code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __A : Any = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def __lowerCAmelCase( ) -> Any: """simple docstring""" _A = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _A = get_sagemaker_input() else: _A = get_cluster_input() return config def __lowerCAmelCase( _SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: _A = subparsers.add_parser('config' , description=_SCREAMING_SNAKE_CASE ) else: _A = argparse.ArgumentParser('Accelerate config command' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '--config_file' , default=_SCREAMING_SNAKE_CASE , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" _A = get_user_input() if args.config_file is not None: _A = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _A = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(F"accelerate configuration saved at {config_file}" ) def __lowerCAmelCase( ) -> Union[str, Any]: """simple docstring""" _A = config_command_parser() _A = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
27
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase = logging.get_logger(__name__) _lowercase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _lowercase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _lowercase = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase__ ( ) ->Any: __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(__magic_name__ ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(__magic_name__ ) for n in cs] return dict(zip(__magic_name__ , __magic_name__ ) ) def lowerCAmelCase__ ( __magic_name__ ) ->Tuple: __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class __a ( __a ): '''simple docstring''' _lowerCamelCase : List[str] = VOCAB_FILES_NAMES _lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Dict = ["""input_ids""", """attention_mask"""] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , **_lowerCamelCase , ) -> int: '''simple docstring''' __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else bos_token __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else eos_token __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else sep_token __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else cls_token __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else unk_token __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(_lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> int: '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(_lowerCamelCase ) __lowercase = get_pairs(_lowerCamelCase ) if not pairs: return token while True: __lowercase = min(_lowerCamelCase , key=lambda _lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(_lowerCamelCase ): try: __lowercase = word.index(_lowerCamelCase , _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(_lowerCamelCase ) __lowercase = new_word if len(_lowerCamelCase ) == 1: break else: __lowercase = get_pairs(_lowerCamelCase ) __lowercase = " ".join(_lowerCamelCase ) __lowercase = word return word def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , _lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCamelCase ).split(" " ) ) return bpe_tokens def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> Tuple: '''simple docstring''' return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> str: '''simple docstring''' return self.decoder.get(_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = "".join(_lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowercase = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + "\n" ) __lowercase = 0 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(_lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple: '''simple docstring''' return token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(_lowerCamelCase ) __lowercase = " ".join(_lowerCamelCase ) __lowercase = self.encode(_lowerCamelCase ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
118
0
import math import unittest def a ( _UpperCAmelCase : int ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : Tuple ): '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(a_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
241
from __future__ import annotations def a ( _UpperCAmelCase : list[float] ): '''simple docstring''' if len(_UpperCAmelCase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) __UpperCAmelCase : Optional[int] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
241
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : List[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase_ : '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict=13 , UpperCAmelCase__ : Dict=7 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : str=99 , UpperCAmelCase__ : Union[str, Any]=32 , UpperCAmelCase__ : Tuple=5 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=37 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Tuple=50 , UpperCAmelCase__ : Optional[int]=0.02 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : List[str]=None , ) ->Union[str, Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = use_labels A__ = scope def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self : int) ->int: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.prepare_config_and_inputs() A__ = True A__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[Any] , ) ->Dict: '''simple docstring''' A__ = BertGenerationEncoder(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__) A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , **UpperCAmelCase__ : Optional[Any] , ) ->Dict: '''simple docstring''' A__ = True A__ = BertGenerationEncoder(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[int] , ) ->Any: '''simple docstring''' A__ = True A__ = True A__ = BertGenerationDecoder(config=UpperCAmelCase__).to(UpperCAmelCase__).eval() # first forward pass A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size) A__ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] , dim=-1) A__ = torch.cat([input_mask, next_mask] , dim=-1) A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0] A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0] # select random slice A__ = ids_tensor((1,) , output_from_past.shape[-1]).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3)) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , *UpperCAmelCase__ : List[str] , ) ->List[Any]: '''simple docstring''' A__ = BertGenerationDecoder(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ , A__ , A__ , A__ = self.prepare_config_and_inputs() A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () UpperCAmelCase__ = (BertGenerationDecoder,) if is_torch_available() else () UpperCAmelCase__ = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' A__ = BertGenerationEncoderTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: '''simple docstring''' A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() A__ = '''bert''' self.model_tester.create_and_check_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() A__ = None self.model_tester.create_and_check_model_as_decoder( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]: '''simple docstring''' A__ = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''') self.assertIsNotNone(UpperCAmelCase__) @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: '''simple docstring''' A__ = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''') A__ = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]]) with torch.no_grad(): A__ = model(UpperCAmelCase__)[0] A__ = torch.Size([1, 8, 1_024]) self.assertEqual(output.shape , UpperCAmelCase__) A__ = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4)) @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''') A__ = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]]) with torch.no_grad(): A__ = model(UpperCAmelCase__)[0] A__ = torch.Size([1, 8, 50_358]) self.assertEqual(output.shape , UpperCAmelCase__) A__ = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4))
87
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] ="roc_bert" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict=3_05_22 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7_68 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=30_72 , SCREAMING_SNAKE_CASE__ : int="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : Dict=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : int="absolute" , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=9_10 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_12 , SCREAMING_SNAKE_CASE__ : int=2_48_58 , SCREAMING_SNAKE_CASE__ : Tuple=True , **SCREAMING_SNAKE_CASE__ : List[Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = type_vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = use_cache UpperCamelCase = enable_pronunciation UpperCamelCase = enable_shape UpperCamelCase = pronunciation_embed_dim UpperCamelCase = pronunciation_vocab_size UpperCamelCase = shape_embed_dim UpperCamelCase = shape_vocab_size UpperCamelCase = concat_input UpperCamelCase = position_embedding_type UpperCamelCase = classifier_dropout super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
170
0
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCamelCase : def __init__( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Any=1_4 , __UpperCAmelCase : Any=7 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : int=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Optional[Any]=9_9 , __UpperCAmelCase : int=3_2 , __UpperCAmelCase : Optional[Any]=5 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : Optional[Any]=3_7 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : str=5_1_2 , __UpperCAmelCase : Optional[int]=1_6 , __UpperCAmelCase : int=2 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : List[Any]=None , ) -> List[str]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = use_mc_token_ids SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = self.vocab_size - 1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_mc_token_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() SCREAMING_SNAKE_CASE__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , *__UpperCAmelCase : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = CTRLModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , head_mask=__UpperCAmelCase ) model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , *__UpperCAmelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = CTRLLMHeadModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , *__UpperCAmelCase : Any ) -> Any: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = CTRLForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowerCamelCase (A__ ,A__ ,A__ ,unittest.TestCase ): lowerCamelCase__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCamelCase__ : Tuple = (CTRLLMHeadModel,) if is_torch_available() else () lowerCamelCase__ : Any = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : Tuple = True lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Dict = False def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ) -> Optional[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = CTRLModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__UpperCAmelCase , n_embd=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : int ) -> str: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__UpperCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: pass @slow def SCREAMING_SNAKE_CASE ( self : int ) -> int: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = CTRLModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] , dtype=torch.long , device=__UpperCAmelCase ) # Legal the president is SCREAMING_SNAKE_CASE__ = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a SCREAMING_SNAKE_CASE__ = model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase ) self.assertListEqual(output_ids[0].tolist() , __UpperCAmelCase )
196
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def A ( snake_case__ ): '''simple docstring''' def decorator(snake_case__ ): SCREAMING_SNAKE_CASE__ = getattr(snake_case__ , """handle_key""" , [] ) handle += [key] setattr(snake_case__ , """handle_key""" , snake_case__ ) return func return decorator def A ( *snake_case__ ): '''simple docstring''' def decorator(snake_case__ ): SCREAMING_SNAKE_CASE__ = getattr(snake_case__ , """handle_key""" , [] ) handle += keys setattr(snake_case__ , """handle_key""" , snake_case__ ) return func return decorator class lowerCamelCase (A__ ): def __new__( cls : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = super().__new__(cls , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if not hasattr(__UpperCAmelCase , """key_handler""" ): setattr(__UpperCAmelCase , """key_handler""" , {} ) setattr(__UpperCAmelCase , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): SCREAMING_SNAKE_CASE__ = getattr(__UpperCAmelCase , """handle_key""" , [] ) for key in handled_keys: SCREAMING_SNAKE_CASE__ = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE ( cls : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = get_character() if char != KEYMAP["undefined"]: SCREAMING_SNAKE_CASE__ = ord(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = cls.key_handler.get(__UpperCAmelCase ) if handler: SCREAMING_SNAKE_CASE__ = char return handler(cls ) else: return None def A ( cls ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
196
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( __UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ =KandinskyVaaInpaintPipeline lowerCAmelCase__ =['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] lowerCAmelCase__ =[ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] lowerCAmelCase__ =[ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCAmelCase__ =False @property def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" return 32 @property def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return 32 @property def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" return self.time_input_dim @property def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase ( self ) -> int: """simple docstring""" return 100 @property def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Tuple ={ '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case__ : Optional[int] =UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Any =VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Union[str, Any] =self.dummy_unet snake_case__ : Union[str, Any] =self.dummy_movq snake_case__ : List[str] =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__SCREAMING_SNAKE_CASE , ) snake_case__ : int ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> List[Any]: """simple docstring""" snake_case__ : Tuple =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image snake_case__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : str =Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((256, 256) ) # create mask snake_case__ : Any =np.ones((64, 64) , dtype=np.floataa ) snake_case__ : List[str] =0 if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): snake_case__ : Any =torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: snake_case__ : Dict =torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict ={ '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def UpperCAmelCase ( self ) -> str: """simple docstring""" snake_case__ : str ='''cpu''' snake_case__ : Tuple =self.get_dummy_components() snake_case__ : Tuple =self.pipeline_class(**__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : Any =pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Dict =output.images snake_case__ : Union[str, Any] =pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE , )[0] snake_case__ : Optional[Any] =image[0, -3:, -3:, -1] snake_case__ : List[Any] =image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) snake_case__ : List[Any] =np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def UpperCAmelCase ( self ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[Any] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) snake_case__ : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) snake_case__ : Union[str, Any] =np.ones((768, 768) , dtype=np.floataa ) snake_case__ : Union[str, Any] =0 snake_case__ : Any ='''a hat''' snake_case__ : Union[str, Any] =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] =KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) snake_case__ : Optional[int] =pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : int =torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case__ : str =pipe_prior( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() snake_case__ : List[str] =pipeline( image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , image_embeds=__SCREAMING_SNAKE_CASE , negative_image_embeds=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) snake_case__ : int =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
714
def lowercase_ ( SCREAMING_SNAKE_CASE : int = 60_08_51_47_51_43 ): """simple docstring""" try: snake_case__ : Any =int(SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) snake_case__ : Any =1 snake_case__ : List[str] =2 while i * i <= n: while n % i == 0: snake_case__ : Union[str, Any] =i n //= i i += 1 if n > 1: snake_case__ : Any =n return int(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
408
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class A_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__ ( self) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''') _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''google/mt5-small''') _UpperCAmelCase : Union[str, Any] = tokenizer('''Hello there''' , return_tensors='''np''').input_ids _UpperCAmelCase : List[Any] = tokenizer('''Hi I am''' , return_tensors='''np''').input_ids _UpperCAmelCase : Optional[Any] = shift_tokens_right(_A , model.config.pad_token_id , model.config.decoder_start_token_id) _UpperCAmelCase : List[Any] = model(_A , decoder_input_ids=_A).logits _UpperCAmelCase : List[str] = optax.softmax_cross_entropy(_A , onehot(_A , logits.shape[-1])).mean() _UpperCAmelCase : Tuple = -(labels.shape[-1] * loss.item()) _UpperCAmelCase : Tuple = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
485
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class A_ ( __lowercase ): '''simple docstring''' def __init__( self , **_A) -> List[str]: """simple docstring""" super().__init__(**_A) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , _A , **_A) -> str: """simple docstring""" return super().__call__(_A , **_A) def snake_case__ ( self , **_A) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = {} if "candidate_labels" in kwargs: _UpperCAmelCase : Optional[int] = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: _UpperCAmelCase : str = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def snake_case__ ( self , _A , _A=None , _A="This is a photo of {}.") -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = load_image(_A) _UpperCAmelCase : List[Any] = self.image_processor(images=[image] , return_tensors=self.framework) _UpperCAmelCase : Dict = candidate_labels _UpperCAmelCase : int = [hypothesis_template.format(_A) for x in candidate_labels] _UpperCAmelCase : Any = self.tokenizer(_A , return_tensors=self.framework , padding=_A) _UpperCAmelCase : int = [text_inputs] return inputs def snake_case__ ( self , _A) -> str: """simple docstring""" _UpperCAmelCase : int = model_inputs.pop('''candidate_labels''') _UpperCAmelCase : Optional[Any] = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , _A): _UpperCAmelCase : Union[str, Any] = text_inputs[0] else: # Batching case. _UpperCAmelCase : Union[str, Any] = text_inputs[0][0] _UpperCAmelCase : Any = self.model(**_A , **_A) _UpperCAmelCase : Optional[Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def snake_case__ ( self , _A) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = model_outputs.pop('''candidate_labels''') _UpperCAmelCase : List[Any] = model_outputs['''logits'''][0] if self.framework == "pt": _UpperCAmelCase : List[str] = logits.softmax(dim=-1).squeeze(-1) _UpperCAmelCase : List[Any] = probs.tolist() if not isinstance(_A , _A): _UpperCAmelCase : List[Any] = [scores] elif self.framework == "tf": _UpperCAmelCase : Optional[Any] = stable_softmax(_A , axis=-1) _UpperCAmelCase : int = probs.numpy().tolist() else: raise ValueError(f'''Unsupported framework: {self.framework}''') _UpperCAmelCase : str = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_A , _A) , key=lambda _A: -x[0]) ] return result
485
1
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __lowercase : Tuple = logging.get_logger(__name__) __lowercase : Dict = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } __lowercase : Union[str, Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str ): for attribute in key.split('''.''' ): lowerCamelCase_ = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: lowerCamelCase_ = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: lowerCamelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase_ = value elif weight_type == "weight_g": lowerCamelCase_ = value elif weight_type == "weight_v": lowerCamelCase_ = value elif weight_type == "bias": lowerCamelCase_ = value else: lowerCamelCase_ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCamelCase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ): lowerCamelCase_ = [] lowerCamelCase_ = fairseq_model.state_dict() lowerCamelCase_ = hf_model.feature_extractor lowerCamelCase_ = hf_model.adapter for name, value in fairseq_dict.items(): lowerCamelCase_ = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) lowerCamelCase_ = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCamelCase_ = True if "*" in mapped_key: lowerCamelCase_ = name.split(_lowerCamelCase )[0].split('''.''' )[-2] lowerCamelCase_ = mapped_key.replace('''*''' , _lowerCamelCase ) if "weight_g" in name: lowerCamelCase_ = '''weight_g''' elif "weight_v" in name: lowerCamelCase_ = '''weight_v''' elif "bias" in name: lowerCamelCase_ = '''bias''' elif "weight" in name: lowerCamelCase_ = '''weight''' else: lowerCamelCase_ = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str ): lowerCamelCase_ = full_name.split('''conv_layers.''' )[-1] lowerCamelCase_ = name.split('''.''' ) lowerCamelCase_ = int(items[0] ) lowerCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase_ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase_ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase_ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase_ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Any ): lowerCamelCase_ = full_name.split('''adaptor.''' )[-1] lowerCamelCase_ = name.split('''.''' ) if items[1].isdigit(): lowerCamelCase_ = int(items[1] ) else: lowerCamelCase_ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" lowerCamelCase_ = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" lowerCamelCase_ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" lowerCamelCase_ = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" lowerCamelCase_ = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" lowerCamelCase_ = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" lowerCamelCase_ = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : List[str] ): lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) lowerCamelCase_ = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , ): lowerCamelCase_ = WavaVecaConfig.from_pretrained( _lowerCamelCase , add_adapter=_lowerCamelCase , adapter_stride=_lowerCamelCase , adapter_kernel_size=_lowerCamelCase , use_auth_token=_lowerCamelCase , output_hidden_size=_lowerCamelCase , ) lowerCamelCase_ = MBartConfig.from_pretrained(_lowerCamelCase ) # load model lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) lowerCamelCase_ = model[0].eval() # load feature extractor lowerCamelCase_ = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase , use_auth_token=_lowerCamelCase ) # set weights for wav2vec2 encoder lowerCamelCase_ = WavaVecaModel(_lowerCamelCase ) recursively_load_weights_wavaveca(model.encoder , _lowerCamelCase ) # load decoder weights lowerCamelCase_ = MBartForCausalLM(_lowerCamelCase ) lowerCamelCase_ , lowerCamelCase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCamelCase ) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) lowerCamelCase_ = SpeechEncoderDecoderModel(encoder=_lowerCamelCase , decoder=_lowerCamelCase ) lowerCamelCase_ = False lowerCamelCase_ = MBartaaTokenizer(_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) lowerCamelCase_ = hf_wavavec.config.to_dict() lowerCamelCase_ = tokenizer.pad_token_id lowerCamelCase_ = tokenizer.bos_token_id lowerCamelCase_ = tokenizer.eos_token_id lowerCamelCase_ = '''mbart50''' lowerCamelCase_ = '''wav2vec2''' lowerCamelCase_ = tokenizer.eos_token_id lowerCamelCase_ = 2_5_0_0_0_4 lowerCamelCase_ = tokenizer.eos_token_id lowerCamelCase_ = SpeechEncoderDecoderConfig.from_dict(_lowerCamelCase ) hf_wavavec.save_pretrained(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1_0_2_4, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=2_5_0_0_0_4, type=int, help="""`decoder_start_token_id` of model config""") __lowercase : Optional[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
66
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __lowercase :Tuple = JukeboxTokenizer __lowercase :Optional[Any] = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' import torch lowerCamelCase_ = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) lowerCamelCase_ = tokenizer(**self.metas )['''input_ids'''] # fmt: off lowerCamelCase_ = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' import torch lowerCamelCase_ = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) lowerCamelCase_ = tokenizer(**self.metas )['''input_ids'''] # fmt: off lowerCamelCase_ = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
66
1
from __future__ import annotations from fractions import Fraction def __lowerCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> bool: return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def __lowerCAmelCase ( UpperCAmelCase__ : int ) -> list[str]: lowerCamelCase_ = [] lowerCamelCase_ = 1_1 lowerCamelCase_ = int("""1""" + """0""" * digit_len ) for num in range(UpperCAmelCase__ , UpperCAmelCase__ ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(UpperCAmelCase__ , UpperCAmelCase__ ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 lowerCamelCase_ = 1_0 return solutions def __lowerCAmelCase ( UpperCAmelCase__ : int = 2 ) -> int: lowerCamelCase_ = 1.0 for fraction in fraction_list(UpperCAmelCase__ ): lowerCamelCase_ = Fraction(UpperCAmelCase__ ) result *= frac.denominator / frac.numerator return int(UpperCAmelCase__ ) if __name__ == "__main__": print(solution())
272
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : List[Any] ): torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) lowerCamelCase_ = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) lowerCamelCase_ = CLIPTextModel(__UpperCamelCase ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any=0 ): lowerCamelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert("""RGB""" ) if str(__UpperCamelCase ).startswith("""mps""" ): lowerCamelCase_ = torch.manual_seed(__UpperCamelCase ) else: lowerCamelCase_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) lowerCamelCase_ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Dict ): lowerCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = sd_pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Dict ): lowerCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = """french fries""" lowerCamelCase_ = sd_pipe(**__UpperCamelCase , negative_prompt=__UpperCamelCase ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = [inputs["""prompt"""]] * 2 lowerCamelCase_ = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 lowerCamelCase_ = torch.from_numpy(__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) lowerCamelCase_ = image / 2 + 0.5 lowerCamelCase_ = image.permute(0 , 3 , 1 , 2 ) lowerCamelCase_ = image.repeat(2 , 1 , 1 , 1 ) lowerCamelCase_ = sd_pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) lowerCamelCase_ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Dict ): lowerCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = sd_pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = [round(__UpperCamelCase , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(__UpperCamelCase ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = VaeImageProcessor(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase ) lowerCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = pipe(**self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type="""pt""" ) )[0] lowerCamelCase_ = components["""vae"""] lowerCamelCase_ = self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowerCamelCase_ = vae.encode(inputs[image_param] ).latent_dist.mode() lowerCamelCase_ = pipe(**__UpperCamelCase )[0] lowerCamelCase_ = np.abs(out - out_latents_inputs ).max() self.assertLess(__UpperCamelCase , 1E-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class __A( unittest.TestCase ): def lowercase__ ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] , __UpperCamelCase : Union[str, Any]=0 ): lowerCamelCase_ = torch.manual_seed(__UpperCamelCase ) lowerCamelCase_ = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) lowerCamelCase_ = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase ) lowerCamelCase_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : List[Any] ): lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase ) lowerCamelCase_ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): lowerCamelCase_ = 0 def callback_fn(__UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor ) -> None: lowerCamelCase_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCamelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) lowerCamelCase_ = latents[0, -3:, -3:, -1] lowerCamelCase_ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowerCamelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) lowerCamelCase_ = latents[0, -3:, -3:, -1] lowerCamelCase_ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowerCamelCase_ = False lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() pipe(**__UpperCamelCase , callback=__UpperCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase__ ( self : int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**__UpperCamelCase ) lowerCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def lowercase__ ( self : Tuple ): lowerCamelCase_ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ = inputs["""image"""].resize((5_0_4, 5_0_4) ) lowerCamelCase_ = """timbrooks/instruct-pix2pix""" lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = pipe(**__UpperCamelCase ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) lowerCamelCase_ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
272
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''OwlViTFeatureExtractor'''] _SCREAMING_SNAKE_CASE = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase_ (__a : List[Any] , __a : str ): """simple docstring""" _a : str = torch.load(__a , map_location='cpu' ) _a : Optional[Any] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository _a : Dict = {} for k, v in state_dict.items(): if "pred_layer" in k: _a : int = v else: _a : Union[str, Any] = v _a : Any = chkpt['''params'''] _a : Tuple = {n: v for n, v in config.items() if not isinstance(__a , (torch.FloatTensor, numpy.ndarray) )} _a : Union[str, Any] = chkpt['''dico_word2id'''] _a : Optional[int] = {s + '''</w>''' if s.find('@@' ) == -1 and i > 1_3 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model _a : Optional[Any] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME _a : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME _a : List[str] = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(__a , __a ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__a , indent=2 ) + '\n' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__a , indent=2 ) + '\n' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
229
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=() , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Dict="no" , SCREAMING_SNAKE_CASE : int="29500" ): '''simple docstring''' __lowerCamelCase : Optional[int] =False __lowerCamelCase : Tuple =False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): __lowerCamelCase : Optional[int] =True elif "IPython" in sys.modules: __lowerCamelCase : int ='''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: __lowerCamelCase : str =PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , SCREAMING_SNAKE_CASE ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: __lowerCamelCase : int =8 __lowerCamelCase : Optional[Any] =PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type='''TPU''' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*SCREAMING_SNAKE_CASE ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE , master_addr='''127.0.01''' , master_port=SCREAMING_SNAKE_CASE , mixed_precision=SCREAMING_SNAKE_CASE ): __lowerCamelCase : List[str] =PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type='''MULTI_GPU''' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): __lowerCamelCase : Optional[Any] ='''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int]=() , SCREAMING_SNAKE_CASE : Optional[Any]=2 ): '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): __lowerCamelCase : Tuple =PrepareForLaunch(SCREAMING_SNAKE_CASE , debug=SCREAMING_SNAKE_CASE ) start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method='''fork''' )
179
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCamelCase__ = numpy.array([0, 0]) lowerCamelCase__ = numpy.array([0.5, 0.8_660_254]) lowerCamelCase__ = numpy.array([1, 0]) lowerCamelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def A(__a: list[numpy.ndarray] , __a: int ): lowerCAmelCase_ = initial_vectors for _ in range(__a ): lowerCAmelCase_ = iteration_step(__a ) return vectors def A(__a: list[numpy.ndarray] ): lowerCAmelCase_ = [] for i, start_vector in enumerate(vectors[:-1] ): lowerCAmelCase_ = vectors[i + 1] new_vectors.append(__a ) lowerCAmelCase_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def A(__a: numpy.ndarray , __a: float ): lowerCAmelCase_ = numpy.radians(__a ) lowerCAmelCase_ , lowerCAmelCase_ = numpy.cos(__a ), numpy.sin(__a ) lowerCAmelCase_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__a , __a ) def A(__a: list[numpy.ndarray] ): lowerCAmelCase_ = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowerCAmelCase_ , lowerCAmelCase_ = zip(*__a ) plt.plot(__a , __a ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
715
def A(__a: int ): lowerCAmelCase_ = abs(__a ) lowerCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def A(__a: int ): lowerCAmelCase_ = abs(__a ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def A(__a: int ): return sum(int(__a ) for c in str(abs(__a ) ) ) def A(): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__a: Callable , __a: int ) -> None: lowerCAmelCase_ = F"{func.__name__}({value})" lowerCAmelCase_ = timeit(F"__main__.{call}" , setup="import __main__" ) print(F"{call:56} = {func(__a )} -- {timing:.4f} seconds" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__a , __a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
226
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __A : Dict = get_logger(__name__) __A : Tuple = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class _SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(__lowerCamelCase ) def __call__( self : Union[str, Any] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(__lowerCamelCase ) def __call__( self : List[Any] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @add_start_docstrings(__lowerCamelCase ) def __call__( self : Optional[Any] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int , **__lowerCamelCase : Optional[Any] ): for processor in self: SCREAMING_SNAKE_CASE = inspect.signature(processor.__call__ ).parameters if len(__lowerCamelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f"Make sure that all the required parameters: {list(function_args.keys() )} for " f"{processor.__class__} are passed to the logits processor." ) SCREAMING_SNAKE_CASE = processor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) else: SCREAMING_SNAKE_CASE = processor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Tuple , __lowerCamelCase : float ): if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not (temperature > 0): raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}" ) SCREAMING_SNAKE_CASE = temperature def __call__( self : Any , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = scores / self.temperature return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : float , __lowerCamelCase : float = -float("Inf" ) , __lowerCamelCase : int = 1 ): if not isinstance(__lowerCamelCase , __lowerCamelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}" ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or (min_tokens_to_keep < 1): raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" ) SCREAMING_SNAKE_CASE = top_p SCREAMING_SNAKE_CASE = filter_value SCREAMING_SNAKE_CASE = min_tokens_to_keep def __call__( self : Tuple , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = lax.top_k(__lowerCamelCase , scores.shape[-1] ) SCREAMING_SNAKE_CASE = jnp.full_like(__lowerCamelCase , self.filter_value ) SCREAMING_SNAKE_CASE = jax.nn.softmax(__lowerCamelCase , axis=-1 ).cumsum(axis=-1 ) SCREAMING_SNAKE_CASE = cumulative_probs < self.top_p # include the token that is higher than top_p as well SCREAMING_SNAKE_CASE = jnp.roll(__lowerCamelCase , 1 ) score_mask |= score_mask.at[:, 0].set(__lowerCamelCase ) # min tokens to keep SCREAMING_SNAKE_CASE = score_mask.at[:, : self.min_tokens_to_keep].set(__lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = jax.lax.sort_key_val(__lowerCamelCase , __lowerCamelCase )[-1] return next_scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : float = -float("Inf" ) , __lowerCamelCase : int = 1 ): if not isinstance(__lowerCamelCase , __lowerCamelCase ) or top_k <= 0: raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}" ) SCREAMING_SNAKE_CASE = max(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = filter_value def __call__( self : Union[str, Any] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = scores.shape SCREAMING_SNAKE_CASE = jnp.full(batch_size * vocab_size , self.filter_value ) SCREAMING_SNAKE_CASE = min(self.top_k , scores.shape[-1] ) # Safety check SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = lax.top_k(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.broadcast_to((jnp.arange(__lowerCamelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() SCREAMING_SNAKE_CASE = topk_scores.flatten() SCREAMING_SNAKE_CASE = topk_indices.flatten() + shift SCREAMING_SNAKE_CASE = next_scores_flat.at[topk_indices_flat].set(__lowerCamelCase ) SCREAMING_SNAKE_CASE = next_scores_flat.reshape(__lowerCamelCase , __lowerCamelCase ) return next_scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = bos_token_id def __call__( self : str , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE = 1 - jnp.bool_(cur_len - 1 ) SCREAMING_SNAKE_CASE = jnp.where(__lowerCamelCase , new_scores.at[:, self.bos_token_id].set(0 ) , __lowerCamelCase ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = eos_token_id def __call__( self : List[str] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE = 1 - jnp.bool_(cur_len - self.max_length + 1 ) SCREAMING_SNAKE_CASE = jnp.where(__lowerCamelCase , new_scores.at[:, self.eos_token_id].set(0 ) , __lowerCamelCase ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ) or min_length < 0: raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}" ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or eos_token_id < 0: raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}" ) SCREAMING_SNAKE_CASE = min_length SCREAMING_SNAKE_CASE = eos_token_id def __call__( self : List[str] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): # create boolean flag to decide if min length penalty should be applied SCREAMING_SNAKE_CASE = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) SCREAMING_SNAKE_CASE = jnp.where(__lowerCamelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , __lowerCamelCase ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = list(__lowerCamelCase ) SCREAMING_SNAKE_CASE = begin_index def __call__( self : Any , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = 1 - jnp.bool_(cur_len - self.begin_index ) SCREAMING_SNAKE_CASE = jnp.where(__lowerCamelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , __lowerCamelCase ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : list ): SCREAMING_SNAKE_CASE = list(__lowerCamelCase ) def __call__( self : List[str] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = dict(__lowerCamelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. SCREAMING_SNAKE_CASE = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: SCREAMING_SNAKE_CASE = force_token_array.at[index].set(__lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.intaa(__lowerCamelCase ) def __call__( self : str , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): def _force_token(__lowerCamelCase : str ): SCREAMING_SNAKE_CASE = scores.shape[0] SCREAMING_SNAKE_CASE = self.force_token_array[generation_idx] SCREAMING_SNAKE_CASE = jnp.ones_like(__lowerCamelCase , dtype=scores.dtype ) * -float("inf" ) SCREAMING_SNAKE_CASE = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) SCREAMING_SNAKE_CASE = lax.dynamic_update_slice(__lowerCamelCase , __lowerCamelCase , (0, current_token) ) return new_scores SCREAMING_SNAKE_CASE = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__lowerCamelCase ) , lambda: scores , ) , ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = generate_config.eos_token_id SCREAMING_SNAKE_CASE = generate_config.no_timestamps_token_id SCREAMING_SNAKE_CASE = generate_config.no_timestamps_token_id + 1 SCREAMING_SNAKE_CASE = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__lowerCamelCase , "max_initial_timestamp_index" ): SCREAMING_SNAKE_CASE = generate_config.max_initial_timestamp_index else: SCREAMING_SNAKE_CASE = model_config.vocab_size if self.max_initial_timestamp_index is None: SCREAMING_SNAKE_CASE = model_config.vocab_size def __call__( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int ): # suppress <|notimestamps|> which is handled by without_timestamps SCREAMING_SNAKE_CASE = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(__lowerCamelCase : Tuple , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = jnp.where((cur_len - self.begin_index) >= 1 , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __lowerCamelCase , ) SCREAMING_SNAKE_CASE = jnp.where((cur_len - self.begin_index) < 2 , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __lowerCamelCase , __lowerCamelCase , ) return jnp.where( __lowerCamelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , __lowerCamelCase , ) SCREAMING_SNAKE_CASE = jax.vmap(__lowerCamelCase )(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where(cur_len == self.begin_index , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __lowerCamelCase , ) SCREAMING_SNAKE_CASE = self.timestamp_begin + self.max_initial_timestamp_index SCREAMING_SNAKE_CASE = jnp.where( __lowerCamelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , __lowerCamelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp SCREAMING_SNAKE_CASE = jax.nn.log_softmax(__lowerCamelCase , axis=-1 ) def handle_cumulative_probs(__lowerCamelCase : Tuple , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) SCREAMING_SNAKE_CASE = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , __lowerCamelCase , ) SCREAMING_SNAKE_CASE = jax.vmap(__lowerCamelCase )(__lowerCamelCase , __lowerCamelCase ) return scores
16
'''simple docstring''' import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowerCamelCase_ ( unittest.TestCase ): def __lowercase ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int ): """simple docstring""" self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ ) def __lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(lowerCAmelCase__ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = None ops.enable_eager_execution_internal() SCREAMING_SNAKE_CASE : List[Any] = tf.config.list_physical_devices('''CPU''' ) if len(lowerCAmelCase__ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) SCREAMING_SNAKE_CASE : Tuple = tf.config.list_logical_devices(device_type='''CPU''' ) SCREAMING_SNAKE_CASE : List[Any] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): SCREAMING_SNAKE_CASE : Optional[Any] = GradientAccumulator() SCREAMING_SNAKE_CASE : Dict = tf.Variable([4.0, 3.0] ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = create_optimizer(5e-5 , 10 , 5 ) SCREAMING_SNAKE_CASE : List[Any] = tf.Variable([0.0, 0.0] , trainable=lowerCAmelCase__ ) def accumulate_on_replica(lowerCAmelCase__ : List[str] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ): with strategy.scope(): SCREAMING_SNAKE_CASE : Optional[Any] = strategy.experimental_local_results(lowerCAmelCase__ ) local_variables[0].assign(lowerCAmelCase__ ) local_variables[1].assign(lowerCAmelCase__ ) strategy.run(lowerCAmelCase__ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(lowerCAmelCase__ ) def _check_local_values(lowerCAmelCase__ : Dict , lowerCAmelCase__ : int ): SCREAMING_SNAKE_CASE : Tuple = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , lowerCAmelCase__ , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , lowerCAmelCase__ , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
527
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase ( unittest.TestCase ): def __init__( self : Union[str, Any] , _lowercase : List[Any] , _lowercase : int=7 , _lowercase : Dict=3 , _lowercase : List[str]=18 , _lowercase : Any=30 , _lowercase : Tuple=4_00 , _lowercase : Union[str, Any]=True , _lowercase : Union[str, Any]=None , _lowercase : Tuple=True , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = size if size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : str = batch_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : Optional[Any] = image_size SCREAMING_SNAKE_CASE__ : str = min_resolution SCREAMING_SNAKE_CASE__ : Optional[Any] = max_resolution SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : Dict = size SCREAMING_SNAKE_CASE__ : List[str] = apply_ocr def lowercase__ ( self : Dict ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowercase ( _A , unittest.TestCase ): lowerCamelCase : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : Dict = LayoutLMvaImageProcessingTester(self ) @property def lowercase__ ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowercase , '''size''' ) ) self.assertTrue(hasattr(_lowercase , '''apply_ocr''' ) ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) SCREAMING_SNAKE_CASE__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : Union[str, Any] ): # Initialize image_processing SCREAMING_SNAKE_CASE__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , _lowercase ) self.assertIsInstance(encoding.boxes , _lowercase ) # Test batched SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowercase__ ( self : Union[str, Any] ): # Initialize image_processing SCREAMING_SNAKE_CASE__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Dict = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowercase__ ( self : int ): # Initialize image_processing SCREAMING_SNAKE_CASE__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : int = image_processing(_lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowercase__ ( self : Dict ): # with apply_OCR = True SCREAMING_SNAKE_CASE__ : str = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE__ : Tuple = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : str = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) SCREAMING_SNAKE_CASE__ : List[Any] = image_processing(_lowercase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE__ : str = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 SCREAMING_SNAKE_CASE__ : Dict = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowercase ) self.assertListEqual(encoding.boxes , _lowercase ) # with apply_OCR = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processing(_lowercase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
713
import mpmath # for roots of unity import numpy as np class lowercase : def __init__( self : Optional[Any] , _lowercase : List[Any]=None , _lowercase : str=None ): # Input as list SCREAMING_SNAKE_CASE__ : int = list(poly_a or [0] )[:] SCREAMING_SNAKE_CASE__ : int = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() SCREAMING_SNAKE_CASE__ : str = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() SCREAMING_SNAKE_CASE__ : Tuple = len(self.polyB ) # Add 0 to make lengths equal a power of 2 SCREAMING_SNAKE_CASE__ : Dict = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform SCREAMING_SNAKE_CASE__ : Union[str, Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product SCREAMING_SNAKE_CASE__ : Any = self.__multiply() def lowercase__ ( self : Optional[int] , _lowercase : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : Dict = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(_lowercase ) <= 1: return dft[0] # SCREAMING_SNAKE_CASE__ : int = self.c_max_length // 2 while next_ncol > 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[] for i in range(_lowercase )] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.root**next_ncol # First half of next step SCREAMING_SNAKE_CASE__ : List[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowercase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step SCREAMING_SNAKE_CASE__ : List[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowercase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : int = new_dft SCREAMING_SNAKE_CASE__ : Any = next_ncol // 2 return dft[0] def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[Any] = self.__dft('''A''' ) SCREAMING_SNAKE_CASE__ : int = self.__dft('''B''' ) SCREAMING_SNAKE_CASE__ : int = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT SCREAMING_SNAKE_CASE__ : Dict = 2 while next_ncol <= self.c_max_length: SCREAMING_SNAKE_CASE__ : Tuple = [[] for i in range(_lowercase )] SCREAMING_SNAKE_CASE__ : Tuple = self.root ** (next_ncol // 2) SCREAMING_SNAKE_CASE__ : Dict = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_inverse_c next_ncol *= 2 # Unpack SCREAMING_SNAKE_CASE__ : str = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): SCREAMING_SNAKE_CASE__ : str = '''A = ''' + ''' + '''.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) SCREAMING_SNAKE_CASE__ : Tuple = '''B = ''' + ''' + '''.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) SCREAMING_SNAKE_CASE__ : List[Any] = '''A*B = ''' + ''' + '''.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return f"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
250
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_ = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] SCREAMING_SNAKE_CASE_ = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] SCREAMING_SNAKE_CASE_ = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): SCREAMING_SNAKE_CASE_ = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
"""simple docstring""" import requests def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Tuple = {"""Content-Type""": """application/json"""} UpperCAmelCase__ : Optional[Any] = requests.post(__UpperCamelCase , json={"""text""": message_body} , headers=__UpperCamelCase ) if response.status_code != 200: UpperCAmelCase__ : Any = ( """Request to slack returned an error """ F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(__UpperCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
65
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __a : List[str] = 6378137.0 __a : int = 6356752.314245 __a : Tuple = 6378137 def _SCREAMING_SNAKE_CASE ( __lowercase : float , __lowercase : float , __lowercase : float , __lowercase : float ) -> float: """simple docstring""" __A = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __A = atan((1 - flattening) * tan(radians(__lowercase ) ) ) __A = atan((1 - flattening) * tan(radians(__lowercase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __A = haversine_distance(__lowercase , __lowercase , __lowercase , __lowercase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __A = (b_lata + b_lata) / 2 __A = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __A = (sin(__lowercase ) ** 2) * (cos(__lowercase ) ** 2) __A = cos(sigma / 2 ) ** 2 __A = (sigma - sin(__lowercase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __A = (cos(__lowercase ) ** 2) * (sin(__lowercase ) ** 2) __A = sin(sigma / 2 ) ** 2 __A = (sigma + sin(__lowercase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
706
__a : List[Any] = 8.3_1_4_4_5_9_8 def _SCREAMING_SNAKE_CASE ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example __a : int = 300 __a : int = 28 __a : int = rms_speed_of_molecule(temperature, molar_mass) print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
199
