code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCAmelCase ( unittest.TestCase): def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = tempfile.mkdtemp() __snake_case = BlipImageProcessor() __snake_case = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) __snake_case = BlipaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).tokenizer def lowerCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).image_processor def lowerCAmelCase ( self ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __snake_case = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) __snake_case = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) __snake_case = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __snake_case = '''lower newer''' __snake_case = processor(text=__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer(__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __snake_case = '''lower newer''' __snake_case = self.prepare_image_inputs() __snake_case = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case = processor.batch_decode(__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __snake_case = '''lower newer''' __snake_case = self.prepare_image_inputs() __snake_case = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
24
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __magic_name__ = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
276
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A_ = "src/transformers" A_ = "docs/source/en/tasks" def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> Union[str, Any]: """simple docstring""" with open(SCREAMING_SNAKE_CASE_, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: lowercase = f.readlines() # Find the start prompt. lowercase = 0 while not lines[start_index].startswith(SCREAMING_SNAKE_CASE_ ): start_index += 1 start_index += 1 lowercase = start_index while not lines[end_index].startswith(SCREAMING_SNAKE_CASE_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A_ = direct_transformers_import(TRANSFORMERS_PATH) A_ = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A_ = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def __UpperCAmelCase ( UpperCAmelCase )-> Optional[int]: """simple docstring""" lowercase = TASK_GUIDE_TO_MODELS[task_guide] lowercase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(SCREAMING_SNAKE_CASE_, set() ) lowercase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase=False )-> Optional[int]: """simple docstring""" lowercase = _find_text_in_file( filename=os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''', end_prompt='''<!--End of the generated tip-->''', ) lowercase = get_model_list_for_task(SCREAMING_SNAKE_CASE_ ) if current_list != new_list: if overwrite: with open(os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ''' to fix this.''' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") A_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
702
import cmath import math def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> complex: """simple docstring""" lowercase = math.radians(UpperCAmelCase ) lowercase = math.radians(UpperCAmelCase ) # Convert voltage and current to rectangular form lowercase = cmath.rect(UpperCAmelCase, UpperCAmelCase ) lowercase = cmath.rect(UpperCAmelCase, UpperCAmelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
479
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
256
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _lowerCamelCase ( lowerCamelCase_: str=None ): '''simple docstring''' if subparsers is not None: A : Tuple = subparsers.add_parser('''test''' ) else: A : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=lowerCamelCase_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase_ ) return parser def _lowerCamelCase ( lowerCamelCase_: str ): '''simple docstring''' A : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: A : Any = script_name else: A : str = f"""--config_file={args.config_file} {script_name}""" A : Tuple = ['''accelerate-launch'''] + test_args.split() A : List[Any] = execute_subprocess_async(lowerCamelCase_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def _lowerCamelCase ( ): '''simple docstring''' A : List[str] = test_command_parser() A : Any = parser.parse_args() test_command(lowerCamelCase_ ) if __name__ == "__main__": main()
256
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
134
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase : Optional[Any] = Lock() def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__snake_case ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowercase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowercase = min(__snake_case , __snake_case ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__snake_case ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowercase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowercase = max(__snake_case , __snake_case ) # after all swaps are performed, send the values back to main result_pipe[1].send(__snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] ): '''simple docstring''' lowercase = [] lowercase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowercase = Pipe() lowercase = Pipe() process_array_.append( Process( target=__snake_case , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowercase = temp_rs lowercase = temp_rr for i in range(1 , len(__snake_case ) - 1 ): lowercase = Pipe() lowercase = Pipe() process_array_.append( Process( target=__snake_case , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowercase = temp_rs lowercase = temp_rr process_array_.append( Process( target=__snake_case , args=( len(__snake_case ) - 1, arr[len(__snake_case ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__snake_case ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__snake_case ) ): lowercase = result_pipe[p][0].recv() process_array_[p].join() return arr def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*__snake_case ) lowercase = odd_even_transposition(__snake_case ) print('Sorted List\n' ) print(*__snake_case ) if __name__ == "__main__": main()
