias __magic_name__ = rel_ad_pos_bins __magic_name__ = max_rel_ad_pos __magic_name__ = text_embed __magic_name__ = visual_embed __magic_name__ = input_size __magic_name__ = num_channels __magic_name__ = patch_size __magic_name__ = classifier_dropout class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : Any = version.parse("1.12" ) @property def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self: int ): '''simple docstring''' return 1E-5 @property def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' return 12 def _SCREAMING_SNAKE_CASE ( self: Tuple , __UpperCamelCase: "ProcessorMixin" , __UpperCamelCase: int = -1 , __UpperCamelCase: int = -1 , __UpperCamelCase: bool = False , __UpperCamelCase: Optional["TensorType"] = None , __UpperCamelCase: int = 3 , __UpperCamelCase: int = 40 , __UpperCamelCase: int = 40 , ): '''simple docstring''' setattr(processor.image_processor , 'apply_ocr' , __UpperCamelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __magic_name__ = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __magic_name__ = processor.tokenizer.num_special_tokens_to_add(__UpperCamelCase ) __magic_name__ = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence __magic_name__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __magic_name__ = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __magic_name__ = self._generate_dummy_images(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __magic_name__ = dict( processor( __UpperCamelCase , text=__UpperCamelCase , boxes=__UpperCamelCase , return_tensors=__UpperCamelCase , ) ) return inputs
719
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = "time_series_transformer" _lowercase : Dict = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self: str , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: str = "student_t" , __UpperCamelCase: str = "nll" , __UpperCamelCase: int = 1 , __UpperCamelCase: List[int] = [1, 2, 3, 4, 5, 6, 7] , __UpperCamelCase: Optional[Union[str, bool]] = "mean" , __UpperCamelCase: int = 0 , __UpperCamelCase: int = 0 , __UpperCamelCase: int = 0 , __UpperCamelCase: int = 0 , __UpperCamelCase: Optional[List[int]] = None , __UpperCamelCase: Optional[List[int]] = None , __UpperCamelCase: int = 32 , __UpperCamelCase: int = 32 , __UpperCamelCase: int = 2 , __UpperCamelCase: int = 2 , __UpperCamelCase: int = 2 , __UpperCamelCase: int = 2 , __UpperCamelCase: bool = True , __UpperCamelCase: str = "gelu" , __UpperCamelCase: int = 64 , __UpperCamelCase: float = 0.1 , __UpperCamelCase: float = 0.1 , __UpperCamelCase: float = 0.1 , __UpperCamelCase: float = 0.1 , __UpperCamelCase: float = 0.1 , __UpperCamelCase: int = 1_00 , __UpperCamelCase: float = 0.02 , __UpperCamelCase: Any=True , **__UpperCamelCase: Optional[Any] , ): '''simple docstring''' __magic_name__ = prediction_length __magic_name__ = context_length or prediction_length __magic_name__ = distribution_output __magic_name__ = loss __magic_name__ = input_size __magic_name__ = num_time_features __magic_name__ = lags_sequence __magic_name__ = scaling __magic_name__ = num_dynamic_real_features __magic_name__ = num_static_real_features __magic_name__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__UpperCamelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __magic_name__ = cardinality else: __magic_name__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__UpperCamelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __magic_name__ = embedding_dimension else: __magic_name__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __magic_name__ = num_parallel_samples # Transformer architecture configuration __magic_name__ = input_size * len(__UpperCamelCase ) + self._number_of_features __magic_name__ = d_model __magic_name__ = encoder_attention_heads __magic_name__ = decoder_attention_heads __magic_name__ = encoder_ffn_dim __magic_name__ = decoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = decoder_layers __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = use_cache super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def _SCREAMING_SNAKE_CASE ( self: str ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
184
0