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A_ : List[Any] = logging.get_logger(__name__) def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Optional[Any]=False , __magic_name__ : Dict=False ) -> Optional[int]: '''simple docstring''' snake_case__ : int = """backbone.""" if is_semantic else """""" snake_case__ : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (f"{prefix}cls_token", """beit.embeddings.cls_token"""), (f"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (f"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (f"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Tuple=False , __magic_name__ : Any=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): snake_case__ : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values snake_case__ : int = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight" ) snake_case__ : List[str] = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias" ) snake_case__ : Any = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias" ) snake_case__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[int] = q_bias snake_case__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : int = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : List[str] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained snake_case__ : Tuple = state_dict.pop(f"{prefix}blocks.{i}.gamma_1" ) snake_case__ : str = state_dict.pop(f"{prefix}blocks.{i}.gamma_2" ) snake_case__ : int = gamma_a snake_case__ : Dict = gamma_a def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Any ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[int] = dct.pop(__magic_name__ ) snake_case__ : str = val def UpperCamelCase__ ( ) -> Dict: '''simple docstring''' snake_case__ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Dict = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any=False ) -> Any: '''simple docstring''' snake_case__ : Any = False if """rvlcdip""" in checkpoint_url else True snake_case__ : Optional[Any] = BeitConfig(use_absolute_position_embeddings=__magic_name__ , use_mask_token=__magic_name__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: snake_case__ : Optional[Any] = 10_24 snake_case__ : Optional[Any] = 40_96 snake_case__ : int = 24 snake_case__ : Tuple = 16 # labels if "rvlcdip" in checkpoint_url: snake_case__ : Union[str, Any] = 16 snake_case__ : Dict = """huggingface/label-files""" snake_case__ : str = """rvlcdip-id2label.json""" snake_case__ : Tuple = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[str] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case__ : int = idalabel snake_case__ : List[str] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys snake_case__ : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location="""cpu""" )["""model"""] snake_case__ : Tuple = create_rename_keys(__magic_name__ , has_lm_head=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , has_lm_head=__magic_name__ ) # load HuggingFace model snake_case__ : str = BeitForMaskedImageModeling(__magic_name__ ) if has_lm_head else BeitForImageClassification(__magic_name__ ) model.eval() model.load_state_dict(__magic_name__ ) # Check outputs on an image snake_case__ : Tuple = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__magic_name__ ) snake_case__ : str = prepare_img() snake_case__ : List[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ) snake_case__ : Dict = encoding["""pixel_values"""] snake_case__ : Union[str, Any] = model(__magic_name__ ) snake_case__ : Optional[int] = outputs.logits # verify logits snake_case__ : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__magic_name__ ), "Shape of logits not as expected" Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: if has_lm_head: snake_case__ : Optional[int] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: snake_case__ : Dict = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(__magic_name__ , __magic_name__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=__magic_name__ , ) model.push_to_hub( repo_path_or_name=Path(__magic_name__ , __magic_name__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=__magic_name__ , ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) A_ : Optional[Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
38
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[int] = logging.get_logger(__name__) def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=False ) -> Tuple: '''simple docstring''' snake_case__ : int = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Tuple=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case__ : int = """""" else: snake_case__ : Dict = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : int = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Optional[int] = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case__ : str = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : str ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = dct.pop(__magic_name__ ) snake_case__ : Dict = val def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int=False ) -> Optional[int]: '''simple docstring''' snake_case__ : int = BitConfig( global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=__magic_name__ , ) snake_case__ : Optional[int] = ViTHybridConfig(backbone_config=__magic_name__ , image_size=3_84 , num_labels=10_00 ) snake_case__ : Union[str, Any] = False # load original model from timm snake_case__ : List[Any] = timm.create_model(__magic_name__ , pretrained=__magic_name__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[int] = timm_model.state_dict() if base_model: remove_classification_head_(__magic_name__ ) snake_case__ : int = create_rename_keys(__magic_name__ , __magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ ) snake_case__ : str = """huggingface/label-files""" snake_case__ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case__ : Dict = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case__ : int = idalabel snake_case__ : str = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ : str = ViTHybridModel(__magic_name__ ).eval() else: snake_case__ : Union[str, Any] = ViTHybridForImageClassification(__magic_name__ ).eval() model.load_state_dict(__magic_name__ ) # create image processor snake_case__ : Optional[Any] = create_transform(**resolve_data_config({} , model=__magic_name__ ) ) snake_case__ : Union[str, Any] = transform.transforms snake_case__ : Tuple = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } snake_case__ : Any = ViTHybridImageProcessor( do_resize=__magic_name__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case__ : Any = prepare_img() snake_case__ : int = transform(__magic_name__ ).unsqueeze(0 ) snake_case__ : List[str] = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(__magic_name__ , __magic_name__ ) # verify logits with torch.no_grad(): snake_case__ : Optional[Any] = model(__magic_name__ ) snake_case__ : Union[str, Any] = outputs.logits print("""Predicted class:""" , logits.argmax(-1 ).item() ) if base_model: snake_case__ : Dict = timm_model.forward_features(__magic_name__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__magic_name__ , outputs.pooler_output , atol=1E-3 ) else: snake_case__ : int = timm_model(__magic_name__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__magic_name__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) A_ : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
38
1
from typing import Any def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): _validation( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) # Creates data structures and fill initial step UpperCamelCase_ = {} UpperCamelCase_ = {} for state in states_space: UpperCamelCase_ = observations_space[0] UpperCamelCase_ = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCamelCase_ = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__lowercase)): UpperCamelCase_ = observations_space[o] UpperCamelCase_ = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCamelCase_ = '' UpperCamelCase_ = -1 for k_state in states_space: UpperCamelCase_ = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCamelCase_ = probability UpperCamelCase_ = k_state # Update probabilities and pointers dicts UpperCamelCase_ = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCamelCase_ = arg_max # The final observation UpperCamelCase_ = observations_space[len(__lowercase) - 1] # argmax for given final observation UpperCamelCase_ = '' UpperCamelCase_ = -1 for k_state in states_space: UpperCamelCase_ = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCamelCase_ = probability UpperCamelCase_ = k_state UpperCamelCase_ = arg_max # Process pointers backwards UpperCamelCase_ = last_state UpperCamelCase_ = [] for o in range(len(__lowercase) - 1 , -1 , -1): result.append(__lowercase) UpperCamelCase_ = pointers[previous, observations_space[o]] result.reverse() return result def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): _validate_not_empty( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) _validate_lists(__lowercase , __lowercase) _validate_dicts( __lowercase , __lowercase , __lowercase) def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError('There\'s an empty parameter') def _snake_case (__lowercase , __lowercase): _validate_list(__lowercase , 'observations_space') _validate_list(__lowercase , 'states_space') def _snake_case (__lowercase , __lowercase): if not isinstance(_object , __lowercase): UpperCamelCase_ = f"""{var_name} must be a list""" raise ValueError(__lowercase) else: for x in _object: if not isinstance(__lowercase , __lowercase): UpperCamelCase_ = f"""{var_name} must be a list of strings""" raise ValueError(__lowercase) def _snake_case (__lowercase , __lowercase , __lowercase , ): _validate_dict(__lowercase , 'initial_probabilities' , __lowercase) _validate_nested_dict(__lowercase , 'transition_probabilities') _validate_nested_dict(__lowercase , 'emission_probabilities') def _snake_case (__lowercase , __lowercase): _validate_dict(_object , __lowercase , __lowercase) for x in _object.values(): _validate_dict(__lowercase , __lowercase , __lowercase , __lowercase) def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase = False): if not isinstance(_object , __lowercase): UpperCamelCase_ = f"""{var_name} must be a dict""" raise ValueError(__lowercase) if not all(isinstance(__lowercase , __lowercase) for x in _object): UpperCamelCase_ = f"""{var_name} all keys must be strings""" raise ValueError(__lowercase) if not all(isinstance(__lowercase , __lowercase) for x in _object.values()): UpperCamelCase_ = 'nested dictionary ' if nested else '' UpperCamelCase_ = f"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__lowercase) if __name__ == "__main__": from doctest import testmod testmod()
618
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures snake_case__ : Any = logging.get_logger(__name__) @dataclass class _a : """simple docstring""" A_ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) A_ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) A_ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) A_ = field( default=UpperCAmelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.task_name.lower() class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """train""" A_ = """dev""" A_ = """test""" class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = Split.train , _UpperCAmelCase = None , ) -> Tuple: warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _UpperCAmelCase , ) UpperCamelCase_ = args UpperCamelCase_ = glue_processors[args.task_name]() UpperCamelCase_ = glue_output_modes[args.task_name] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: UpperCamelCase_ = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file UpperCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) UpperCamelCase_ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1] UpperCamelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase_ = cached_features_file + '.lock' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not args.overwrite_cache: UpperCamelCase_ = time.time() UpperCamelCase_ = torch.load(_UpperCAmelCase ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: UpperCamelCase_ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCamelCase_ = self.processor.get_test_examples(args.data_dir ) else: UpperCamelCase_ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCamelCase_ = examples[:limit_length] UpperCamelCase_ = glue_convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , max_length=args.max_seq_length , label_list=_UpperCAmelCase , output_mode=self.output_mode , ) UpperCamelCase_ = time.time() torch.save(self.features , _UpperCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> List[str]: return len(self.features ) def __getitem__( self , _UpperCAmelCase ) -> InputFeatures: return self.features[i] def _UpperCAmelCase ( self ) -> Tuple: return self.label_list
618
1
'''simple docstring''' def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if not isinstance(UpperCamelCase , UpperCamelCase ): _a = f'Input value of [number={number}] must be an integer' raise TypeError(UpperCamelCase ) if number < 0: return False _a = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
22
'''simple docstring''' from collections.abc import Generator from math import sin def snake_case_ (UpperCamelCase : bytes ): '''simple docstring''' if len(UpperCamelCase ) != 32: raise ValueError('''Input must be of length 32''' ) _a = B'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(UpperCamelCase , '''08x''' )[-8:] _a = B'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def snake_case_ (UpperCamelCase : bytes ): '''simple docstring''' _a = B'''''' for char in message: bit_string += format(UpperCamelCase , '''08b''' ).encode('''utf-8''' ) _a = format(len(UpperCamelCase ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def snake_case_ (UpperCamelCase : bytes ): '''simple docstring''' if len(UpperCamelCase ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(UpperCamelCase ) , 512 ): _a = bit_string[pos : pos + 512] _a = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(UpperCamelCase , '''032b''' ) _a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCamelCase , 2 ) def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' return (a + b) % 2**32 def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def snake_case_ (UpperCamelCase : bytes ): '''simple docstring''' _a = preprocess(UpperCamelCase ) _a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _a = 0X67452301 _a = 0Xefcdab89 _a = 0X98badcfe _a = 0X10325476 _a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCamelCase ): _a = aa _a = ba _a = ca _a = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a = d ^ (b & (c ^ d)) _a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a = c ^ (d & (b ^ c)) _a = (5 * i + 1) % 16 elif i <= 47: _a = b ^ c ^ d _a = (3 * i + 5) % 16 else: _a = c ^ (b | not_aa(UpperCamelCase )) _a = (7 * i) % 16 _a = (f + a + added_consts[i] + block_words[g]) % 2**32 _a = d _a = c _a = b _a = sum_aa(UpperCamelCase , left_rotate_aa(UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total _a = sum_aa(UpperCamelCase , UpperCamelCase ) _a = sum_aa(UpperCamelCase , UpperCamelCase ) _a = sum_aa(UpperCamelCase , UpperCamelCase ) _a = sum_aa(UpperCamelCase , UpperCamelCase ) _a = reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
22
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : int, UpperCamelCase__ : Tuple=1024 ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = [], [] UpperCamelCase__ = list(zip(UpperCamelCase__, UpperCamelCase__ ) ) UpperCamelCase__ , UpperCamelCase__ = sorted_examples[0] def is_too_big(UpperCamelCase__ : int ): return tok(UpperCamelCase__, return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCamelCase__ = new_src + ''' ''' + src UpperCamelCase__ = new_tgt + ''' ''' + tgt if is_too_big(UpperCamelCase__ ) or is_too_big(UpperCamelCase__ ): # cant fit, finalize example finished_src.append(UpperCamelCase__ ) finished_tgt.append(UpperCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ = src, tgt else: # can fit, keep adding UpperCamelCase__ , UpperCamelCase__ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(UpperCamelCase__ ) finished_tgt.append(UpperCamelCase__ ) return finished_src, finished_tgt def lowerCamelCase_ ( UpperCamelCase__ : Tuple, UpperCamelCase__ : Path, UpperCamelCase__ : List[str], UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = Path(UpperCamelCase__ ) save_path.mkdir(exist_ok=UpperCamelCase__ ) for split in ["train"]: UpperCamelCase__ , UpperCamelCase__ = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" UpperCamelCase__ = [x.rstrip() for x in Path(UpperCamelCase__ ).open().readlines()] UpperCamelCase__ = [x.rstrip() for x in Path(UpperCamelCase__ ).open().readlines()] UpperCamelCase__ , UpperCamelCase__ = pack_examples(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) print(F"""packed {split} split from {len(UpperCamelCase__ )} examples -> {len(UpperCamelCase__ )}.""" ) Path(save_path / F"""{split}.source""" ).open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) Path(save_path / F"""{split}.target""" ).open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) for split in ["val", "test"]: UpperCamelCase__ , UpperCamelCase__ = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(UpperCamelCase__, save_path / F"""{split}.source""" ) shutil.copyfile(UpperCamelCase__, save_path / F"""{split}.target""" ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--tok_name''', type=UpperCamelCase__, help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''', type=UpperCamelCase__, default=128 ) parser.add_argument('''--data_dir''', type=UpperCamelCase__ ) parser.add_argument('''--save_path''', type=UpperCamelCase__ ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(UpperCamelCase__, Path(args.data_dir ), args.max_seq_len, args.save_path ) if __name__ == "__main__": packer_cli()
591
import re import string import numpy as np import datasets lowercase = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ lowercase = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ lowercase = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def A_ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def A_ ( self : Optional[int] , _a : Optional[Any] , _a : Optional[int] , _a : str=None , _a : List[Any]=False , _a : Union[str, Any]=False , _a : str=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCamelCase__ = np.array([re.sub(_a , '''''' , _a ) for x in predictions] ) UpperCamelCase__ = np.array([re.sub(_a , '''''' , _a ) for x in references] ) else: UpperCamelCase__ = np.asarray(_a ) UpperCamelCase__ = np.asarray(_a ) if ignore_case: UpperCamelCase__ = np.char.lower(_a ) UpperCamelCase__ = np.char.lower(_a ) if ignore_punctuation: UpperCamelCase__ = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) UpperCamelCase__ = np.char.translate(_a , table=_a ) UpperCamelCase__ = np.char.translate(_a , table=_a ) if ignore_numbers: UpperCamelCase__ = string.digits.maketrans('''''' , '''''' , string.digits ) UpperCamelCase__ = np.char.translate(_a , table=_a ) UpperCamelCase__ = np.char.translate(_a , table=_a ) UpperCamelCase__ = predictions == references return {"exact_match": np.mean(_a ) * 100}
591
1
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = name SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE = weight def __repr__( self : Any ): return f"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def _snake_case ( self : str ): return self.value def _snake_case ( self : Tuple ): return self.name def _snake_case ( self : str ): return self.weight def _snake_case ( self : int ): return self.value / self.weight def __a ( A__ : Optional[Any] , A__ : Optional[int] , A__ : int ): SCREAMING_SNAKE_CASE = [] for i in range(len(UpperCamelCase_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __a ( A__ : int , A__ : List[Any] , A__ : List[Any] ): SCREAMING_SNAKE_CASE = sorted(UpperCamelCase_ , key=UpperCamelCase_ , reverse=UpperCamelCase_ ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0, 0.0 for i in range(len(UpperCamelCase_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __a ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
16
from collections import deque def a_ ( UpperCamelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase = len(UpperCamelCase_ ) lowerCamelCase = deque() lowerCamelCase = [False for _ in range(UpperCamelCase_ )] lowerCamelCase = [-1 for _ in range(UpperCamelCase_ )] lowerCamelCase = index_of[:] def strong_connect(UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] ): lowerCamelCase = index # the number when this node is seen lowerCamelCase = index # lowest rank node reachable from here index += 1 stack.append(UpperCamelCase_ ) lowerCamelCase = True for w in g[v]: if index_of[w] == -1: lowerCamelCase = strong_connect(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowerCamelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: lowerCamelCase = [] lowerCamelCase = stack.pop() lowerCamelCase = False component.append(UpperCamelCase_ ) while w != v: lowerCamelCase = stack.pop() lowerCamelCase = False component.append(UpperCamelCase_ ) components.append(UpperCamelCase_ ) return index lowerCamelCase = [] for v in range(UpperCamelCase_ ): if index_of[v] == -1: strong_connect(UpperCamelCase_ , 0 , UpperCamelCase_ ) return components def a_ ( UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase = [[] for _ in range(UpperCamelCase_ )] for u, v in edges: g[u].append(UpperCamelCase_ ) return g if __name__ == "__main__": # Test _lowerCAmelCase : Any = 7 _lowerCAmelCase : Optional[int] = [0, 0, 1, 2, 3, 3, 4, 4, 6] _lowerCAmelCase : Dict = [1, 3, 2, 0, 1, 4, 5, 6, 5] _lowerCAmelCase : Union[str, Any] = [(u, v) for u, v in zip(source, target)] _lowerCAmelCase : Tuple = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
246
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging A : List[str] = logging.get_logger(__name__) def lowercase_ ( _A : Union[tf.Tensor, np.ndarray] ): """simple docstring""" if isinstance(_A , np.ndarray ): return list(tensor.shape ) lowerCamelCase__ : Union[str, Any] = tf.shape(_A ) if tensor.shape == tf.TensorShape(_A ): return dynamic lowerCamelCase__ : Optional[int] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_A )] def lowercase_ ( _A : tf.Tensor , _A : Optional[int] = None , _A : Optional[str] = None ): """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=_A , name=_A ) def lowercase_ ( _A : Tuple , _A : Dict , _A : Any , _A : str=1E-5 , _A : Optional[Any]=-1 ): """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_A , _A ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = tf.nn.moments(_A , axes=[axis] , keepdims=_A ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowerCamelCase__ : List[Any] = [1] * inputs.shape.rank lowerCamelCase__ : Union[str, Any] = shape_list(_A )[axis] lowerCamelCase__ : Tuple = tf.reshape(_A , _A ) lowerCamelCase__ : List[Any] = tf.reshape(_A , _A ) # Compute layer normalization using the batch_normalization # function. lowerCamelCase__ : str = tf.nn.batch_normalization( _A , _A , _A , offset=_A , scale=_A , variance_epsilon=_A , ) return outputs def lowercase_ ( _A : int , _A : Optional[Any]=0 , _A : Optional[Any]=-1 ): """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowerCamelCase__ : Dict = tf.shape(_A ) lowerCamelCase__ : List[str] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowerCamelCase__ : Optional[int] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(_A , _A ) def lowercase_ ( _A : tf.Tensor ): """simple docstring""" if not isinstance(_A , tf.Tensor ): lowerCamelCase__ : str = tf.convert_to_tensor(_A ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowerCamelCase__ : Union[str, Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowerCamelCase__ : Optional[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowerCamelCase__ : Any = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowercase_ ( _A : tf.Tensor , _A : int , _A : str = "input_ids" ): """simple docstring""" tf.debugging.assert_less( _A , tf.cast(_A , dtype=tensor.dtype ) , message=( F"The maximum value of {tensor_name} ({tf.math.reduce_max(_A )}) must be smaller than the embedding " F"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def lowercase_ ( _A : int , _A : List[Any] , _A : List[str] ): """simple docstring""" lowerCamelCase__ : Tuple = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowerCamelCase__ : Union[str, Any] = [x for x in data if len(_A ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " F"bytes: {bad_attributes}" ) lowerCamelCase__ : List[Any] = np.asarray(_A ) lowerCamelCase__ : Any = 1 lowerCamelCase__ : Dict = np.array_split(_A , _A ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowerCamelCase__ : Optional[Any] = np.array_split(_A , _A ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_A ): lowerCamelCase__ : str = chunk_data else: lowerCamelCase__ : int = data def lowercase_ ( _A : str , _A : Any ): """simple docstring""" if name in group.attrs: lowerCamelCase__ : str = [n.decode("utf8" ) if hasattr(_A , "decode" ) else n for n in group.attrs[name]] else: lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : List[str] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(_A , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def lowercase_ ( _A : Dict ): """simple docstring""" def _expand_single_ad_tensor(_A : Dict ): if isinstance(_A , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_A , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , _A )
5
from __future__ import annotations import time import numpy as np A : Dict = [8, 5, 9, 7] A : Optional[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A : Any = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _lowercase : """simple docstring""" def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ): '''simple docstring''' lowerCamelCase__ : int = claim_vector lowerCamelCase__ : str = allocated_resources_table lowerCamelCase__ : int = maximum_claim_table def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.__need() lowerCamelCase__ : str = self.__allocated_resources_table lowerCamelCase__ : List[Any] = self.__available_resources() lowerCamelCase__ : str = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: lowerCamelCase__ : int = False for each_need in need_list: lowerCamelCase__ : Dict = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: lowerCamelCase__ : str = False break if execution: lowerCamelCase__ : Tuple = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase__ : Any = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : int = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def lowercase_ ( __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Any ) -> Optional[int]: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: snake_case__ :List[Any] = TOKENIZER_CLASSES else: snake_case__ :Any = {tokenizer_name: getattr(__snake_case , tokenizer_name + "Fast" )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: snake_case__ :str = TOKENIZER_CLASSES[tokenizer_name] snake_case__ :Dict = True if checkpoint_name is None: snake_case__ :int = list(tokenizer_class.max_model_input_sizes.keys() ) else: snake_case__ :Dict = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer snake_case__ :List[str] = tokenizer_class.from_pretrained(__snake_case , force_download=__snake_case ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: snake_case__ , snake_case__ :List[str] = checkpoint.split("/" ) snake_case__ :Dict = os.path.join(__snake_case , __snake_case ) elif add_prefix: snake_case__ :Any = checkpoint snake_case__ :Dict = dump_path else: snake_case__ :int = None snake_case__ :Union[str, Any] = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: snake_case__ :Tuple = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] snake_case__ :List[str] = file_path.split(__snake_case )[-1][0] if next_char == "/": snake_case__ :str = os.path.join(__snake_case , __snake_case ) snake_case__ :int = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) snake_case__ :List[Any] = tokenizer.save_pretrained( __snake_case , legacy_format=__snake_case , filename_prefix=__snake_case ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(__snake_case ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": __UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) __UpperCAmelCase : Any = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
241
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") __UpperCAmelCase : Any = parser.parse_args() __UpperCAmelCase : str = "cpu" __UpperCAmelCase : str = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" __UpperCAmelCase : Optional[Any] = "path-to-your-trained-model" __UpperCAmelCase : Dict = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __UpperCAmelCase : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __UpperCAmelCase : Optional[Any] = pipe.to(device) # to channels last __UpperCAmelCase : Optional[int] = pipe.unet.to(memory_format=torch.channels_last) __UpperCAmelCase : List[Any] = pipe.vae.to(memory_format=torch.channels_last) __UpperCAmelCase : int = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __UpperCAmelCase : Union[str, Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __UpperCAmelCase : List[str] = torch.randn(2, 4, 6_4, 6_4) __UpperCAmelCase : Optional[int] = torch.rand(1) * 9_9_9 __UpperCAmelCase : Any = torch.randn(2, 7_7, 7_6_8) __UpperCAmelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: __UpperCAmelCase : Optional[int] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __UpperCAmelCase : Tuple = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __UpperCAmelCase : List[str] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __UpperCAmelCase : Union[str, Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __UpperCAmelCase : str = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __UpperCAmelCase : Dict = 6_6_6 __UpperCAmelCase : List[Any] = torch.Generator(device).manual_seed(seed) __UpperCAmelCase : List[str] = {"generator": generator} if args.steps is not None: __UpperCAmelCase : Union[str, Any] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __UpperCAmelCase : int = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
241
1
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __a ( _lowercase , _lowercase , _lowercase=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCamelCase__ : Any = nn.Parameter(_lowercase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCamelCase__ : Optional[int] = nn.Parameter(_lowercase ) def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : int = np.asarray(weights[0] ) lowerCamelCase__ : List[Any] = np.asarray(weights[1] ) lowerCamelCase__ : Union[str, Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowercase ).view(-1 , _lowercase ).contiguous().transpose(0 , 1 ) , ) def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : Optional[Any] = np.asarray(weights[0] ) lowerCamelCase__ : str = np.asarray(weights[1] ) lowerCamelCase__ : str = np.asarray(weights[2] ) lowerCamelCase__ : Optional[Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowercase ).view(-1 , _lowercase ).contiguous().transpose(0 , 1 ) , ) def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : Optional[Any] = weights[0][0][0] lowerCamelCase__ : List[Any] = np.asarray(layer_norm_a[0] ) lowerCamelCase__ : Any = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , ) # lsh weights + output lowerCamelCase__ : Any = weights[0][1] if len(_lowercase ) < 4: set_layer_weights_in_torch_lsh(_lowercase , torch_block.attention , _lowercase ) else: set_layer_weights_in_torch_local(_lowercase , torch_block.attention , _lowercase ) # intermediate weighs lowerCamelCase__ : Optional[int] = weights[2][0][1][2] # Chunked Feed Forward if len(_lowercase ) == 4: lowerCamelCase__ : Tuple = intermediate_weights[2] # layernorm 2 lowerCamelCase__ : Optional[Any] = np.asarray(intermediate_weights[0][0] ) lowerCamelCase__ : Dict = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , ) # intermediate dense lowerCamelCase__ : List[Any] = np.asarray(intermediate_weights[1][0] ) lowerCamelCase__ : Dict = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , ) # intermediate out lowerCamelCase__ : Union[str, Any] = np.asarray(intermediate_weights[4][0] ) lowerCamelCase__ : Optional[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , ) def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : int = torch_model.reformer # word embeds lowerCamelCase__ : Union[str, Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_lowercase ) , ) if isinstance(weights[3] , _lowercase ): lowerCamelCase__ : List[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCamelCase__ : Tuple = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCamelCase__ : List[Any] = nn.Parameter(torch.tensor(_lowercase ) ) lowerCamelCase__ : Optional[int] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _lowercase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCamelCase__ : Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_lowercase , _lowercase , _lowercase ) # output layer norm lowerCamelCase__ : Optional[int] = np.asarray(weights[7][0] ) lowerCamelCase__ : List[str] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , ) # output embeddings lowerCamelCase__ : Any = np.asarray(weights[9][0] ) lowerCamelCase__ : Tuple = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , ) def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : Optional[Any] = ReformerConfig.from_json_file(_lowercase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCamelCase__ : List[Any] = ReformerModelWithLMHead(_lowercase ) with open(_lowercase , '''rb''' ) as f: lowerCamelCase__ : Optional[Any] = pickle.load(_lowercase )['''weights'''] set_model_weights_in_torch(_lowercase , _lowercase , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase : List[str] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
718
"""simple docstring""" def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : int = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key lowerCamelCase__ : Tuple = remove_duplicates(key.upper() ) lowerCamelCase__ : Optional[Any] = len(_lowercase ) # First fill cipher with key characters lowerCamelCase__ : int = {alphabet[i]: char for i, char in enumerate(_lowercase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_lowercase ) , 26 ): lowerCamelCase__ : Optional[int] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 lowerCamelCase__ : Optional[Any] = alphabet[i - offset] lowerCamelCase__ : Union[str, Any] = char return cipher_alphabet def __a ( _lowercase , _lowercase ): """simple docstring""" return "".join(cipher_map.get(_lowercase , _lowercase ) for ch in message.upper() ) def __a ( _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : Tuple = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_lowercase , _lowercase ) for ch in message.upper() ) def __a ( ): """simple docstring""" lowerCamelCase__ : Optional[Any] = input('''Enter message to encode or decode: ''' ).strip() lowerCamelCase__ : List[str] = input('''Enter keyword: ''' ).strip() lowerCamelCase__ : int = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: lowerCamelCase__ : int = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) lowerCamelCase__ : Optional[Any] = create_cipher_map(_lowercase ) print(func(_lowercase , _lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
121
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __lowerCamelCase ( __a :Union[str, Any] ) -> Dict: """simple docstring""" A__ = SwinConfig() A__ = swin_name.split("""_""" ) A__ = name_split[1] A__ = int(name_split[4] ) A__ = int(name_split[3][-1] ) if model_size == "tiny": A__ = 9_6 A__ = (2, 2, 6, 2) A__ = (3, 6, 1_2, 2_4) elif model_size == "small": A__ = 9_6 A__ = (2, 2, 1_8, 2) A__ = (3, 6, 1_2, 2_4) elif model_size == "base": A__ = 1_2_8 A__ = (2, 2, 1_8, 2) A__ = (4, 8, 1_6, 3_2) else: A__ = 1_9_2 A__ = (2, 2, 1_8, 2) A__ = (6, 1_2, 2_4, 4_8) if "in22k" in swin_name: A__ = 2_1_8_4_1 else: A__ = 1_0_0_0 A__ = """huggingface/label-files""" A__ = """imagenet-1k-id2label.json""" A__ = json.load(open(hf_hub_download(__a , __a , repo_type="""dataset""" ) , """r""" ) ) A__ = {int(__a ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = img_size A__ = num_classes A__ = embed_dim A__ = depths A__ = num_heads A__ = window_size return config def __lowerCamelCase ( __a :int ) -> List[str]: """simple docstring""" if "patch_embed.proj" in name: A__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: A__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: A__ = """encoder.""" + name if "attn.proj" in name: A__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: A__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: A__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: A__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: A__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: A__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": A__ = """layernorm.weight""" if name == "norm.bias": A__ = """layernorm.bias""" if "head" in name: A__ = name.replace("""head""" , """classifier""" ) else: A__ = """swin.""" + name return name def __lowerCamelCase ( __a :Optional[int] , __a :str ) -> Dict: """simple docstring""" for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(__a ) if "mask" in key: continue elif "qkv" in key: A__ = key.split(""".""" ) A__ = int(key_split[1] ) A__ = int(key_split[3] ) A__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[ dim : dim * 2, : ] A__ = val[-dim:, :] else: A__ = val[ :dim ] A__ = val[ dim : dim * 2 ] A__ = val[ -dim: ] else: A__ = val return orig_state_dict def __lowerCamelCase ( __a :List[Any] , __a :Optional[Any] ) -> Optional[int]: """simple docstring""" A__ = timm.create_model(__a , pretrained=__a ) timm_model.eval() A__ = get_swin_config(__a ) A__ = SwinForImageClassification(__a ) model.eval() A__ = convert_state_dict(timm_model.state_dict() , __a ) model.load_state_dict(__a ) A__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) A__ = Image.open(requests.get(__a , stream=__a ).raw ) A__ = image_processor(images=__a , return_tensors="""pt""" ) A__ = timm_model(inputs["""pixel_values"""] ) A__ = model(**__a ).logits assert torch.allclose(__a , __a , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__a ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__a ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A : List[str] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
176
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __lowerCamelCase ( __a :Optional[int] ) -> str: """simple docstring""" A__ = {} A__ = tokenizer(example["""content"""] , truncation=__a )["""input_ids"""] A__ = len(example["""content"""] ) / len(output["""input_ids"""] ) return output A : Union[str, Any] = HfArgumentParser(PretokenizationArguments) A : str = parser.parse_args() if args.num_workers is None: A : Any = multiprocessing.cpu_count() A : int = AutoTokenizer.from_pretrained(args.tokenizer_dir) A : Optional[int] = time.time() A : int = load_dataset(args.dataset_name, split='''train''') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') A : Optional[Any] = time.time() A : int = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') A : Tuple = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
176
1
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _lowerCAmelCase : Dict = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize _lowerCAmelCase : str = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" _lowerCAmelCase : str = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" _lowerCAmelCase : List[Any] = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def lowercase__ ( self , lowerCamelCase ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=0.9 , lowerCamelCase=3 , lowerCamelCase=0.5 ) -> Tuple: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): snake_case__ : int = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase ) , word_tokenize(lowerCamelCase ) , alpha=lowerCamelCase , beta=lowerCamelCase , gamma=lowerCamelCase ) for ref, pred in zip(lowerCamelCase , lowerCamelCase ) ] else: snake_case__ : str = [ meteor_score.single_meteor_score(lowerCamelCase , lowerCamelCase , alpha=lowerCamelCase , beta=lowerCamelCase , gamma=lowerCamelCase ) for ref, pred in zip(lowerCamelCase , lowerCamelCase ) ] return {"meteor": np.mean(lowerCamelCase )}
694
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = ['pixel_values'] def __init__( self , lowerCamelCase = True , lowerCamelCase = 32 , lowerCamelCase=PILImageResampling.BILINEAR , lowerCamelCase = True , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : int = do_resize snake_case__ : Dict = do_rescale snake_case__ : Any = size_divisor snake_case__ : str = resample super().__init__(**lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" snake_case__ ,snake_case__ : Any = get_image_size(lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor snake_case__ : Any = height // size_divisor * size_divisor snake_case__ : Union[str, Any] = width // size_divisor * size_divisor snake_case__ : Tuple = resize(lowerCamelCase , (new_h, new_w) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) return image def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) -> np.ndarray: """simple docstring""" return rescale(image=lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> BatchFeature: """simple docstring""" snake_case__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Any = size_divisor if size_divisor is not None else self.size_divisor snake_case__ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) snake_case__ : Optional[Any] = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. snake_case__ : Optional[int] = [to_numpy_array(lowerCamelCase ) for img in images] if do_resize: snake_case__ : Union[str, Any] = [self.resize(lowerCamelCase , size_divisor=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: snake_case__ : str = [self.rescale(lowerCamelCase , scale=1 / 255 ) for image in images] snake_case__ : Tuple = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] snake_case__ : str = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
694
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase = { """configuration_bridgetower""": [ """BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BridgeTowerConfig""", """BridgeTowerTextConfig""", """BridgeTowerVisionConfig""", ], """processing_bridgetower""": ["""BridgeTowerProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""BridgeTowerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""", """BridgeTowerForContrastiveLearning""", """BridgeTowerForImageAndTextRetrieval""", """BridgeTowerForMaskedLM""", """BridgeTowerModel""", """BridgeTowerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
409
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _UpperCAmelCase = get_logger(__name__) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , lowercase=0 ): os.makedirs(lowercase , exist_ok=lowercase ) with FSDP.state_dict_type( lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE_: List[Any] =model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE_: str =f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' SCREAMING_SNAKE_CASE_: List[Any] =os.path.join(lowercase , lowercase ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(lowercase , lowercase ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE_: Dict =( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) SCREAMING_SNAKE_CASE_: int =os.path.join(lowercase , lowercase ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(lowercase , lowercase ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE_: Dict =os.path.join(lowercase , f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(lowercase , exist_ok=lowercase ) logger.info(f'''Saving model to {ckpt_dir}''' ) SCREAMING_SNAKE_CASE_: Dict ={"""model""": state_dict} dist_cp.save_state_dict( state_dict=lowercase , storage_writer=dist_cp.FileSystemWriter(lowercase ) , planner=DefaultSavePlanner() , ) logger.info(f'''Model saved to {ckpt_dir}''' ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , lowercase=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(lowercase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return SCREAMING_SNAKE_CASE_: List[Any] =f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' SCREAMING_SNAKE_CASE_: int =os.path.join(lowercase , lowercase ) logger.info(f'''Loading model from {input_model_file}''' ) SCREAMING_SNAKE_CASE_: List[Any] =torch.load(lowercase ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE_: Dict =( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) SCREAMING_SNAKE_CASE_: Dict =os.path.join(lowercase , lowercase ) logger.info(f'''Loading model from {input_model_file}''' ) SCREAMING_SNAKE_CASE_: int =torch.load(lowercase ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE_: Optional[Any] =( os.path.join(lowercase , f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) SCREAMING_SNAKE_CASE_: List[Any] ={"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=lowercase , storage_reader=dist_cp.FileSystemReader(lowercase ) , planner=DefaultLoadPlanner() , ) SCREAMING_SNAKE_CASE_: Optional[Any] =state_dict["""model"""] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=0 ): os.makedirs(lowercase , exist_ok=lowercase ) with FSDP.state_dict_type( lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE_: Optional[int] =FSDP.optim_state_dict(lowercase , lowercase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: SCREAMING_SNAKE_CASE_: Optional[int] =( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) SCREAMING_SNAKE_CASE_: Tuple =os.path.join(lowercase , lowercase ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(lowercase , lowercase ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: SCREAMING_SNAKE_CASE_: Dict =os.path.join(lowercase , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(lowercase , exist_ok=lowercase ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(lowercase ) , planner=DefaultSavePlanner() , ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE_: int =None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: SCREAMING_SNAKE_CASE_: Tuple =( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) SCREAMING_SNAKE_CASE_: Union[str, Any] =os.path.join(lowercase , lowercase ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.load(lowercase ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: SCREAMING_SNAKE_CASE_: str =( os.path.join(lowercase , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) SCREAMING_SNAKE_CASE_: Any =load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(lowercase ) , ) SCREAMING_SNAKE_CASE_: Any =optim_state["""optimizer"""] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) SCREAMING_SNAKE_CASE_: Tuple =FSDP.optim_state_dict_to_load(lowercase , lowercase , lowercase ) optimizer.load_state_dict(lowercase )
409
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def snake_case ( snake_case__ :int) -> Union[str, Any]: random.seed(snake_case__) np.random.seed(snake_case__) torch.manual_seed(snake_case__) torch.cuda.manual_seed_all(snake_case__) # ^^ safe to call this function even if cuda is not available class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 0.9999 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = False , lowerCAmelCase_ = 1.0 , lowerCAmelCase_ = 2 / 3 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> Optional[Any]: if isinstance(lowerCAmelCase_ , torch.nn.Module ): _A = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) _A = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _A = True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: _A = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) _A = kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: _A = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) _A = kwargs["""min_value"""] _A = list(lowerCAmelCase_ ) _A = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: _A = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) _A = None _A = decay _A = min_decay _A = update_after_step _A = use_ema_warmup _A = inv_gamma _A = power _A = 0 _A = None # set in `step()` _A = model_cls _A = model_config @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ ) -> "EMAModel": _A , _A = model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) _A = model_cls.from_pretrained(lowerCAmelCase_ ) _A = cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) _A = self.model_cls.from_config(self.model_config ) _A = self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> float: _A = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _A = 1 - (1 + step / self.inv_gamma) ** -self.power else: _A = (1 + step) / (10 + step) _A = min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay _A = max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: if isinstance(lowerCAmelCase_ , torch.nn.Module ): _A = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) _A = parameters.parameters() _A = list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _A = self.get_decay(self.optimization_step ) _A = decay _A = 1 - decay _A = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _A = deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> None: _A = list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def UpperCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> None: _A = [ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def UpperCAmelCase ( self ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def UpperCAmelCase ( self , lowerCAmelCase_ ) -> None: _A = [param.detach().cpu().clone() for param in parameters] def UpperCAmelCase ( self , lowerCAmelCase_ ) -> None: if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. _A = None def UpperCAmelCase ( self , lowerCAmelCase_ ) -> None: _A = copy.deepcopy(lowerCAmelCase_ ) _A = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) _A = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) _A = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) _A = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) _A = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) _A = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) _A = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) _A = state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: _A = shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
83
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def snake_case ( snake_case__ :str , snake_case__ :str , snake_case__ :str , snake_case__ :PreTrainedTokenizer , snake_case__ :int , snake_case__ :Optional[int] = None , ) -> Optional[int]: _A = {} if train_file is not None: _A = [train_file] if eval_file is not None: _A = [eval_file] if test_file is not None: _A = [test_file] _A = datasets.load_dataset("""csv""" , data_files=snake_case__) _A = list(ds[list(files.keys())[0]].features.keys()) _A = features_name.pop(snake_case__) _A = list(set(ds[list(files.keys())[0]][label_name])) _A = {label: i for i, label in enumerate(snake_case__)} _A = tokenizer.model_input_names _A = {} if len(snake_case__) == 1: for k in files.keys(): _A = ds[k].map( lambda snake_case__: tokenizer.batch_encode_plus( example[features_name[0]] , truncation=snake_case__ , max_length=snake_case__ , padding="""max_length""") , batched=snake_case__ , ) elif len(snake_case__) == 2: for k in files.keys(): _A = ds[k].map( lambda snake_case__: tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=snake_case__ , max_length=snake_case__ , padding="""max_length""" , ) , batched=snake_case__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _A = {k: v for k, v in ex.items() if k in input_names} _A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _A = {k: v for k, v in ex.items() if k in input_names} _A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _A = {k: v for k, v in ex.items() if k in input_names} _A = labelaid[ex[label_name]] yield (d, label) _A = ( tf.data.Dataset.from_generator( snake_case__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN]))) _A = ( tf.data.Dataset.from_generator( snake_case__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION]))) _A = ( tf.data.Dataset.from_generator( snake_case__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST]))) return train_ds, val_ds, test_ds, labelaid _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class a : """simple docstring""" lowerCamelCase :int = field(metadata={'''help''': '''Which column contains the label'''} ) lowerCamelCase :str = field(default=__lowerCAmelCase , metadata={'''help''': '''The path of the training file'''} ) lowerCamelCase :Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''The path of the development file'''} ) lowerCamelCase :Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''The path of the test file'''} ) lowerCamelCase :int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCamelCase :bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class a : """simple docstring""" lowerCamelCase :str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase :bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCamelCase :Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def snake_case ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) _A , _A , _A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""") # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, ''' F'''16-bits training: {training_args.fpaa}''') logger.info(F'''Training/evaluation parameters {training_args}''') # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _A , _A , _A , _A = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=snake_case__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(snake_case__) , labelaid=snake_case__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path) , config=snake_case__ , cache_dir=model_args.cache_dir , ) def compute_metrics(snake_case__ :EvalPrediction) -> Dict: _A = np.argmax(p.predictions , axis=1) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _A = TFTrainer( model=snake_case__ , args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , compute_metrics=snake_case__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir) # Evaluation _A = {} if training_args.do_eval: logger.info("""*** Evaluate ***""") _A = trainer.evaluate() _A = os.path.join(training_args.output_dir , """eval_results.txt""") with open(snake_case__ , """w""") as writer: logger.info("""***** Eval results *****""") for key, value in result.items(): logger.info(F''' {key} = {value}''') writer.write(F'''{key} = {value}\n''') results.update(snake_case__) return results if __name__ == "__main__": main()