134
1
def lowerCAmelCase_ ( snake_case_ = 1000 ): _A : Dict = 2**power _A : List[str] = 0 while n: _A , _A : Tuple = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
307
import string import numpy def lowerCAmelCase_ ( snake_case_,snake_case_ ): return b if a == 0 else greatest_common_divisor(b % a,snake_case_ ) class lowercase : _a = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) _a = numpy.vectorize(lambda UpperCamelCase__ : x % 3_6 ) _a = numpy.vectorize(UpperCamelCase__ ) def __init__( self , _a ) -> None: _A : Dict = self.modulus(_a ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _A : str = encrypt_key.shape[0] def a__ ( self , _a ) -> int: return self.key_string.index(_a ) def a__ ( self , _a ) -> str: return self.key_string[round(_a )] def a__ ( self ) -> None: _A : Union[str, Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _A : Union[str, Any] = det % len(self.key_string ) _A : Optional[Any] = len(self.key_string ) if greatest_common_divisor(_a , len(self.key_string ) ) != 1: _A : List[Any] = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(_a ) def a__ ( self , _a ) -> str: _A : List[str] = [char for char in text.upper() if char in self.key_string] _A : Tuple = chars[-1] while len(_a ) % self.break_key != 0: chars.append(_a ) return "".join(_a ) def a__ ( self , _a ) -> str: _A : int = self.process_text(text.upper() ) _A : int = """""" for i in range(0 , len(_a ) - self.break_key + 1 , self.break_key ): _A : Dict = text[i : i + self.break_key] _A : int = [self.replace_letters(_a ) for char in batch] _A : str = numpy.array([vec] ).T _A : Optional[Any] = self.modulus(self.encrypt_key.dot(_a ) ).T.tolist()[ 0 ] _A : Tuple = """""".join( self.replace_digits(_a ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def a__ ( self ) -> numpy.ndarray: _A : List[str] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _A : str = det % len(self.key_string ) _A : List[str] = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _A : Dict = i break _A : Union[str, Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_a ) ) def a__ ( self , _a ) -> str: _A : Optional[Any] = self.make_decrypt_key() _A : Dict = self.process_text(text.upper() ) _A : Optional[int] = """""" for i in range(0 , len(_a ) - self.break_key + 1 , self.break_key ): _A : Optional[int] = text[i : i + self.break_key] _A : List[Any] = [self.replace_letters(_a ) for char in batch] _A : Tuple = numpy.array([vec] ).T _A : List[str] = self.modulus(decrypt_key.dot(_a ) ).T.tolist()[0] _A : str = """""".join( self.replace_digits(_a ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase_ ( ): _A : Union[str, Any] = int(input("""Enter the order of the encryption key: """ ) ) _A : Optional[int] = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(snake_case_ ): _A : Any = [int(snake_case_ ) for x in input().split()] hill_matrix.append(snake_case_ ) _A : Dict = HillCipher(numpy.array(snake_case_ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) _A : str = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": _A : str = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(snake_case_ ) ) elif option == "2": _A : Tuple = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
307
1
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=13 , UpperCAmelCase_ : List[str]=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[Any]=99 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Optional[Any]=5 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : List[Any]=128 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ) -> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : int = batch_size _UpperCAmelCase : List[str] = seq_length _UpperCAmelCase : List[str] = is_training _UpperCAmelCase : List[str] = use_input_mask _UpperCAmelCase : List[str] = use_token_type_ids _UpperCAmelCase : Dict = use_labels _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : str = type_vocab_size _UpperCAmelCase : List[str] = type_sequence_label_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Union[str, Any] = num_labels _UpperCAmelCase : str = num_choices _UpperCAmelCase : Optional[int] = scope def a_ ( self : List[str] ) -> str: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_input_mask: _UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Tuple = None if self.use_token_type_ids: _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : List[str] = None if self.use_labels: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self : str ) -> Union[str, Any]: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) def a_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Optional[int] = self.prepare_config_and_inputs() _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def a_ ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = NezhaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _UpperCAmelCase : Dict = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _UpperCAmelCase : str = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _UpperCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a_ ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : int = True _UpperCAmelCase : List[Any] = NezhaModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _UpperCAmelCase : int = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) _UpperCAmelCase : Optional[Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , ) _UpperCAmelCase : List[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a_ ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = NezhaForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _UpperCAmelCase : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = NezhaForNextSentencePrediction(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _UpperCAmelCase : Optional[int] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def a_ ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = NezhaForPreTraining(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _UpperCAmelCase : Dict = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , next_sentence_label=UpperCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def a_ ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any ) -> Dict: '''simple docstring''' _UpperCAmelCase : int = NezhaForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _UpperCAmelCase : Optional[int] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = self.num_labels _UpperCAmelCase : List[str] = NezhaForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _UpperCAmelCase : Any = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = self.num_labels _UpperCAmelCase : int = NezhaForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _UpperCAmelCase : Tuple = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = self.num_choices _UpperCAmelCase : Tuple = NezhaForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Optional[Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self : str ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Tuple = config_and_inputs _UpperCAmelCase : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = True def a_ ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=False ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Any = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if model_class in get_values(UpperCAmelCase_ ): _UpperCAmelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) return inputs_dict def a_ ( self : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = NezhaModelTester(self ) _UpperCAmelCase : List[str] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def a_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def a_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def a_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase_ ) def a_ ( self : int ) -> Dict: '''simple docstring''' ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : int = self.model_tester.prepare_config_and_inputs_for_decoder() _UpperCAmelCase : Tuple = None self.model_tester.create_and_check_model_as_decoder( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) def a_ ( self : Any ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def a_ ( self : List[Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def a_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*UpperCAmelCase_ ) def a_ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_ ) def a_ ( self : Dict ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def a_ ( self : Any ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def a_ ( self : Tuple ) -> int: '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def a_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[str] = NezhaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @slow @require_torch_gpu def a_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = model_class(config=UpperCAmelCase_ ) _UpperCAmelCase : str = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Any = torch.jit.trace( UpperCAmelCase_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , '''bert.pt''' ) ) _UpperCAmelCase : Any = torch.jit.load(os.path.join(UpperCAmelCase_ , '''bert.pt''' ) , map_location=UpperCAmelCase_ ) loaded(inputs_dict['''input_ids'''].to(UpperCAmelCase_ ) , inputs_dict['''attention_mask'''].to(UpperCAmelCase_ ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def a_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) _UpperCAmelCase : Optional[int] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _UpperCAmelCase : Optional[Any] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _UpperCAmelCase : str = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def a_ ( self : Tuple ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) _UpperCAmelCase : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase : Any = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase : str = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _UpperCAmelCase : int = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _UpperCAmelCase : Optional[Any] = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
416