83
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor SCREAMING_SNAKE_CASE__ : Any = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ : int = 5_0 # max width of layer names SCREAMING_SNAKE_CASE__ : Union[str, Any] = 7_0 # max width of quantizer names def _A ( lowerCamelCase ): a__ : Dict = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=lowercase__ , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=lowercase__ , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=lowercase__ , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=lowercase__ , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=lowercase__ , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=lowercase__ , type=lowercase__ , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=lowercase__ , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def _A ( lowerCamelCase ): if args.calibrator == "max": a__ : Optional[Any] = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) a__ : int = "histogram" elif args.calibrator == "mse": a__ : Union[str, Any] = "histogram" else: raise ValueError(F"""Invalid calibrator {args.calibrator}""" ) a__ : int = QuantDescriptor(num_bits=args.aprec , calib_method=lowercase__ ) a__ : Any = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowercase__ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowercase__ ) def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False ): logger.info("Configuring Model for Quantization" ) logger.info(F"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowercase__ , ["embeddings"] , which="weight" , _disabled=lowercase__ ) if args.quant_disable: set_quantizer_by_name(lowercase__ , [""] , _disabled=lowercase__ ) if args.quant_disable_keyword: set_quantizer_by_name(lowercase__ , args.quant_disable_keyword , _disabled=lowercase__ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowercase__ , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=lowercase__ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowercase__ , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=lowercase__ ) if args.recalibrate_weights: recalibrate_weights(lowercase__ ) if args.fuse_qkv: fuse_qkv(lowercase__ , lowercase__ ) if args.clip_gelu: clip_gelu(lowercase__ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowercase__ ) def _A ( lowerCamelCase ): logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"""{name:80}: {module}""" ) def _A ( lowerCamelCase , lowerCamelCase ): logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowercase__ ) def _A ( lowerCamelCase , lowerCamelCase ): def fusea(lowerCamelCase , lowerCamelCase , lowerCamelCase ): for mod in [qq, qk, qv]: if not hasattr(lowercase__ , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return a__ : Optional[int] = qq._amax.detach().item() a__ : Optional[int] = qk._amax.detach().item() a__ : List[Any] = qv._amax.detach().item() a__ : List[Any] = max(lowercase__ , lowercase__ , lowercase__ ) qq._amax.fill_(lowercase__ ) qk._amax.fill_(lowercase__ ) qv._amax.fill_(lowercase__ ) logger.info(F""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _A ( lowerCamelCase , lowerCamelCase ): for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): a__ : Union[str, Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowercase__ ) a__ : Optional[Any] = mod._input_quantizer._amax.data.detach().item() logger.info(F"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def _A ( lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(lowercase__ , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: a__ : Optional[Any] = mod.weight.shape[0] a__ : Optional[Any] = mod._weight_quantizer._amax.detach() a__ : Union[str, Any] = torch.ones(lowercase__ , dtype=amax.dtype , device=amax.device ) * amax print(F"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def _A ( lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(lowercase__ , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) a__ : Any = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) a__ : Any = set(range(len(mod.weight.size() ) ) ) - axis_set a__ : Dict = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowercase__ , keepdims=lowercase__ ).detach() logger.info(F"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) a__ : Tuple = amax def _A ( lowerCamelCase , lowerCamelCase=25 , lowerCamelCase=180 , lowerCamelCase=None ): if ignore is None: a__ : Optional[Any] = [] elif not isinstance(lowercase__ , lowercase__ ): a__ : Optional[Any] = [ignore] a__ : Optional[Any] = 0 for name, mod in model.named_modules(): if not hasattr(lowercase__ , "weight" ): continue a__ : Dict = max(lowercase__ , len(lowercase__ ) ) for name, mod in model.named_modules(): a__ : List[Any] = getattr(lowercase__ , "_input_quantizer" , lowercase__ ) a__ : Optional[int] = getattr(lowercase__ , "_weight_quantizer" , lowercase__ ) if not hasattr(lowercase__ , "weight" ): continue if type(lowercase__ ) in ignore: continue if [True for s in ignore if type(lowercase__ ) is str and s in name]: continue a__ : Optional[int] = F"""Act:{input_q.extra_repr()}""" a__ : str = F"""Wgt:{weight_q.extra_repr()}""" a__ : List[str] = F"""{name:{name_width}} {act_str} {wgt_str}""" if len(lowercase__ ) <= line_width: logger.info(lowercase__ ) else: logger.info(F"""{name:{name_width}} {act_str}""" ) logger.info(F"""{" ":{name_width}} {wgt_str}""" ) def _A ( lowerCamelCase ): a__ : int = 0 for name, mod in model.named_modules(): if isinstance(lowercase__ , pytorch_quantization.nn.TensorQuantizer ): print(F"""{name:80} {mod}""" ) count += 1 print(F"""{count} TensorQuantizers found in model""" ) def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): a__ : Union[str, Any] = getattr(lowercase__ , lowercase__ , lowercase__ ) if quantizer_mod is not None: assert hasattr(lowercase__ , lowercase__ ) setattr(lowercase__ , lowercase__ , lowercase__ ) else: logger.warning(F"""{name} has no {quantizer}""" ) def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase="both" , **lowerCamelCase ): a__ : Tuple = F"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" if which in ["input", "both"]: set_quantizer(lowercase__ , lowercase__ , "_input_quantizer" , lowercase__ , lowercase__ ) if which in ["weight", "both"]: set_quantizer(lowercase__ , lowercase__ , "_weight_quantizer" , lowercase__ , lowercase__ ) logger.info(lowercase__ ) def _A ( lowerCamelCase , lowerCamelCase , **lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(lowercase__ , "_input_quantizer" ) or hasattr(lowercase__ , "_weight_quantizer" ): for n in names: if re.search(lowercase__ , lowercase__ ): set_quantizers(lowercase__ , lowercase__ , **lowercase__ ) elif name.endswith("_quantizer" ): for n in names: if re.search(lowercase__ , lowercase__ ): a__ : Optional[Any] = F"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" setattr(lowercase__ , lowercase__ , lowercase__ ) logger.info(lowercase__ )
112
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a(lowercase__ ): '''simple docstring''' snake_case_ = 384 snake_case_ = 7 if "tiny" in model_name: snake_case_ = 96 snake_case_ = (2, 2, 6, 2) snake_case_ = (3, 6, 12, 24) elif "small" in model_name: snake_case_ = 96 snake_case_ = (2, 2, 18, 2) snake_case_ = (3, 6, 12, 24) elif "base" in model_name: snake_case_ = 128 snake_case_ = (2, 2, 18, 2) snake_case_ = (4, 8, 16, 32) snake_case_ = 12 snake_case_ = 512 elif "large" in model_name: snake_case_ = 192 snake_case_ = (2, 2, 18, 2) snake_case_ = (6, 12, 24, 48) snake_case_ = 12 snake_case_ = 768 # set label information snake_case_ = 150 snake_case_ = 'huggingface/label-files' snake_case_ = 'ade20k-id2label.json' snake_case_ = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(lowercase__ ): v for k, v in idalabel.items()} snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = SwinConfig( embed_dim=lowercase__ , depths=lowercase__ , num_heads=lowercase__ , window_size=lowercase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) snake_case_ = UperNetConfig( backbone_config=lowercase__ , auxiliary_in_channels=lowercase__ , num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def a(lowercase__ ): '''simple docstring''' snake_case_ = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = dct.pop(lowercase__ ) snake_case_ = val def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case_ = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) snake_case_ = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[:dim, :] snake_case_ = in_proj_bias[: dim] snake_case_ = in_proj_weight[ dim : dim * 2, : ] snake_case_ = in_proj_bias[ dim : dim * 2 ] snake_case_ = in_proj_weight[ -dim :, : ] snake_case_ = in_proj_bias[-dim :] # fmt: on def a(lowercase__ ): '''simple docstring''' snake_case_ , snake_case_ = x.shape snake_case_ = x.reshape(lowercase__ , 4 , in_channel // 4 ) snake_case_ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowercase__ , lowercase__ ) return x def a(lowercase__ ): '''simple docstring''' snake_case_ , snake_case_ = x.shape snake_case_ = x.reshape(lowercase__ , in_channel // 4 , 4 ) snake_case_ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowercase__ , lowercase__ ) return x def a(lowercase__ ): '''simple docstring''' snake_case_ = x.shape[0] snake_case_ = x.reshape(4 , in_channel // 4 ) snake_case_ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowercase__ ) return x def a(lowercase__ ): '''simple docstring''' snake_case_ = x.shape[0] snake_case_ = x.reshape(in_channel // 4 , 4 ) snake_case_ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowercase__ ) return x def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } snake_case_ = model_name_to_url[model_name] snake_case_ = torch.hub.load_state_dict_from_url(lowercase__ , map_location='cpu' , file_name=lowercase__ )[ 'state_dict' ] for name, param in state_dict.items(): print(lowercase__ , param.shape ) snake_case_ = get_upernet_config(lowercase__ ) snake_case_ = UperNetForSemanticSegmentation(lowercase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): snake_case_ = state_dict.pop(lowercase__ ) if "bn" in key: snake_case_ = key.replace('bn' , 'batch_norm' ) snake_case_ = val # rename keys snake_case_ = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: snake_case_ = reverse_correct_unfold_reduction_order(lowercase__ ) if "norm" in key: snake_case_ = reverse_correct_unfold_norm_order(lowercase__ ) model.load_state_dict(lowercase__ ) # verify on image snake_case_ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' snake_case_ = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) snake_case_ = SegformerImageProcessor() snake_case_ = processor(lowercase__ , return_tensors='pt' ).pixel_values with torch.no_grad(): snake_case_ = model(lowercase__ ) snake_case_ = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": snake_case_ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": snake_case_ = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": snake_case_ = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": snake_case_ = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase__ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[f"""upernet-swin-{size}""" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
187
0
'''simple docstring''' import os def __lowerCamelCase ( ): '''simple docstring''' with open(os.path.dirname(_UpperCamelCase ) + '''/grid.txt''' ) as f: UpperCAmelCase_ = [] # noqa: E741 for _ in range(20 ): l.append([int(_UpperCamelCase ) for x in f.readline().split()] ) UpperCAmelCase_ = 0 # right for i in range(20 ): for j in range(17 ): UpperCAmelCase_ = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: UpperCAmelCase_ = temp # down for i in range(17 ): for j in range(20 ): UpperCAmelCase_ = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: UpperCAmelCase_ = temp # diagonal 1 for i in range(17 ): for j in range(17 ): UpperCAmelCase_ = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: UpperCAmelCase_ = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): UpperCAmelCase_ = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: UpperCAmelCase_ = temp return maximum if __name__ == "__main__": print(solution())
703
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : List[Any] = "T5Config" class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''mt5''' lowerCAmelCase__ = MTaConfig class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''mt5''' lowerCAmelCase__ = MTaConfig class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''mt5''' lowerCAmelCase__ = MTaConfig
43
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np UpperCamelCase = re.compile(R'\b(a|an|the)\b', re.UNICODE) UpperCamelCase = None def lowerCAmelCase_ () -> Any: a_ : str = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=lowercase__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=lowercase__ , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :int ) -> int: a_ : Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a_ : Optional[Any] = bool(qa["answers"]["text"] ) return qid_to_has_ans def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[str] ) -> Union[str, Any]: def remove_articles(_SCREAMING_SNAKE_CASE :Union[str, Any] ): return ARTICLES_REGEX.sub(" " , lowercase__ ) def white_space_fix(_SCREAMING_SNAKE_CASE :int ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE :Tuple ): a_ : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE :Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase__ ) ) ) ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[str] ) -> Union[str, Any]: if not s: return [] return normalize_answer(lowercase__ ).split() def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :Any ) -> List[str]: return int(normalize_answer(lowercase__ ) == normalize_answer(lowercase__ ) ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :List[Any] ) -> Dict: a_ : int = get_tokens(lowercase__ ) a_ : List[str] = get_tokens(lowercase__ ) a_ : Tuple = collections.Counter(lowercase__ ) & collections.Counter(lowercase__ ) a_ : int = sum(common.values() ) if len(lowercase__ ) == 0 or len(lowercase__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a_ : Tuple = 1.0 * num_same / len(lowercase__ ) a_ : Tuple = 1.0 * num_same / len(lowercase__ ) a_ : int = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :List[str] ) -> Optional[int]: a_ : Optional[Any] = {} a_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a_ : Any = qa['''id'''] a_ : List[Any] = [t for t in qa['''answers''']['''text'''] if normalize_answer(lowercase__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a_ : List[Any] = [''''''] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue a_ : int = preds[qid] # Take max over all gold answers a_ : Optional[int] = max(compute_exact(lowercase__ , lowercase__ ) for a in gold_answers ) a_ : List[Any] = max(compute_fa(lowercase__ , lowercase__ ) for a in gold_answers ) return exact_scores, fa_scores def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :Optional[int] , _SCREAMING_SNAKE_CASE :Optional[int] , _SCREAMING_SNAKE_CASE :List[str] ) -> str: a_ : List[Any] = {} for qid, s in scores.items(): a_ : Union[str, Any] = na_probs[qid] > na_prob_thresh if pred_na: a_ : str = float(not qid_to_has_ans[qid] ) else: a_ : str = s return new_scores def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :Any=None ) -> int: if not qid_list: a_ : Optional[Any] = len(lowercase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: a_ : Optional[int] = len(lowercase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :List[Any] ) -> List[Any]: for k in new_eval: a_ : Dict = new_eval[k] def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :Any , _SCREAMING_SNAKE_CASE :Optional[int] , _SCREAMING_SNAKE_CASE :List[Any] ) -> Tuple: plt.step(lowercase__ , lowercase__ , color="b" , alpha=0.2 , where="post" ) plt.fill_between(lowercase__ , lowercase__ , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowercase__ ) plt.savefig(lowercase__ ) plt.clf() def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Optional[int] , _SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :Optional[Any] , _SCREAMING_SNAKE_CASE :Tuple=None , _SCREAMING_SNAKE_CASE :Any=None ) -> Any: a_ : int = sorted(lowercase__ , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) a_ : Union[str, Any] = 0.0 a_ : int = 1.0 a_ : Optional[int] = 0.0 a_ : List[Any] = [1.0] a_ : Dict = [0.0] a_ : str = 0.0 for i, qid in enumerate(lowercase__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] a_ : int = true_pos / float(i + 1 ) a_ : Any = true_pos / float(lowercase__ ) if i == len(lowercase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowercase__ ) recalls.append(lowercase__ ) if out_image: plot_pr_curve(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return {"ap": 100.0 * avg_prec} def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Optional[Any] , _SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :List[Any] ) -> str: if out_image_dir and not os.path.exists(lowercase__ ): os.makedirs(lowercase__ ) a_ : Optional[Any] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a_ : Union[str, Any] = make_precision_recall_eval( lowercase__ , lowercase__ , lowercase__ , lowercase__ , out_image=os.path.join(lowercase__ , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) a_ : Dict = make_precision_recall_eval( lowercase__ , lowercase__ , lowercase__ , lowercase__ , out_image=os.path.join(lowercase__ , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) a_ : str = {k: float(lowercase__ ) for k, v in qid_to_has_ans.items()} a_ : List[Any] = make_precision_recall_eval( lowercase__ , lowercase__ , lowercase__ , lowercase__ , out_image=os.path.join(lowercase__ , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(lowercase__ , lowercase__ , "pr_exact" ) merge_eval(lowercase__ , lowercase__ , "pr_f1" ) merge_eval(lowercase__ , lowercase__ , "pr_oracle" ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :List[str] ) -> Dict: if not qid_list: return a_ : Optional[Any] = [na_probs[k] for k in qid_list] a_ : Tuple = np.ones_like(lowercase__ ) / float(len(lowercase__ ) ) plt.hist(lowercase__ , weights=lowercase__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(lowercase__ , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :Tuple ) -> List[str]: a_ : List[str] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a_ : int = num_no_ans a_ : int = cur_score a_ : int = 0.0 a_ : Tuple = sorted(lowercase__ , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) for i, qid in enumerate(lowercase__ ): if qid not in scores: continue if qid_to_has_ans[qid]: a_ : Any = scores[qid] else: if preds[qid]: a_ : Dict = -1 else: a_ : Optional[Any] = 0 cur_score += diff if cur_score > best_score: a_ : Tuple = cur_score a_ : Union[str, Any] = na_probs[qid] return 100.0 * best_score / len(lowercase__ ), best_thresh def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :Optional[int] , _SCREAMING_SNAKE_CASE :Dict ) -> Optional[int]: a_ : Union[str, Any] = find_best_thresh(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) a_ : int = find_best_thresh(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) a_ : int = best_exact a_ : Optional[int] = exact_thresh a_ : Optional[Any] = best_fa a_ : Optional[Any] = fa_thresh def lowerCAmelCase_ () -> Union[str, Any]: with open(OPTS.data_file ) as f: a_ : Optional[int] = json.load(lowercase__ ) a_ : Any = dataset_json['''data'''] with open(OPTS.pred_file ) as f: a_ : Any = json.load(lowercase__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a_ : Dict = json.load(lowercase__ ) else: a_ : Any = {k: 0.0 for k in preds} a_ : str = make_qid_to_has_ans(lowercase__ ) # maps qid to True/False a_ : str = [k for k, v in qid_to_has_ans.items() if v] a_ : Union[str, Any] = [k for k, v in qid_to_has_ans.items() if not v] a_ : str = get_raw_scores(lowercase__ , lowercase__ ) a_ : str = apply_no_ans_threshold(lowercase__ , lowercase__ , lowercase__ , OPTS.na_prob_thresh ) a_ : Optional[int] = apply_no_ans_threshold(lowercase__ , lowercase__ , lowercase__ , OPTS.na_prob_thresh ) a_ : Tuple = make_eval_dict(lowercase__ , lowercase__ ) if has_ans_qids: a_ : Optional[int] = make_eval_dict(lowercase__ , lowercase__ , qid_list=lowercase__ ) merge_eval(lowercase__ , lowercase__ , "HasAns" ) if no_ans_qids: a_ : Any = make_eval_dict(lowercase__ , lowercase__ , qid_list=lowercase__ ) merge_eval(lowercase__ , lowercase__ , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , OPTS.out_image_dir ) histogram_na_prob(lowercase__ , lowercase__ , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(lowercase__ , lowercase__ , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(lowercase__ , lowercase__ ) else: print(json.dumps(lowercase__ , indent=2 ) ) if __name__ == "__main__": UpperCamelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
473
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowercase (_UpperCAmelCase ): def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[int] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(A_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : int = self._create_example_records() __lowerCAmelCase : Dict = Dataset.from_list(A_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(A_ ): self.assertDictEqual(A_ , example_records[i] ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : int = self._create_example_records() __lowerCAmelCase : Optional[Any] = Dataset.from_list(A_ ) __lowerCAmelCase : int = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def UpperCamelCase__ ( self ) ->Union[str, Any]: # checks what happens with missing columns '''simple docstring''' __lowerCAmelCase : List[Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] __lowerCAmelCase : Union[str, Any] = Dataset.from_list(A_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def UpperCamelCase__ ( self ) ->Tuple: # checks if the type can be inferred from the second record '''simple docstring''' __lowerCAmelCase : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] __lowerCAmelCase : Union[str, Any] = Dataset.from_list(A_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Any = Dataset.from_list([] ) self.assertEqual(len(A_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
492
0
def __lowerCamelCase ( ) -> Tuple: UpperCamelCase = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] UpperCamelCase = 6 UpperCamelCase = 1 UpperCamelCase = 1901 UpperCamelCase = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 UpperCamelCase = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 UpperCamelCase = day - 29 else: if day > days_per_month[month - 1]: month += 1 UpperCamelCase = day - days_per_month[month - 2] if month > 12: year += 1 UpperCamelCase = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
719
from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" UpperCamelCase = data UpperCamelCase = None def __repr__( self : Tuple ): """simple docstring""" return F'Node({self.data})' class _lowerCAmelCase : """simple docstring""" def __init__( self : List[str] ): """simple docstring""" UpperCamelCase = None def __iter__( self : List[str] ): """simple docstring""" UpperCamelCase = self.head while node: yield node.data UpperCamelCase = node.next def __len__( self : Dict ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self : str ): """simple docstring""" return "->".join([str(SCREAMING_SNAKE_CASE__ ) for item in self] ) def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) UpperCamelCase = self.head for _ in range(SCREAMING_SNAKE_CASE__ ): UpperCamelCase = current.next UpperCamelCase = data def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" self.insert_nth(0 , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) UpperCamelCase = Node(SCREAMING_SNAKE_CASE__ ) if self.head is None: UpperCamelCase = new_node elif index == 0: UpperCamelCase = self.head # link new_node to head UpperCamelCase = new_node else: UpperCamelCase = self.head for _ in range(index - 1 ): UpperCamelCase = temp.next UpperCamelCase = temp.next UpperCamelCase = new_node def __lowerCAmelCase ( self : Tuple ): # print every node data """simple docstring""" print(self ) def __lowerCAmelCase ( self : Tuple ): """simple docstring""" return self.delete_nth(0 ) def __lowerCAmelCase ( self : str ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : int = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) UpperCamelCase = self.head # default first node if index == 0: UpperCamelCase = self.head.next else: UpperCamelCase = self.head for _ in range(index - 1 ): UpperCamelCase = temp.next UpperCamelCase = temp.next UpperCamelCase = temp.next.next return delete_node.data def __lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" return self.head is None def __lowerCAmelCase ( self : Any ): """simple docstring""" UpperCamelCase = None UpperCamelCase = self.head while current: # Store the current node's next node. UpperCamelCase = current.next # Make the current node's next point backwards UpperCamelCase = prev # Make the previous node be the current node UpperCamelCase = current # Make the current node the next node (to progress iteration) UpperCamelCase = next_node # Return prev in order to put the head at the end UpperCamelCase = prev def __lowerCamelCase ( ) -> None: UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase , i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) ) def __lowerCamelCase ( ) -> None: UpperCamelCase = [ -9, 100, Node(77345112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __lowerCamelCase ( ) -> Tuple: from doctest import testmod testmod() UpperCamelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_lowercase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) UpperCamelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_lowercase ) print(F'length of linked_list is : {len(_lowercase )}' ) if __name__ == "__main__": main()
170
0
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(__SCREAMING_SNAKE_CASE , os.listdir(__SCREAMING_SNAKE_CASE )[0] , """snapshots""" ) )] __SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__SCREAMING_SNAKE_CASE ) # shard inputs and rng __SCREAMING_SNAKE_CASE = replicate(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jax.random.split(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = shard(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipeline(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , jit=__SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1E-3 assert np.abs(np.abs(__SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 49947.875 ) < 5E-1 __SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__SCREAMING_SNAKE_CASE ) == num_samples def UpperCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = 50 __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__SCREAMING_SNAKE_CASE ) # shard inputs and rng __SCREAMING_SNAKE_CASE = replicate(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jax.random.split(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = shard(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipeline(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , jit=__SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1E-3 assert np.abs((np.abs(__SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2383808.2) ) < 5E-1 def UpperCAmelCase__ ( self : Dict ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = 50 __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__SCREAMING_SNAKE_CASE ) # shard inputs and rng __SCREAMING_SNAKE_CASE = replicate(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jax.random.split(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = shard(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipeline(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , jit=__SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(__SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa ) __SCREAMING_SNAKE_CASE = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = 50 __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__SCREAMING_SNAKE_CASE ) # shard inputs and rng __SCREAMING_SNAKE_CASE = replicate(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jax.random.split(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = shard(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipeline(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , jit=__SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(__SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = scheduler.create_state() __SCREAMING_SNAKE_CASE = scheduler_state __SCREAMING_SNAKE_CASE = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = 50 __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__SCREAMING_SNAKE_CASE ) # shard inputs and rng __SCREAMING_SNAKE_CASE = replicate(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jax.random.split(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = shard(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipeline(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , jit=__SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1E-3 assert np.abs((np.abs(__SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2347693.5) ) < 5E-1 def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0 ) , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = replicate(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = shard(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipeline(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , jit=__SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) __SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # With memory efficient attention __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=__SCREAMING_SNAKE_CASE , use_memory_efficient_attention=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = replicate(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = shard(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipeline(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , jit=__SCREAMING_SNAKE_CASE ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) __SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
627
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCAmelCase : Any = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = {} with open(a__ , """r""" ) as file: for line_number, line in enumerate(a__ ): __SCREAMING_SNAKE_CASE = line.strip() if line: __SCREAMING_SNAKE_CASE = line.split() __SCREAMING_SNAKE_CASE = line_number __SCREAMING_SNAKE_CASE = words[0] __SCREAMING_SNAKE_CASE = value return result def a__ ( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" for attribute in key.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(a__ , a__ ) __SCREAMING_SNAKE_CASE = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(a__ ): __SCREAMING_SNAKE_CASE = PARAM_MAPPING[full_name.split(""".""" )[-1]] __SCREAMING_SNAKE_CASE = """param""" if weight_type is not None and weight_type != "param": __SCREAMING_SNAKE_CASE = getattr(a__ , a__ ).shape elif weight_type is not None and weight_type == "param": __SCREAMING_SNAKE_CASE = hf_pointer for attribute in hf_param_name.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(a__ , a__ ) __SCREAMING_SNAKE_CASE = shape_pointer.shape # let's reduce dimension __SCREAMING_SNAKE_CASE = value[0] else: __SCREAMING_SNAKE_CASE = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": __SCREAMING_SNAKE_CASE = value elif weight_type == "bias": __SCREAMING_SNAKE_CASE = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(a__ , a__ ) __SCREAMING_SNAKE_CASE = value else: __SCREAMING_SNAKE_CASE = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def a__ ( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(a__ ): __SCREAMING_SNAKE_CASE = PARAM_MAPPING[full_name.split(""".""" )[-1]] __SCREAMING_SNAKE_CASE = """param""" if weight_type is not None and weight_type != "param": __SCREAMING_SNAKE_CASE = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __SCREAMING_SNAKE_CASE = """.""".join([key, hf_param_name] ) else: __SCREAMING_SNAKE_CASE = key __SCREAMING_SNAKE_CASE = value if """lm_head""" in full_key else value[0] UpperCAmelCase : Any = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def a__ ( a__ , a__ , a__=None , a__=None ): """simple docstring""" __SCREAMING_SNAKE_CASE = False for key, mapped_key in MAPPING.items(): __SCREAMING_SNAKE_CASE = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __SCREAMING_SNAKE_CASE = True if "*" in mapped_key: __SCREAMING_SNAKE_CASE = name.split(a__ )[0].split(""".""" )[-2] __SCREAMING_SNAKE_CASE = mapped_key.replace("""*""" , a__ ) if "weight_g" in name: __SCREAMING_SNAKE_CASE = """weight_g""" elif "weight_v" in name: __SCREAMING_SNAKE_CASE = """weight_v""" elif "bias" in name: __SCREAMING_SNAKE_CASE = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __SCREAMING_SNAKE_CASE = """weight""" else: __SCREAMING_SNAKE_CASE = None if hf_dict is not None: rename_dict(a__ , a__ , a__ , a__ , a__ ) else: set_recursively(a__ , a__ , a__ , a__ , a__ ) return is_used return is_used def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = fairseq_model.state_dict() __SCREAMING_SNAKE_CASE = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == """group""" , ) __SCREAMING_SNAKE_CASE = True else: __SCREAMING_SNAKE_CASE = load_wavaveca_layer(a__ , a__ , a__ ) if not is_used: unused_weights.append(a__ ) logger.warning(F'Unused weights: {unused_weights}' ) def a__ ( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = full_name.split("""conv_layers.""" )[-1] __SCREAMING_SNAKE_CASE = name.split(""".""" ) __SCREAMING_SNAKE_CASE = int(items[0] ) __SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(a__ ) @torch.no_grad() def a__ ( a__ , a__ , a__=None , a__=None , a__=True , a__=False ): """simple docstring""" if config_path is not None: __SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained(a__ ) else: __SCREAMING_SNAKE_CASE = WavaVecaConfig() if is_seq_class: __SCREAMING_SNAKE_CASE = read_txt_into_dict(a__ ) __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = WavaVecaForSequenceClassification(a__ ) __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=a__ , return_attention_mask=a__ , ) feature_extractor.save_pretrained(a__ ) elif is_finetuned: if dict_path: __SCREAMING_SNAKE_CASE = Dictionary.load(a__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __SCREAMING_SNAKE_CASE = target_dict.pad_index __SCREAMING_SNAKE_CASE = target_dict.bos_index __SCREAMING_SNAKE_CASE = target_dict.eos_index __SCREAMING_SNAKE_CASE = len(target_dict.symbols ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , """vocab.json""" ) if not os.path.isdir(a__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(a__ ) ) return os.makedirs(a__ , exist_ok=a__ ) __SCREAMING_SNAKE_CASE = target_dict.indices # fairseq has the <pad> and <s> switched __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 with open(a__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(a__ , a__ ) __SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( a__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=a__ , ) __SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == """layer""" else False __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=a__ , return_attention_mask=a__ , ) __SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=a__ , tokenizer=a__ ) processor.save_pretrained(a__ ) __SCREAMING_SNAKE_CASE = WavaVecaForCTC(a__ ) else: __SCREAMING_SNAKE_CASE = WavaVecaForPreTraining(a__ ) if is_finetuned or is_seq_class: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __SCREAMING_SNAKE_CASE = argparse.Namespace(task="""audio_pretraining""" ) __SCREAMING_SNAKE_CASE = fairseq.tasks.setup_task(a__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=a__ ) __SCREAMING_SNAKE_CASE = model[0].eval() recursively_load_weights(a__ , a__ , not is_finetuned ) hf_wavavec.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCAmelCase : Optional[Any] = parser.parse_args() UpperCAmelCase : int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
627
1
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _lowerCAmelCase = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _lowerCAmelCase = logging.get_logger(__name__) class __A ( a ): """simple docstring""" A_ = 'maskformer' A_ = {'hidden_size': 'mask_feature_size'} A_ = ['resnet', 'swin'] A_ = ['detr'] def __init__( self , _lowerCamelCase = 2_5_6 , _lowerCamelCase = 2_5_6 , _lowerCamelCase = 0.1 , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 0.0_2 , _lowerCamelCase = 1.0 , _lowerCamelCase = 1.0 , _lowerCamelCase = 1.0 , _lowerCamelCase = 2_0.0 , _lowerCamelCase = None , **_lowerCamelCase , )-> str: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase__ = backbone_config.pop('''model_type''' ) lowercase__ = CONFIG_MAPPING[backbone_model_type] lowercase__ = config_class.from_dict(UpperCAmelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ = DetrConfig() else: # verify that the decoder is supported lowercase__ = ( decoder_config.pop('''model_type''' ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase__ = CONFIG_MAPPING[decoder_type] lowercase__ = config_class.from_dict(UpperCAmelCase__ ) lowercase__ = backbone_config lowercase__ = decoder_config # main feature dimension for the model lowercase__ = fpn_feature_size lowercase__ = mask_feature_size # initializer lowercase__ = init_std lowercase__ = init_xavier_std # Hungarian matcher && loss lowercase__ = cross_entropy_weight lowercase__ = dice_weight lowercase__ = mask_weight lowercase__ = use_auxiliary_loss lowercase__ = no_object_weight lowercase__ = output_auxiliary_logits lowercase__ = self.decoder_config.encoder_attention_heads lowercase__ = self.decoder_config.num_hidden_layers super().__init__(**UpperCAmelCase__ ) @classmethod def snake_case_( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )-> Dict: return cls( backbone_config=UpperCAmelCase__ , decoder_config=UpperCAmelCase__ , **UpperCAmelCase__ , ) def snake_case_( self )-> Dict[str, any]: lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.backbone_config.to_dict() lowercase__ = self.decoder_config.to_dict() lowercase__ = self.__class__.model_type return output
721
'''simple docstring''' _lowerCAmelCase = "Input must be a string of 8 numbers plus letter" _lowerCAmelCase = "TRWAGMYFPDXBNJZSQVHLCKE" def _lowerCAmelCase ( lowercase : str ) ->bool: """simple docstring""" if not isinstance(lowercase , lowercase ): lowercase__ = F'''Expected string as input, found {type(lowercase ).__name__}''' raise TypeError(lowercase ) lowercase__ = spanish_id.replace('''-''' , '''''' ).upper() if len(lowercase ) != 9: raise ValueError(lowercase ) try: lowercase__ = int(spanish_id_clean[0:8] ) lowercase__ = spanish_id_clean[8] except ValueError as ex: raise ValueError(lowercase ) from ex if letter.isdigit(): raise ValueError(lowercase ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
318
0
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __A ( lowerCAmelCase_ , lowerCAmelCase_=7 ): _UpperCAmelCase : List[Any] = None if token is not None: _UpperCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} # The id of a workflow (not of a workflow run) _UpperCAmelCase : str = """636036""" _UpperCAmelCase : Any = f"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" _UpperCAmelCase : List[str] = requests.get(lowerCAmelCase_ , headers=lowerCAmelCase_ ).json() return result["workflow_runs"] def __A ( lowerCAmelCase_ ): _UpperCAmelCase : int = get_daily_ci_runs(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCAmelCase : int = workflow_run["""id"""] break return workflow_run_id def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : List[str] = get_last_daily_ci_runs(lowerCAmelCase_ ) if workflow_run_id is not None: _UpperCAmelCase : int = get_artifacts_links(worflow_run_id=lowerCAmelCase_ , token=lowerCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCAmelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowerCAmelCase_ , artifact_url=lowerCAmelCase_ , output_dir=lowerCAmelCase_ , token=lowerCAmelCase_ ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): get_last_daily_ci_artifacts(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Any = {} for artifact_name in artifact_names: _UpperCAmelCase : Optional[Any] = os.path.join(lowerCAmelCase_ , f"{artifact_name}.zip" ) if os.path.isfile(lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = {} with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file with z.open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read().decode("""UTF-8""" ) return results
414
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( __a , unittest.TestCase ): snake_case : Any = LxmertTokenizer snake_case : Tuple = LxmertTokenizerFast snake_case : List[str] = True snake_case : int = True def snake_case_ (self ): super().setUp() _UpperCAmelCase : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = """UNwant\u00E9d,running""" _UpperCAmelCase : str = """unwanted, running""" return input_text, output_text def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase : List[str] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCAmelCase__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [7, 4, 5, 1_0, 8, 9] ) def snake_case_ (self ): if not self.test_rust_tokenizer: return _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : Any = self.get_rust_tokenizer() _UpperCAmelCase : int = """I was born in 92000, and this is falsé.""" _UpperCAmelCase : Optional[Any] = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : str = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = self.get_rust_tokenizer() _UpperCAmelCase : List[str] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
414
1
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( a__ ,unittest.TestCase ): """simple docstring""" a_ = DebertaTokenizer a_ = True a_ = DebertaTokenizerFast def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] a_ : Optional[int] = dict(zip(_A , range(len(_A ) ) ) ) a_ : Any = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a_ : int = {'unk_token': '[UNK]'} a_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_A ) ) def _lowerCAmelCase ( self , **lowerCAmelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _lowerCAmelCase ( self , lowerCAmelCase_ ): '''simple docstring''' a_ : Tuple = 'lower newer' a_ : Dict = 'lower newer' return input_text, output_text def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = self.get_tokenizer() a_ : Optional[Any] = 'lower newer' a_ : Dict = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] a_ : Optional[int] = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) a_ : List[str] = tokens + [tokenizer.unk_token] a_ : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = self.get_tokenizer() a_ : Any = tokenizer("""Hello""" , """World""" ) a_ : Optional[int] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , _A ) @slow def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) a_ : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=_A ) a_ : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_A ) a_ : Union[str, Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=_A , add_prefix_space=_A ) a_ : Optional[Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=_A , add_prefix_space=_A ) a_ : int = tokenizer.build_inputs_with_special_tokens(_A ) a_ : List[Any] = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: a_ : Dict = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) a_ : Tuple = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] a_ : List[str] = tokenizer(_A , padding=_A ) a_ : Dict = [tokenizer.decode(_A , skip_special_tokens=_A ) for seq in encoding['input_ids']] # fmt: off a_ : Tuple = { 'input_ids': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on a_ : List[str] = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , _A ) for expected, decoded in zip(_A , _A ): self.assertEqual(_A , _A )
716
'''simple docstring''' from __future__ import annotations def _snake_case ( A_ : int ): """simple docstring""" a_ : Optional[Any] = 2 a_ : int = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(A_ ) if n > 1: factors.append(A_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
460
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''vit_msn''' def __init__( self : Optional[Any] , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[str]=1e-06 , _UpperCAmelCase : Any=224 , _UpperCAmelCase : str=16 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Dict=True , **_UpperCAmelCase : Dict , ) -> List[str]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = qkv_bias
82
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Dict = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
491
0
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : def __init__( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any]=13 , UpperCamelCase__ : List[str]=7 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Optional[int]=99 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : Optional[int]=37 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Optional[int]=128 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : str=4 , UpperCamelCase__ : List[Any]=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = self.prepare_config_and_inputs() lowercase_ = True lowercase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' lowercase_ = NezhaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = True lowercase_ = NezhaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ = NezhaForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' lowercase_ = NezhaForNextSentencePrediction(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = NezhaForPreTraining(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , next_sentence_label=UpperCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Dict ): '''simple docstring''' lowercase_ = NezhaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = NezhaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = NezhaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = self.num_choices lowercase_ = NezhaForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Dict = True def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=False ): '''simple docstring''' lowercase_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ ) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = NezhaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ = None self.model_tester.create_and_check_model_as_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = NezhaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @slow @require_torch_gpu def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowercase_ = True lowercase_ = model_class(config=UpperCamelCase__ ) lowercase_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = torch.jit.trace( UpperCamelCase__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , """bert.pt""" ) ) lowercase_ = torch.jit.load(os.path.join(UpperCamelCase__ , """bert.pt""" ) , map_location=UpperCamelCase__ ) loaded(inputs_dict["""input_ids"""].to(UpperCamelCase__ ) , inputs_dict["""attention_mask"""].to(UpperCamelCase__ ) ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) lowercase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] lowercase_ = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4 ) ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) lowercase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] lowercase_ = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape , UpperCamelCase__ ) lowercase_ = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4 ) )
650
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : bool = False , ): '''simple docstring''' super().__init__() lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = False lowercase_ = nn.Dropout(p=UpperCamelCase__ ) lowercase_ = TaConfig( vocab_size=UpperCamelCase__ , d_model=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_kv=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , feed_forward_proj=UpperCamelCase__ , is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , ) lowercase_ = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): lowercase_ = TaBlock(UpperCamelCase__ ) self.encoders.append(UpperCamelCase__ ) lowercase_ = TaLayerNorm(UpperCamelCase__ ) lowercase_ = nn.Dropout(p=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = self.token_embedder(UpperCamelCase__ ) lowercase_ = encoder_input_tokens.shape[1] lowercase_ = torch.arange(UpperCamelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase__ ) lowercase_ = self.dropout_pre(UpperCamelCase__ ) # inverted the attention mask lowercase_ = encoder_input_tokens.size() lowercase_ = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ ) for lyr in self.encoders: lowercase_ = lyr(UpperCamelCase__ , UpperCamelCase__ )[0] lowercase_ = self.layer_norm(UpperCamelCase__ ) return self.dropout_post(UpperCamelCase__ ), encoder_inputs_mask
650
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase : Tuple = 16 lowerCamelCase : List[str] = 32 def _SCREAMING_SNAKE_CASE ( lowercase : Accelerator , lowercase : int = 16 ): '''simple docstring''' lowerCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCamelCase_ = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowercase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ = datasets.map( lowercase , batched=lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowercase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ = 16 elif accelerator.mixed_precision != "no": lowerCamelCase_ = 8 else: lowerCamelCase_ = None return tokenizer.pad( lowercase , padding='longest' , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors='pt' , ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) lowerCamelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase : Optional[Any] = mocked_dataloaders # noqa: F811 def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] ): '''simple docstring''' if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowercase ) == "1": lowerCamelCase_ = 2 # New Code # lowerCamelCase_ = int(args.gradient_accumulation_steps ) lowerCamelCase_ = int(args.local_sgd_steps ) # Initialize accelerator lowerCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config['lr'] lowerCamelCase_ = int(config['num_epochs'] ) lowerCamelCase_ = int(config['seed'] ) lowerCamelCase_ = int(config['batch_size'] ) lowerCamelCase_ = evaluate.load('glue' , 'mrpc' ) set_seed(lowercase ) lowerCamelCase_ , lowerCamelCase_ = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=1_00 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() with LocalSGD( accelerator=lowercase , model=lowercase , local_sgd_steps=lowercase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): lowerCamelCase_ = model(**lowercase ) lowerCamelCase_ = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**lowercase ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) lowerCamelCase_ , lowerCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowercase , references=lowercase , ) lowerCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowercase , default=lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=lowercase , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
70
def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' if len(lowercase ) != len(lowercase ): raise ValueError('String lengths must match!' ) lowerCamelCase_ = 0 for chara, chara in zip(lowercase , lowercase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
70