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : Any = Dict[str, Any] UpperCAmelCase__ : List[str] = List[Prediction] @add_end_docstrings(lowercase_ ) class lowerCAmelCase_ ( lowercase_ ): def __init__( self : List[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any] ) -> Any: '''simple docstring''' super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def a_ ( self : str , **UpperCAmelCase_ : int ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = {} if "threshold" in kwargs: _UpperCAmelCase : List[str] = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ) -> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def a_ ( self : Optional[Any] , UpperCAmelCase_ : List[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase : Dict = load_image(UpperCAmelCase_ ) _UpperCAmelCase : Dict = torch.IntTensor([[image.height, image.width]] ) _UpperCAmelCase : Dict = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: _UpperCAmelCase : Optional[Any] = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) _UpperCAmelCase : Tuple = target_size return inputs def a_ ( self : List[str] , UpperCAmelCase_ : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = model_inputs.pop('''target_size''' ) _UpperCAmelCase : int = self.model(**UpperCAmelCase_ ) _UpperCAmelCase : int = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: _UpperCAmelCase : Tuple = model_inputs['''bbox'''] return model_outputs def a_ ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int=0.9 ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _UpperCAmelCase , _UpperCAmelCase : Tuple = target_size[0].tolist() def unnormalize(UpperCAmelCase_ : List[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _UpperCAmelCase : List[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _UpperCAmelCase : List[Any] = [unnormalize(UpperCAmelCase_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )] _UpperCAmelCase : Union[str, Any] = ['''score''', '''label''', '''box'''] _UpperCAmelCase : Optional[Any] = [dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) for vals in zip(scores.tolist() , UpperCAmelCase_ , UpperCAmelCase_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _UpperCAmelCase : Optional[int] = self.image_processor.post_process_object_detection(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Any = raw_annotations[0] _UpperCAmelCase : List[str] = raw_annotation['''scores'''] _UpperCAmelCase : str = raw_annotation['''labels'''] _UpperCAmelCase : Dict = raw_annotation['''boxes'''] _UpperCAmelCase : List[str] = scores.tolist() _UpperCAmelCase : int = [self.model.config.idalabel[label.item()] for label in labels] _UpperCAmelCase : Any = [self._get_bounding_box(UpperCAmelCase_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _UpperCAmelCase : Tuple = ['''score''', '''label''', '''box'''] _UpperCAmelCase : Any = [ dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def a_ ( self : Optional[int] , UpperCAmelCase_ : "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = box.int().tolist() _UpperCAmelCase : Optional[Any] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
416
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase = tau * frequency / samplerate UpperCAmelCase = sin(UpperCamelCase__ ) UpperCAmelCase = cos(UpperCamelCase__ ) UpperCAmelCase = _sin / (2 * q_factor) UpperCAmelCase = (1 - _cos) / 2 UpperCAmelCase = 1 - _cos UpperCAmelCase = 1 + alpha UpperCAmelCase = -2 * _cos UpperCAmelCase = 1 - alpha UpperCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase = tau * frequency / samplerate UpperCAmelCase = sin(UpperCamelCase__ ) UpperCAmelCase = cos(UpperCamelCase__ ) UpperCAmelCase = _sin / (2 * q_factor) UpperCAmelCase = (1 + _cos) / 2 UpperCAmelCase = -1 - _cos UpperCAmelCase = 1 + alpha UpperCAmelCase = -2 * _cos UpperCAmelCase = 1 - alpha UpperCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase = tau * frequency / samplerate UpperCAmelCase = sin(UpperCamelCase__ ) UpperCAmelCase = cos(UpperCamelCase__ ) UpperCAmelCase = _sin / (2 * q_factor) UpperCAmelCase = _sin / 2 UpperCAmelCase = 0 UpperCAmelCase = -ba UpperCAmelCase = 1 + alpha UpperCAmelCase = -2 * _cos UpperCAmelCase = 1 - alpha UpperCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase = tau * frequency / samplerate UpperCAmelCase = sin(UpperCamelCase__ ) UpperCAmelCase = cos(UpperCamelCase__ ) UpperCAmelCase = _sin / (2 * q_factor) UpperCAmelCase = 1 - alpha UpperCAmelCase = -2 * _cos UpperCAmelCase = 1 + alpha UpperCAmelCase = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase = tau * frequency / samplerate UpperCAmelCase = sin(UpperCamelCase__ ) UpperCAmelCase = cos(UpperCamelCase__ ) UpperCAmelCase = _sin / (2 * q_factor) UpperCAmelCase = 10 ** (gain_db / 40) UpperCAmelCase = 1 + alpha * big_a UpperCAmelCase = -2 * _cos UpperCAmelCase = 1 - alpha * big_a UpperCAmelCase = 1 + alpha / big_a UpperCAmelCase = -2 * _cos UpperCAmelCase = 1 - alpha / big_a UpperCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase = tau * frequency / samplerate UpperCAmelCase = sin(UpperCamelCase__ ) UpperCAmelCase = cos(UpperCamelCase__ ) UpperCAmelCase = _sin / (2 * q_factor) UpperCAmelCase = 10 ** (gain_db / 40) UpperCAmelCase = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase = 2 * sqrt(UpperCamelCase__ ) * alpha UpperCAmelCase = big_a * (pmc + aaa) UpperCAmelCase = 2 * big_a * mpc UpperCAmelCase = big_a * (pmc - aaa) UpperCAmelCase = ppmc + aaa UpperCAmelCase = -2 * pmpc UpperCAmelCase = ppmc - aaa UpperCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase = tau * frequency / samplerate UpperCAmelCase = sin(UpperCamelCase__ ) UpperCAmelCase = cos(UpperCamelCase__ ) UpperCAmelCase = _sin / (2 * q_factor) UpperCAmelCase = 10 ** (gain_db / 40) UpperCAmelCase = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase = 2 * sqrt(UpperCamelCase__ ) * alpha UpperCAmelCase = big_a * (ppmc + aaa) UpperCAmelCase = -2 * big_a * pmpc UpperCAmelCase = big_a * (ppmc - aaa) UpperCAmelCase = pmc + aaa UpperCAmelCase = 2 * mpc UpperCAmelCase = pmc - aaa UpperCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
323