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=30 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , lowerCAmelCase__=2 , ) -> List[str]: '''simple docstring''' lowercase__: Optional[Any] = parent lowercase__: List[Any] = batch_size lowercase__: Optional[int] = image_size lowercase__: Dict = patch_size lowercase__: Tuple = num_channels lowercase__: List[Any] = is_training lowercase__: Any = use_labels lowercase__: List[str] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: List[str] = num_attention_heads lowercase__: Dict = intermediate_size lowercase__: Tuple = hidden_act lowercase__: Optional[int] = hidden_dropout_prob lowercase__: Tuple = attention_probs_dropout_prob lowercase__: Any = type_sequence_label_size lowercase__: Tuple = initializer_range lowercase__: List[Any] = scope lowercase__: int = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase__: Tuple = (image_size // patch_size) ** 2 lowercase__: Tuple = num_patches + 2 def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__: Any = None if self.use_labels: lowercase__: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: Optional[Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' lowercase__: Any = DeiTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Union[str, Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' lowercase__: int = DeiTForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Union[str, Any] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__: int = 1 lowercase__: Tuple = DeiTForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__: str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: List[str] = self.type_sequence_label_size lowercase__: str = DeiTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__: Dict = 1 lowercase__: str = DeiTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__: Tuple = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: Optional[Any] = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ): Optional[Any] = config_and_inputs lowercase__: Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): __lowercase : str = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __lowercase : int = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Any = False __lowercase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: Optional[Any] = DeiTModelTester(self ) lowercase__: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__ , lowercase__: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: str = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__: List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__ , lowercase__: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: str = model_class(lowerCAmelCase__ ) lowercase__: int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__: Tuple = [*signature.parameters.keys()] lowercase__: int = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> str: '''simple docstring''' lowercase__: Optional[Any] = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return lowercase__ , lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__: Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase__: List[str] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() lowercase__: List[str] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) lowercase__: int = model(**lowerCAmelCase__ ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__ , lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__: Union[str, Any] = False lowercase__: Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase__: Any = model_class(lowerCAmelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase__ ) model.train() lowercase__: Union[str, Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) lowercase__: Optional[Any] = model(**lowerCAmelCase__ ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__ , lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__: Dict = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): lowercase__: Optional[Any] = problem_type['title'] lowercase__: Optional[int] = problem_type['num_labels'] lowercase__: Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() lowercase__: Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if problem_type["num_labels"] > 1: lowercase__: Union[str, Any] = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) lowercase__: str = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase__ ) as warning_list: lowercase__: Any = model(**lowerCAmelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: List[Any] = DeiTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def snake_case_ ( ) -> Optional[Any]: lowercase__: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: List[Any] = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( lowerCAmelCase__ ) lowercase__: Union[str, Any] = self.default_image_processor lowercase__: Union[str, Any] = prepare_img() lowercase__: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowercase__: Dict = model(**lowerCAmelCase__ ) # verify the logits lowercase__: Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) lowercase__: Optional[int] = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: Any = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto' ) lowercase__: List[str] = self.default_image_processor lowercase__: Dict = prepare_img() lowercase__: Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ) lowercase__: int = inputs.pixel_values.to(lowerCAmelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase__: List[str] = model(lowerCAmelCase__ )
335
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : int = DDIMPipeline __lowercase : Dict = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __lowercase : List[str] = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __lowercase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase__: Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) lowercase__: int = DDIMScheduler() lowercase__: List[Any] = {'unet': unet, 'scheduler': scheduler} return components def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> List[str]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith('mps' ): lowercase__: Any = torch.manual_seed(lowerCAmelCase__ ) else: lowercase__: Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowercase__: Any = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: int = 'cpu' lowercase__: List[str] = self.get_dummy_components() lowercase__: Union[str, Any] = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: List[str] = self.get_dummy_inputs(lowerCAmelCase__ ) lowercase__: str = pipe(**lowerCAmelCase__ ).images lowercase__: List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowercase__: Optional[Any] = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowercase__: int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Tuple = 'google/ddpm-cifar10-32' lowercase__: Union[str, Any] = UNetaDModel.from_pretrained(lowerCAmelCase__ ) lowercase__: Optional[Any] = DDIMScheduler() lowercase__: List[str] = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddim.to(lowerCAmelCase__ ) ddim.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Optional[Any] = torch.manual_seed(0 ) lowercase__: str = ddim(generator=lowerCAmelCase__ , eta=0.0 , output_type='numpy' ).images lowercase__: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__: Optional[Any] = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Tuple = 'google/ddpm-ema-bedroom-256' lowercase__: int = UNetaDModel.from_pretrained(lowerCAmelCase__ ) lowercase__: Tuple = DDIMScheduler.from_pretrained(lowerCAmelCase__ ) lowercase__: Any = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddpm.to(lowerCAmelCase__ ) ddpm.set_progress_bar_config(disable=lowerCAmelCase__ ) lowercase__: Optional[int] = torch.manual_seed(0 ) lowercase__: Tuple = ddpm(generator=lowerCAmelCase__ , output_type='numpy' ).images lowercase__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__: List[str] = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
335
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __magic_name__ : Optional[int] = logging.get_logger(__name__) __magic_name__ : Tuple = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __snake_case (lowerCamelCase ): __a = '''imagegpt''' __a = ['''past_key_values'''] __a = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self: Tuple , A_: Dict=5_12 + 1 , A_: Optional[int]=32 * 32 , A_: Optional[Any]=5_12 , A_: str=24 , A_: Union[str, Any]=8 , A_: Any=None , A_: str="quick_gelu" , A_: Optional[Any]=0.1 , A_: Tuple=0.1 , A_: List[str]=0.1 , A_: Dict=1E-5 , A_: Optional[int]=0.02 , A_: List[str]=True , A_: Tuple=True , A_: List[str]=False , A_: List[Any]=False , A_: Dict=False , **A_: int , ): __lowerCamelCase = vocab_size __lowerCamelCase = n_positions __lowerCamelCase = n_embd __lowerCamelCase = n_layer __lowerCamelCase = n_head __lowerCamelCase = n_inner __lowerCamelCase = activation_function __lowerCamelCase = resid_pdrop __lowerCamelCase = embd_pdrop __lowerCamelCase = attn_pdrop __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = initializer_range __lowerCamelCase = scale_attn_weights __lowerCamelCase = use_cache __lowerCamelCase = scale_attn_by_inverse_layer_idx __lowerCamelCase = reorder_and_upcast_attn __lowerCamelCase = tie_word_embeddings super().__init__(tie_word_embeddings=A_ , **A_ ) class __snake_case (lowerCamelCase ): @property def __a ( self: Tuple ): return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def __a ( self: Tuple , A_: "FeatureExtractionMixin" , A_: int = 1 , A_: int = -1 , A_: bool = False , A_: Optional["TensorType"] = None , A_: int = 3 , A_: int = 32 , A_: int = 32 , ): __lowerCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ ) __lowerCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) ) return inputs
281
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : str = logging.get_logger(__name__) __magic_name__ : List[Any] = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __snake_case (lowerCamelCase ): __a = '''visual_bert''' def __init__( self: Any , A_: List[str]=3_05_22 , A_: Tuple=7_68 , A_: Dict=5_12 , A_: List[Any]=12 , A_: str=12 , A_: Dict=30_72 , A_: str="gelu" , A_: Union[str, Any]=0.1 , A_: Any=0.1 , A_: List[Any]=5_12 , A_: int=2 , A_: int=0.02 , A_: Any=1E-12 , A_: List[str]=False , A_: str=True , A_: Union[str, Any]=1 , A_: Optional[int]=0 , A_: Dict=2 , **A_: Optional[int] , ): super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = visual_embedding_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = type_vocab_size __lowerCamelCase = layer_norm_eps __lowerCamelCase = bypass_transformer __lowerCamelCase = special_visual_initialize
281
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __snake_case = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
400
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowercase__ ( _UpperCAmelCase ): A__ : torch.FloatTensor class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ): @register_to_config def __init__( self : List[Any] , UpperCAmelCase_ : int = 65536 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : str = "fourier" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Tuple[int] = (32, 32, 64) , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = False , ): super().__init__() SCREAMING_SNAKE_CASE__ = sample_size # time if time_embedding_type == "fourier": SCREAMING_SNAKE_CASE__ = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase_ , log=UpperCAmelCase_ , flip_sin_to_cos=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 2 * block_out_channels[0] elif time_embedding_type == "positional": SCREAMING_SNAKE_CASE__ = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase_ , downscale_freq_shift=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = block_out_channels[0] if use_timestep_embedding: SCREAMING_SNAKE_CASE__ = block_out_channels[0] * 4 SCREAMING_SNAKE_CASE__ = TimestepEmbedding( in_channels=UpperCAmelCase_ , time_embed_dim=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , out_dim=block_out_channels[0] , ) SCREAMING_SNAKE_CASE__ = nn.ModuleList([] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = nn.ModuleList([] ) SCREAMING_SNAKE_CASE__ = None # down SCREAMING_SNAKE_CASE__ = in_channels for i, down_block_type in enumerate(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = output_channel SCREAMING_SNAKE_CASE__ = block_out_channels[i] if i == 0: input_channel += extra_in_channels SCREAMING_SNAKE_CASE__ = i == len(UpperCAmelCase_ ) - 1 SCREAMING_SNAKE_CASE__ = get_down_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase_ ) # mid SCREAMING_SNAKE_CASE__ = get_mid_block( UpperCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase_ , add_downsample=UpperCAmelCase_ , ) # up SCREAMING_SNAKE_CASE__ = list(reversed(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = reversed_block_out_channels[0] if out_block_type is None: SCREAMING_SNAKE_CASE__ = out_channels else: SCREAMING_SNAKE_CASE__ = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = output_channel SCREAMING_SNAKE_CASE__ = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase_ ) - 1 else final_upsample_channels ) SCREAMING_SNAKE_CASE__ = i == len(UpperCAmelCase_ ) - 1 SCREAMING_SNAKE_CASE__ = get_up_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = output_channel # out SCREAMING_SNAKE_CASE__ = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) SCREAMING_SNAKE_CASE__ = get_out_block( out_block_type=UpperCAmelCase_ , num_groups_out=UpperCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[torch.Tensor, float, int] , UpperCAmelCase_ : bool = True , ): SCREAMING_SNAKE_CASE__ = timestep if not torch.is_tensor(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase_ ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE__ = timesteps[None].to(sample.device ) SCREAMING_SNAKE_CASE__ = self.time_proj(UpperCAmelCase_ ) if self.config.use_timestep_embedding: SCREAMING_SNAKE_CASE__ = self.time_mlp(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = timestep_embed[..., None] SCREAMING_SNAKE_CASE__ = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) SCREAMING_SNAKE_CASE__ = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down SCREAMING_SNAKE_CASE__ = () for downsample_block in self.down_blocks: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = downsample_block(hidden_states=UpperCAmelCase_ , temb=UpperCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: SCREAMING_SNAKE_CASE__ = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): SCREAMING_SNAKE_CASE__ = down_block_res_samples[-1:] SCREAMING_SNAKE_CASE__ = down_block_res_samples[:-1] SCREAMING_SNAKE_CASE__ = upsample_block(UpperCAmelCase_ , res_hidden_states_tuple=UpperCAmelCase_ , temb=UpperCAmelCase_ ) # 5. post-process if self.out_block: SCREAMING_SNAKE_CASE__ = self.out_block(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase_ )
400
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''xmod''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , _lowercase=False , _lowercase=2 , _lowercase=False , _lowercase=True , _lowercase=True , _lowercase=("en_XX",) , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout _lowerCAmelCase = pre_norm _lowerCAmelCase = adapter_reduction_factor _lowerCAmelCase = adapter_layer_norm _lowerCAmelCase = adapter_reuse_layer_norm _lowerCAmelCase = ln_before_adapter _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = default_language class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
5
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
1
import qiskit def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> qiskit.result.counts.Counts: _a = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _a = qiskit.QuantumCircuit(__snake_case , __snake_case ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _a = qiskit.execute(__snake_case , __snake_case , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__snake_case ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
712
import math import random def __snake_case ( _UpperCamelCase , _UpperCamelCase = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCamelCase :Optional[Any] = 0.02 def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> float: _a = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(_UpperCamelCase ): # Forward propagation _a = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _a = (expected / 1_00) - layer_a # Error delta _a = layer_1_error * sigmoid_function(_UpperCamelCase , _UpperCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase :List[str] = int(input('Expected value: ')) lowerCamelCase :str = int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
346
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __lowerCAmelCase : List[Any] = logging.getLogger() def a__ ( A_ ): '''simple docstring''' __magic_name__ = {} __magic_name__ = os.path.join(A_, """all_results.json""" ) if os.path.exists(A_ ): with open(A_, """r""" ) as f: __magic_name__ = json.load(A_ ) else: raise ValueError(f'''can\'t find {path}''' ) return results __lowerCAmelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCAmelCase_ ( _A ): '''simple docstring''' def _lowercase ( self : Any ) -> Tuple: """simple docstring""" import xla_spawn __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(UpperCamelCase__ , """argv""" , UpperCamelCase__ ): __magic_name__ = time() xla_spawn.main() __magic_name__ = time() __magic_name__ = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def _lowercase ( self : int ) -> int: """simple docstring""" import xla_spawn __magic_name__ = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(UpperCamelCase__ , """argv""" , UpperCamelCase__ ): xla_spawn.main()
529
from __future__ import annotations def a__ ( A_, A_ ): '''simple docstring''' if b == 0: return (1, 0) ((__magic_name__) , (__magic_name__)) = extended_euclid(A_, a % b ) __magic_name__ = a // b return (y, x - k * y) def a__ ( A_, A_, A_, A_ ): '''simple docstring''' ((__magic_name__) , (__magic_name__)) = extended_euclid(A_, A_ ) __magic_name__ = na * na __magic_name__ = ra * x * na + ra * y * na return (n % m + m) % m def a__ ( A_, A_ ): '''simple docstring''' ((__magic_name__) , (__magic_name__)) = extended_euclid(A_, A_ ) if b < 0: __magic_name__ = (b % n + n) % n return b def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ , __magic_name__ = invert_modulo(A_, A_ ), invert_modulo(A_, A_ ) __magic_name__ = na * na __magic_name__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
529
1
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') lowerCamelCase__ = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) lowerCamelCase__ = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) lowerCamelCase__ = BeautifulSoup(res.text, '''html.parser''') lowerCamelCase__ = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
721
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" lowerCAmelCase__ ='''openai-gpt''' lowerCAmelCase__ ={ '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , __SCREAMING_SNAKE_CASE=4_0478 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE="cls_index" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" snake_case__ : Optional[Any] =vocab_size snake_case__ : Optional[int] =n_positions snake_case__ : Union[str, Any] =n_embd snake_case__ : Dict =n_layer snake_case__ : Dict =n_head snake_case__ : Optional[int] =afn snake_case__ : Tuple =resid_pdrop snake_case__ : str =embd_pdrop snake_case__ : Tuple =attn_pdrop snake_case__ : Optional[int] =layer_norm_epsilon snake_case__ : Any =initializer_range snake_case__ : List[str] =summary_type snake_case__ : Dict =summary_use_proj snake_case__ : Any =summary_activation snake_case__ : Optional[Any] =summary_first_dropout snake_case__ : Tuple =summary_proj_to_labels super().__init__(**__SCREAMING_SNAKE_CASE )
408
0
"""simple docstring""" def lowercase__ ( lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" if collection == []: return [] # get some information about the collection UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = max(lowerCAmelCase ) UpperCAmelCase = min(lowerCAmelCase ) # create the counting array UpperCAmelCase = coll_max + 1 - coll_min UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowerCAmelCase ): UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowerCAmelCase ) ): UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowercase__ ( lowerCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return "".join([chr(lowerCAmelCase ) for i in counting_sort([ord(lowerCAmelCase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" SCREAMING_SNAKE_CASE_ = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE_ = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
373
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def lowercase__ ( lowerCAmelCase : np.ndarray , lowerCAmelCase : float , lowerCAmelCase : int = 16_000 ) -> List[Any]: """simple docstring""" UpperCAmelCase = int(round(sample_rate * max_length ) ) if len(lowerCAmelCase ) <= sample_length: return wav UpperCAmelCase = randint(0 , len(lowerCAmelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _UpperCAmelCase : __SCREAMING_SNAKE_CASE : Optional[str] = field(default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Name of a dataset from the datasets package"} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "A file containing the training audio paths and labels."} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "A file containing the validation audio paths and labels."} ) __SCREAMING_SNAKE_CASE : str = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) __SCREAMING_SNAKE_CASE : str = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) __SCREAMING_SNAKE_CASE : str = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) __SCREAMING_SNAKE_CASE : str = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __SCREAMING_SNAKE_CASE : float = field( default=2_0 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class _UpperCAmelCase : __SCREAMING_SNAKE_CASE : str = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) __SCREAMING_SNAKE_CASE : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Name or path of preprocessor config."} ) __SCREAMING_SNAKE_CASE : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) __SCREAMING_SNAKE_CASE : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) __SCREAMING_SNAKE_CASE : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) __SCREAMING_SNAKE_CASE : Optional[bool] = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __SCREAMING_SNAKE_CASE : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def a_ ( self ) -> List[str]: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , lowercase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def lowercase__ ( ) -> List[Any]: """simple docstring""" UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' , lowerCAmelCase , lowerCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase ) transformers.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. UpperCAmelCase = DatasetDict() UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " 'Make sure to set `--audio_column_name` to the correct audio column - one of ' F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " 'Make sure to set `--label_column_name` to the correct text column - one of ' F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCAmelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCAmelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCAmelCase = feature_extractor.model_input_names[0] def train_transforms(lowerCAmelCase : List[Any] ): UpperCAmelCase = [] for audio in batch[data_args.audio_column_name]: UpperCAmelCase = random_subsample( audio['array'] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowerCAmelCase ) UpperCAmelCase = feature_extractor(lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase = {model_input_name: inputs.get(lowerCAmelCase )} UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowerCAmelCase : int ): UpperCAmelCase = [audio['array'] for audio in batch[data_args.audio_column_name]] UpperCAmelCase = feature_extractor(lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase = {model_input_name: inputs.get(lowerCAmelCase )} UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCAmelCase = raw_datasets['train'].features[data_args.label_column_name].names UpperCAmelCase , UpperCAmelCase = {}, {} for i, label in enumerate(lowerCAmelCase ): UpperCAmelCase = str(lowerCAmelCase ) UpperCAmelCase = label # Load the accuracy metric from the datasets package UpperCAmelCase = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase : int ): UpperCAmelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowerCAmelCase , references=eval_pred.label_ids ) UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase ) , labelaid=lowerCAmelCase , idalabel=lowerCAmelCase , finetuning_task='audio-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCAmelCase = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowerCAmelCase , output_all_columns=lowerCAmelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCAmelCase = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowerCAmelCase , output_all_columns=lowerCAmelCase ) # Initialize our trainer UpperCAmelCase = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=raw_datasets['train'] if training_args.do_train else None , eval_dataset=raw_datasets['eval'] if training_args.do_eval else None , compute_metrics=lowerCAmelCase , tokenizer=lowerCAmelCase , ) # Training if training_args.do_train: UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase = last_checkpoint UpperCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase = trainer.evaluate() trainer.log_metrics('eval' , lowerCAmelCase ) trainer.save_metrics('eval' , lowerCAmelCase ) # Write model card and (optionally) push to hub UpperCAmelCase = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase ) else: trainer.create_model_card(**lowerCAmelCase ) if __name__ == "__main__": main()
373
1
from ..utils import DummyObject, requires_backends class lowercase ( metaclass=_UpperCAmelCase ): lowerCamelCase : int = ['''flax''', '''transformers'''] def __init__( self : Union[str, Any] , *_lowercase : str , **_lowercase : Optional[int] ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def lowercase__ ( cls : List[str] , *_lowercase : Dict , **_lowercase : Optional[int] ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def lowercase__ ( cls : List[str] , *_lowercase : Optional[Any] , **_lowercase : Tuple ): requires_backends(cls , ['''flax''', '''transformers'''] ) class lowercase ( metaclass=_UpperCAmelCase ): lowerCamelCase : Any = ['''flax''', '''transformers'''] def __init__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Any ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def lowercase__ ( cls : List[Any] , *_lowercase : Any , **_lowercase : Any ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def lowercase__ ( cls : Dict , *_lowercase : Tuple , **_lowercase : Optional[int] ): requires_backends(cls , ['''flax''', '''transformers'''] ) class lowercase ( metaclass=_UpperCAmelCase ): lowerCamelCase : Optional[Any] = ['''flax''', '''transformers'''] def __init__( self : Dict , *_lowercase : Dict , **_lowercase : Dict ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def lowercase__ ( cls : List[str] , *_lowercase : Dict , **_lowercase : List[str] ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def lowercase__ ( cls : int , *_lowercase : Dict , **_lowercase : List[str] ): requires_backends(cls , ['''flax''', '''transformers'''] ) class lowercase ( metaclass=_UpperCAmelCase ): lowerCamelCase : Dict = ['''flax''', '''transformers'''] def __init__( self : Optional[Any] , *_lowercase : str , **_lowercase : List[str] ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def lowercase__ ( cls : List[Any] , *_lowercase : List[Any] , **_lowercase : List[str] ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def lowercase__ ( cls : str , *_lowercase : Union[str, Any] , **_lowercase : List[Any] ): requires_backends(cls , ['''flax''', '''transformers'''] )
250
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a_ :List[Any] = logging.get_logger(__name__) def a ( A__ , A__ , A__ ) -> str: '''simple docstring''' return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def a ( A__ , A__ , A__ = None ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = tesseract_config if tesseract_config is not None else '''''' # apply OCR SCREAMING_SNAKE_CASE__ : str = to_pil_image(A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = pil_image.size SCREAMING_SNAKE_CASE__ : Union[str, Any] = pytesseract.image_to_data(A__ , lang=A__ , output_type='''dict''' , config=A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE__ : Any = [idx for idx, word in enumerate(A__ ) if not word.strip()] SCREAMING_SNAKE_CASE__ : Optional[Any] = [word for idx, word in enumerate(A__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : Optional[int] = [coord for idx, coord in enumerate(A__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [coord for idx, coord in enumerate(A__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : Any = [coord for idx, coord in enumerate(A__ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [coord for idx, coord in enumerate(A__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE__ : str = [] for x, y, w, h in zip(A__ , A__ , A__ , A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = [x, y, x + w, y + h] actual_boxes.append(A__ ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE__ : int = [] for box in actual_boxes: normalized_boxes.append(normalize_box(A__ , A__ , A__ ) ) assert len(A__ ) == len(A__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[Any] = ['''pixel_values'''] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Optional[str] = None , _lowercase : Optional[str] = "" , **_lowercase : List[str] , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : Any = size if size is not None else {'''height''': 2_24, '''width''': 2_24} SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = do_resize SCREAMING_SNAKE_CASE__ : List[str] = size SCREAMING_SNAKE_CASE__ : Tuple = resample SCREAMING_SNAKE_CASE__ : Union[str, Any] = apply_ocr SCREAMING_SNAKE_CASE__ : List[str] = ocr_lang SCREAMING_SNAKE_CASE__ : Union[str, Any] = tesseract_config def lowercase__ ( self : Optional[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ : str = (size['''height'''], size['''width''']) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : List[Any] , ): SCREAMING_SNAKE_CASE__ : Tuple = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : Any = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : str = get_size_dict(_lowercase ) SCREAMING_SNAKE_CASE__ : int = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : List[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE__ : Any = ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE__ : List[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE__ : str = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_numpy_array(_lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : Any = [] for image in images: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = apply_tesseract(_lowercase , _lowercase , _lowercase ) words_batch.append(_lowercase ) boxes_batch.append(_lowercase ) if do_resize: SCREAMING_SNAKE_CASE__ : List[Any] = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) SCREAMING_SNAKE_CASE__ : List[str] = [flip_channel_order(_lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : List[Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str = BatchFeature(data={'''pixel_values''': images} , tensor_type=_lowercase ) if apply_ocr: SCREAMING_SNAKE_CASE__ : List[str] = words_batch SCREAMING_SNAKE_CASE__ : List[str] = boxes_batch return data
250
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
83
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __snake_case ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _lowerCamelCase : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _lowerCamelCase : Union[str, Any] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _lowerCamelCase : Optional[int] = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _lowerCamelCase : List[Any] = shift_tokens_right(__lowerCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) _lowerCamelCase : int = model(__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ).logits _lowerCamelCase : Optional[Any] = optax.softmax_cross_entropy(__lowerCAmelCase , onehot(__lowerCAmelCase , logits.shape[-1] ) ).mean() _lowerCamelCase : Dict = -(labels.shape[-1] * loss.item()) _lowerCamelCase : Dict = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
83
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = {} class _lowerCamelCase ( __lowercase ): """simple docstring""" lowerCAmelCase__ : Tuple = '''llama''' lowerCAmelCase__ : Dict = ['''past_key_values'''] def __init__( self : Optional[Any] , snake_case : Union[str, Any]=32000 , snake_case : Optional[Any]=4096 , snake_case : List[Any]=11008 , snake_case : List[str]=32 , snake_case : List[Any]=32 , snake_case : List[Any]=None , snake_case : int="silu" , snake_case : List[Any]=2048 , snake_case : List[str]=0.02 , snake_case : Optional[int]=1E-6 , snake_case : Any=True , snake_case : Optional[Any]=0 , snake_case : List[str]=1 , snake_case : int=2 , snake_case : List[str]=1 , snake_case : List[Any]=False , snake_case : str=None , **snake_case : List[Any] , ): __UpperCamelCase = vocab_size __UpperCamelCase = max_position_embeddings __UpperCamelCase = hidden_size __UpperCamelCase = intermediate_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: __UpperCamelCase = num_attention_heads __UpperCamelCase = num_key_value_heads __UpperCamelCase = hidden_act __UpperCamelCase = initializer_range __UpperCamelCase = rms_norm_eps __UpperCamelCase = pretraining_tp __UpperCamelCase = use_cache __UpperCamelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def snake_case ( self : str ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"got {self.rope_scaling}" ) __UpperCamelCase = self.rope_scaling.get('''type''' , __a ) __UpperCamelCase = self.rope_scaling.get('''factor''' , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}" )
720
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : Dict = "unispeech" def __init__( self : str , snake_case : Union[str, Any]=32 , snake_case : Optional[Any]=768 , snake_case : Dict=12 , snake_case : Tuple=12 , snake_case : Optional[Any]=3072 , snake_case : Any="gelu" , snake_case : Dict=0.1 , snake_case : Tuple=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=0.0 , snake_case : Any=0.0 , snake_case : Optional[Any]=0.1 , snake_case : List[Any]=0.1 , snake_case : Optional[int]=0.02 , snake_case : List[str]=1E-5 , snake_case : str="group" , snake_case : List[Any]="gelu" , snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , snake_case : List[Any]=(5, 2, 2, 2, 2, 2, 2) , snake_case : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , snake_case : Tuple=False , snake_case : Optional[int]=128 , snake_case : List[str]=16 , snake_case : List[str]=False , snake_case : Dict=True , snake_case : Optional[Any]=0.05 , snake_case : Optional[Any]=10 , snake_case : Union[str, Any]=2 , snake_case : List[str]=0.0 , snake_case : str=10 , snake_case : int=0 , snake_case : Tuple=320 , snake_case : Any=2 , snake_case : List[str]=0.1 , snake_case : Optional[Any]=100 , snake_case : List[Any]=256 , snake_case : Union[str, Any]=256 , snake_case : Any=0.1 , snake_case : str="mean" , snake_case : Union[str, Any]=False , snake_case : str=False , snake_case : Union[str, Any]=256 , snake_case : Optional[Any]=80 , snake_case : str=0 , snake_case : int=1 , snake_case : int=2 , snake_case : Dict=0.5 , **snake_case : Optional[int] , ): super().__init__(**snake_case , pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case ) __UpperCamelCase = hidden_size __UpperCamelCase = feat_extract_norm __UpperCamelCase = feat_extract_activation __UpperCamelCase = list(snake_case ) __UpperCamelCase = list(snake_case ) __UpperCamelCase = list(snake_case ) __UpperCamelCase = conv_bias __UpperCamelCase = num_conv_pos_embeddings __UpperCamelCase = num_conv_pos_embedding_groups __UpperCamelCase = len(self.conv_dim ) __UpperCamelCase = num_hidden_layers __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = feat_proj_dropout __UpperCamelCase = final_dropout __UpperCamelCase = layerdrop __UpperCamelCase = layer_norm_eps __UpperCamelCase = initializer_range __UpperCamelCase = num_ctc_classes __UpperCamelCase = vocab_size __UpperCamelCase = do_stable_layer_norm __UpperCamelCase = use_weighted_layer_sum __UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase = num_codevectors_per_group __UpperCamelCase = num_codevector_groups __UpperCamelCase = contrastive_logits_temperature __UpperCamelCase = feat_quantizer_dropout __UpperCamelCase = num_negatives __UpperCamelCase = codevector_dim __UpperCamelCase = proj_codevector_dim __UpperCamelCase = diversity_loss_weight # ctc loss __UpperCamelCase = ctc_loss_reduction __UpperCamelCase = ctc_zero_infinity # pretraining loss __UpperCamelCase = replace_prob @property def snake_case ( self : Dict ): return functools.reduce(operator.mul , self.conv_stride , 1 )
375
0
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return int((input_a, input_a).count(0 ) != 0 ) def lowerCAmelCase_ ( ): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
21
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '▁' lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase = {'vinai/bartpho-syllable': 1024} class _a ( UpperCamelCase__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Optional[int]="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: int , ) -> None: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[str] , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> Dict: """simple docstring""" lowercase__ = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(UpperCamelCase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
43
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a__ : Dict = logging.get_logger(__name__) a__ : str = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Optional[Any] = "dpt" def __init__( self : Tuple , UpperCAmelCase__ : int=7_6_8 , UpperCAmelCase__ : List[str]=1_2 , UpperCAmelCase__ : Any=1_2 , UpperCAmelCase__ : int=3_0_7_2 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=1E-12 , UpperCAmelCase__ : List[str]=3_8_4 , UpperCAmelCase__ : Tuple=1_6 , UpperCAmelCase__ : Optional[Any]=3 , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[2, 5, 8, 1_1] , UpperCAmelCase__ : Union[str, Any]="project" , UpperCAmelCase__ : Dict=[4, 2, 1, 0.5] , UpperCAmelCase__ : Optional[Any]=[9_6, 1_9_2, 3_8_4, 7_6_8] , UpperCAmelCase__ : List[str]=2_5_6 , UpperCAmelCase__ : Optional[Any]=-1 , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Dict=0.4 , UpperCAmelCase__ : Union[str, Any]=2_5_5 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[int]=[1, 1_0_2_4, 2_4, 2_4] , UpperCAmelCase__ : List[Any]=[0, 1] , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : List[Any] , ) -> Dict: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) __SCREAMING_SNAKE_CASE = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } __SCREAMING_SNAKE_CASE = BitConfig(**UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): logger.info("Initializing the config with a `BiT` backbone." ) __SCREAMING_SNAKE_CASE = BitConfig(**UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) __SCREAMING_SNAKE_CASE = backbone_featmap_shape __SCREAMING_SNAKE_CASE = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) __SCREAMING_SNAKE_CASE = readout_type __SCREAMING_SNAKE_CASE = reassemble_factors __SCREAMING_SNAKE_CASE = neck_hidden_sizes __SCREAMING_SNAKE_CASE = fusion_hidden_size __SCREAMING_SNAKE_CASE = head_in_index __SCREAMING_SNAKE_CASE = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE = use_auxiliary_head __SCREAMING_SNAKE_CASE = auxiliary_loss_weight __SCREAMING_SNAKE_CASE = semantic_loss_ignore_index __SCREAMING_SNAKE_CASE = semantic_classifier_dropout def UpperCAmelCase_ ( self : Optional[int] ) -> str: __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
713
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = str(lowerCAmelCase_ ) return n == n[::-1] def UpperCAmelCase__ (lowerCAmelCase_ = 100_0000 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 for i in range(1 , lowerCAmelCase_ ): if is_palindrome(lowerCAmelCase_ ) and is_palindrome(bin(lowerCAmelCase_ ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
553
0
"""simple docstring""" from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter a = 'Create a default config file for Accelerate with only a few flags set.' def lowercase (snake_case__ : Any="no" , snake_case__ : str = default_json_config_file , snake_case__ : bool = False ) -> List[str]: '''simple docstring''' lowerCAmelCase = Path(lowerCamelCase_ ) path.parent.mkdir(parents=lowerCamelCase_ , exist_ok=lowerCamelCase_ ) if path.exists(): print( f'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False lowerCAmelCase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) lowerCAmelCase = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowerCAmelCase = torch.cuda.device_count() lowerCAmelCase = num_gpus lowerCAmelCase = False if num_gpus > 1: lowerCAmelCase = """MULTI_GPU""" else: lowerCAmelCase = """NO""" elif is_xpu_available() and use_xpu: lowerCAmelCase = torch.xpu.device_count() lowerCAmelCase = num_xpus lowerCAmelCase = False if num_xpus > 1: lowerCAmelCase = """MULTI_XPU""" else: lowerCAmelCase = """NO""" elif is_npu_available(): lowerCAmelCase = torch.npu.device_count() lowerCAmelCase = num_npus lowerCAmelCase = False if num_npus > 1: lowerCAmelCase = """MULTI_NPU""" else: lowerCAmelCase = """NO""" else: lowerCAmelCase = 0 lowerCAmelCase = True lowerCAmelCase = 1 lowerCAmelCase = """NO""" lowerCAmelCase = ClusterConfig(**lowerCamelCase_ ) config.to_json_file(lowerCamelCase_ ) return path def lowercase (snake_case__ : Any , snake_case__ : int ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = parser.add_parser("""default""" , parents=lowerCamelCase_ , help=lowerCamelCase_ , formatter_class=lowerCamelCase_ ) parser.add_argument( """--config_file""" , default=lowerCamelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowerCamelCase_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=lowerCamelCase_ ) return parser def lowercase (snake_case__ : str ) -> str: '''simple docstring''' lowerCAmelCase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f'''accelerate configuration saved at {config_file}''' )
169
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __magic_name__ : List[Any] =logging.getLogger(__name__) __magic_name__ : int ='Hello world! cécé herlolip' __magic_name__ : List[Any] =namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def __snake_case ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict ): '''simple docstring''' __magic_name__ = BertAbsConfig( temp_dir="." , finetune_bert=lowerCamelCase_ , large=lowerCamelCase_ , share_emb=lowerCamelCase_ , use_bert_emb=lowerCamelCase_ , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __magic_name__ = torch.load(lowerCamelCase_ , lambda lowerCamelCase_ , lowerCamelCase_ : storage ) __magic_name__ = AbsSummarizer(lowerCamelCase_ , torch.device("cpu" ) , lowerCamelCase_ ) original.eval() __magic_name__ = BertAbsSummarizer(lowerCamelCase_ , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) __magic_name__ = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs __magic_name__ = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowerCamelCase_ )) ) __magic_name__ = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) __magic_name__ = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowerCamelCase_ )) ) __magic_name__ = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __magic_name__ = encoder_input_ids __magic_name__ = decoder_input_ids __magic_name__ = __magic_name__ = None __magic_name__ = None __magic_name__ = __magic_name__ = None __magic_name__ = __magic_name__ = None __magic_name__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __magic_name__ = original(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )[0] __magic_name__ = original.generator(lowerCamelCase_ ) __magic_name__ = new_model( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )[0] __magic_name__ = new_model.generator(lowerCamelCase_ ) __magic_name__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(lowerCamelCase_ ) ) __magic_name__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(lowerCamelCase_ ) ) __magic_name__ = torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": __magic_name__ : Dict =argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) __magic_name__ : Any =parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
664
0
'''simple docstring''' from collections import defaultdict class lowerCamelCase__ : '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' _lowercase : List[str] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 _lowercase : int = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCamelCase_ ) ) ] _lowercase : Optional[int] = defaultdict(UpperCamelCase_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 _lowercase : Union[str, Any] = (1 << len(UpperCamelCase_ )) - 1 def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement _lowercase : List[str] = self.count_ways_until(UpperCamelCase_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. _lowercase : Dict = total_ways_util return self.dp[mask][task_no] def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict ) -> List[Any]: '''simple docstring''' for i in range(len(UpperCamelCase_ ) ): for j in task_performed[i]: self.task[j].append(UpperCamelCase_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _A : Dict =5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _A : List[str] =[[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
4
'''simple docstring''' from __future__ import annotations import requests def __UpperCamelCase ( _lowercase ) -> dict: _lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowercase ).json() def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]: _lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories] return [get_hackernews_story(_lowercase ) for story_id in story_ids] def __UpperCamelCase ( _lowercase = 10 ) -> str: _lowercase : Tuple = hackernews_top_stories(_lowercase ) return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
1
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm _a : List[Any] = 2_048 _a : Tuple = 4_096 _a : int = 42 _a : str = os.environ.pop("PROCESS_TRAIN", "false") _a : List[str] = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def _a (lowercase__ : Tuple ) -> Optional[Any]: """simple docstring""" def choose_first(lowercase__ : Optional[int] , lowercase__ : int=False ): assert isinstance(lowercase__ , lowercase__ ) if len(lowercase__ ) == 1: __snake_case = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __snake_case = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a __snake_case = {'id': example['id']} __snake_case = example['annotations'] __snake_case = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: __snake_case = ['yes'] if 1 in yes_no_answer else ['no'] __snake_case = __snake_case = [] __snake_case = __snake_case = [] __snake_case = ['<cls>'] else: __snake_case = ['short'] __snake_case = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available __snake_case = ['long'] __snake_case = choose_first(annotation['long_answer'] , is_long_answer=lowercase__ ) __snake_case = [] answer.update(lowercase__ ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: __snake_case = True else: __snake_case = False __snake_case = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , lowercase__ ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def _a (lowercase__ : List[str] , lowercase__ : Optional[int]=False ) -> str: """simple docstring""" __snake_case = _get_single_answer(lowercase__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __snake_case = example['document']['tokens'] __snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(lowercase__ ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __snake_case = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __snake_case = example['document']['tokens'] __snake_case = answer['start_token'] __snake_case = answer['end_token'] __snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __snake_case = ' '.join(context[start_token:end_token] ) # checking above code if assertion: __snake_case = doc['is_html'][answer['start_token'] : answer['end_token']] __snake_case = doc['token'][answer['start_token'] : answer['end_token']] __snake_case = ' '.join([old[i] for i in range(len(lowercase__ ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , lowercase__ , end='\n' ) print('Old:' , lowercase__ , end='\n\n' ) return { "context": " ".join(lowercase__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def _a (lowercase__ : Optional[int] , lowercase__ : str , lowercase__ : Dict=2_0_4_8 , lowercase__ : List[str]=4_0_9_6 , lowercase__ : Tuple=True ) -> Optional[int]: """simple docstring""" # overlap will be of doc_stride - q_len __snake_case = get_context_and_ans(lowercase__ , assertion=lowercase__ ) __snake_case = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __snake_case = tokenizer(example['question']['text'] , out['context'] ).input_ids __snake_case = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __snake_case = [] __snake_case = [] __snake_case = input_ids[:q_len] __snake_case = range(lowercase__ , len(lowercase__ ) , max_length - doc_stride ) for i in doc_start_indices: __snake_case = i + max_length - q_len __snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(lowercase__ ), "end_token": [-1_0_0] * len(lowercase__ ), "category": category, }, } __snake_case = out['context'].split() __snake_case = splitted_context[answer['end_token']] __snake_case = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=lowercase__ , ).input_ids ) __snake_case = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=lowercase__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __snake_case = len(tokenizer(lowercase__ , add_special_tokens=lowercase__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __snake_case = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive __snake_case = answer['start_token'] __snake_case = answer['end_token'] if assertion: __snake_case = tokenizer.decode(lowercase__ ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , lowercase__ , end='\n\n' ) if len(lowercase__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __snake_case = input_ids[:q_len] __snake_case = range(lowercase__ , len(lowercase__ ) , max_length - doc_stride ) __snake_case = [] __snake_case = [] __snake_case = [] __snake_case = [] # null, yes, no, long, short for i in doc_start_indices: __snake_case = i + max_length - q_len __snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __snake_case = start_token - i + q_len __snake_case = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: __snake_case = -1_0_0 __snake_case = -1_0_0 answers_category.append('null' ) __snake_case = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowercase__ ) answers_end_token.append(lowercase__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(lowercase__ ) ) print('Old:' , tokenizer.decode(lowercase__ ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : int=2_0_4_8 , lowercase__ : Optional[int]=4_0_9_6 , lowercase__ : List[Any]=False ) -> Union[str, Any]: """simple docstring""" __snake_case = get_strided_contexts_and_ans( lowercase__ , lowercase__ , doc_stride=lowercase__ , max_length=lowercase__ , assertion=lowercase__ , ) return example def _a (lowercase__ : Any , lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" with jsonlines.open(lowercase__ , 'a' ) as writer: for example in tqdm(lowercase__ , total=len(lowercase__ ) , desc='Saving samples ... ' ): __snake_case = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _a : List[str] = load_dataset("natural_questions") _a : Dict = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") _a : Any = data["train" if PROCESS_TRAIN == "true" else "validation"] _a : Union[str, Any] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } _a : List[Any] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _a : List[str] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) _a : Union[str, Any] = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
56
lowerCamelCase_ = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
318
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Dict = logging.get_logger(__name__) class snake_case__ ( lowercase__ ): _lowerCAmelCase =["""pixel_values"""] def __init__( self : Optional[int] , _lowerCamelCase : bool = True , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : int = 0.9 , _lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCamelCase : bool = True , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : Union[int, float] = 1 / 2_5_5 , _lowerCamelCase : bool = True , _lowerCamelCase : bool = True , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , **_lowerCamelCase : Union[str, Any] , ): super().__init__(**__lowercase ) snake_case__ : int = size if size is not None else {'shortest_edge': 2_2_4} snake_case__ : List[str] = get_size_dict(__lowercase , default_to_square=__lowercase ) snake_case__ : Optional[Any] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} snake_case__ : str = get_size_dict(__lowercase , param_name='crop_size' ) snake_case__ : str = do_resize snake_case__ : str = size snake_case__ : Optional[int] = crop_pct snake_case__ : List[str] = resample snake_case__ : List[str] = do_center_crop snake_case__ : int = crop_size snake_case__ : List[Any] = do_rescale snake_case__ : Dict = rescale_factor snake_case__ : Optional[int] = do_normalize snake_case__ : Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case__ : Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : Dict , _lowerCamelCase : np.ndarray , _lowerCamelCase : Dict[str, int] , _lowerCamelCase : Optional[float] = None , _lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : List[str] , ): snake_case__ : Tuple = get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: snake_case__ : Optional[int] = int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case__ : Dict = int(size['height'] / crop_pct ) else: snake_case__ : Any = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(__lowercase ) ) snake_case__ : List[str] = get_resize_output_image_size(__lowercase , size=__lowercase , default_to_square=__lowercase ) else: if "shortest_edge" in size: snake_case__ : Union[str, Any] = get_resize_output_image_size(__lowercase , size=size['shortest_edge'] , default_to_square=__lowercase ) elif "height" in size and "width" in size: snake_case__ : List[str] = (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(__lowercase ) ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase__ ( self : Any , _lowerCamelCase : np.ndarray , _lowerCamelCase : Dict[str, int] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : Any , ): snake_case__ : Optional[int] = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__lowercase , size=(size['height'], size['width']) , data_format=__lowercase , **__lowercase ) def UpperCAmelCase__ ( self : Optional[int] , _lowerCamelCase : np.ndarray , _lowerCamelCase : Union[int, float] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : List[str] , ): return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase__ ( self : str , _lowerCamelCase : np.ndarray , _lowerCamelCase : Union[float, List[float]] , _lowerCamelCase : Union[float, List[float]] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : Tuple , ): return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase__ ( self : List[str] , _lowerCamelCase : ImageInput , _lowerCamelCase : bool = None , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : int = None , _lowerCamelCase : PILImageResampling = None , _lowerCamelCase : bool = None , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : bool = None , _lowerCamelCase : float = None , _lowerCamelCase : bool = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[float, List[float]]] = None , _lowerCamelCase : Optional[Union[str, TensorType]] = None , _lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **_lowerCamelCase : Tuple , ): snake_case__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize snake_case__ : List[Any] = crop_pct if crop_pct is not None else self.crop_pct snake_case__ : Optional[Any] = resample if resample is not None else self.resample snake_case__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Optional[Any] = image_mean if image_mean is not None else self.image_mean snake_case__ : Union[str, Any] = image_std if image_std is not None else self.image_std snake_case__ : int = size if size is not None else self.size snake_case__ : Optional[int] = get_size_dict(__lowercase , default_to_square=__lowercase ) snake_case__ : Any = crop_size if crop_size is not None else self.crop_size snake_case__ : Optional[int] = get_size_dict(__lowercase , param_name='crop_size' ) snake_case__ : Union[str, Any] = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case__ : int = [to_numpy_array(__lowercase ) for image in images] if do_resize: snake_case__ : Optional[int] = [self.resize(image=__lowercase , size=__lowercase , crop_pct=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: snake_case__ : List[str] = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: snake_case__ : str = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: snake_case__ : Optional[Any] = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] snake_case__ : List[str] = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] snake_case__ : Dict = {'pixel_values': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
715
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class snake_case__ : def __init__( self : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : Dict=True , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : int=1_0 , _lowerCamelCase : Dict=3 , _lowerCamelCase : List[str]=3_2 * 8 , _lowerCamelCase : Tuple=3_2 * 8 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : Optional[Any]=6_4 , ): snake_case__ : Dict = parent snake_case__ : Optional[Any] = batch_size snake_case__ : str = is_training snake_case__ : List[str] = use_auxiliary_loss snake_case__ : Union[str, Any] = num_queries snake_case__ : List[Any] = num_channels snake_case__ : Dict = min_size snake_case__ : str = max_size snake_case__ : Any = num_labels snake_case__ : int = hidden_dim snake_case__ : List[Any] = hidden_dim def UpperCAmelCase__ ( self : str ): snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) snake_case__ : List[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) snake_case__ : Optional[Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() snake_case__ : str = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() snake_case__ : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase__ ( self : Optional[int] ): snake_case__ : Optional[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) snake_case__ : Optional[Any] = self.num_queries snake_case__ : int = self.num_labels snake_case__ : Any = [1, 1, 1, 1] snake_case__ : str = self.num_channels snake_case__ : List[str] = 6_4 snake_case__ : Optional[int] = 1_2_8 snake_case__ : Optional[int] = self.hidden_dim snake_case__ : Optional[int] = self.hidden_dim snake_case__ : Union[str, Any] = self.hidden_dim return config def UpperCAmelCase__ ( self : str ): snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__ : Tuple = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def UpperCAmelCase__ ( self : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict ): snake_case__ : Optional[Any] = output.encoder_hidden_states snake_case__ : Optional[int] = output.pixel_decoder_hidden_states snake_case__ : Union[str, Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def UpperCAmelCase__ ( self : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : List[str]=False ): with torch.no_grad(): snake_case__ : Union[str, Any] = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() snake_case__ : List[Any] = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) snake_case__ : Optional[Any] = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase__ ( self : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] ): snake_case__ : int = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : int ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case__ : Optional[Any] = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) snake_case__ : Any = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) snake_case__ : List[Any] = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class snake_case__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): _lowerCAmelCase =(MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCAmelCase ={'feature-extraction': MaskaFormerModel} if is_torch_available() else {} _lowerCAmelCase =False _lowerCAmelCase =False _lowerCAmelCase =False _lowerCAmelCase =False def UpperCAmelCase__ ( self : Tuple ): snake_case__ : Optional[Any] = MaskaFormerModelTester(self ) snake_case__ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Dict ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def UpperCAmelCase__ ( self : str ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def UpperCAmelCase__ ( self : Union[str, Any] ): pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def UpperCAmelCase__ ( self : Optional[int] ): pass @unittest.skip(reason='Mask2Former is not a generative model' ) def UpperCAmelCase__ ( self : List[Any] ): pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def UpperCAmelCase__ ( self : Optional[Any] ): pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase__ ( self : Optional[Any] ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase__ ( self : Optional[int] ): pass def UpperCAmelCase__ ( self : int ): snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = model_class(_lowerCamelCase ) snake_case__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Dict = [*signature.parameters.keys()] snake_case__ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def UpperCAmelCase__ ( self : Tuple ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: snake_case__ : Tuple = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): snake_case__ : int = (self.model_tester.min_size,) * 2 snake_case__ : Tuple = { 'pixel_values': torch.randn((2, 3, *size) , device=_lowerCamelCase ), 'mask_labels': torch.randn((2, 1_0, *size) , device=_lowerCamelCase ), 'class_labels': torch.zeros(2 , 1_0 , device=_lowerCamelCase ).long(), } snake_case__ : str = self.model_tester.get_config() snake_case__ : Optional[int] = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) snake_case__ : Tuple = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase__ ( self : str ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple ): snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(_lowerCamelCase ).to(_lowerCamelCase ) snake_case__ : List[str] = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase__ ( self : Any ): if not self.model_tester.is_training: return snake_case__ : Tuple = self.all_model_classes[1] snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() snake_case__ : List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() snake_case__ : int = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def UpperCAmelCase__ ( self : Any ): snake_case__ : int = self.all_model_classes[1] snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs() snake_case__ : Union[str, Any] = True snake_case__ : Optional[Any] = True snake_case__ : Tuple = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() snake_case__ : Union[str, Any] = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) snake_case__ : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case__ : Any = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() snake_case__ : Dict = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case__ : List[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase : int = 1e-4 def lowercase__( ): snake_case__ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class snake_case__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCAmelCase__ ( self : str ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def UpperCAmelCase__ ( self : int ): snake_case__ : Dict = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) snake_case__ : List[str] = self.default_image_processor snake_case__ : Union[str, Any] = prepare_img() snake_case__ : Any = image_processor(_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) snake_case__ : Dict = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): snake_case__ : List[Any] = model(**_lowerCamelCase ) snake_case__ : Optional[Any] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) snake_case__ : List[Any] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) snake_case__ : str = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def UpperCAmelCase__ ( self : List[Any] ): snake_case__ : Dict = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() snake_case__ : Union[str, Any] = self.default_image_processor snake_case__ : Union[str, Any] = prepare_img() snake_case__ : Tuple = image_processor(_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) snake_case__ : str = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): snake_case__ : Dict = model(**_lowerCamelCase ) # masks_queries_logits snake_case__ : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) snake_case__ : Optional[Any] = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] snake_case__ : Optional[Any] = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits snake_case__ : int = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) snake_case__ : List[str] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def UpperCAmelCase__ ( self : int ): snake_case__ : Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() snake_case__ : Any = self.default_image_processor snake_case__ : Optional[int] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='pt' , ) snake_case__ : Dict = inputs['pixel_values'].to(_lowerCamelCase ) snake_case__ : Optional[Any] = [el.to(_lowerCamelCase ) for el in inputs['mask_labels']] snake_case__ : Union[str, Any] = [el.to(_lowerCamelCase ) for el in inputs['class_labels']] with torch.no_grad(): snake_case__ : Tuple = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
303
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = {} if train_file is not None: lowerCAmelCase__ = [train_file] if eval_file is not None: lowerCAmelCase__ = [eval_file] if test_file is not None: lowerCAmelCase__ = [test_file] lowerCAmelCase__ = datasets.load_dataset('csv' , data_files=A__ ) lowerCAmelCase__ = list(ds[list(files.keys() )[0]].features.keys() ) lowerCAmelCase__ = features_name.pop(A__ ) lowerCAmelCase__ = list(set(ds[list(files.keys() )[0]][label_name] ) ) lowerCAmelCase__ = {label: i for i, label in enumerate(A__ )} lowerCAmelCase__ = tokenizer.model_input_names lowerCAmelCase__ = {} if len(A__ ) == 1: for k in files.keys(): lowerCAmelCase__ = ds[k].map( lambda snake_case__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=A__ , max_length=A__ , padding='max_length' ) , batched=A__ , ) elif len(A__ ) == 2: for k in files.keys(): lowerCAmelCase__ = ds[k].map( lambda snake_case__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=A__ , max_length=A__ , padding='max_length' , ) , batched=A__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: lowerCAmelCase__ = {k: v for k, v in ex.items() if k in input_names} lowerCAmelCase__ = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: lowerCAmelCase__ = {k: v for k, v in ex.items() if k in input_names} lowerCAmelCase__ = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: lowerCAmelCase__ = {k: v for k, v in ex.items() if k in input_names} lowerCAmelCase__ = labelaid[ex[label_name]] yield (d, label) lowerCAmelCase__ = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: lowerCAmelCase__ = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) lowerCAmelCase__ = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: lowerCAmelCase__ = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) lowerCAmelCase__ = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: lowerCAmelCase__ = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) @dataclass class __snake_case : SCREAMING_SNAKE_CASE__ = field(metadata={'help': 'Which column contains the label'} ) SCREAMING_SNAKE_CASE__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The path of the training file'} ) SCREAMING_SNAKE_CASE__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The path of the development file'} ) SCREAMING_SNAKE_CASE__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The path of the test file'} ) SCREAMING_SNAKE_CASE__ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class __snake_case : SCREAMING_SNAKE_CASE__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCAmelCase_ ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) lowerCAmelCase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' f'16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase__ = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=A__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) lowerCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(A__ ) , labelaid=A__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): lowerCAmelCase__ = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) def compute_metrics(snake_case__ ) -> Dict: lowerCAmelCase__ = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer lowerCAmelCase__ = TFTrainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase__ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase__ = trainer.evaluate() lowerCAmelCase__ = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(A__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) results.update(A__ ) return results if __name__ == "__main__": main()
193
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowercase : """simple docstring""" @staticmethod def UpperCamelCase__ ( *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = object_detector(examples[0] , threshold=0.0 ) SCREAMING_SNAKE_CASE_ : int = len(lowerCAmelCase__ ) self.assertGreater(lowerCAmelCase__ , 0 ) self.assertEqual( lowerCAmelCase__ , [ { 'score': ANY(lowerCAmelCase__ ), 'label': ANY(lowerCAmelCase__ ), 'box': {'xmin': ANY(lowerCAmelCase__ ), 'ymin': ANY(lowerCAmelCase__ ), 'xmax': ANY(lowerCAmelCase__ ), 'ymax': ANY(lowerCAmelCase__ )}, } for i in range(lowerCAmelCase__ ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @require_torch def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) SCREAMING_SNAKE_CASE_ : str = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.7_235, 'label': 'cat', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.7_218, 'label': 'remote', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.7_184, 'label': 'couch', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.6_748, 'label': 'remote', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6_656, 'label': 'cat', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6_614, 'label': 'couch', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6_456, 'label': 'remote', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 6_7, 'ymin': 2_7_4, 'xmax': 9_3, 'ymax': 2_9_7}}, {'score': 0.6_419, 'label': 'cat', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, ] , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'score': 0.7_235, 'label': 'cat', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.7_218, 'label': 'remote', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.7_184, 'label': 'couch', 'box': {'xmin': 2_0_4, 'ymin': 1_6_7, 'xmax': 2_3_2, 'ymax': 1_9_0}}, {'score': 0.6_748, 'label': 'remote', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6_656, 'label': 'cat', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6_614, 'label': 'couch', 'box': {'xmin': 5_7_1, 'ymin': 8_3, 'xmax': 5_9_8, 'ymax': 1_0_3}}, {'score': 0.6_456, 'label': 'remote', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 6_7, 'ymin': 2_7_4, 'xmax': 9_3, 'ymax': 2_9_7}}, {'score': 0.6_419, 'label': 'cat', 'box': {'xmin': 4_9_4, 'ymin': 1_0_5, 'xmax': 5_2_1, 'ymax': 1_2_7}}, ] ] , ) @require_torch @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = pipeline('zero-shot-object-detection' ) SCREAMING_SNAKE_CASE_ : List[str] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.1_474, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.1_208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ] , ) SCREAMING_SNAKE_CASE_ : List[Any] = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.1_474, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.1_208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ], [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, {'score': 0.1_474, 'label': 'remote', 'box': {'xmin': 3_3_5, 'ymin': 7_4, 'xmax': 3_7_1, 'ymax': 1_8_7}}, {'score': 0.1_208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_4_2, 'ymax': 4_7_6}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @require_torch @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 0.2 SCREAMING_SNAKE_CASE_ : str = pipeline('zero-shot-object-detection' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, {'score': 0.2_537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 5_5, 'xmax': 3_1_5, 'ymax': 4_7_2}}, ] , ) @require_torch @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 2 SCREAMING_SNAKE_CASE_ : int = pipeline('zero-shot-object-detection' ) SCREAMING_SNAKE_CASE_ : Tuple = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'score': 0.2_868, 'label': 'cat', 'box': {'xmin': 3_2_4, 'ymin': 2_0, 'xmax': 6_4_0, 'ymax': 3_7_3}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 4_0, 'ymin': 7_2, 'xmax': 1_7_7, 'ymax': 1_1_5}}, ] , )
101
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __a = random.Random() def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case=1.0 , __snake_case=None , __snake_case=None ) -> List[Any]: if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : str=7 , lowerCamelCase : str=400 , lowerCamelCase : Optional[int]=2000 , lowerCamelCase : str=10 , lowerCamelCase : List[str]=160 , lowerCamelCase : Optional[Any]=8 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : Tuple=4000 , lowerCamelCase : List[str]=False , lowerCamelCase : Tuple=True , ) -> int: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize _UpperCAmelCase = feature_size _UpperCAmelCase = chunk_length _UpperCAmelCase = hop_length def lowerCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase ( self : Dict , lowerCamelCase : int=False , lowerCamelCase : List[Any]=False ) -> int: """simple docstring""" def _flatten(lowerCamelCase : Any ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase = WhisperFeatureExtractionTester(self ) def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = feat_extract_first.save_pretrained(lowerCamelCase )[0] check_json_file_has_correct_format(lowerCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_pretrained(lowerCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(lowerCamelCase , """feat_extract.json""" ) feat_extract_first.to_json_file(lowerCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_json_file(lowerCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(lowerCamelCase , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""np""" ).input_features _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase = np.asarray(lowerCamelCase ) _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""np""" ).input_features _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test truncation required _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _UpperCAmelCase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] _UpperCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs_truncated] _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""np""" ).input_features _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort("""id""" ).select(range(lowerCamelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCamelCase ( self : str ) -> int: """simple docstring""" _UpperCAmelCase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = WhisperFeatureExtractor() _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCamelCase , atol=1E-4 ) ) def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = self._load_datasamples(1 )[0] _UpperCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _UpperCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCamelCase )[0] self.assertTrue(np.all(np.mean(lowerCamelCase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase ) - 1 ) < 1E-3 ) )
708
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCAmelCase ) , '''Tatoeba directory does not exist.''' ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase ( self : int ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCamelCase ) @slow def lowerCamelCase ( self : Tuple ) -> int: """simple docstring""" self.resolver.convert_models(["""heb-eng"""] ) @slow def lowerCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=lowerCamelCase ) assert mmeta["long_pair"] == "heb-eng"
402
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
9
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def snake_case_ ( A_ : Tuple, A_ : List[str], A_ : Optional[Any], A_ : Dict, A_ : Dict=True, A_ : int="pt" ): '''simple docstring''' _lowerCamelCase : str = {'''add_prefix_space''': True} if isinstance(A_, A_ ) and not line.startswith(''' ''' ) else {} _lowerCamelCase : Union[str, Any] = padding_side return tokenizer( [line], max_length=A_, padding='''max_length''' if pad_to_max_length else None, truncation=A_, return_tensors=A_, add_special_tokens=A_, **A_, ) def snake_case_ ( A_ : Any, A_ : Optional[int], A_ : List[Any]=None, ): '''simple docstring''' _lowerCamelCase : Optional[int] = input_ids.ne(A_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __snake_case ( _lowercase): def __init__( self : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple="train" , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : Union[str, Any]="" , ): """simple docstring""" super().__init__() _lowerCamelCase : Optional[int] = Path(__lowerCAmelCase ).joinpath(type_path + '''.source''' ) _lowerCamelCase : List[str] = Path(__lowerCAmelCase ).joinpath(type_path + '''.target''' ) _lowerCamelCase : List[Any] = self.get_char_lens(self.src_file ) _lowerCamelCase : Optional[int] = max_source_length _lowerCamelCase : Optional[Any] = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' _lowerCamelCase : List[Any] = tokenizer _lowerCamelCase : List[Any] = prefix if n_obs is not None: _lowerCamelCase : List[str] = self.src_lens[:n_obs] _lowerCamelCase : int = src_lang _lowerCamelCase : Union[str, Any] = tgt_lang def __len__( self : int ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : Dict , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = index + 1 # linecache starts at 1 _lowerCamelCase : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) , __lowerCAmelCase ).rstrip('''\n''' ) _lowerCamelCase : Optional[Any] = linecache.getline(str(self.tgt_file ) , __lowerCAmelCase ).rstrip('''\n''' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowerCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _lowerCamelCase : Optional[int] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer ) _lowerCamelCase : Union[str, Any] = self.tokenizer.generator if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer _lowerCamelCase : List[str] = encode_line(__lowerCAmelCase , __lowerCAmelCase , self.max_source_length , '''right''' ) _lowerCamelCase : List[str] = encode_line(__lowerCAmelCase , __lowerCAmelCase , self.max_target_length , '''right''' ) _lowerCamelCase : Optional[Any] = source_inputs['''input_ids'''].squeeze() _lowerCamelCase : Union[str, Any] = target_inputs['''input_ids'''].squeeze() _lowerCamelCase : Any = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def SCREAMING_SNAKE_CASE ( __lowerCAmelCase : str ): """simple docstring""" return [len(__lowerCAmelCase ) for x in Path(__lowerCAmelCase ).open().readlines()] def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : List[Any] = torch.stack([x['''input_ids'''] for x in batch] ) _lowerCamelCase : Tuple = torch.stack([x['''attention_mask'''] for x in batch] ) _lowerCamelCase : Union[str, Any] = torch.stack([x['''decoder_input_ids'''] for x in batch] ) _lowerCamelCase : Tuple = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer.pad_token_id ) _lowerCamelCase : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer.pad_token_id ) _lowerCamelCase : Union[str, Any] = trim_batch(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : List[str] = trim_batch(__lowerCAmelCase , __lowerCAmelCase , attention_mask=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch lowerCAmelCase__ = getLogger(__name__) def snake_case_ ( A_ : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(A_ ) ) def snake_case_ ( A_ : str ): '''simple docstring''' _lowerCamelCase : Dict = get_git_info() save_json(A_, os.path.join(A_, '''git_log.json''' ) ) def snake_case_ ( A_ : str, A_ : Union[str, Any], A_ : int=4, **A_ : Optional[int] ): '''simple docstring''' with open(A_, '''w''' ) as f: json.dump(A_, A_, indent=A_, **A_ ) def snake_case_ ( A_ : Any ): '''simple docstring''' with open(A_ ) as f: return json.load(A_ ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[str] = git.Repo(search_parent_directories=A_ ) _lowerCamelCase : str = { '''repo_id''': str(A_ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def snake_case_ ( A_ : Callable, A_ : Iterable ): '''simple docstring''' return list(map(A_, A_ ) ) def snake_case_ ( A_ : str, A_ : Tuple ): '''simple docstring''' with open(A_, '''wb''' ) as f: return pickle.dump(A_, A_ ) def snake_case_ ( A_ : List[str] ): '''simple docstring''' def remove_articles(A_ : str ): return re.sub(R'''\b(a|an|the)\b''', ''' ''', A_ ) def white_space_fix(A_ : Any ): return " ".join(text.split() ) def remove_punc(A_ : List[Any] ): _lowerCamelCase : Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A_ : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A_ ) ) ) ) def snake_case_ ( A_ : int, A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : str = normalize_answer(A_ ).split() _lowerCamelCase : int = normalize_answer(A_ ).split() _lowerCamelCase : str = Counter(A_ ) & Counter(A_ ) _lowerCamelCase : Any = sum(common.values() ) if num_same == 0: return 0 _lowerCamelCase : int = 1.0 * num_same / len(A_ ) _lowerCamelCase : str = 1.0 * num_same / len(A_ ) _lowerCamelCase : List[Any] = (2 * precision * recall) / (precision + recall) return fa def snake_case_ ( A_ : Dict, A_ : str ): '''simple docstring''' return normalize_answer(A_ ) == normalize_answer(A_ ) def snake_case_ ( A_ : List[str], A_ : List[str] ): '''simple docstring''' assert len(A_ ) == len(A_ ) _lowerCamelCase : Optional[Any] = 0 for hypo, pred in zip(A_, A_ ): em += exact_match_score(A_, A_ ) if len(A_ ) > 0: em /= len(A_ ) return {"em": em} def snake_case_ ( A_ : Optional[int] ): '''simple docstring''' return model_prefix.startswith('''rag''' ) def snake_case_ ( A_ : Dict, A_ : int, A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _lowerCamelCase : Tuple = '''dropout_rate''' for p in extra_params: if getattr(A_, A_, A_ ): if not hasattr(A_, A_ ) and not hasattr(A_, equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(A_ ) ) delattr(A_, A_ ) continue _lowerCamelCase : Union[str, Any] = p if hasattr(A_, A_ ) else equivalent_param[p] setattr(A_, A_, getattr(A_, A_ ) ) delattr(A_, A_ ) return hparams, config
83
0
'''simple docstring''' _A : Optional[int] = 0 # The first color of the flag. _A : Any = 1 # The second color of the flag. _A : Dict = 2 # The third color of the flag. _A : int = (red, white, blue) def UpperCamelCase_ ( snake_case_ : list ) -> list: '''simple docstring''' if not sequence: return [] if len(snake_case_ ) == 1: return list(snake_case_ ) __lowerCAmelCase = 0 __lowerCAmelCase = len(snake_case_ ) - 1 __lowerCAmelCase = 0 while mid <= high: if sequence[mid] == colors[0]: __lowerCAmelCase , __lowerCAmelCase = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __lowerCAmelCase , __lowerCAmelCase = sequence[high], sequence[mid] high -= 1 else: __lowerCAmelCase = f"""The elements inside the sequence must contains only {colors} values""" raise ValueError(snake_case_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() _A : List[str] = input('''Enter numbers separated by commas:\n''').strip() _A : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] print(f'{dutch_national_flag_sort(unsorted)}')
715
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : int = 10_00 ) -> int: '''simple docstring''' __lowerCAmelCase = -1 __lowerCAmelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __lowerCAmelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) __lowerCAmelCase = n - a - b if c * c == (a * a + b * b): __lowerCAmelCase = a * b * c if candidate >= product: __lowerCAmelCase = candidate return product if __name__ == "__main__": print(f'{solution() = }')
330
0
from typing import TYPE_CHECKING from ..utils import _LazyModule __a: int = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __a: Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowerCAmelCase_ (*lowerCAmelCase__: Dict ): """simple docstring""" with open(lowerCAmelCase__ , """r""" ) as fh: fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_EX ) try: print(*lowerCAmelCase__ ) finally: fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_UN ) a : Tuple = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) a : Union[str, Any] = torch.device('cuda', local_rank) a : Any = socket.gethostname() a : Optional[Any] = F'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a : Optional[Any] = dist.get_rank() a : List[Any] = dist.get_world_size() printflock(F'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(F'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(F'''{gpu} is broken''') raise
556
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase : def __init__( self : Union[str, Any] , _lowercase : Dict , _lowercase : List[Any]=2 , _lowercase : str=True , _lowercase : Tuple=False , _lowercase : Optional[int]=10 , _lowercase : List[str]=3 , _lowercase : int=32 * 4 , _lowercase : Union[str, Any]=32 * 6 , _lowercase : Dict=4 , _lowercase : str=32 , ): SCREAMING_SNAKE_CASE__ : List[Any] = parent SCREAMING_SNAKE_CASE__ : str = batch_size SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_auxiliary_loss SCREAMING_SNAKE_CASE__ : Tuple = num_queries SCREAMING_SNAKE_CASE__ : List[Any] = num_channels SCREAMING_SNAKE_CASE__ : int = min_size SCREAMING_SNAKE_CASE__ : List[Any] = max_size SCREAMING_SNAKE_CASE__ : int = num_labels SCREAMING_SNAKE_CASE__ : Optional[int] = mask_feature_size def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowercase ) SCREAMING_SNAKE_CASE__ : str = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowercase ) > 0.5 ).float() SCREAMING_SNAKE_CASE__ : List[Any] = (torch.rand((self.batch_size, self.num_labels) , device=_lowercase ) > 0.5).long() SCREAMING_SNAKE_CASE__ : Any = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase__ ( self : Any ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Dict = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase__ ( self : Optional[Any] , _lowercase : str , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = output.encoder_hidden_states SCREAMING_SNAKE_CASE__ : Any = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE__ : int = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , config.decoder_config.decoder_layers ) def lowercase__ ( self : Any , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : str=False ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = MaskFormerModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(pixel_values=_lowercase , pixel_mask=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , output_hidden_states=_lowercase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowercase , _lowercase ) def lowercase__ ( self : Any , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : str , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Tuple = MaskFormerForInstanceSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() def comm_check_on_output(_lowercase : Optional[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = model(pixel_values=_lowercase , pixel_mask=_lowercase ) SCREAMING_SNAKE_CASE__ : str = model(_lowercase ) comm_check_on_output(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = model( pixel_values=_lowercase , pixel_mask=_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) comm_check_on_output(_lowercase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCamelCase : int = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCamelCase : Optional[int] = False lowerCamelCase : Optional[int] = False lowerCamelCase : List[Any] = False lowerCamelCase : int = False def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[Any] = MaskFormerModelTester(self ) SCREAMING_SNAKE_CASE__ : Tuple = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def lowercase__ ( self : List[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_lowercase ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def lowercase__ ( self : Dict ): pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def lowercase__ ( self : List[str] ): pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def lowercase__ ( self : List[str] ): pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def lowercase__ ( self : Optional[Any] ): pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase__ ( self : Union[str, Any] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Union[str, Any] ): pass def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) @slow def lowercase__ ( self : List[Any] ): for model_name in ["facebook/maskformer-swin-small-coco"]: SCREAMING_SNAKE_CASE__ : int = MaskFormerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE__ : str = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowercase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowercase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowercase ).long(), } SCREAMING_SNAKE_CASE__ : Optional[Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = model(**_lowercase ) self.assertTrue(outputs.loss is not None ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_lowercase , output_attentions=_lowercase ) self.assertTrue(outputs.attentions is not None ) def lowercase__ ( self : Optional[int] ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE__ : Optional[Any] = self.all_model_classes[1] SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(_lowercase ) model.to(_lowercase ) model.train() SCREAMING_SNAKE_CASE__ : Any = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ).loss loss.backward() def lowercase__ ( self : Dict ): # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE__ : Any = self.all_model_classes[1] SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(_lowercase ) model.to(_lowercase ) model.train() SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ : Tuple = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't SCREAMING_SNAKE_CASE__ : int = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ : Dict = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowercase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a_ :Optional[int] = 1e-4 def a ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowercase ( unittest.TestCase ): @cached_property def lowercase__ ( self : List[Any] ): return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : int = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : str = prepare_img() SCREAMING_SNAKE_CASE__ : Any = image_processor(_lowercase , return_tensors='''pt''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = model(**_lowercase ) SCREAMING_SNAKE_CASE__ : int = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowercase , atol=_lowercase ) ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_lowercase ) .eval() ) SCREAMING_SNAKE_CASE__ : Dict = self.default_image_processor SCREAMING_SNAKE_CASE__ : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE__ : List[str] = image_processor(_lowercase , return_tensors='''pt''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(**_lowercase ) # masks_queries_logits SCREAMING_SNAKE_CASE__ : List[str] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE__ : List[Any] = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] SCREAMING_SNAKE_CASE__ : str = torch.tensor(_lowercase ).to(_lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) # class_queries_logits SCREAMING_SNAKE_CASE__ : Any = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor( [ [1.6_512E00, -5.2_572E00, -3.3_519E00], [3.6_169E-02, -5.9_025E00, -2.9_313E00], [1.0_766E-04, -7.7_630E00, -5.1_263E00], ] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowercase , atol=_lowercase ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(_lowercase ) .eval() ) SCREAMING_SNAKE_CASE__ : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE__ : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE__ : List[str] = image_processor(_lowercase , return_tensors='''pt''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_lowercase ) # masks_queries_logits SCREAMING_SNAKE_CASE__ : List[str] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE__ : Dict = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] SCREAMING_SNAKE_CASE__ : int = torch.tensor(_lowercase ).to(_lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) # class_queries_logits SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowercase , atol=_lowercase ) ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_lowercase ) .eval() ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE__ : List[str] = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ : Optional[int] = inputs['''pixel_values'''].to(_lowercase ) SCREAMING_SNAKE_CASE__ : str = [el.to(_lowercase ) for el in inputs['''mask_labels''']] SCREAMING_SNAKE_CASE__ : int = [el.to(_lowercase ) for el in inputs['''class_labels''']] with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = model(**_lowercase ) self.assertTrue(outputs.loss is not None )
721
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a_ :Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( _UpperCAmelCase ): def __init__( self : int , _lowercase : Tuple , _lowercase : Optional[Any]=7_68 ): super().__init__(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = proj_size SCREAMING_SNAKE_CASE__ : Dict = CLIPVisionModel(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = PaintByExampleMapper(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE__ : str = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowercase__ ( self : str , _lowercase : Tuple , _lowercase : Optional[int]=False ): SCREAMING_SNAKE_CASE__ : Tuple = self.model(pixel_values=_lowercase ) SCREAMING_SNAKE_CASE__ : int = clip_output.pooler_output SCREAMING_SNAKE_CASE__ : List[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE__ : Dict = self.final_layer_norm(_lowercase ) SCREAMING_SNAKE_CASE__ : str = self.proj_out(_lowercase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowercase ( nn.Module ): def __init__( self : Any , _lowercase : Optional[int] ): super().__init__() SCREAMING_SNAKE_CASE__ : Union[str, Any] = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE__ : Tuple = config.hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : List[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowercase , _lowercase , _lowercase , activation_fn='''gelu''' , attention_bias=_lowercase ) for _ in range(_lowercase ) ] ) def lowercase__ ( self : int , _lowercase : str ): for block in self.blocks: SCREAMING_SNAKE_CASE__ : Union[str, Any] = block(_lowercase ) return hidden_states
250
0
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""", UpperCAmelCase__, ) if isinstance(UpperCAmelCase__, torch.Tensor ): return image elif isinstance(UpperCAmelCase__, PIL.Image.Image ): A_ = [image] if isinstance(image[0], PIL.Image.Image ): A_ , A_ = image[0].size A_ , A_ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 A_ = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] A_ = np.concatenate(UpperCAmelCase__, axis=0 ) A_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) / 255.0 A_ = image.transpose(0, 3, 1, 2 ) A_ = 2.0 * image - 1.0 A_ = torch.from_numpy(UpperCAmelCase__ ) elif isinstance(image[0], torch.Tensor ): A_ = torch.cat(UpperCAmelCase__, dim=0 ) return image def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: if isinstance(UpperCAmelCase__, torch.Tensor ): return mask elif isinstance(UpperCAmelCase__, PIL.Image.Image ): A_ = [mask] if isinstance(mask[0], PIL.Image.Image ): A_ , A_ = mask[0].size A_ , A_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 A_ = [np.array(m.convert("""L""" ).resize((w, h), resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] A_ = np.concatenate(UpperCAmelCase__, axis=0 ) A_ = mask.astype(np.floataa ) / 255.0 A_ = 0 A_ = 1 A_ = torch.from_numpy(UpperCAmelCase__ ) elif isinstance(mask[0], torch.Tensor ): A_ = torch.cat(UpperCAmelCase__, dim=0 ) return mask class A__ ( _snake_case ): lowercase = 42 lowercase = 42 def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 250 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 10 , UpperCamelCase__ = 10 , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' A_ = image A_ = _preprocess_image(UpperCamelCase__ ) A_ = original_image.to(device=self.device , dtype=self.unet.dtype ) A_ = _preprocess_mask(UpperCamelCase__ ) A_ = mask_image.to(device=self.device , dtype=self.unet.dtype ) A_ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(UpperCamelCase__ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) A_ = original_image.shape A_ = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.device ) A_ = eta A_ = self.scheduler.timesteps[0] + 1 A_ = generator[0] if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual A_ = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # compute previous image: x_t -> x_t-1 A_ = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample else: # compute the reverse: x_t-1 -> x_t A_ = self.scheduler.undo_step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A_ = t A_ = (image / 2 + 0.5).clamp(0 , 1 ) A_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A_ = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
288
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class A__ ( _snake_case , _snake_case ): lowercase = "resnet" lowercase = ["basic", "bottleneck"] def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=64 , UpperCamelCase__=[256, 512, 1024, 2048] , UpperCamelCase__=[3, 4, 6, 3] , UpperCamelCase__="bottleneck" , UpperCamelCase__="relu" , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) A_ = num_channels A_ = embedding_size A_ = hidden_sizes A_ = depths A_ = layer_type A_ = hidden_act A_ = downsample_in_first_stage A_ = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(UpperCamelCase__ ) + 1 )] A_ , A_ = get_aligned_output_features_output_indices( out_features=UpperCamelCase__ , out_indices=UpperCamelCase__ , stage_names=self.stage_names ) class A__ ( _snake_case ): lowercase = version.parse("1.11" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def snake_case_ ( self ) -> float: '''simple docstring''' return 1e-3
288
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class __snake_case : def __init__( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any]=13 , _UpperCAmelCase : Optional[int]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Union[str, Any]=50 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[Any]=None , ) -> List[str]: '''simple docstring''' _lowerCAmelCase : str = parent _lowerCAmelCase : List[Any] = batch_size _lowerCAmelCase : List[Any] = seq_length _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : Tuple = use_input_mask _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Dict = use_labels _lowerCAmelCase : int = scope def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[int] = None if self.use_input_mask: _lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Tuple = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: '''simple docstring''' ( _lowerCAmelCase ) : List[Any] = self.prepare_config_and_inputs() _lowerCAmelCase : str = True _lowerCAmelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , **_UpperCAmelCase : Tuple , ) -> Any: '''simple docstring''' _lowerCAmelCase : List[Any] = BertGenerationEncoder(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) _lowerCAmelCase : str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , **_UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : List[str] = True _lowerCAmelCase : Optional[int] = BertGenerationEncoder(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase : Dict = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) _lowerCAmelCase : Dict = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : int , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Any = True _lowerCAmelCase : Optional[int] = BertGenerationDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() # first forward pass _lowerCAmelCase : Any = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase , ) _lowerCAmelCase : List[str] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCAmelCase : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase : str = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCAmelCase : Any = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )["""hidden_states"""][0] _lowerCAmelCase : List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )["""hidden_states"""][0] # select random slice _lowerCAmelCase : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Optional[Any] , ) -> str: '''simple docstring''' _lowerCAmelCase : List[Any] = BertGenerationDecoder(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() _lowerCAmelCase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case (_a , _a , _a , unittest.TestCase ): lowerCAmelCase__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowerCAmelCase__ = (BertGenerationDecoder,) if is_torch_available() else () lowerCAmelCase__ = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: '''simple docstring''' _lowerCAmelCase : Optional[int] = BertGenerationEncoderTester(self ) _lowerCAmelCase : Dict = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : Dict = """bert""" self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' ( _lowerCAmelCase ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() _lowerCAmelCase : str = None self.model_tester.create_and_check_model_as_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class __snake_case (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) _lowerCAmelCase : Union[str, Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): _lowerCAmelCase : Any = model(_UpperCAmelCase )[0] _lowerCAmelCase : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , _UpperCAmelCase ) _lowerCAmelCase : List[Any] = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @require_torch class __snake_case (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) _lowerCAmelCase : Tuple = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): _lowerCAmelCase : List[Any] = model(_UpperCAmelCase )[0] _lowerCAmelCase : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , _UpperCAmelCase ) _lowerCAmelCase : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
713
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _lowerCamelCase : str = get_logger(__name__) class __snake_case : def __init__( self : Optional[int] , _UpperCAmelCase : Optional[str] = None ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = ( os.path.join(_UpperCAmelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _lowerCAmelCase : Optional[int] = Extractor def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : str ) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _lowerCAmelCase : List[Any] = os.path.abspath(_UpperCAmelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : bool ) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(_UpperCAmelCase ) and not (os.path.isdir(_UpperCAmelCase ) and os.listdir(_UpperCAmelCase )) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> str: '''simple docstring''' _lowerCAmelCase : str = self.extractor.infer_extractor_format(_UpperCAmelCase ) if not extractor_format: return input_path _lowerCAmelCase : int = self._get_output_path(_UpperCAmelCase ) if self._do_extract(_UpperCAmelCase , _UpperCAmelCase ): self.extractor.extract(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return output_path class __snake_case (_a ): @classmethod @abstractmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , _UpperCAmelCase : Union[Path, str] , **_UpperCAmelCase : Optional[int] ) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' ... class __snake_case (_a , _a ): lowerCAmelCase__ = [] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : int ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase , """rb""" ) as f: return f.read(_UpperCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : bytes = b"" ) -> bool: '''simple docstring''' if not magic_number: _lowerCAmelCase : Optional[int] = max(len(_UpperCAmelCase ) for cls_magic_number in cls.magic_numbers ) try: _lowerCAmelCase : Union[str, Any] = cls.read_magic_number(_UpperCAmelCase , _UpperCAmelCase ) except OSError: return False return any(magic_number.startswith(_UpperCAmelCase ) for cls_magic_number in cls.magic_numbers ) class __snake_case (_a ): @classmethod def SCREAMING_SNAKE_CASE ( cls : str , _UpperCAmelCase : Union[Path, str] , **_UpperCAmelCase : Dict ) -> bool: '''simple docstring''' return tarfile.is_tarfile(_UpperCAmelCase ) @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' def resolved(_UpperCAmelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCAmelCase ) ) def badpath(_UpperCAmelCase : str , _UpperCAmelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ).startswith(_UpperCAmelCase ) def badlink(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link _lowerCAmelCase : Tuple = resolved(os.path.join(_UpperCAmelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCAmelCase ) _lowerCAmelCase : List[Any] = resolved(_UpperCAmelCase ) for finfo in members: if badpath(finfo.name , _UpperCAmelCase ): logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" ) elif finfo.issym() and badlink(_UpperCAmelCase , _UpperCAmelCase ): logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" ) elif finfo.islnk() and badlink(_UpperCAmelCase , _UpperCAmelCase ): logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" ) else: yield finfo @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _lowerCAmelCase : str = tarfile.open(_UpperCAmelCase ) tar_file.extractall(_UpperCAmelCase , members=TarExtractor.safemembers(_UpperCAmelCase , _UpperCAmelCase ) ) tar_file.close() class __snake_case (_a ): lowerCAmelCase__ = [b"\x1F\x8B"] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' with gzip.open(_UpperCAmelCase , """rb""" ) as gzip_file: with open(_UpperCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class __snake_case (_a ): lowerCAmelCase__ = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : bytes = b"" ) -> bool: '''simple docstring''' if super().is_extractable(_UpperCAmelCase , magic_number=_UpperCAmelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCAmelCase , """rb""" ) as fp: _lowerCAmelCase : Union[str, Any] = _EndRecData(_UpperCAmelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _lowerCAmelCase : List[Any] = fp.read(_UpperCAmelCase ) # CD is where we expect it to be if len(_UpperCAmelCase ) == sizeCentralDir: _lowerCAmelCase : int = struct.unpack(_UpperCAmelCase , _UpperCAmelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with zipfile.ZipFile(_UpperCAmelCase , """r""" ) as zip_file: zip_file.extractall(_UpperCAmelCase ) zip_file.close() class __snake_case (_a ): lowerCAmelCase__ = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' with lzma.open(_UpperCAmelCase ) as compressed_file: with open(_UpperCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class __snake_case (_a ): lowerCAmelCase__ = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _lowerCAmelCase : str = rarfile.RarFile(_UpperCAmelCase ) rf.extractall(_UpperCAmelCase ) rf.close() class __snake_case (_a ): lowerCAmelCase__ = [b"\x28\xb5\x2F\xFD"] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd _lowerCAmelCase : Any = zstd.ZstdDecompressor() with open(_UpperCAmelCase , """rb""" ) as ifh, open(_UpperCAmelCase , """wb""" ) as ofh: dctx.copy_stream(_UpperCAmelCase , _UpperCAmelCase ) class __snake_case (_a ): lowerCAmelCase__ = [b"\x42\x5A\x68"] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' with bza.open(_UpperCAmelCase , """rb""" ) as compressed_file: with open(_UpperCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class __snake_case (_a ): lowerCAmelCase__ = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with pyazr.SevenZipFile(_UpperCAmelCase , """r""" ) as archive: archive.extractall(_UpperCAmelCase ) class __snake_case (_a ): lowerCAmelCase__ = [b"\x04\x22\x4D\x18"] @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(_UpperCAmelCase , """rb""" ) as compressed_file: with open(_UpperCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) class __snake_case : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) lowerCAmelCase__ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def SCREAMING_SNAKE_CASE ( cls : str ) -> Optional[int]: '''simple docstring''' return max( len(_UpperCAmelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCAmelCase , _UpperCAmelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : int ) -> Any: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(_UpperCAmelCase , magic_number_length=_UpperCAmelCase ) except OSError: return b"" @classmethod def SCREAMING_SNAKE_CASE ( cls : int , _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : bool = False ) -> bool: '''simple docstring''' warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=_UpperCAmelCase , ) _lowerCAmelCase : str = cls.infer_extractor_format(_UpperCAmelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , _UpperCAmelCase : Union[Path, str] ) -> str: # <Added version="2.4.0"/> '''simple docstring''' _lowerCAmelCase : str = cls._get_magic_number_max_length() _lowerCAmelCase : Dict = cls._read_magic_number(_UpperCAmelCase , _UpperCAmelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCAmelCase , magic_number=_UpperCAmelCase ): return extractor_format @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Union[Path, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[BaseExtractor] = "deprecated" , ) -> None: '''simple docstring''' os.makedirs(os.path.dirname(_UpperCAmelCase ) , exist_ok=_UpperCAmelCase ) # Prevent parallel extractions _lowerCAmelCase : Tuple = str(Path(_UpperCAmelCase ).with_suffix(""".lock""" ) ) with FileLock(_UpperCAmelCase ): shutil.rmtree(_UpperCAmelCase , ignore_errors=_UpperCAmelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=_UpperCAmelCase , ) _lowerCAmelCase : List[str] = extractor if extractor != """deprecated""" else extractor_format else: _lowerCAmelCase : List[Any] = cls.extractors[extractor_format] return extractor.extract(_UpperCAmelCase , _UpperCAmelCase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=_UpperCAmelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCAmelCase ): return extractor.extract(_UpperCAmelCase , _UpperCAmelCase )
196
0
from math import factorial, pi def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 30 ) -> float: if not isinstance(_lowercase , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(_lowercase , _lowercase ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowercase : Dict = float(_lowercase ) lowercase : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_lowercase ) ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 30 ) -> float: if not isinstance(_lowercase , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(_lowercase , _lowercase ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowercase : Tuple = float(_lowercase ) lowercase : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
336
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __a ( __snake_case ): def __init__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = "arrow" , **UpperCAmelCase , ): '''simple docstring''' super().__init__( split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ = load_from_cache_file lowerCAmelCase_ = file_format lowerCAmelCase_ = Spark( df=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , working_dir=UpperCAmelCase , **UpperCAmelCase , ) def lowerCamelCase_ ( self ): '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCAmelCase_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
552
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __magic_name__ ( __a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Any = XLNetTokenizer lowerCAmelCase : str = XLNetTokenizerFast lowerCAmelCase : List[str] = True lowerCAmelCase : Union[str, Any] = True def lowerCAmelCase ( self : List[str] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase: List[Any] = XLNetTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Dict ): """simple docstring""" _UpperCamelCase: List[str] = '''<s>''' _UpperCamelCase: Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCamelCase: Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(_lowercase ) , 1_006 ) def lowerCAmelCase ( self : Dict ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def lowerCAmelCase ( self : Dict ): """simple docstring""" _UpperCamelCase: List[str] = XLNetTokenizer(_lowercase , keep_accents=_lowercase ) _UpperCamelCase: Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [285, 46, 10, 170, 382] ) _UpperCamelCase: Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase: Tuple = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _UpperCamelCase: str = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: List[Any] = XLNetTokenizer(_lowercase , do_lower_case=_lowercase ) _UpperCamelCase: Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: Tuple = XLNetTokenizer(_lowercase , do_lower_case=_lowercase ) _UpperCamelCase: str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def lowerCAmelCase ( self : Any ): """simple docstring""" _UpperCamelCase: Union[str, Any] = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) _UpperCamelCase: Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowercase ) _UpperCamelCase: Optional[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowercase ) _UpperCamelCase: int = tokenizer.build_inputs_with_special_tokens(_lowercase ) _UpperCamelCase: str = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCAmelCase ( self : List[Any] ): """simple docstring""" _UpperCamelCase: Union[str, Any] = {'''input_ids''': [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
264
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def lowerCAmelCase_ ( lowercase: SplitDict ) -> List[str]: '''simple docstring''' _UpperCamelCase: List[str] = split_dict._to_yaml_list() assert len(lowercase ) == len(lowercase ) _UpperCamelCase: Tuple = SplitDict._from_yaml_list(lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _UpperCamelCase: Optional[Any] = None # the split name of split_dict takes over the name of the split info object _UpperCamelCase: Any = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=lowercase ), SplitInfo(dataset_name='''my_dataset''' )] ) def lowerCAmelCase_ ( lowercase: str ) -> Tuple: '''simple docstring''' # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files _UpperCamelCase: Optional[Any] = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
264
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowerCamelCase : '''simple docstring''' _snake_case : int = 4_2 _snake_case : List[str] = None _snake_case : List[Any] = None def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = Node(1 ) UpperCAmelCase_ : Optional[int] = Node(2 ) UpperCAmelCase_ : Dict = Node(3 ) UpperCAmelCase_ : Optional[int] = Node(4 ) UpperCAmelCase_ : Union[str, Any] = Node(5 ) return tree def lowercase__ ( __snake_case : Node | None ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase__ ( __snake_case : Node | None ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase__ ( __snake_case : Node | None ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase__ ( __snake_case : Node | None ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase__ ( __snake_case : Node | None ): '''simple docstring''' UpperCAmelCase_ : List[str] = [] if root is None: return output UpperCAmelCase_ : Union[str, Any] = deque([root] ) while process_queue: UpperCAmelCase_ : Optional[int] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase__ ( __snake_case : Node | None , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = [] def populate_output(__snake_case : Node | None , __snake_case : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(_UpperCAmelCase , _UpperCAmelCase ) return output def lowercase__ ( __snake_case : Node | None , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = [] def populate_output(__snake_case : Node | None , __snake_case : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(_UpperCAmelCase , _UpperCAmelCase ) return output def lowercase__ ( __snake_case : Node | None ): '''simple docstring''' if root is None: return [] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Optional[int] = height(_UpperCAmelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ : int = 1 else: output.append(get_nodes_from_right_to_left(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ : Tuple = 0 return output def lowercase__ ( ): # Main function for testing. '''simple docstring''' UpperCAmelCase_ : Any = make_tree() print(F"In-order Traversal: {inorder(_UpperCAmelCase )}" ) print(F"Pre-order Traversal: {preorder(_UpperCAmelCase )}" ) print(F"Post-order Traversal: {postorder(_UpperCAmelCase )}" , '\n' ) print(F"Height of Tree: {height(_UpperCAmelCase )}" , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(_UpperCAmelCase ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(_UpperCAmelCase ) + 1 ): print(F"Level {level}:" , get_nodes_from_left_to_right(_UpperCAmelCase , level=_UpperCAmelCase ) ) print('\nZigZag order Traversal: ' ) print(zigzag(_UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
406
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": snake_case_ : Tuple = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') snake_case_ : Union[str, Any] = F'''https://www.google.com/search?q={query}&num=100''' snake_case_ : Optional[int] = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: snake_case_ : int = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: snake_case_ : List[str] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
212
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCAmelCase = logging.get_logger(__name__) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = """linear""" _UpperCamelCase : Union[str, Any] = """cosine""" _UpperCamelCase : Optional[Any] = """cosine_with_restarts""" _UpperCamelCase : Tuple = """polynomial""" _UpperCamelCase : List[str] = """constant""" _UpperCamelCase : Optional[Any] = """constant_with_warmup""" _UpperCamelCase : Dict = """piecewise_constant""" def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 ): return LambdaLR(__SCREAMING_SNAKE_CASE , lambda __SCREAMING_SNAKE_CASE : 1 , last_epoch=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 ): def lr_lambda(__SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(__SCREAMING_SNAKE_CASE ) / float(max(1.0 , __SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , last_epoch=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 ): lowercase = {} lowercase = step_rules.split(',' ) for rule_str in rule_list[:-1]: lowercase , lowercase = rule_str.split(':' ) lowercase = int(__SCREAMING_SNAKE_CASE ) lowercase = float(__SCREAMING_SNAKE_CASE ) lowercase = value lowercase = float(rule_list[-1] ) def create_rules_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): def rule_func(__SCREAMING_SNAKE_CASE ) -> float: lowercase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase = create_rules_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return LambdaLR(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , last_epoch=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=-1 ): def lr_lambda(__SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(__SCREAMING_SNAKE_CASE ) / float(max(1 , __SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.5 , __SCREAMING_SNAKE_CASE = -1 ): def lr_lambda(__SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(__SCREAMING_SNAKE_CASE ) / float(max(1 , __SCREAMING_SNAKE_CASE ) ) lowercase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = -1 ): def lr_lambda(__SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(__SCREAMING_SNAKE_CASE ) / float(max(1 , __SCREAMING_SNAKE_CASE ) ) lowercase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1e-7 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=-1 ): lowercase = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(__SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(__SCREAMING_SNAKE_CASE ) / float(max(1 , __SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase = lr_init - lr_end lowercase = num_training_steps - num_warmup_steps lowercase = 1 - (current_step - num_warmup_steps) / decay_steps lowercase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCAmelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = -1 , ): lowercase = SchedulerType(__SCREAMING_SNAKE_CASE ) lowercase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__SCREAMING_SNAKE_CASE , last_epoch=__SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__SCREAMING_SNAKE_CASE , step_rules=__SCREAMING_SNAKE_CASE , last_epoch=__SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__SCREAMING_SNAKE_CASE , num_warmup_steps=__SCREAMING_SNAKE_CASE , last_epoch=__SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __SCREAMING_SNAKE_CASE , num_warmup_steps=__SCREAMING_SNAKE_CASE , num_training_steps=__SCREAMING_SNAKE_CASE , num_cycles=__SCREAMING_SNAKE_CASE , last_epoch=__SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __SCREAMING_SNAKE_CASE , num_warmup_steps=__SCREAMING_SNAKE_CASE , num_training_steps=__SCREAMING_SNAKE_CASE , power=__SCREAMING_SNAKE_CASE , last_epoch=__SCREAMING_SNAKE_CASE , ) return schedule_func( __SCREAMING_SNAKE_CASE , num_warmup_steps=__SCREAMING_SNAKE_CASE , num_training_steps=__SCREAMING_SNAKE_CASE , last_epoch=__SCREAMING_SNAKE_CASE )
565
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = 6008_5147_5143 ): try: lowercase = int(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) lowercase = 1 lowercase = 2 while i * i <= n: while n % i == 0: lowercase = i n //= i i += 1 if n > 1: lowercase = n return int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
565
1
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) A_ = None A_ = { "7B": 1_1_0_0_8, "13B": 1_3_8_2_4, "30B": 1_7_9_2_0, "65B": 2_2_0_1_6, "70B": 2_8_6_7_2, } A_ = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase=1 ,UpperCAmelCase=256 )-> List[Any]: '''simple docstring''' return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def UpperCAmelCase ( UpperCAmelCase )-> List[Any]: '''simple docstring''' with open(UpperCAmelCase ,'''r''' ) as f: return json.load(UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase )-> List[Any]: '''simple docstring''' with open(UpperCAmelCase ,'''w''' ) as f: json.dump(UpperCAmelCase ,UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=True )-> Tuple: '''simple docstring''' os.makedirs(UpperCAmelCase ,exist_ok=UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase ,'''tmp''' ) os.makedirs(UpperCAmelCase ,exist_ok=UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = read_json(os.path.join(UpperCAmelCase ,'''params.json''' ) ) SCREAMING_SNAKE_CASE_ = NUM_SHARDS[model_size] SCREAMING_SNAKE_CASE_ = params['''n_layers'''] SCREAMING_SNAKE_CASE_ = params['''n_heads'''] SCREAMING_SNAKE_CASE_ = n_heads // num_shards SCREAMING_SNAKE_CASE_ = params['''dim'''] SCREAMING_SNAKE_CASE_ = dim // n_heads SCREAMING_SNAKE_CASE_ = 1_0_0_0_0.0 SCREAMING_SNAKE_CASE_ = 1.0 / (base ** (torch.arange(0 ,UpperCAmelCase ,2 ).float() / dims_per_head)) if "n_kv_heads" in params: SCREAMING_SNAKE_CASE_ = params['''n_kv_heads'''] # for GQA / MQA SCREAMING_SNAKE_CASE_ = n_heads_per_shard // num_key_value_heads SCREAMING_SNAKE_CASE_ = dim // num_key_value_heads else: # compatibility with other checkpoints SCREAMING_SNAKE_CASE_ = n_heads SCREAMING_SNAKE_CASE_ = n_heads_per_shard SCREAMING_SNAKE_CASE_ = dim # permute for sliced rotary def permute(UpperCAmelCase ,UpperCAmelCase=n_heads ,UpperCAmelCase=dim ,UpperCAmelCase=dim ): return w.view(UpperCAmelCase ,dima // n_heads // 2 ,2 ,UpperCAmelCase ).transpose(1 ,2 ).reshape(UpperCAmelCase ,UpperCAmelCase ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) SCREAMING_SNAKE_CASE_ = torch.load(os.path.join(UpperCAmelCase ,'''consolidated.00.pth''' ) ,map_location='''cpu''' ) else: # Sharded SCREAMING_SNAKE_CASE_ = [ torch.load(os.path.join(UpperCAmelCase ,f'''consolidated.{i:02d}.pth''' ) ,map_location='''cpu''' ) for i in range(UpperCAmelCase ) ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = {'''weight_map''': {}} for layer_i in range(UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded SCREAMING_SNAKE_CASE_ = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. SCREAMING_SNAKE_CASE_ = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } SCREAMING_SNAKE_CASE_ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) for i in range(UpperCAmelCase ) ] ,dim=0 ,).reshape(UpperCAmelCase ,UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) for i in range(UpperCAmelCase ) ] ,dim=0 ,).reshape(UpperCAmelCase ,UpperCAmelCase ) ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,) SCREAMING_SNAKE_CASE_ = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) for i in range(UpperCAmelCase ) ] ,dim=0 ,).reshape(UpperCAmelCase ,UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(UpperCAmelCase )] ,dim=1 ) SCREAMING_SNAKE_CASE_ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(UpperCAmelCase )] ,dim=0 ) SCREAMING_SNAKE_CASE_ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(UpperCAmelCase )] ,dim=1 ) SCREAMING_SNAKE_CASE_ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(UpperCAmelCase )] ,dim=0 ) SCREAMING_SNAKE_CASE_ = inv_freq for k, v in state_dict.items(): SCREAMING_SNAKE_CASE_ = filename param_count += v.numel() torch.save(UpperCAmelCase ,os.path.join(UpperCAmelCase ,UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_ = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded SCREAMING_SNAKE_CASE_ = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: SCREAMING_SNAKE_CASE_ = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(UpperCAmelCase )] ,dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(UpperCAmelCase )] ,dim=0 ), } for k, v in state_dict.items(): SCREAMING_SNAKE_CASE_ = filename param_count += v.numel() torch.save(UpperCAmelCase ,os.path.join(UpperCAmelCase ,UpperCAmelCase ) ) # Write configs SCREAMING_SNAKE_CASE_ = {'''total_size''': param_count * 2} write_json(UpperCAmelCase ,os.path.join(UpperCAmelCase ,'''pytorch_model.bin.index.json''' ) ) SCREAMING_SNAKE_CASE_ = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 SCREAMING_SNAKE_CASE_ = params['''multiple_of'''] if '''multiple_of''' in params else 256 SCREAMING_SNAKE_CASE_ = LlamaConfig( hidden_size=UpperCAmelCase ,intermediate_size=compute_intermediate_size(UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) ,num_attention_heads=params['''n_heads'''] ,num_hidden_layers=params['''n_layers'''] ,rms_norm_eps=params['''norm_eps'''] ,num_key_value_heads=UpperCAmelCase ,) config.save_pretrained(UpperCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained(UpperCAmelCase ,torch_dtype=torch.floataa ,low_cpu_mem_usage=UpperCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(UpperCAmelCase ,safe_serialization=UpperCAmelCase ) shutil.rmtree(UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) SCREAMING_SNAKE_CASE_ = tokenizer_class(UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) def UpperCAmelCase ( )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' ,help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' ,) parser.add_argument( '''--model_size''' ,choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] ,) parser.add_argument( '''--output_dir''' ,help='''Location to write HF model and tokenizer''' ,) parser.add_argument('''--safe_serialization''' ,type=UpperCAmelCase ,help='''Whether or not to save using `safetensors`.''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir ,input_base_path=os.path.join(args.input_dir ,args.model_size ) ,model_size=args.model_size ,safe_serialization=args.safe_serialization ,) SCREAMING_SNAKE_CASE_ = os.path.join(args.input_dir ,'''tokenizer.model''' ) write_tokenizer(args.output_dir ,UpperCAmelCase ) if __name__ == "__main__": main()
393
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : int = """""" UpperCAmelCase : List[str] = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self : Union[str, Any] , lowerCAmelCase_ : Optional[DatasetInfo] = None , lowerCAmelCase_ : Optional[str] = None , **lowerCAmelCase_ : str , ) -> int: """simple docstring""" super().__init__(self , **lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = repo_info SCREAMING_SNAKE_CASE_ = token SCREAMING_SNAKE_CASE_ = None def _lowercase ( self : int ) -> Dict: """simple docstring""" if self.dir_cache is None: SCREAMING_SNAKE_CASE_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes SCREAMING_SNAKE_CASE_ = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(lowerCAmelCase_ ): {'''name''': str(lowerCAmelCase_ ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _lowercase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : str = "rb" , **lowerCAmelCase_ : Optional[Any] , ) -> Union[str, Any]: """simple docstring""" if not isinstance(self.repo_info , lowerCAmelCase_ ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) SCREAMING_SNAKE_CASE_ = hf_hub_url(self.repo_info.id , lowerCAmelCase_ , revision=self.repo_info.sha ) return fsspec.open( lowerCAmelCase_ , mode=lowerCAmelCase_ , headers=get_authentication_headers_for_url(lowerCAmelCase_ , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def _lowercase ( self : str , lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Any ) -> Tuple: """simple docstring""" self._get_dirs() SCREAMING_SNAKE_CASE_ = self._strip_protocol(lowerCAmelCase_ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowerCAmelCase_ ) def _lowercase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple=False , **lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self._get_dirs() SCREAMING_SNAKE_CASE_ = PurePosixPath(path.strip('''/''' ) ) SCREAMING_SNAKE_CASE_ = {} for p, f in self.dir_cache.items(): SCREAMING_SNAKE_CASE_ = PurePosixPath(p.strip('''/''' ) ) SCREAMING_SNAKE_CASE_ = p.parent if root == path: SCREAMING_SNAKE_CASE_ = f SCREAMING_SNAKE_CASE_ = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
393
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCAmelCase : Any = logging.get_logger(__name__) class _A ( __magic_name__): SCREAMING_SNAKE_CASE : List[str] = '''vision-encoder-decoder''' SCREAMING_SNAKE_CASE : str = True def __init__( self , **_SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"A configuraton of type {self.model_type} cannot be instantiated because " f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('encoder' ) SCREAMING_SNAKE_CASE_ : Any = encoder_config.pop('model_type' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = kwargs.pop('decoder' ) SCREAMING_SNAKE_CASE_ : List[Any] = decoder_config.pop('model_type' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoConfig.for_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = AutoConfig.for_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = True @classmethod def UpperCAmelCase ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.encoder.to_dict() SCREAMING_SNAKE_CASE_ : List[Any] = self.decoder.to_dict() SCREAMING_SNAKE_CASE_ : List[Any] = self.__class__.model_type return output class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Optional[Any] = version.parse('''1.11''') @property def UpperCAmelCase ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase ( self ): """simple docstring""" return 1e-4 @property def UpperCAmelCase ( self ): """simple docstring""" return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _A ( __magic_name__): @property def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = OrderedDict() SCREAMING_SNAKE_CASE_ : Optional[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} SCREAMING_SNAKE_CASE_ : Optional[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} SCREAMING_SNAKE_CASE_ : List[Any] = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ): """simple docstring""" import torch SCREAMING_SNAKE_CASE_ : List[Any] = OrderedDict() SCREAMING_SNAKE_CASE_ : int = super().generate_dummy_inputs( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = dummy_input['input_ids'].shape SCREAMING_SNAKE_CASE_ : Dict = (batch, encoder_sequence, self._config.encoder_hidden_size) SCREAMING_SNAKE_CASE_ : List[str] = dummy_input.pop('input_ids' ) SCREAMING_SNAKE_CASE_ : Any = dummy_input.pop('attention_mask' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.zeros(_SCREAMING_SNAKE_CASE ) return common_inputs class _A ( __magic_name__): @property def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "default" ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
353
from __future__ import annotations import math lowerCAmelCase : List[str] = '2020.9.26' lowerCAmelCase : List[Any] = 'xcodz-dot, cclaus, dhruvmanila' def A_ ( a , a , a , a , a ): """simple docstring""" if not all(isinstance(a , (float, int) ) for val in locals().values() ): SCREAMING_SNAKE_CASE_ : Optional[Any] = f"Input values must either be float or int: {list(locals().values() )}" raise TypeError(a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ((x * distance) / (z + distance)) * scale SCREAMING_SNAKE_CASE_ : int = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def A_ ( a , a , a , a , a ): """simple docstring""" if not isinstance(a , a ): raise TypeError('Axis must be a str' ) SCREAMING_SNAKE_CASE_ : Any = locals() del input_variables["axis"] if not all(isinstance(a , (float, int) ) for val in input_variables.values() ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ( 'Input values except axis must either be float or int: ' f"{list(input_variables.values() )}" ) raise TypeError(a ) SCREAMING_SNAKE_CASE_ : List[Any] = (angle % 3_6_0) / 4_5_0 * 1_8_0 / math.pi if axis == "z": SCREAMING_SNAKE_CASE_ : List[str] = x * math.cos(a ) - y * math.sin(a ) SCREAMING_SNAKE_CASE_ : List[Any] = y * math.cos(a ) + x * math.sin(a ) SCREAMING_SNAKE_CASE_ : Dict = z elif axis == "x": SCREAMING_SNAKE_CASE_ : Any = y * math.cos(a ) - z * math.sin(a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = z * math.cos(a ) + y * math.sin(a ) SCREAMING_SNAKE_CASE_ : str = x elif axis == "y": SCREAMING_SNAKE_CASE_ : str = x * math.cos(a ) - z * math.sin(a ) SCREAMING_SNAKE_CASE_ : List[str] = z * math.cos(a ) + x * math.sin(a ) SCREAMING_SNAKE_CASE_ : Any = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }') print(F'{rotate(1.0, 2.0, 3.0, "y", 90.0) = }')
353
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase : Any = logging.get_logger(__name__) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
495
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowercase : Tuple = "base_with_context" def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Optional[Any]: _snake_case = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) _snake_case = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__A ) for lyr_num, lyr in enumerate(model.encoders ): _snake_case = weights[F'layers_{lyr_num}'] _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) _snake_case = ly_weight['attention'] _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> List[Any]: _snake_case = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) _snake_case = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__A ) for lyr_num, lyr in enumerate(model.encoders ): _snake_case = weights[F'layers_{lyr_num}'] _snake_case = ly_weight['attention'] _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Optional[Any]: _snake_case = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) _snake_case = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__A ) _snake_case = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _snake_case = weights[F'layers_{lyr_num}'] _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) _snake_case = ly_weight['self_attention'] _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _snake_case = ly_weight['MultiHeadDotProductAttention_0'] _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _snake_case = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) _snake_case = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[Any]: _snake_case = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _snake_case = jnp.tree_util.tree_map(onp.array , __A ) _snake_case = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] _snake_case = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) _snake_case = inference.parse_training_gin_file(__A , __A ) _snake_case = inference.InferenceModel(args.checkpoint_path , __A ) _snake_case = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) _snake_case = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) _snake_case = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) _snake_case = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _snake_case = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , __A ) _snake_case = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , __A ) _snake_case = load_decoder(ta_checkpoint['target']['decoder'] , __A ) _snake_case = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) _snake_case = SpectrogramDiffusionPipeline( notes_encoder=__A , continuous_encoder=__A , decoder=__A , scheduler=__A , melgan=__A , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help="Path to the original jax model checkpoint.", ) lowercase : str = parser.parse_args() main(args)
495
1
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) snake_case_ : Optional[int] = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def __a ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" inspect_dataset(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[int] = path + ".py" assert script_name in os.listdir(__UpperCAmelCase ) assert "__pycache__" not in os.listdir(__UpperCAmelCase ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def __a ( __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" inspect_metric(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Tuple = path + ".py" assert script_name in os.listdir(__UpperCAmelCase ) assert "__pycache__" not in os.listdir(__UpperCAmelCase ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def __a ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] ) -> str: """simple docstring""" lowerCamelCase_ : Optional[int] = get_dataset_config_info(__UpperCAmelCase , config_name=__UpperCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def __a ( __UpperCAmelCase : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" with pytest.raises(__UpperCAmelCase ): get_dataset_config_info(__UpperCAmelCase , config_name=__UpperCAmelCase ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def __a ( __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] ) -> str: """simple docstring""" lowerCamelCase_ : str = get_dataset_config_names(__UpperCAmelCase ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def __a ( __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : int ) -> int: """simple docstring""" lowerCamelCase_ : Optional[int] = get_dataset_infos(__UpperCAmelCase ) assert list(infos.keys() ) == expected_configs lowerCamelCase_ : str = expected_configs[0] assert expected_config in infos lowerCamelCase_ : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def __a ( __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Dict ) -> Any: """simple docstring""" lowerCamelCase_ : Optional[int] = get_dataset_infos(__UpperCAmelCase ) assert expected_config in infos lowerCamelCase_ : List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def __a ( __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" with pytest.raises(__UpperCAmelCase ): get_dataset_split_names(__UpperCAmelCase , config_name=__UpperCAmelCase )
713
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : Optional[int] = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = "informer" lowerCamelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Optional[Any] , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[int] = None , __magic_name__ : str = "student_t" , __magic_name__ : str = "nll" , __magic_name__ : int = 1 , __magic_name__ : List[int] = None , __magic_name__ : Optional[Union[str, bool]] = "mean" , __magic_name__ : int = 0 , __magic_name__ : int = 0 , __magic_name__ : int = 0 , __magic_name__ : int = 0 , __magic_name__ : Optional[List[int]] = None , __magic_name__ : Optional[List[int]] = None , __magic_name__ : int = 64 , __magic_name__ : int = 32 , __magic_name__ : int = 32 , __magic_name__ : int = 2 , __magic_name__ : int = 2 , __magic_name__ : int = 2 , __magic_name__ : int = 2 , __magic_name__ : bool = True , __magic_name__ : str = "gelu" , __magic_name__ : float = 0.05 , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : int = 100 , __magic_name__ : float = 0.02 , __magic_name__ : Optional[int]=True , __magic_name__ : str = "prob" , __magic_name__ : int = 5 , __magic_name__ : bool = True , **__magic_name__ : Tuple , ) -> List[str]: # time series specific configuration lowerCamelCase_ : Tuple = prediction_length lowerCamelCase_ : str = context_length or prediction_length lowerCamelCase_ : Union[str, Any] = distribution_output lowerCamelCase_ : List[str] = loss lowerCamelCase_ : Tuple = input_size lowerCamelCase_ : int = num_time_features lowerCamelCase_ : List[str] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCamelCase_ : Optional[int] = scaling lowerCamelCase_ : str = num_dynamic_real_features lowerCamelCase_ : List[str] = num_static_real_features lowerCamelCase_ : Any = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__magic_name__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCamelCase_ : Dict = cardinality else: lowerCamelCase_ : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__magic_name__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCamelCase_ : Dict = embedding_dimension else: lowerCamelCase_ : str = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCamelCase_ : Dict = num_parallel_samples # Transformer architecture configuration lowerCamelCase_ : Tuple = input_size * len(self.lags_sequence ) + self._number_of_features lowerCamelCase_ : int = d_model lowerCamelCase_ : Union[str, Any] = encoder_attention_heads lowerCamelCase_ : int = decoder_attention_heads lowerCamelCase_ : Union[str, Any] = encoder_ffn_dim lowerCamelCase_ : Union[str, Any] = decoder_ffn_dim lowerCamelCase_ : Dict = encoder_layers lowerCamelCase_ : str = decoder_layers lowerCamelCase_ : Dict = dropout lowerCamelCase_ : Optional[int] = attention_dropout lowerCamelCase_ : Dict = activation_dropout lowerCamelCase_ : List[Any] = encoder_layerdrop lowerCamelCase_ : Optional[Any] = decoder_layerdrop lowerCamelCase_ : Optional[int] = activation_function lowerCamelCase_ : int = init_std lowerCamelCase_ : str = use_cache # Informer lowerCamelCase_ : str = attention_type lowerCamelCase_ : Union[str, Any] = sampling_factor lowerCamelCase_ : List[Any] = distil super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
253
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : def __init__( self , lowercase_ , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=10 , lowercase_=[10, 20, 30, 40] , lowercase_=[1, 1, 2, 1] , lowercase_=True , lowercase_=True , lowercase_="relu" , lowercase_=3 , lowercase_=None , ) -> Optional[int]: '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Any = batch_size _snake_case : Optional[int] = image_size _snake_case : Optional[Any] = num_channels _snake_case : Dict = embeddings_size _snake_case : Optional[Any] = hidden_sizes _snake_case : Union[str, Any] = depths _snake_case : Any = is_training _snake_case : Optional[Any] = use_labels _snake_case : str = hidden_act _snake_case : Any = num_labels _snake_case : str = scope _snake_case : Optional[int] = len(lowercase_ ) def __a ( self ) -> str: '''simple docstring''' _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Any = None if self.use_labels: _snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) _snake_case : Any = self.get_config() return config, pixel_values, labels def __a ( self ) -> List[Any]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __a ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' _snake_case : Dict = TFRegNetModel(config=lowercase_ ) _snake_case : List[Any] = model(lowercase_ , training=lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' _snake_case : str = self.num_labels _snake_case : Optional[Any] = TFRegNetForImageClassification(lowercase_ ) _snake_case : int = model(lowercase_ , labels=lowercase_ , training=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self ) -> List[Any]: '''simple docstring''' _snake_case : str = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[Any] = config_and_inputs _snake_case : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A (__UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def __a ( self ) -> List[Any]: '''simple docstring''' _snake_case : str = TFRegNetModelTester(self ) _snake_case : Dict = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def __a ( self ) -> List[Any]: '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __a ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def __a ( self ) -> Tuple: '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __a ( self ) -> str: '''simple docstring''' pass def __a ( self ) -> Optional[int]: '''simple docstring''' _snake_case , _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Union[str, Any] = model_class(lowercase_ ) _snake_case : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : str = [*signature.parameters.keys()] _snake_case : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __a ( self ) -> List[Any]: '''simple docstring''' def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ): _snake_case : Optional[Any] = model_class(lowercase_ ) _snake_case : List[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) , training=lowercase_ ) _snake_case : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : int = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : str = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _snake_case : Optional[Any] = layer_type _snake_case : int = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[int] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def __a ( self ) -> Optional[Any]: '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(lowercase_ , lowercase_ , lowercase_ , lowercase_={} ): _snake_case : Union[str, Any] = model(lowercase_ , return_dict=lowercase_ , **lowercase_ ) _snake_case : Any = model(lowercase_ , return_dict=lowercase_ , **lowercase_ ).to_tuple() def recursive_check(lowercase_ , lowercase_ ): if isinstance(lowercase_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowercase_ , lowercase_ ): recursive_check(lowercase_ , lowercase_ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(lowercase_ , lowercase_ ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(lowercase_ , lowercase_ ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = model_class(lowercase_ ) _snake_case : Optional[Any] = self._prepare_for_class(lowercase_ , lowercase_ ) _snake_case : str = self._prepare_for_class(lowercase_ , lowercase_ ) check_equivalence(lowercase_ , lowercase_ , lowercase_ ) _snake_case : Optional[Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) _snake_case : int = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) check_equivalence(lowercase_ , lowercase_ , lowercase_ ) _snake_case : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ ) _snake_case : List[Any] = self._prepare_for_class(lowercase_ , lowercase_ ) check_equivalence(lowercase_ , lowercase_ , lowercase_ , {'''output_hidden_states''': True} ) _snake_case : Optional[int] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) _snake_case : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) check_equivalence(lowercase_ , lowercase_ , lowercase_ , {'''output_hidden_states''': True} ) def __a ( self ) -> str: '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def __a ( self ) -> Tuple: '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : str = TFRegNetModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def A_ ( ) -> Any: _snake_case : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A (unittest.TestCase ): @cached_property def __a ( self ) -> List[str]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __a ( self ) -> str: '''simple docstring''' _snake_case : Union[str, Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _snake_case : Any = self.default_image_processor _snake_case : Any = prepare_img() _snake_case : Optional[Any] = image_processor(images=lowercase_ , return_tensors='''tf''' ) # forward pass _snake_case : Optional[Any] = model(**lowercase_ , training=lowercase_ ) # verify the logits _snake_case : Union[str, Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) _snake_case : List[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowercase_ , atol=1E-4 )
326
from __future__ import annotations def A_ ( lowercase_ ) -> bool: _snake_case : Tuple = str(lowercase_ ) return len(lowercase_ ) == 9 and set(lowercase_ ) == set('''123456789''' ) def A_ ( ) -> int | None: for base_num in range(9999 , 4999 , -1 ): _snake_case : str = 100002 * base_num if is_9_pandigital(lowercase_ ): return candidate for base_num in range(333 , 99 , -1 ): _snake_case : List[str] = 1002003 * base_num if is_9_pandigital(lowercase_ ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
326
1
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel UpperCAmelCase_ : Optional[int] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } UpperCAmelCase_ : Optional[Any] = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def _A (__a , __a=False ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = create_model( '''HTSAT-tiny''' , '''roberta''' , __a , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=__a , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = R'''.*sequential.(\d+).*''' SCREAMING_SNAKE_CASE_ : Optional[int] = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = key.replace(__a , __a ) if re.match(__a , __a ): # replace sequential layers with list SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.match(__a , __a ).group(1 ) SCREAMING_SNAKE_CASE_ : int = key.replace(f'sequential.{sequential_layer}.' , f'layers.{int(__a )//3}.linear.' ) elif re.match(__a , __a ): SCREAMING_SNAKE_CASE_ : Optional[int] = int(re.match(__a , __a ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_ : Tuple = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_ : Dict = key.replace(f'_projection.{projecton_layer}.' , f'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_ : List[Any] = value SCREAMING_SNAKE_CASE_ : Optional[Any] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_ : Union[str, Any] = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_ : Dict = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_ : Optional[int] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_ : Tuple = query_layer SCREAMING_SNAKE_CASE_ : Any = key_layer SCREAMING_SNAKE_CASE_ : Tuple = value_layer else: SCREAMING_SNAKE_CASE_ : Any = value return model_state_dict def _A (__a , __a , __a , __a=False ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = init_clap(__a , enable_fusion=__a ) clap_model.eval() SCREAMING_SNAKE_CASE_ : List[str] = clap_model.state_dict() SCREAMING_SNAKE_CASE_ : Union[str, Any] = rename_state_dict(__a ) SCREAMING_SNAKE_CASE_ : Dict = ClapConfig() SCREAMING_SNAKE_CASE_ : int = enable_fusion SCREAMING_SNAKE_CASE_ : List[str] = ClapModel(__a ) # ignore the spectrogram embedding layer model.load_state_dict(__a , strict=__a ) model.save_pretrained(__a ) transformers_config.save_pretrained(__a ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") UpperCAmelCase_ : str = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
176
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase_ : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") UpperCAmelCase_ : Dict = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) UpperCAmelCase_ : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase__ : '''simple docstring''' __UpperCamelCase = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) __UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) __UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) __UpperCamelCase = field( default=0.1_5 , metadata={"help": "Percent to split off of train for validation."} ) __UpperCamelCase = field(default=3_2 , metadata={"help": "The size of the square patches to use for masking."} ) __UpperCamelCase = field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE_ : List[str] = self.validation_dir SCREAMING_SNAKE_CASE_ : List[Any] = data_files if data_files else None @dataclass class lowerCAmelCase__ : '''simple docstring''' __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Stride to use for the encoder."} , ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : int , lowercase_ : Tuple=192 , lowercase_ : Tuple=32 , lowercase_ : Optional[Any]=4 , lowercase_ : Optional[int]=0.6): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = input_size SCREAMING_SNAKE_CASE_ : Optional[Any] = mask_patch_size SCREAMING_SNAKE_CASE_ : Dict = model_patch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''') if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''') SCREAMING_SNAKE_CASE_ : int = self.input_size // self.mask_patch_size SCREAMING_SNAKE_CASE_ : str = self.mask_patch_size // self.model_patch_size SCREAMING_SNAKE_CASE_ : Optional[int] = self.rand_size**2 SCREAMING_SNAKE_CASE_ : List[Any] = int(np.ceil(self.token_count * self.mask_ratio)) def __call__( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = np.random.permutation(self.token_count)[: self.mask_count] SCREAMING_SNAKE_CASE_ : Any = np.zeros(self.token_count , dtype=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : Tuple = mask.reshape((self.rand_size, self.rand_size)) SCREAMING_SNAKE_CASE_ : List[Any] = mask.repeat(self.scale , axis=0).repeat(self.scale , axis=1) return torch.tensor(mask.flatten()) def _A (__a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = torch.stack([example['''pixel_values'''] for example in examples] ) SCREAMING_SNAKE_CASE_ : Tuple = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _A () -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , __a , __a ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : Tuple = training_args.get_process_log_level() logger.setLevel(__a ) transformers.utils.logging.set_verbosity(__a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE_ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. SCREAMING_SNAKE_CASE_ : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE_ : List[str] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __a ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE_ : Tuple = ds['''train'''].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE_ : List[str] = split['''train'''] SCREAMING_SNAKE_CASE_ : Any = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ : List[str] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: SCREAMING_SNAKE_CASE_ : str = AutoConfig.from_pretrained(model_args.config_name_or_path , **__a ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ : str = AutoConfig.from_pretrained(model_args.model_name_or_path , **__a ) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__a , '''decoder_type''' ): SCREAMING_SNAKE_CASE_ : Any = '''simmim''' # adapt config SCREAMING_SNAKE_CASE_ : Optional[Any] = model_args.image_size if model_args.image_size is not None else config.image_size SCREAMING_SNAKE_CASE_ : List[str] = model_args.patch_size if model_args.patch_size is not None else config.patch_size SCREAMING_SNAKE_CASE_ : str = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE_ : str = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **__a ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ : Any = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **__a ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } SCREAMING_SNAKE_CASE_ : Union[str, Any] = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoModelForMaskedImageModeling.from_config(__a ) if training_args.do_train: SCREAMING_SNAKE_CASE_ : Optional[Any] = ds['''train'''].column_names else: SCREAMING_SNAKE_CASE_ : Tuple = ds['''validation'''].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE_ : Dict = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE_ : Optional[int] = '''image''' elif "img" in column_names: SCREAMING_SNAKE_CASE_ : int = '''img''' else: SCREAMING_SNAKE_CASE_ : Any = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py SCREAMING_SNAKE_CASE_ : Optional[int] = Compose( [ Lambda(lambda __a : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator SCREAMING_SNAKE_CASE_ : List[Any] = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(__a ): SCREAMING_SNAKE_CASE_ : List[Any] = [transforms(__a ) for image in examples[image_column_name]] SCREAMING_SNAKE_CASE_ : Optional[Any] = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE_ : List[Any] = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__a ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE_ : str = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__a ) # Initialize our trainer SCREAMING_SNAKE_CASE_ : Optional[Any] = Trainer( model=__a , args=__a , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=__a , data_collator=__a , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE_ : List[Any] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = last_checkpoint SCREAMING_SNAKE_CASE_ : Dict = trainer.train(resume_from_checkpoint=__a ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE_ : List[str] = trainer.evaluate() trainer.log_metrics('''eval''' , __a ) trainer.save_metrics('''eval''' , __a ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE_ : Optional[int] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**__a ) else: trainer.create_model_card(**__a ) if __name__ == "__main__": main()
176
1
"""simple docstring""" import math def UpperCAmelCase ( snake_case : Union[str, Any] ): _lowerCAmelCase:Union[str, Any] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowerCamelCase__ ) def UpperCAmelCase ( snake_case : Union[str, Any] = 1 / 12345 ): _lowerCAmelCase:int = 0 _lowerCAmelCase:List[str] = 0 _lowerCAmelCase:str = 3 while True: _lowerCAmelCase:Tuple = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowerCamelCase__ ): _lowerCAmelCase:Any = int(lowerCamelCase__ ) total_partitions += 1 if check_partition_perfect(lowerCamelCase__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowerCamelCase__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
227
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase , lowercase , lowercase = None , ): super().__init__() self.register_modules(transformer=lowercase , vae=lowercase , scheduler=lowercase ) # create a imagenet -> id dictionary for easier use A_ : str = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): A_ : Optional[Any] = int(lowercase ) A_ : List[Any] = dict(sorted(self.labels.items() ) ) def _a (self , lowercase ): if not isinstance(lowercase , lowercase ): A_ : Optional[int] = list(lowercase ) for l in label: if l not in self.labels: raise ValueError( F'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__(self , lowercase , lowercase = 4.0 , lowercase = None , lowercase = 50 , lowercase = "pil" , lowercase = True , ): A_ : Tuple = len(lowercase ) A_ : Optional[Any] = self.transformer.config.sample_size A_ : int = self.transformer.config.in_channels A_ : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase , device=self.device , dtype=self.transformer.dtype , ) A_ : Optional[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents A_ : Optional[int] = torch.tensor(lowercase , device=self.device ).reshape(-1 ) A_ : Optional[int] = torch.tensor([1000] * batch_size , device=self.device ) A_ : Optional[Any] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: A_ : List[Any] = latent_model_input[: len(lowercase ) // 2] A_ : List[str] = torch.cat([half, half] , dim=0 ) A_ : Any = self.scheduler.scale_model_input(lowercase , lowercase ) A_ : Tuple = t if not torch.is_tensor(lowercase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) A_ : Optional[Any] = latent_model_input.device.type == """mps""" if isinstance(lowercase , lowercase ): A_ : Optional[Any] = torch.floataa if is_mps else torch.floataa else: A_ : List[Any] = torch.intaa if is_mps else torch.intaa A_ : List[Any] = torch.tensor([timesteps] , dtype=lowercase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: A_ : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A_ : int = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output A_ : List[Any] = self.transformer( lowercase , timestep=lowercase , class_labels=lowercase ).sample # perform guidance if guidance_scale > 1: A_, A_ : Any = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] A_, A_ : List[Any] = torch.split(lowercase , len(lowercase ) // 2 , dim=0 ) A_ : Optional[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) A_ : str = torch.cat([half_eps, half_eps] , dim=0 ) A_ : Optional[int] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: A_, A_ : int = torch.split(lowercase , lowercase , dim=1 ) else: A_ : Optional[int] = noise_pred # compute previous image: x_t -> x_t-1 A_ : Union[str, Any] = self.scheduler.step(lowercase , lowercase , lowercase ).prev_sample if guidance_scale > 1: A_, A_ : int = latent_model_input.chunk(2 , dim=0 ) else: A_ : Union[str, Any] = latent_model_input A_ : Union[str, Any] = 1 / self.vae.config.scaling_factor * latents A_ : List[Any] = self.vae.decode(lowercase ).sample A_ : List[str] = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Union[str, Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A_ : int = self.numpy_to_pil(lowercase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase )
667
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase ( __UpperCAmelCase ): def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase_ , 'width_multiplier' ) ) class UpperCamelCase : def __init__( self : int , snake_case__ : Optional[Any] , snake_case__ : Tuple=1_3 , snake_case__ : Dict=6_4 , snake_case__ : Dict=2 , snake_case__ : int=3 , snake_case__ : Any="swish" , snake_case__ : str=3 , snake_case__ : Union[str, Any]=3_2 , snake_case__ : Any=0.1 , snake_case__ : Optional[int]=0.02 , snake_case__ : List[Any]=True , snake_case__ : Tuple=True , snake_case__ : Tuple=1_0 , snake_case__ : Optional[Any]=None , snake_case__ : Any=0.25 , snake_case__ : Tuple=0.0 , snake_case__ : Union[str, Any]=0.0 , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = make_divisible(5_1_2 * width_multiplier , divisor=8 ) SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = conv_kernel_size SCREAMING_SNAKE_CASE = output_stride SCREAMING_SNAKE_CASE = classifier_dropout_prob SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = width_multiplier SCREAMING_SNAKE_CASE = ffn_dropout SCREAMING_SNAKE_CASE = attn_dropout def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self : str ): """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase ( self : Tuple , snake_case__ : Any , snake_case__ : Any , snake_case__ : int , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MobileViTVaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : str , snake_case__ : str , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MobileViTVaForSemanticSegmentation(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __UpperCamelCase =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase =( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaModelTester(self ) SCREAMING_SNAKE_CASE = MobileViTVaConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def UpperCamelCase ( self : Any ): """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def UpperCamelCase ( self : Any ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def UpperCamelCase ( self : Dict ): """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase ( self : int ): """simple docstring""" pass def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self : str ): """simple docstring""" def check_hidden_states_output(snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Any ): SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 5 self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE = 2 for i in range(len(UpperCAmelCase_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self : Dict ): """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = MobileViTVaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase ( self : int ): """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE = model.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = outputs.logits # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=UpperCAmelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE = model.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_ , target_sizes=[(5_0, 6_0)] ) SCREAMING_SNAKE_CASE = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase_ )
711
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(_UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
673
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case = logging.get_logger(__name__) snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } snake_case = {'''facebook/blenderbot-3B''': 1_2_8} class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Dict = VOCAB_FILES_NAMES A__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ['''input_ids''', '''attention_mask'''] A__ : int = BlenderbotTokenizer def __init__( self : Union[str, Any] , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]="replace" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : Optional[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : str="<mask>" , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Optional[int]=True , **__lowerCamelCase : List[Any] , ): """simple docstring""" super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase , **__lowerCamelCase , ) _snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowerCamelCase ) != add_prefix_space: _snake_case = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) _snake_case = add_prefix_space _snake_case = pre_tok_class(**__lowerCamelCase ) _snake_case = add_prefix_space _snake_case = '''post_processor''' _snake_case = getattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) if tokenizer_component_instance: _snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _snake_case = tuple(state['''sep'''] ) if "cls" in state: _snake_case = tuple(state['''cls'''] ) _snake_case = False if state.get('''add_prefix_space''' , __lowerCamelCase ) != add_prefix_space: _snake_case = add_prefix_space _snake_case = True if state.get('''trim_offsets''' , __lowerCamelCase ) != trim_offsets: _snake_case = trim_offsets _snake_case = True if changes_to_apply: _snake_case = getattr(__lowerCamelCase , state.pop('''type''' ) ) _snake_case = component_class(**__lowerCamelCase ) setattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Any ): """simple docstring""" _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else value _snake_case = value def __UpperCAmelCase ( self : Optional[int] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Optional[Any] ): """simple docstring""" _snake_case = kwargs.get('''is_split_into_words''' , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : int , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = kwargs.get('''is_split_into_words''' , __lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" _snake_case = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : str , __lowerCamelCase : "Conversation" ): """simple docstring""" _snake_case = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) _snake_case = ''' '''.join(__lowerCamelCase ) _snake_case = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: _snake_case = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
103
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __snake_case = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Optional[Any] ='facebook/nllb-200-distilled-600M' UpperCamelCase_ : Optional[Any] =( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) UpperCamelCase_ : Dict ='translator' UpperCamelCase_ : Any =AutoTokenizer UpperCamelCase_ : Optional[Any] =AutoModelForSeqaSeqLM UpperCamelCase_ : List[Any] =LANGUAGE_CODES UpperCamelCase_ : int =['text', 'text', 'text'] UpperCamelCase_ : Union[str, Any] =['text'] def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) UpperCamelCase :Optional[int] = self.lang_to_code[src_lang] UpperCamelCase :Union[str, Any] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , src_lang=SCREAMING_SNAKE_CASE_ , tgt_lang=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return self.model.generate(**SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> int: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
658
0
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def A ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(snake_case__ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def A ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def A ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(snake_case__ ): http_head("""https://huggingface.co""" )
721
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A_ : List[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='cifar10' ,metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'The column name of the images in the files.'} ) lowerCamelCase__ : Optional[str] = field(default=A__ ,metadata={'help': 'A folder containing the training data.'} ) lowerCamelCase__ : Optional[str] = field(default=A__ ,metadata={'help': 'A folder containing the validation data.'} ) lowerCamelCase__ : Optional[float] = field( default=0.1_5 ,metadata={'help': 'Percent to split off of train for validation.'} ) lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } ,) lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } ,) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE__ = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE__ = self.validation_dir SCREAMING_SNAKE_CASE__ = data_files if data_files else None @dataclass class lowerCamelCase : lowerCamelCase__ : str = field( default=A__ ,metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } ,) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } ,) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowerCamelCase__ : str = field( default='main' ,metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} ,) lowerCamelCase__ : str = field(default=A__ ,metadata={'help': 'Name or path of preprocessor config.'} ) lowerCamelCase__ : bool = field( default=A__ ,metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } ,) lowerCamelCase__ : float = field( default=0.7_5 ,metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowerCamelCase__ : bool = field( default=A__ ,metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class lowerCamelCase (A__ ): lowerCamelCase__ : float = field( default=1E-3 ,metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , snake_case__ , snake_case__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = training_args.get_process_log_level() logger.setLevel(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. SCREAMING_SNAKE_CASE__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE__ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case__ ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE__ = ds["""train"""].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE__ = split["""train"""] SCREAMING_SNAKE_CASE__ = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: SCREAMING_SNAKE_CASE__ = ViTMAEConfig.from_pretrained(model_args.config_name , **snake_case__ ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE__ = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: SCREAMING_SNAKE_CASE__ = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case__ ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE__ = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: SCREAMING_SNAKE_CASE__ = ViTImageProcessor() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE__ = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) SCREAMING_SNAKE_CASE__ = ViTMAEForPreTraining(snake_case__ ) if training_args.do_train: SCREAMING_SNAKE_CASE__ = ds["""train"""].column_names else: SCREAMING_SNAKE_CASE__ = ds["""validation"""].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE__ = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE__ = """image""" elif "img" in column_names: SCREAMING_SNAKE_CASE__ = """img""" else: SCREAMING_SNAKE_CASE__ = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE__ = image_processor.size["""shortest_edge"""] else: SCREAMING_SNAKE_CASE__ = (image_processor.size["""height"""], image_processor.size["""width"""]) SCREAMING_SNAKE_CASE__ = Compose( [ Lambda(lambda snake_case__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(snake_case__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(snake_case__ ): SCREAMING_SNAKE_CASE__ = [transforms(snake_case__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE__ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(snake_case__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE__ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(snake_case__ ) # Compute absolute learning rate SCREAMING_SNAKE_CASE__ = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: SCREAMING_SNAKE_CASE__ = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer SCREAMING_SNAKE_CASE__ = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE__ = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE__ = last_checkpoint SCREAMING_SNAKE_CASE__ = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE__ = trainer.evaluate() trainer.log_metrics("""eval""" , snake_case__ ) trainer.save_metrics("""eval""" , snake_case__ ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE__ = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) def A ( snake_case__ ): '''simple docstring''' main() if __name__ == "__main__": main()
616
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A__ ( UpperCamelCase__ ): UpperCAmelCase = "naver-clova-ix/donut-base-finetuned-docvqa" UpperCAmelCase = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) UpperCAmelCase = "document_qa" UpperCAmelCase = AutoProcessor UpperCAmelCase = VisionEncoderDecoderModel UpperCAmelCase = ["image", "text"] UpperCAmelCase = ["text"] def __init__( self : Any , *_a : Any , **_a : Tuple ) -> Union[str, Any]: """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_a , **_a ) def __UpperCamelCase ( self : Any , _a : "Image" , _a : str ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE ='''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _SCREAMING_SNAKE_CASE =task_prompt.replace('''{user_input}''' , _a ) _SCREAMING_SNAKE_CASE =self.pre_processor.tokenizer( _a , add_special_tokens=_a , return_tensors='''pt''' ).input_ids _SCREAMING_SNAKE_CASE =self.pre_processor(_a , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __UpperCamelCase ( self : Optional[Any] , _a : str ) -> Tuple: """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_a , ).sequences def __UpperCamelCase ( self : Union[str, Any] , _a : Tuple ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.pre_processor.batch_decode(_a )[0] _SCREAMING_SNAKE_CASE =sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) _SCREAMING_SNAKE_CASE =sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) _SCREAMING_SNAKE_CASE =re.sub(R'''<.*?>''' , '''''' , _a , count=1 ).strip() # remove first task start token _SCREAMING_SNAKE_CASE =self.pre_processor.tokenajson(_a ) return sequence["answer"]
691
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCamelCase( a__ ,a__ ,a__ ,a__): _SCREAMING_SNAKE_CASE ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] _SCREAMING_SNAKE_CASE ={ '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } _SCREAMING_SNAKE_CASE =f"{src_lang}-{tgt_lang}" _SCREAMING_SNAKE_CASE =f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=a__ ,exist_ok=a__) _SCREAMING_SNAKE_CASE =os.path.join(a__ ,'''README.md''') print(f"Generating {path}") with open(a__ ,'''w''' ,encoding='''utf-8''') as f: f.write(a__) # make sure we are under the root of the project snake_case_ : Any = Path(__file__).resolve().parent.parent.parent snake_case_ : Tuple = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: snake_case_ : Union[str, Any] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
691
1
def lowerCAmelCase ( snake_case__ : int = 1000 )-> int: A_ , A_ = 1, 1 A_ = [] for i in range(1 , n + 1 ): A_ = prev_numerator + 2 * prev_denominator A_ = prev_numerator + prev_denominator if len(str(snake_case__ ) ) > len(str(snake_case__ ) ): result.append(snake_case__ ) A_ = numerator A_ = denominator return len(snake_case__ ) if __name__ == "__main__": print(f"""{solution() = }""")
608
import qiskit def lowerCAmelCase ( snake_case__ : int , snake_case__ : int )-> qiskit.result.counts.Counts: A_ = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register A_ = qiskit.QuantumCircuit(snake_case__ , snake_case__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator A_ = qiskit.execute(snake_case__ , snake_case__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(snake_case__ ) if __name__ == "__main__": __magic_name__ : List[Any] = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
608
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class snake_case_ : A_ = BlenderbotSmallConfig A_ = {} A_ = 'gelu' def __init__( self : Union[str, Any] , _snake_case : Tuple , _snake_case : List[Any]=13 , _snake_case : Union[str, Any]=7 , _snake_case : Optional[int]=True , _snake_case : int=False , _snake_case : int=99 , _snake_case : Optional[Any]=32 , _snake_case : Tuple=2 , _snake_case : List[Any]=4 , _snake_case : str=37 , _snake_case : Tuple=0.1 , _snake_case : Union[str, Any]=0.1 , _snake_case : str=20 , _snake_case : str=2 , _snake_case : Any=1 , _snake_case : Union[str, Any]=0 , )->int: '''simple docstring''' __lowerCAmelCase : Tuple = parent __lowerCAmelCase : str = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : Any = is_training __lowerCAmelCase : int = use_labels __lowerCAmelCase : List[str] = vocab_size __lowerCAmelCase : Dict = hidden_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : Tuple = hidden_dropout_prob __lowerCAmelCase : Optional[int] = attention_probs_dropout_prob __lowerCAmelCase : Tuple = max_position_embeddings __lowerCAmelCase : List[str] = eos_token_id __lowerCAmelCase : Dict = pad_token_id __lowerCAmelCase : Optional[int] = bos_token_id def UpperCAmelCase__ ( self : Union[str, Any] )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase : List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCAmelCase : Optional[int] = prepare_blenderbot_small_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def UpperCAmelCase__ ( self : List[str] , _snake_case : Tuple , _snake_case : List[Any] )->int: '''simple docstring''' __lowerCAmelCase : List[str] = TFBlenderbotSmallModel(config=__UpperCAmelCase ).get_decoder() __lowerCAmelCase : Optional[int] = inputs_dict["""input_ids"""] __lowerCAmelCase : Any = input_ids[:1, :] __lowerCAmelCase : List[Any] = inputs_dict["""attention_mask"""][:1, :] __lowerCAmelCase : List[str] = inputs_dict["""head_mask"""] __lowerCAmelCase : List[Any] = 1 # first forward pass __lowerCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) __lowerCAmelCase , __lowerCAmelCase : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCAmelCase : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCAmelCase : List[str] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] __lowerCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCAmelCase : Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCAmelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=None , SCREAMING_SNAKE_CASE :int=None , SCREAMING_SNAKE_CASE :str=None , SCREAMING_SNAKE_CASE :Union[str, Any]=None , ) -> Tuple: if attention_mask is None: __lowerCAmelCase : Optional[int] = tf.cast(tf.math.not_equal(snake_case__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCAmelCase : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class snake_case_ ( A__ ,A__ ,unittest.TestCase ): A_ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) A_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () A_ = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def UpperCAmelCase__ ( self : Dict )->Optional[int]: '''simple docstring''' __lowerCAmelCase : List[str] = TFBlenderbotSmallModelTester(self ) __lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=__UpperCAmelCase ) def UpperCAmelCase__ ( self : Tuple )->Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[Any] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) @require_tokenizers @require_tf class snake_case_ ( unittest.TestCase ): A_ = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] A_ = 'facebook/blenderbot_small-90M' @cached_property def UpperCAmelCase__ ( self : Dict )->List[str]: '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) @cached_property def UpperCAmelCase__ ( self : Optional[int] )->List[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self : str )->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.tokenizer(self.src_text , return_tensors="""tf""" ) __lowerCAmelCase : Optional[Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCAmelCase , ) __lowerCAmelCase : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
504
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowerCamelCase (unittest.TestCase ): def __init__( self : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any]=1_3 , __UpperCAmelCase : Tuple=3_0 , __UpperCAmelCase : str=2 , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Optional[Any]=3_2 , __UpperCAmelCase : Any=5 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : Tuple=3_7 , __UpperCAmelCase : List[str]="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : int=1_0 , __UpperCAmelCase : Any=0.02 , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ = num_patches + 1 def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) return config, pixel_values def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = FlaxViTModel(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE__ = (self.patch_size, self.patch_size) SCREAMING_SNAKE_CASE__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ = FlaxViTForImageClassification(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = FlaxViTForImageClassification(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def SCREAMING_SNAKE_CASE ( self : int ) -> None: SCREAMING_SNAKE_CASE__ = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) @jax.jit def model_jitted(__UpperCAmelCase : int , **__UpperCAmelCase : Tuple ): return model(pixel_values=__UpperCAmelCase , **__UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): SCREAMING_SNAKE_CASE__ = model_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE__ = model_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) SCREAMING_SNAKE_CASE__ = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(__UpperCAmelCase )
196
0
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): if len(_lowerCAmelCase) != len(_lowerCAmelCase): raise ValueError("The length of profit and weight must be same.") if max_weight <= 0: raise ValueError("max_weight must greater than zero.") if any(p < 0 for p in profit): raise ValueError("Profit can not be negative.") if any(w < 0 for w in weight): raise ValueError("Weight can not be negative.") # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCamelCase_ = [p / w for p, w in zip(_lowerCAmelCase , _lowerCAmelCase)] # Creating a copy of the list and sorting profit/weight in ascending order UpperCamelCase_ = sorted(_lowerCAmelCase) # declaring useful variables UpperCamelCase_ = len(_lowerCAmelCase) UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCamelCase_ = sorted_profit_by_weight[length - i - 1] UpperCamelCase_ = profit_by_weight.index(_lowerCAmelCase) UpperCamelCase_ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) UpperCAmelCase : Tuple =[int(x) for x in input("""Input profits separated by spaces: """).split()] UpperCAmelCase : str =[int(x) for x in input("""Input weights separated by spaces: """).split()] UpperCAmelCase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
720
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id) , tf.inta) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _lowercase : '''simple docstring''' lowercase__ = OPTConfig lowercase__ = {} lowercase__ = """gelu""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=16 , snake_case__=2 , snake_case__=4 , snake_case__=4 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , snake_case__=16 , snake_case__=16 , ): '''simple docstring''' UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id UpperCamelCase_ = embed_dim UpperCamelCase_ = word_embed_proj_dim UpperCamelCase_ = False def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=snake_case__ , **self.config_updates , ) UpperCamelCase_ = prepare_opt_inputs_dict(snake_case__ , snake_case__ ) return config, inputs_dict def _lowerCamelCase ( self , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = TFOPTModel(config=snake_case__ ) UpperCamelCase_ = inputs_dict["input_ids"] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict["attention_mask"][:1, :] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , use_cache=snake_case__ ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) @require_tf class _lowercase (a_ , a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowercase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowercase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = 10 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = TFOPTModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(snake_case__ , snake_case__ ): if hasattr(snake_case__ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(snake_case__ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings UpperCamelCase_ = model_class(config=snake_case__ ) UpperCamelCase_ = _get_word_embedding_weight(snake_case__ , model.get_input_embeddings() ) UpperCamelCase_ = _get_word_embedding_weight(snake_case__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(snake_case__ ) UpperCamelCase_ = _get_word_embedding_weight(snake_case__ , model.get_input_embeddings() ) UpperCamelCase_ = _get_word_embedding_weight(snake_case__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. UpperCamelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , snake_case__ ) # check that weights remain the same after resizing UpperCamelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCamelCase_ = False self.assertTrue(snake_case__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , snake_case__ ) UpperCamelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCamelCase_ = False self.assertTrue(snake_case__ ) def _lowerCAmelCase (_lowerCAmelCase): return tf.constant(_lowerCAmelCase , dtype=tf.intaa) @require_tf class _lowercase (unittest.TestCase ): '''simple docstring''' lowercase__ = 99 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 UpperCamelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) UpperCamelCase_ = input_ids.shape[0] UpperCamelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _lowercase (unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = TFOPTModel.from_pretrained("facebook/opt-350m" ) UpperCamelCase_ = _long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase_ = tf.not_equal(snake_case__ , model.config.pad_token_id ) with tf.GradientTape(): UpperCamelCase_ = model(input_ids=snake_case__ , attention_mask=snake_case__ ).last_hidden_state UpperCamelCase_ = (1, 11, 512) self.assertEqual(output.shape , snake_case__ ) UpperCamelCase_ = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=4e-3 ) ) UpperCamelCase_ = tf.function(snake_case__ , jit_compile=snake_case__ ) UpperCamelCase_ = xla_generate(snake_case__ , snake_case__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=4e-2 ) ) @require_tf @slow class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' super().setUp() UpperCamelCase_ = "facebook/opt-350m" def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) UpperCamelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) UpperCamelCase_ = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False UpperCamelCase_ = tokenizer(snake_case__ , return_tensors="tf" , padding=snake_case__ , add_special_tokens=snake_case__ ) UpperCamelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) UpperCamelCase_ = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-4 ) ) UpperCamelCase_ = tf.function(snake_case__ , jit_compile=snake_case__ ) UpperCamelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-4 ) ) @require_tf @slow class _lowercase (unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "facebook/opt-125m" UpperCamelCase_ = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] UpperCamelCase_ = [] UpperCamelCase_ = GPTaTokenizer.from_pretrained(snake_case__ ) UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(snake_case__ ) for prompt in self.prompts: UpperCamelCase_ = tokenizer(snake_case__ , return_tensors="tf" ).input_ids UpperCamelCase_ = model.generate(snake_case__ , max_length=10 ) UpperCamelCase_ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) predicted_outputs += generated_string self.assertListEqual(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "facebook/opt-350m" UpperCamelCase_ = GPTaTokenizer.from_pretrained(snake_case__ ) UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(snake_case__ ) UpperCamelCase_ = "left" # use different length sentences to test batching UpperCamelCase_ = [ "Hello, my dog is a little", "Today, I", ] UpperCamelCase_ = tokenizer(snake_case__ , return_tensors="tf" , padding=snake_case__ ) UpperCamelCase_ = inputs["input_ids"] UpperCamelCase_ = model.generate(input_ids=snake_case__ , attention_mask=inputs["attention_mask"] ) UpperCamelCase_ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids UpperCamelCase_ = model.generate(input_ids=snake_case__ ) UpperCamelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) UpperCamelCase_ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids UpperCamelCase_ = model.generate(input_ids=snake_case__ , max_length=model.config.max_length - num_paddings ) UpperCamelCase_ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) UpperCamelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) UpperCamelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) UpperCamelCase_ = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "facebook/opt-350m" UpperCamelCase_ = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] UpperCamelCase_ = [] UpperCamelCase_ = GPTaTokenizer.from_pretrained(snake_case__ ) UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(snake_case__ ) for prompt in self.prompts: UpperCamelCase_ = tokenizer(snake_case__ , return_tensors="tf" ).input_ids UpperCamelCase_ = model.generate(snake_case__ , max_length=10 ) UpperCamelCase_ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) predicted_outputs += generated_string self.assertListEqual(snake_case__ , snake_case__ )
504
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __UpperCamelCase ( _a ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=0 ): UpperCAmelCase__: Any = 1.0 if scale is None else scale UpperCAmelCase__: int = 0.0 if loc is None else loc super().__init__(lowerCamelCase__ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase__ )] ) @property def _UpperCAmelCase ( self ): return self.base_dist.mean * self.scale + self.loc @property def _UpperCAmelCase ( self ): return self.base_dist.variance * self.scale**2 @property def _UpperCAmelCase ( self ): return self.variance.sqrt() class __UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): super().__init__(**lowerCamelCase__ ) UpperCAmelCase__: Any = args_dim UpperCAmelCase__: List[str] = nn.ModuleList([nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) for dim in args_dim.values()] ) UpperCAmelCase__: Any = domain_map def _UpperCAmelCase ( self , lowerCamelCase__ ): UpperCAmelCase__: str = [proj(lowerCamelCase__ ) for proj in self.proj] return self.domain_map(*lowerCamelCase__ ) class __UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase__ ): super().__init__() UpperCAmelCase__: str = function def _UpperCAmelCase ( self , lowerCamelCase__ , *lowerCamelCase__ ): return self.function(lowerCamelCase__ , *lowerCamelCase__ ) class __UpperCamelCase : '''simple docstring''' __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 def __init__( self , lowerCamelCase__ = 1 ): UpperCAmelCase__: str = dim UpperCAmelCase__: Any = {k: dim * self.args_dim[k] for k in self.args_dim} def _UpperCAmelCase ( self , lowerCamelCase__ ): if self.dim == 1: return self.distribution_class(*lowerCamelCase__ ) else: return Independent(self.distribution_class(*lowerCamelCase__ ) , 1 ) def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , ): UpperCAmelCase__: Optional[Any] = self._base_distribution(lowerCamelCase__ ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase__ , loc=lowerCamelCase__ , scale=lowerCamelCase__ , event_dim=self.event_dim ) @property def _UpperCAmelCase ( self ): return () if self.dim == 1 else (self.dim,) @property def _UpperCAmelCase ( self ): return len(self.event_shape ) @property def _UpperCAmelCase ( self ): return 0.0 def _UpperCAmelCase ( self , lowerCamelCase__ ): return ParameterProjection( in_features=lowerCamelCase__ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _UpperCAmelCase ( self , *lowerCamelCase__ ): raise NotImplementedError() @staticmethod def _UpperCAmelCase ( lowerCamelCase__ ): return (x + torch.sqrt(torch.square(lowerCamelCase__ ) + 4.0 )) / 2.0 class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = {"df": 1, "loc": 1, "scale": 1} __magic_name__ = StudentT @classmethod def _UpperCAmelCase ( cls , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: Dict = cls.squareplus(lowerCamelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase__: List[Any] = 2.0 + cls.squareplus(lowerCamelCase__ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = {"loc": 1, "scale": 1} __magic_name__ = Normal @classmethod def _UpperCAmelCase ( cls , lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: str = cls.squareplus(lowerCamelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = {"total_count": 1, "logits": 1} __magic_name__ = NegativeBinomial @classmethod def _UpperCAmelCase ( cls , lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: Dict = cls.squareplus(lowerCamelCase__ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _UpperCAmelCase ( self , lowerCamelCase__ ): UpperCAmelCase__ , UpperCAmelCase__: str = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase__ , logits=lowerCamelCase__ ) else: return Independent(self.distribution_class(total_count=lowerCamelCase__ , logits=lowerCamelCase__ ) , 1 ) def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None ): UpperCAmelCase__ , UpperCAmelCase__: List[str] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
113
import unittest from transformers import DonutProcessor _lowerCAmelCase : str ="""naver-clova-ix/donut-base""" class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ): UpperCAmelCase__: Any = DonutProcessor.from_pretrained(lowerCamelCase__ ) def _UpperCAmelCase ( self ): UpperCAmelCase__: Any = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } UpperCAmelCase__: Optional[Any] = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) UpperCAmelCase__: str = self.processor.tokenajson(lowerCamelCase__ ) self.assertDictEqual(lowerCamelCase__ , lowerCamelCase__ )
113
1
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( a ): # getting number of pixels in the image __snake_case , __snake_case = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(a ): for j in range(a ): __snake_case = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image _lowercase = imread("""image_data/lena.jpg""", 1) # convert to its negative _lowercase = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
427
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") _lowercase = logging.getLogger(__name__) @dataclass class a_ : lowercase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowercase_ : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowercase_ : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowercase_ : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowercase_ : bool = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) lowercase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowercase_ : bool = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class a_ : lowercase_ : Optional[str] = field(default=UpperCAmelCase__ , metadata={'''help''': '''The input training data file (a text file).'''} ) lowercase_ : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) lowercase_ : bool = field( default=UpperCAmelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowercase_ : Optional[int] = field( default=UpperCAmelCase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowercase_ : Optional[int] = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowercase_ : bool = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) lowercase_ : Optional[int] = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowercase_ : Optional[int] = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowercase__ ( self : List[Any] ): if self.train_file is not None: __snake_case = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class a_ : lowercase_ : PreTrainedTokenizerBase lowercase_ : Union[bool, str, PaddingStrategy] = True lowercase_ : Optional[int] = None lowercase_ : Optional[int] = None def __call__( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] ): __snake_case = 'label' if 'label' in features[0].keys() else 'labels' __snake_case = [feature.pop(__lowerCAmelCase ) for feature in features] __snake_case = len(__lowerCAmelCase ) __snake_case = len(features[0]['input_ids'] ) __snake_case = [ [{k: v[i] for k, v in feature.items()} for i in range(__lowerCAmelCase )] for feature in features ] __snake_case = list(chain(*__lowerCAmelCase ) ) __snake_case = self.tokenizer.pad( __lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case = {k: v.view(__lowerCAmelCase , __lowerCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case = torch.tensor(__lowerCAmelCase , dtype=torch.intaa ) return batch def lowerCamelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , a , a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case = training_args.get_process_log_level() logger.setLevel(a ) datasets.utils.logging.set_verbosity(a ) transformers.utils.logging.set_verbosity(a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case = {} if data_args.train_file is not None: __snake_case = data_args.train_file if data_args.validation_file is not None: __snake_case = data_args.validation_file __snake_case = data_args.train_file.split('.' )[-1] __snake_case = load_dataset( a , data_files=a , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case = [f'ending{i}' for i in range(4 )] __snake_case = 'sent1' __snake_case = 'sent2' if data_args.max_seq_length is None: __snake_case = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __snake_case = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a ): __snake_case = [[context] * 4 for context in examples[context_name]] __snake_case = examples[question_header_name] __snake_case = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(a ) ] # Flatten out __snake_case = list(chain(*a ) ) __snake_case = list(chain(*a ) ) # Tokenize __snake_case = tokenizer( a , a , truncation=a , max_length=a , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(a ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case = min(len(a ) , data_args.max_train_samples ) __snake_case = train_dataset.select(range(a ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case = train_dataset.map( a , batched=a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case = min(len(a ) , data_args.max_eval_samples ) __snake_case = eval_dataset.select(range(a ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case = eval_dataset.map( a , batched=a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a ): __snake_case , __snake_case = eval_predictions __snake_case = np.argmax(a , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case = Trainer( model=a , args=a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=a , data_collator=a , compute_metrics=a , ) # Training if training_args.do_train: __snake_case = None if training_args.resume_from_checkpoint is not None: __snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case = last_checkpoint __snake_case = trainer.train(resume_from_checkpoint=a ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case = train_result.metrics __snake_case = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a ) ) __snake_case = min(a , len(a ) ) trainer.log_metrics('train' , a ) trainer.save_metrics('train' , a ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case = trainer.evaluate() __snake_case = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a ) __snake_case = min(a , len(a ) ) trainer.log_metrics('eval' , a ) trainer.save_metrics('eval' , a ) __snake_case = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**a ) else: trainer.create_model_card(**a ) def lowerCamelCase__ ( a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
427
1
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> list[int]: UpperCamelCase = 0 UpperCamelCase = len(snake_case_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase = i + 1 else: UpperCamelCase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'{two_pointer([2, 7, 1_1, 1_5], 9) = }')
301
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase = pytest.mark.integration @require_faiss class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : Optional[int] =Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowerCamelCase_ ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" import faiss lowerCamelCase__ : Dataset =self._create_dummy_dataset() lowerCamelCase__ : int =dset.map( lambda lowerCamelCase_ , lowerCamelCase_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ ) lowerCamelCase__ : Any =dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : int =dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" import faiss lowerCamelCase__ : Dataset =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : List[str] =dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" import faiss lowerCamelCase__ : Dataset =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase_ ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : Tuple =dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : Dataset =self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(lowerCamelCase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset =self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any ={'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : List[Any] ={'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : Dict =Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[str] =dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :Dict ): """simple docstring""" import faiss lowerCamelCase__ : Optional[int] =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : Any =np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict =1 lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =index.search(lowerCamelCase_ ) self.assertRaises(lowerCamelCase_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : int =np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict =index.search_batch(lowerCamelCase_ ) self.assertRaises(lowerCamelCase_ , index.search_batch , queries[0] ) lowerCamelCase__ : List[str] =[scores[0] for scores in total_scores] lowerCamelCase__ : str =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowerCamelCase_ ) def UpperCAmelCase__ ( self :Dict ): """simple docstring""" import faiss lowerCamelCase__ : Optional[int] =FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Union[str, Any] =FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowerCamelCase_ ): lowerCamelCase__ : List[Any] =FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" import faiss lowerCamelCase__ : Any =faiss.IndexFlat(5 ) lowerCamelCase__ : Any =FaissIndex(custom_index=lowerCamelCase_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" import faiss lowerCamelCase__ : int =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase_ ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : Any =FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : Any =np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : str =1 lowerCamelCase__ , lowerCamelCase__ : Dict =index.search(lowerCamelCase_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCAmelCase_ ( snake_case_ : Dict ) ->int: import faiss lowerCamelCase__ : List[str] =FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] ='index.faiss' lowerCamelCase__ : Optional[Any] =f"""mock://{index_name}""" index.save(snake_case_ , storage_options=mockfs.storage_options ) lowerCamelCase__ : Dict =FaissIndex.load(snake_case_ , storage_options=mockfs.storage_options ) lowerCamelCase__ : List[Any] =np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Union[str, Any] =1 lowerCamelCase__ , lowerCamelCase__ : List[str] =index.search(snake_case_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Union[str, Any] =Elasticsearch() lowerCamelCase__ : int ={'acknowledged': True} lowerCamelCase__ : Optional[Any] =ElasticSearchIndex(es_client=lowerCamelCase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Union[str, Any] ='foo' lowerCamelCase__ : Optional[Any] ={'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : List[Any] =index.search(lowerCamelCase_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : List[str] ='foo' lowerCamelCase__ : Union[str, Any] ={'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : List[Any] =index.search(lowerCamelCase_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] =['foo', 'bar', 'foobar'] lowerCamelCase__ : str ={'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =index.search_batch(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =[scores[0] for scores in total_scores] lowerCamelCase__ : Dict =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCamelCase_ ) # batched queries with timeout lowerCamelCase__ : str =['foo', 'bar', 'foobar'] lowerCamelCase__ : Any ={'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Dict =index.search_batch(lowerCamelCase_ , request_timeout=30 ) lowerCamelCase__ : List[str] =[scores[0] for scores in total_scores] lowerCamelCase__ : int =[indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCamelCase_ )
174
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=2 , lowerCamelCase=56 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=2 , lowerCamelCase=2 , lowerCamelCase=7 , lowerCamelCase="gelu_new" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=5_12 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.0_2 , lowerCamelCase=4 , lowerCamelCase="block_sparse" , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=2 , lowerCamelCase=3 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_attention_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_choices snake_case__ = rescale_embeddings snake_case__ = attention_type snake_case__ = use_bias snake_case__ = block_size snake_case__ = num_random_blocks def A_ ( self ): snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_attention_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def A_ ( self ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): _A : Dict = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) _A : int = False _A : List[Any] = False def A_ ( self ): snake_case__ = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def A_ ( self ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def A_ ( self ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def A_ ( self ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def A_ ( self ): super().test_hidden_states_output() @slow def A_ ( self ): for model_class_name in self.all_model_classes: snake_case__ = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(lowerCamelCase ) def A_ ( self ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def A_ ( self ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case__ = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) snake_case__ = model_class(lowerCamelCase ) @jax.jit def model_jitted(lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ): return model(input_ids=lowerCamelCase , attention_mask=lowerCamelCase , **lowerCamelCase ) with self.subTest("JIT Enabled" ): snake_case__ = model_jitted(**lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): snake_case__ = model_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=1e-5 , lowerCamelCase="outputs" , lowerCamelCase=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
714
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): return None class _SCREAMING_SNAKE_CASE : def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): _A : int = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def A_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase , "tf" , 12 , **lowerCamelCase ) @require_torch @slow def A_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase , "pt" , 12 , **lowerCamelCase ) @require_torch @slow def A_ ( self ): from transformers import BertModel snake_case__ = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(lowerCamelCase ) ) vocab_file.flush() snake_case__ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: snake_case__ = BertModel(BertConfig(vocab_size=len(lowerCamelCase ) ) ) model.save_pretrained(lowerCamelCase ) self._test_export(lowerCamelCase , "pt" , 12 , lowerCamelCase ) @require_tf @slow def A_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case__ = self._test_export(lowerCamelCase , "tf" , 12 , **lowerCamelCase ) snake_case__ = quantize(Path(lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def A_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case__ = self._test_export(lowerCamelCase , "pt" , 12 , **lowerCamelCase ) snake_case__ = quantize(lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , **lowerCamelCase ): try: # Compute path with TemporaryDirectory() as tempdir: snake_case__ = Path(lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) return path except Exception as e: self.fail(lowerCamelCase ) @require_torch @require_tokenizers @slow def A_ ( self ): from transformers import BertModel snake_case__ = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) snake_case__ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCamelCase , lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def A_ ( self ): from transformers import TFBertModel snake_case__ = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) snake_case__ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCamelCase , lowerCamelCase , "tf" ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): snake_case__ = FeatureExtractionPipeline(lowerCamelCase , lowerCamelCase ) snake_case__ = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] snake_case__ , snake_case__ , snake_case__ , snake_case__ = infer_shapes(lowerCamelCase , lowerCamelCase ) # Assert all variables are present self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def A_ ( self ): snake_case__ = ["input_ids", "attention_mask", "token_type_ids"] snake_case__ = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} snake_case__ , snake_case__ = ensure_valid_input(FuncContiguousArgs() , lowerCamelCase , lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase ) , set(lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) snake_case__ , snake_case__ = ensure_valid_input(FuncNonContiguousArgs() , lowerCamelCase , lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase ) , 1 ) self.assertEqual(len(lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def A_ ( self ): snake_case__ = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
530
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class __a ( _lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase_ : Any = '''convnextv2''' def __init__( self : Dict , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1e-12 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Tuple=224 , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : Optional[int] , )-> List[Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ ) UpperCamelCase = num_channels UpperCamelCase = patch_size UpperCamelCase = num_stages UpperCamelCase = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes UpperCamelCase = [3, 3, 9, 3] if depths is None else depths UpperCamelCase = hidden_act UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = drop_path_rate UpperCamelCase = image_size UpperCamelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
554
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __a ( _lowerCAmelCase ): @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Dict: """simple docstring""" UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) UpperCamelCase = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCamelCase = bertabert.config.encoder.vocab_size UpperCamelCase = tokenizer.sep_token_id UpperCamelCase = tokenizer.cls_token_id UpperCamelCase = 128 UpperCamelCase = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) UpperCamelCase = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) UpperCamelCase = train_dataset.select(range(32 ) ) UpperCamelCase = val_dataset.select(range(16 ) ) UpperCamelCase = 4 def _map_to_encoder_decoder_inputs(UpperCAmelCase_ : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase = tokenizer(batch["article"] , padding="max_length" , truncation=UpperCAmelCase_ , max_length=512 ) UpperCamelCase = tokenizer(batch["highlights"] , padding="max_length" , truncation=UpperCAmelCase_ , max_length=128 ) UpperCamelCase = inputs.input_ids UpperCamelCase = inputs.attention_mask UpperCamelCase = outputs.input_ids UpperCamelCase = outputs.input_ids.copy() UpperCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] UpperCamelCase = outputs.attention_mask assert all(len(UpperCAmelCase_ ) == 512 for x in inputs.input_ids ) assert all(len(UpperCAmelCase_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCAmelCase_ : Any ): UpperCamelCase = pred.label_ids UpperCamelCase = pred.predictions # all unnecessary tokens are removed UpperCamelCase = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) UpperCamelCase = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCAmelCase_ ) )] ) / len(UpperCAmelCase_ ) return {"accuracy": accuracy} # map train dataset UpperCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset UpperCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = SeqaSeqTrainingArguments( output_dir=UpperCAmelCase_ , per_device_train_batch_size=UpperCAmelCase_ , per_device_eval_batch_size=UpperCAmelCase_ , predict_with_generate=UpperCAmelCase_ , evaluation_strategy="steps" , do_train=UpperCAmelCase_ , do_eval=UpperCAmelCase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase = SeqaSeqTrainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , compute_metrics=_compute_metrics , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , ) # start training trainer.train()
554
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase_ ( A : Optional[Any] , A : Optional[int] , A : Tuple=None , A : Tuple=None ): """simple docstring""" if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(A , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class UpperCamelCase_ : '''simple docstring''' a :Any = OPTConfig a :Union[str, Any] = {} a :str = 'gelu' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=16 , _UpperCAmelCase=16 , ): lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def lowercase__ ( self): lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_UpperCAmelCase , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(_UpperCAmelCase , _UpperCAmelCase) return config, inputs_dict def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase): lowerCAmelCase_ = TFOPTModel(config=_UpperCAmelCase) lowerCAmelCase_ = inputs_dict['''input_ids'''] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['''attention_mask'''][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1) lowerCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase)[0] lowerCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1])) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-3) @require_tf class UpperCamelCase_ ( A , A , unittest.TestCase ): '''simple docstring''' a :List[Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () a :int = (TFOPTForCausalLM,) if is_tf_available() else () a :Dict = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) a :List[str] = False a :Tuple = False a :str = False a :Tuple = 10 def lowercase__ ( self): lowerCAmelCase_ = TFOPTModelTester(self) lowerCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase) def lowercase__ ( self): self.config_tester.run_common_tests() def lowercase__ ( self): lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase) def lowercase__ ( self): lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_UpperCAmelCase , _UpperCAmelCase): if hasattr(_UpperCAmelCase , '''weight'''): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_UpperCAmelCase , '''weight'''): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCAmelCase_ = model_class(config=_UpperCAmelCase) lowerCAmelCase_ = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings()) lowerCAmelCase_ = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings()) # reshape the embeddings model.resize_token_embeddings(_UpperCAmelCase) lowerCAmelCase_ = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings()) lowerCAmelCase_ = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings()) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _UpperCAmelCase) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: lowerCAmelCase_ = False self.assertTrue(_UpperCAmelCase) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _UpperCAmelCase) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: lowerCAmelCase_ = False self.assertTrue(_UpperCAmelCase) def lowerCamelCase_ ( A : Dict ): """simple docstring""" return tf.constant(A , dtype=tf.intaa ) @require_tf class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' a :Tuple = 99 def lowercase__ ( self): lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3) + 3, eos_column_vector] , axis=1) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self): lowerCAmelCase_ = TFOPTModel.from_pretrained('''facebook/opt-350m''') lowerCAmelCase_ = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]]) lowerCAmelCase_ = tf.not_equal(_UpperCAmelCase , model.config.pad_token_id) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase).last_hidden_state lowerCAmelCase_ = (1, 11, 512) self.assertEqual(output.shape , _UpperCAmelCase) lowerCAmelCase_ = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]]) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4E-3)) lowerCAmelCase_ = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase) lowerCAmelCase_ = xla_generate(_UpperCAmelCase , _UpperCAmelCase)[0] self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4E-2)) @require_tf @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self): super().setUp() lowerCAmelCase_ = '''facebook/opt-350m''' def lowercase__ ( self): lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model) lowerCAmelCase_ = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(_UpperCAmelCase , return_tensors='''tf''' , padding=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) lowerCAmelCase_ = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ]) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-4)) lowerCAmelCase_ = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-4)) @require_tf @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @property def lowercase__ ( self): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowercase__ ( self): lowerCAmelCase_ = '''facebook/opt-125m''' lowerCAmelCase_ = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(_UpperCAmelCase) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(_UpperCAmelCase , return_tensors='''tf''').input_ids lowerCAmelCase_ = model.generate(_UpperCAmelCase , max_length=10) lowerCAmelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) def lowercase__ ( self): lowerCAmelCase_ = '''facebook/opt-350m''' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(_UpperCAmelCase) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase) lowerCAmelCase_ = '''left''' # use different length sentences to test batching lowerCAmelCase_ = [ '''Hello, my dog is a little''', '''Today, I''', ] lowerCAmelCase_ = tokenizer(_UpperCAmelCase , return_tensors='''tf''' , padding=_UpperCAmelCase) lowerCAmelCase_ = inputs['''input_ids'''] lowerCAmelCase_ = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs['''attention_mask''']) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='''tf''').input_ids lowerCAmelCase_ = model.generate(input_ids=_UpperCAmelCase) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa)) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='''tf''').input_ids lowerCAmelCase_ = model.generate(input_ids=_UpperCAmelCase , max_length=model.config.max_length - num_paddings) lowerCAmelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase) lowerCAmelCase_ = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence]) def lowercase__ ( self): lowerCAmelCase_ = '''facebook/opt-350m''' lowerCAmelCase_ = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(_UpperCAmelCase) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(_UpperCAmelCase , return_tensors='''tf''').input_ids lowerCAmelCase_ = model.generate(_UpperCAmelCase , max_length=10) lowerCAmelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase)
713
_snake_case = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
413
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image SCREAMING_SNAKE_CASE__ : Optional[Any] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class snake_case : lowercase_ = True lowercase_ = None # Automatically constructed lowercase_ = "PIL.Image.Image" lowercase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowercase_ = field(default='Image' , init=UpperCamelCase_ , repr=UpperCamelCase_ ) def __call__( self : str )-> Dict: """simple docstring""" return self.pa_type def __lowercase( self : str , a_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] )-> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(a_ , a_ ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.array(a_ ) if isinstance(a_ , a_ ): return {"path": value, "bytes": None} elif isinstance(a_ , a_ ): return {"path": None, "bytes": value} elif isinstance(a_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __lowercase( self : Union[str, Any] , a_ : dict , a_ : str=None )-> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: SCREAMING_SNAKE_CASE__ : List[str] = {} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(a_ ): SCREAMING_SNAKE_CASE__ : Any = PIL.Image.open(a_ ) else: SCREAMING_SNAKE_CASE__ : str = path.split('::' )[-1] try: SCREAMING_SNAKE_CASE__ : str = string_to_dict(a_ , config.HUB_DATASETS_URL )['repo_id'] SCREAMING_SNAKE_CASE__ : Tuple = token_per_repo_id.get(a_ ) except ValueError: SCREAMING_SNAKE_CASE__ : Tuple = None with xopen(a_ , 'rb' , use_auth_token=a_ ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = BytesIO(f.read() ) SCREAMING_SNAKE_CASE__ : str = PIL.Image.open(bytes_ ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __lowercase( self : List[str] )-> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def __lowercase( self : Optional[Any] , a_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] )-> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array([None] * len(a_ ) , type=pa.binary() ) SCREAMING_SNAKE_CASE__ : Tuple = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array([None] * len(a_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : str = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: SCREAMING_SNAKE_CASE__ : List[Any] = storage.field('bytes' ) else: SCREAMING_SNAKE_CASE__ : Dict = pa.array([None] * len(a_ ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: SCREAMING_SNAKE_CASE__ : Tuple = storage.field('path' ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array([None] * len(a_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): SCREAMING_SNAKE_CASE__ : List[Any] = pa.array( [encode_np_array(np.array(a_ ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pa.array([None] * len(a_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(a_ , self.pa_type ) def __lowercase( self : List[Any] , a_ : pa.StructArray )-> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a_ : Dict ): with xopen(a_ , 'rb' ) as f: SCREAMING_SNAKE_CASE__ : Union[str, Any] = f.read() return bytes_ SCREAMING_SNAKE_CASE__ : Any = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE__ : Dict = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE__ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(a_ , self.pa_type ) def _a ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() SCREAMING_SNAKE_CASE__ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _a ( lowercase__ : "PIL.Image.Image" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = BytesIO() if image.format in list_image_compression_formats(): SCREAMING_SNAKE_CASE__ : int = image.format else: SCREAMING_SNAKE_CASE__ : Tuple = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(lowercase__ , format=lowercase__ ) return buffer.getvalue() def _a ( lowercase__ : "PIL.Image.Image" ): '''simple docstring''' if hasattr(lowercase__ , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowercase__ )} def _a ( lowercase__ : np.ndarray ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) SCREAMING_SNAKE_CASE__ : Tuple = array.dtype SCREAMING_SNAKE_CASE__ : List[str] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER SCREAMING_SNAKE_CASE__ : Dict = dtype.kind SCREAMING_SNAKE_CASE__ : Dict = dtype.itemsize SCREAMING_SNAKE_CASE__ : Dict = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: SCREAMING_SNAKE_CASE__ : List[str] = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: SCREAMING_SNAKE_CASE__ : List[str] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = dtype_byteorder + dtype_kind + str(lowercase__ ) SCREAMING_SNAKE_CASE__ : Dict = np.dtype(lowercase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) SCREAMING_SNAKE_CASE__ : List[Any] = PIL.Image.fromarray(array.astype(lowercase__ ) ) return {"path": None, "bytes": image_to_bytes(lowercase__ )} def _a ( lowercase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = first_non_null_value(lowercase__ ) if isinstance(lowercase__ , lowercase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowercase__ , np.ndarray ): SCREAMING_SNAKE_CASE__ : Tuple = no_op_if_value_is_null(lowercase__ ) return [obj_to_image_dict_func(lowercase__ ) for obj in objs] elif isinstance(lowercase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ : Dict = no_op_if_value_is_null(lowercase__ ) return [obj_to_image_dict_func(lowercase__ ) for obj in objs] else: return objs else: return objs
85
'''simple docstring''' import os def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =len(grid[0] ) _UpperCamelCase =len(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =0 _UpperCamelCase =0 _UpperCamelCase =0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__SCREAMING_SNAKE_CASE ): for j in range(n_rows - 3 ): _UpperCamelCase =grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _UpperCamelCase =grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _UpperCamelCase =( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _UpperCamelCase =( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _UpperCamelCase =max( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if max_product > largest: _UpperCamelCase =max_product return largest def _a (): """simple docstring""" _UpperCamelCase =[] with open(os.path.dirname(__SCREAMING_SNAKE_CASE ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) _UpperCamelCase =[[int(__SCREAMING_SNAKE_CASE ) for i in grid[j]] for j in range(len(__SCREAMING_SNAKE_CASE ) )] return largest_product(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
404
0
"""simple docstring""" from __future__ import annotations class lowerCAmelCase : '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :str ) -> Tuple: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = text, pattern UpperCamelCase__ , UpperCamelCase__ = len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) def lowerCamelCase__ ( self :Union[str, Any] , lowerCamelCase_ :str ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowerCamelCase__ ( self :int , lowerCamelCase_ :int ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCamelCase__ ( self :List[Any] ) -> list[int]: """simple docstring""" UpperCamelCase__ = [] for i in range(self.textLen - self.patLen + 1 ): UpperCamelCase__ = self.mismatch_in_text(lowerCAmelCase__ ) if mismatch_index == -1: positions.append(lowerCAmelCase__ ) else: UpperCamelCase__ = self.match_in_pattern(self.text[mismatch_index] ) UpperCamelCase__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A : Dict = 'ABAABA' A : Optional[int] = 'AB' A : List[Any] = BoyerMooreSearch(text, pattern) A : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
701
"""simple docstring""" def snake_case__ ( _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: UpperCamelCase__ = _modexpt(_snake_case , exponent // 2 , _snake_case ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_snake_case , exponent - 1 , _snake_case )) % modulo_value def snake_case__ ( _snake_case : int = 17_77 , _snake_case : int = 18_55 , _snake_case : int = 8 ): """simple docstring""" UpperCamelCase__ = base for _ in range(1 , _snake_case ): UpperCamelCase__ = _modexpt(_snake_case , _snake_case , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
304
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['MobileViTFeatureExtractor'] lowerCAmelCase_ = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
217
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Any = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) lowercase : Optional[int] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , __magic_name__ ) if matches: lowercase : Optional[int] = float(matches[1] ) lowercase : Tuple = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowercase : Optional[int] = 10_01 lowercase : str = '''imagenet-1k-id2label.json''' lowercase : Optional[Any] = '''huggingface/label-files''' lowercase : Optional[int] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase : Any = {int(__magic_name__ ) + 1: v for k, v in idalabel.items()} lowercase : Any = '''background''' lowercase : Any = idalabel lowercase : Any = {v: k for k, v in idalabel.items()} return config def snake_case( ) -> Optional[Any]: '''simple docstring''' lowercase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=False ) -> int: '''simple docstring''' lowercase : int = get_mobilenet_va_config(__magic_name__ ) # Load 🤗 model lowercase : Tuple = MobileNetVaForImageClassification(__magic_name__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__magic_name__ , __magic_name__ , __magic_name__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowercase : List[Any] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) lowercase : Dict = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase : Optional[Any] = model(**__magic_name__ ) lowercase : int = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": lowercase : str = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": lowercase : Optional[Any] = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: lowercase : int = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: print('''Pushing to the hub...''' ) lowercase : int = '''google/''' + model_name image_processor.push_to_hub(__magic_name__ ) model.push_to_hub(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
217
1
'''simple docstring''' def UpperCamelCase ( a , a ) -> tuple[float, float]: '''simple docstring''' # Check if the input is valid if not len(a ) == len(a ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients __magic_name__ , __magic_name__ , __magic_name__ = equationa __magic_name__ , __magic_name__ , __magic_name__ = equationa # Calculate the determinants of the matrices __magic_name__ = aa * ba - aa * ba __magic_name__ = ca * ba - ca * ba __magic_name__ = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __magic_name__ = determinant_x / determinant __magic_name__ = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
245
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Optional[Any] = TextToVideoSDPipeline __SCREAMING_SNAKE_CASE :str = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE :Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __SCREAMING_SNAKE_CASE :Union[str, Any] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def snake_case__ ( self : List[Any] ): torch.manual_seed(0 ) __magic_name__ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) __magic_name__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=a__ , set_alpha_to_one=a__ , ) torch.manual_seed(0 ) __magic_name__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __magic_name__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) __magic_name__ = CLIPTextModel(a__ ) __magic_name__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __magic_name__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def snake_case__ ( self : List[str] , a__ : List[str] , a__ : int=0 ): if str(a__ ).startswith('''mps''' ): __magic_name__ = torch.manual_seed(a__ ) else: __magic_name__ = torch.Generator(device=a__ ).manual_seed(a__ ) __magic_name__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def snake_case__ ( self : str ): __magic_name__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator __magic_name__ = self.get_dummy_components() __magic_name__ = TextToVideoSDPipeline(**a__ ) __magic_name__ = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) __magic_name__ = self.get_dummy_inputs(a__ ) __magic_name__ = '''np''' __magic_name__ = sd_pipe(**a__ ).frames __magic_name__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __magic_name__ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self : Tuple ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=a__ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case__ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=a__ , expected_max_diff=1E-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def snake_case__ ( self : Optional[Any] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def snake_case__ ( self : Optional[Any] ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def snake_case__ ( self : Tuple ): pass def snake_case__ ( self : Union[str, Any] ): return super().test_progress_bar() @slow @skip_mps class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : List[str] ): __magic_name__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __magic_name__ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __magic_name__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __magic_name__ = pipe.to('''cuda''' ) __magic_name__ = '''Spiderman is surfing''' __magic_name__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) __magic_name__ = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type='''pt''' ).frames __magic_name__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def snake_case__ ( self : Union[str, Any] ): __magic_name__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __magic_name__ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __magic_name__ = pipe.to('''cuda''' ) __magic_name__ = '''Spiderman is surfing''' __magic_name__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) __magic_name__ = pipe(a__ , generator=a__ , num_inference_steps=2 , output_type='''pt''' ).frames __magic_name__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
245
1
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowercase ( a__ : Optional[int] , a__ : Dict=False ) -> Tuple: try: _UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCamelCase = default else: # KEY is set, convert it to True or False. try: _UpperCamelCase = strtobool(a__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value UpperCAmelCase = parse_flag_from_env("""RUN_SLOW""", default=False) UpperCAmelCase = parse_flag_from_env("""RUN_REMOTE""", default=False) UpperCAmelCase = parse_flag_from_env("""RUN_LOCAL""", default=True) UpperCAmelCase = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression UpperCAmelCase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") UpperCAmelCase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") UpperCAmelCase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio UpperCAmelCase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam UpperCAmelCase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility UpperCAmelCase = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows UpperCAmelCase = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def lowercase ( a__ : Union[str, Any] ) -> str: try: import faiss # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires faiss''' )(a__ ) return test_case def lowercase ( a__ : List[Any] ) -> str: try: import regex # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires regex''' )(a__ ) return test_case def lowercase ( a__ : Any ) -> Union[str, Any]: try: import elasticsearch # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(a__ ) return test_case def lowercase ( a__ : List[Any] ) -> Optional[Any]: try: import sqlalchemy # noqa except ImportError: _UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(a__ ) return test_case def lowercase ( a__ : Any ) -> Union[str, Any]: if not config.TORCH_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires PyTorch''' )(a__ ) return test_case def lowercase ( a__ : str ) -> Optional[Any]: if not config.TF_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(a__ ) return test_case def lowercase ( a__ : Optional[int] ) -> str: if not config.JAX_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires JAX''' )(a__ ) return test_case def lowercase ( a__ : str ) -> int: if not config.PIL_AVAILABLE: _UpperCamelCase = unittest.skip('''test requires Pillow''' )(a__ ) return test_case def lowercase ( a__ : Union[str, Any] ) -> Dict: try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(a__ ) else: return test_case def lowercase ( a__ : List[Any] ) -> Optional[int]: try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(a__ ) else: return test_case def lowercase ( a__ : str ) -> Tuple: try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(a__ ) else: return test_case def lowercase ( a__ : List[Any] ) -> int: def _require_spacy_model(a__ : Any ): try: import spacy # noqa F401 spacy.load(a__ ) except ImportError: return unittest.skip('''test requires spacy''' )(a__ ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(a__ ) )(a__ ) else: return test_case return _require_spacy_model def lowercase ( a__ : List[str] ) -> Dict: try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(a__ ) else: return test_case def lowercase ( a__ : int ) -> Any: try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(a__ ) else: return test_case def lowercase ( a__ : List[Any] ) -> Optional[int]: if not _run_slow_tests or _run_slow_tests == 0: _UpperCamelCase = unittest.skip('''test is slow''' )(a__ ) return test_case def lowercase ( a__ : List[Any] ) -> int: if not _run_local_tests or _run_local_tests == 0: _UpperCamelCase = unittest.skip('''test is local''' )(a__ ) return test_case def lowercase ( a__ : Optional[int] ) -> List[str]: if not _run_packaged_tests or _run_packaged_tests == 0: _UpperCamelCase = unittest.skip('''test is packaged''' )(a__ ) return test_case def lowercase ( a__ : List[Any] ) -> int: if not _run_remote_tests or _run_remote_tests == 0: _UpperCamelCase = unittest.skip('''test requires remote''' )(a__ ) return test_case def lowercase ( *a__ : Dict ) -> List[Any]: def decorate(cls : str ): for name, fn in cls.__dict__.items(): if callable(a__ ) and name.startswith('''test''' ): for decorator in decorators: _UpperCamelCase = decorator(a__ ) setattr(cls , a__ , a__ ) return cls return decorate class UpperCAmelCase_ ( _lowercase): pass class UpperCAmelCase_ ( _lowercase): snake_case__ = 0 snake_case__ = 1 snake_case__ = 2 @contextmanager def lowercase ( a__ : List[Any]=OfflineSimulationMode.CONNECTION_FAILS , a__ : Dict=1e-16 ) -> Any: _UpperCamelCase = requests.Session().request def timeout_request(a__ : Dict , a__ : str , a__ : Optional[Any] , **a__ : Any ): # Change the url to an invalid url so that the connection hangs _UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) _UpperCamelCase = timeout try: return online_request(a__ , a__ , **a__ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _UpperCamelCase = url _UpperCamelCase = e.args[0] _UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' , F'''OfflineMock[{url}]''' ),) _UpperCamelCase = (max_retry_error,) raise def raise_connection_error(a__ : Optional[int] , a__ : int , **a__ : Any ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=a__ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , a__ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , a__ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , a__ ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def lowercase ( *a__ : Optional[int] , **a__ : List[str] ) -> Optional[Any]: _UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*a__ , **a__ ) as tmp_dir: try: os.chdir(a__ ) yield finally: os.chdir(a__ ) @contextmanager def lowercase ( ) -> List[str]: import gc gc.collect() _UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowercase ( ) -> List[Any]: import gc gc.collect() _UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowercase ( a__ : Optional[Any] , a__ : Tuple ) -> List[Any]: return deepcopy(a__ ).integers(0 , 100 , 10 ).tolist() == deepcopy(a__ ).integers(0 , 100 , 10 ).tolist() def lowercase ( a__ : Optional[Any] ) -> Tuple: import decorator from requests.exceptions import HTTPError def _wrapper(a__ : Union[str, Any] , *a__ : Tuple , **a__ : Any ): try: return func(*a__ , **a__ ) except HTTPError as err: if str(a__ ).startswith('''500''' ) or str(a__ ).startswith('''502''' ): pytest.xfail(str(a__ ) ) raise err return decorator.decorator(_wrapper , a__ ) class UpperCAmelCase_ : def __init__( self : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Tuple ) -> Any: _UpperCamelCase = returncode _UpperCamelCase = stdout _UpperCamelCase = stderr async def lowercase ( a__ : int , a__ : Tuple ) -> int: while True: _UpperCamelCase = await stream.readline() if line: callback(a__ ) else: break async def lowercase ( a__ : Tuple , a__ : int=None , a__ : int=None , a__ : Optional[Any]=None , a__ : Optional[int]=False , a__ : List[str]=False ) -> _RunOutput: if echo: print('''\nRunning: ''' , ''' '''.join(a__ ) ) _UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=a__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCamelCase = [] _UpperCamelCase = [] def tee(a__ : Optional[int] , a__ : Optional[int] , a__ : Union[str, Any] , a__ : List[str]="" ): _UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(a__ ) if not quiet: print(a__ , a__ , file=a__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda a__ : tee(a__ , a__ , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda a__ : tee(a__ , a__ , sys.stderr , label='''stderr:''' ) ), ] , timeout=a__ , ) return _RunOutput(await p.wait() , a__ , a__ ) def lowercase ( a__ : Any , a__ : List[Any]=None , a__ : List[Any]=None , a__ : Tuple=180 , a__ : Tuple=False , a__ : Optional[int]=True ) -> _RunOutput: _UpperCamelCase = asyncio.get_event_loop() _UpperCamelCase = loop.run_until_complete( _stream_subprocess(a__ , env=a__ , stdin=a__ , timeout=a__ , quiet=a__ , echo=a__ ) ) _UpperCamelCase = ''' '''.join(a__ ) if result.returncode > 0: _UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' ) return result def lowercase ( ) -> List[Any]: _UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) _UpperCamelCase = re.sub(R'''^gw''' , '''''' , a__ , 0 , re.M ) return int(a__ ) def lowercase ( ) -> str: _UpperCamelCase = 29500 _UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
420
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
420
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
81
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # TODO Update this lowerCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """esm""" def __init__( self : Any , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Tuple=768 , SCREAMING_SNAKE_CASE : Any=12 , SCREAMING_SNAKE_CASE : Any=12 , SCREAMING_SNAKE_CASE : Optional[int]=3_072 , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=1_026 , SCREAMING_SNAKE_CASE : Tuple=0.02 , SCREAMING_SNAKE_CASE : str=1E-1_2 , SCREAMING_SNAKE_CASE : List[str]="absolute" , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , **SCREAMING_SNAKE_CASE : Union[str, Any] , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , mask_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = vocab_size lowercase__ : int = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : List[str] = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[int] = position_embedding_type lowercase__ : Optional[int] = use_cache lowercase__ : Optional[int] = emb_layer_norm_before lowercase__ : List[str] = token_dropout lowercase__ : Optional[int] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) lowercase__ : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE ) lowercase__ : Dict = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) lowercase__ : List[str] = get_default_vocab_list() else: lowercase__ : List[Any] = vocab_list else: lowercase__ : List[Any] = None lowercase__ : List[str] = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , SCREAMING_SNAKE_CASE ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def snake_case ( self : List[str] ): lowercase__ : Optional[Any] = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE ): lowercase__ : Dict = self.esmfold_config.to_dict() return output @dataclass class snake_case__: """simple docstring""" lowercase_ = None lowercase_ = True lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = 0 lowercase_ = True lowercase_ = False lowercase_ = 1_2_8 lowercase_ = None def snake_case ( self : Optional[int] ): if self.trunk is None: lowercase__ : Dict = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE ): lowercase__ : int = TrunkConfig(**self.trunk ) def snake_case ( self : Union[str, Any] ): lowercase__ : int = asdict(self ) lowercase__ : Any = self.trunk.to_dict() return output @dataclass class snake_case__: """simple docstring""" lowercase_ = 4_8 lowercase_ = 1_0_2_4 lowercase_ = 1_2_8 lowercase_ = 3_2 lowercase_ = 3_2 lowercase_ = 3_2 lowercase_ = 0 lowercase_ = 0 lowercase_ = False lowercase_ = 4 lowercase_ = 1_2_8 lowercase_ = None def snake_case ( self : Dict ): if self.structure_module is None: lowercase__ : str = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE ): lowercase__ : Optional[int] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) lowercase__ : Union[str, Any] = self.sequence_state_dim // self.sequence_head_width lowercase__ : List[Any] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def snake_case ( self : Optional[Any] ): lowercase__ : int = asdict(self ) lowercase__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class snake_case__: """simple docstring""" lowercase_ = 3_8_4 lowercase_ = 1_2_8 lowercase_ = 1_6 lowercase_ = 1_2_8 lowercase_ = 1_2 lowercase_ = 4 lowercase_ = 8 lowercase_ = 0.1 lowercase_ = 8 lowercase_ = 1 lowercase_ = 2 lowercase_ = 7 lowercase_ = 1_0 lowercase_ = 1e-8 lowercase_ = 1e5 def snake_case ( self : Dict ): return asdict(self ) def __lowerCamelCase ( ): """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
81
1
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
610
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Optional[int] = ["""input_features"""] def __init__( self : int , a_ : Optional[int]=80 , a_ : Any=1_60_00 , a_ : Tuple=1_60 , a_ : Union[str, Any]=30 , a_ : int=4_00 , a_ : List[str]=0.0 , a_ : Dict=False , **a_ : Optional[Any] , ): super().__init__( feature_size=a_ , sampling_rate=a_ , padding_value=a_ , return_attention_mask=a_ , **a_ , ) lowerCAmelCase_ : Optional[int] = n_fft lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : str = chunk_length lowerCAmelCase_ : Optional[int] = chunk_length * sampling_rate lowerCAmelCase_ : Any = self.n_samples // hop_length lowerCAmelCase_ : Optional[Any] = sampling_rate lowerCAmelCase_ : Optional[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a_ , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=a_ , norm="slaney" , mel_scale="slaney" , ) def lowerCamelCase ( self : Optional[int] , a_ : np.array ): lowerCAmelCase_ : List[Any] = spectrogram( a_ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) lowerCAmelCase_ : Tuple = log_spec[:, :-1] lowerCAmelCase_ : Dict = np.maximum(a_ , log_spec.max() - 8.0 ) lowerCAmelCase_ : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCamelCase ( a_ : List[np.ndarray] , a_ : List[np.ndarray] , a_ : float = 0.0 ): if attention_mask is not None: lowerCAmelCase_ : Tuple = np.array(a_ , np.intaa ) lowerCAmelCase_ : Dict = [] for vector, length in zip(a_ , attention_mask.sum(-1 ) ): lowerCAmelCase_ : Tuple = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCAmelCase_ : Union[str, Any] = padding_value normed_input_values.append(a_ ) else: lowerCAmelCase_ : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Optional[int] , a_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a_ : bool = True , a_ : Optional[int] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[bool] = None , a_ : Optional[str] = "max_length" , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : Optional[bool] = None , **a_ : Any , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Tuple = isinstance(a_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Tuple = is_batched_numpy or ( isinstance(a_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a_ , np.ndarray ): lowerCAmelCase_ : Optional[Any] = np.asarray(a_ , dtype=np.floataa ) elif isinstance(a_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : List[str] = [np.asarray([raw_speech] ).T] lowerCAmelCase_ : List[Any] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding lowerCAmelCase_ : Optional[int] = self.pad( a_ , padding=a_ , max_length=max_length if max_length else self.n_samples , truncation=a_ , pad_to_multiple_of=a_ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase_ : Tuple = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) lowerCAmelCase_ : str = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format lowerCAmelCase_ : Dict = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) lowerCAmelCase_ : List[Any] = [self._np_extract_fbank_features(a_ ) for waveform in input_features[0]] if isinstance(input_features[0] , a_ ): lowerCAmelCase_ : Any = [np.asarray(a_ , dtype=np.floataa ) for feature in input_features] else: lowerCAmelCase_ : List[str] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase_ : Union[str, Any] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase_ : List[Any] = padded_inputs.convert_to_tensors(a_ ) return padded_inputs def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
610
1
def __UpperCAmelCase ( snake_case_ : Any ): '''simple docstring''' UpperCAmelCase: Dict = len(snake_case_ ) UpperCAmelCase: Any = sum(snake_case_ ) UpperCAmelCase: List[str] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): UpperCAmelCase: Dict = True for i in range(1 , s + 1 ): UpperCAmelCase: List[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): UpperCAmelCase: str = dp[i][j - 1] if arr[i - 1] <= j: UpperCAmelCase: int = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: UpperCAmelCase: List[str] = s - 2 * j break return diff
166
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( lowercase ): lowerCamelCase__: Any = '''new-model''' if is_tf_available(): class __lowerCamelCase ( lowercase ): lowerCamelCase__: int = NewModelConfig @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def A__ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase: int = "bert-base-cased" UpperCAmelCase: Optional[int] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: int = TFAutoModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase: Optional[int] = "bert-base-cased" UpperCAmelCase: Any = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: Tuple = TFAutoModelForPreTraining.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase: str = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: List[Any] = TFAutoModelForCausalLM.from_pretrained(__snake_case ) UpperCAmelCase , UpperCAmelCase: Optional[Any] = TFAutoModelForCausalLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase: List[str] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: List[str] = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> str: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase: List[Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(__snake_case ) UpperCAmelCase , UpperCAmelCase: Any = TFAutoModelForMaskedLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> str: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase: str = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: int = TFAutoModelForSeqaSeqLM.from_pretrained(__snake_case ) UpperCAmelCase , UpperCAmelCase: str = TFAutoModelForSeqaSeqLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: UpperCAmelCase: str = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: Dict = TFAutoModelForSequenceClassification.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def A__ ( self ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: UpperCAmelCase: Union[str, Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: List[Any] = TFAutoModelForQuestionAnswering.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow @require_tensorflow_probability def A__ ( self ) -> Any: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase: Union[str, Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: Any = TFAutoModelForTableQuestionAnswering.from_pretrained(__snake_case ) UpperCAmelCase , UpperCAmelCase: Optional[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained( __snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase: Optional[Any] = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_4_4_1_0 ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase: Any = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_4_4_1_0 ) def A__ ( self ) -> Dict: """simple docstring""" UpperCAmelCase: int = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase: int = copy.deepcopy(model.config ) UpperCAmelCase: int = ["FunnelBaseModel"] UpperCAmelCase: Optional[Any] = TFAutoModel.from_config(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case ) UpperCAmelCase: Dict = TFAutoModel.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def A__ ( self ) -> Optional[int]: """simple docstring""" try: AutoConfig.register("new-model" , __snake_case ) UpperCAmelCase: Tuple = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__snake_case ): auto_class.register(__snake_case , __snake_case ) auto_class.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): auto_class.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase: Dict = BertModelTester(self ).get_config() UpperCAmelCase: str = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase: Tuple = auto_class.from_config(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case ) UpperCAmelCase: Dict = auto_class.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def A__ ( self ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( __snake_case , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase: Union[str, Any] = TFAutoModel.from_pretrained("bert-base" ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex( __snake_case , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase: int = TFAutoModel.from_pretrained(__snake_case , revision="aaaaaa" ) def A__ ( self ) -> Optional[int]: """simple docstring""" with self.assertRaisesRegex( __snake_case , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): UpperCAmelCase: Union[str, Any] = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex(__snake_case , "Use `from_pt=True` to load this model" ): UpperCAmelCase: Any = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase: str = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: UpperCAmelCase: List[Any] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase: str = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: UpperCAmelCase: int = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
166
1
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : str = XLMTokenizer lowerCamelCase : Optional[int] = False def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCAmelCase = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) lowerCAmelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Dict ) -> Optional[int]: lowerCAmelCase = 'lower newer' lowerCAmelCase = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: lowerCAmelCase = XLMTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase = 'lower' lowerCAmelCase = ['low', 'er</w>'] lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = tokens + ['<unk>'] lowerCAmelCase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: lowerCAmelCase = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) lowerCAmelCase = tokenizer.encode('sequence builders' , add_special_tokens=UpperCAmelCase__ ) lowerCAmelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCAmelCase__ ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
133
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __snake_case ="""src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __snake_case =importlib.util.spec_from_file_location( """transformers""", os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __snake_case =spec.loader.load_module() __snake_case =transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __snake_case =re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") __snake_case ={ """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def a_ ( ): lowerCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCAmelCase = False # source code of `config_class` lowerCAmelCase = inspect.getsource(lowerCamelCase ) lowerCAmelCase = _re_checkpoint.findall(lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCAmelCase , lowerCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCAmelCase = True break lowerCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = '\n'.join(sorted(lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
133
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE_ : ClassVar[Features] =Features({"question": Value("string" ), "context": Value("string" )} ) SCREAMING_SNAKE_CASE_ : ClassVar[Features] =Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) SCREAMING_SNAKE_CASE_ : str ="question" SCREAMING_SNAKE_CASE_ : str ="context" SCREAMING_SNAKE_CASE_ : str ="answers" @property def _lowerCamelCase ( self : List[Any] ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
434
'''simple docstring''' a__ : Optional[Any] =[ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] a__ : List[str] =[ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] a__ : int =[ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] a__ : str =[ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] a__ : Union[str, Any] =[ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] a__ : int =[ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] a__ : Any =[ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] a__ : Any =[ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
434
1
def UpperCamelCase_( snake_case__: int = 10_00 ) -> Dict: UpperCAmelCase__ , UpperCAmelCase__ = 1, 1 UpperCAmelCase__ = 2 while True: UpperCAmelCase__ = 0 UpperCAmelCase__ = fa + fa UpperCAmelCase__ , UpperCAmelCase__ = fa, f index += 1 for _ in str(lowercase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
146
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __lowerCAmelCase = TypeVar("T") class __SCREAMING_SNAKE_CASE (Generic[T] ): """simple docstring""" def __init__( self , UpperCamelCase__ ): """simple docstring""" a_ = data a_ = None def __str__( self ): """simple docstring""" return f'{self.data}' class __SCREAMING_SNAKE_CASE (Generic[T] ): """simple docstring""" def __init__( self ): """simple docstring""" a_ = None def __iter__( self ): """simple docstring""" a_ = self.top while node: yield node.data a_ = node.next def __str__( self ): """simple docstring""" return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self ): """simple docstring""" return len(tuple(iter(self ) ) ) def _a ( self ): """simple docstring""" return self.top is None def _a ( self , UpperCamelCase__ ): """simple docstring""" a_ = Node(UpperCamelCase__ ) if not self.is_empty(): a_ = self.top a_ = node def _a ( self ): """simple docstring""" if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCamelCase__ ) a_ = self.top a_ = self.top.next return pop_node.data def _a ( self ): """simple docstring""" if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def _a ( self ): """simple docstring""" a_ = None if __name__ == "__main__": from doctest import testmod testmod()
536
0
import argparse import json import subprocess def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = [] UpperCamelCase_ = ( f"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) UpperCamelCase_ = subprocess.run(__lowercase , shell=__lowercase , stdout=subprocess.PIPE) UpperCamelCase_ = output.stdout.decode('utf-8') UpperCamelCase_ = json.loads(__lowercase) UpperCamelCase_ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__lowercase) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w') as fp: fp.write(json.dumps(__lowercase)) if len(__lowercase) > 0: UpperCamelCase_ = '\n'.join([x['name'] for x in offline_runners]) raise ValueError(f"""The following runners are offline:\n{failed}""") if __name__ == "__main__": def _snake_case (__lowercase): return values.split(',') snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) snake_case__ : Optional[int] = parser.parse_args() get_runner_status(args.target_runners, args.token)
618
from typing import Any def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): _validation( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) # Creates data structures and fill initial step UpperCamelCase_ = {} UpperCamelCase_ = {} for state in states_space: UpperCamelCase_ = observations_space[0] UpperCamelCase_ = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCamelCase_ = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__lowercase)): UpperCamelCase_ = observations_space[o] UpperCamelCase_ = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCamelCase_ = '' UpperCamelCase_ = -1 for k_state in states_space: UpperCamelCase_ = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCamelCase_ = probability UpperCamelCase_ = k_state # Update probabilities and pointers dicts UpperCamelCase_ = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCamelCase_ = arg_max # The final observation UpperCamelCase_ = observations_space[len(__lowercase) - 1] # argmax for given final observation UpperCamelCase_ = '' UpperCamelCase_ = -1 for k_state in states_space: UpperCamelCase_ = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCamelCase_ = probability UpperCamelCase_ = k_state UpperCamelCase_ = arg_max # Process pointers backwards UpperCamelCase_ = last_state UpperCamelCase_ = [] for o in range(len(__lowercase) - 1 , -1 , -1): result.append(__lowercase) UpperCamelCase_ = pointers[previous, observations_space[o]] result.reverse() return result def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): _validate_not_empty( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) _validate_lists(__lowercase , __lowercase) _validate_dicts( __lowercase , __lowercase , __lowercase) def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError('There\'s an empty parameter') def _snake_case (__lowercase , __lowercase): _validate_list(__lowercase , 'observations_space') _validate_list(__lowercase , 'states_space') def _snake_case (__lowercase , __lowercase): if not isinstance(_object , __lowercase): UpperCamelCase_ = f"""{var_name} must be a list""" raise ValueError(__lowercase) else: for x in _object: if not isinstance(__lowercase , __lowercase): UpperCamelCase_ = f"""{var_name} must be a list of strings""" raise ValueError(__lowercase) def _snake_case (__lowercase , __lowercase , __lowercase , ): _validate_dict(__lowercase , 'initial_probabilities' , __lowercase) _validate_nested_dict(__lowercase , 'transition_probabilities') _validate_nested_dict(__lowercase , 'emission_probabilities') def _snake_case (__lowercase , __lowercase): _validate_dict(_object , __lowercase , __lowercase) for x in _object.values(): _validate_dict(__lowercase , __lowercase , __lowercase , __lowercase) def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase = False): if not isinstance(_object , __lowercase): UpperCamelCase_ = f"""{var_name} must be a dict""" raise ValueError(__lowercase) if not all(isinstance(__lowercase , __lowercase) for x in _object): UpperCamelCase_ = f"""{var_name} all keys must be strings""" raise ValueError(__lowercase) if not all(isinstance(__lowercase , __lowercase) for x in _object.values()): UpperCamelCase_ = 'nested dictionary ' if nested else '' UpperCamelCase_ = f"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__lowercase) if __name__ == "__main__": from doctest import testmod testmod()
618
1