"""simple docstring""" from __future__ import annotations def snake_case ( UpperCamelCase__ : tuple[int, int] , UpperCamelCase__ : int ) -> list[tuple[int, int]]: lowerCamelCase , lowerCamelCase : Optional[int] = position lowerCamelCase : Any = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase : Optional[Any] = [] for position in positions: lowerCamelCase , lowerCamelCase : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(UpperCamelCase__ ) return permissible_positions def snake_case ( UpperCamelCase__ : list[list[int]] ) -> bool: return not any(elem == 0 for row in board for elem in row ) def snake_case ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : tuple[int, int] , UpperCamelCase__ : int ) -> bool: if is_complete(UpperCamelCase__ ): return True for position in get_valid_pos(UpperCamelCase__ , len(UpperCamelCase__ ) ): lowerCamelCase , lowerCamelCase : Union[str, Any] = position if board[y][x] == 0: lowerCamelCase : List[Any] = curr + 1 if open_knight_tour_helper(UpperCamelCase__ , UpperCamelCase__ , curr + 1 ): return True lowerCamelCase : int = 0 return False def snake_case ( UpperCamelCase__ : int ) -> list[list[int]]: lowerCamelCase : List[str] = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): lowerCamelCase : Any = 1 if open_knight_tour_helper(UpperCamelCase__ , (i, j) , 1 ): return board lowerCamelCase : Optional[Any] = 0 lowerCamelCase : List[Any] = F'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
222
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _a : """simple docstring""" def __init__( self : Tuple , a : Optional[int] , a : Optional[Any]=13 , a : List[Any]=10 , a : str=3 , a : Tuple=2 , a : List[str]=2 , a : Union[str, Any]=2 , a : Optional[int]=True , a : Optional[Any]=True , a : Optional[int]=32 , a : Tuple=5 , a : Any=4 , a : Dict=37 , a : Union[str, Any]="gelu" , a : Dict=0.1 , a : Dict=0.1 , a : int=10 , a : int=0.02 , a : Tuple=0.9 , a : Union[str, Any]=None , ) ->str: SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent SCREAMING_SNAKE_CASE__ : Optional[Any] = batch_size SCREAMING_SNAKE_CASE__ : Optional[int] = image_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : Dict = patch_size SCREAMING_SNAKE_CASE__ : Any = tubelet_size SCREAMING_SNAKE_CASE__ : str = num_frames SCREAMING_SNAKE_CASE__ : Tuple = is_training SCREAMING_SNAKE_CASE__ : Optional[int] = use_labels SCREAMING_SNAKE_CASE__ : str = hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Any = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Tuple = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = mask_ratio SCREAMING_SNAKE_CASE__ : List[str] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame SCREAMING_SNAKE_CASE__ : Optional[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : Tuple = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos SCREAMING_SNAKE_CASE__ : Tuple = int(mask_ratio * self.seq_length ) def A_ ( self : Any ) ->List[str]: SCREAMING_SNAKE_CASE__ : str = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A_ ( self : str ) ->Optional[Any]: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def A_ ( self : Dict , a : Optional[Any] , a : Dict , a : str ) ->int: SCREAMING_SNAKE_CASE__ : Tuple = VideoMAEModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : str , a : Union[str, Any] , a : Tuple , a : Union[str, Any] ) ->str: SCREAMING_SNAKE_CASE__ : List[Any] = VideoMAEForPreTraining(a ) model.to(a ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE__ : str = torch.ones((self.num_masks,) ) SCREAMING_SNAKE_CASE__ : Any = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) SCREAMING_SNAKE_CASE__ : Tuple = mask.expand(self.batch_size , -1 ).bool() SCREAMING_SNAKE_CASE__ : Dict = model(a , a ) # model only returns predictions for masked patches SCREAMING_SNAKE_CASE__ : Dict = mask.sum().item() SCREAMING_SNAKE_CASE__ : Optional[Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def A_ ( self : Optional[Any] ) ->int: SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) snake_case_ = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def A_ ( self : Dict ) ->int: SCREAMING_SNAKE_CASE__ : Tuple = VideoMAEModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def A_ ( self : Optional[int] , a : List[Any] , a : str , a : Dict=False ) ->Tuple: SCREAMING_SNAKE_CASE__ : Any = copy.deepcopy(a ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE__ : str = torch.ones((self.model_tester.num_masks,) ) SCREAMING_SNAKE_CASE__ : List[str] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) SCREAMING_SNAKE_CASE__ : List[str] = mask.expand(self.model_tester.batch_size , -1 ).bool() SCREAMING_SNAKE_CASE__ : List[str] = bool_masked_pos.to(a ) if return_labels: if model_class in [ *get_values(a ), ]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def A_ ( self : Optional[int] ) ->List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def A_ ( self : List[Any] ) ->Optional[int]: pass def A_ ( self : Optional[int] ) ->int: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : int = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def A_ ( self : int ) ->Any: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(a ) SCREAMING_SNAKE_CASE__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def A_ ( self : Optional[Any] ) ->Any: SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def A_ ( self : Optional[Any] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) @slow def A_ ( self : int ) ->Any: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = VideoMAEModel.from_pretrained(a ) self.assertIsNotNone(a ) def A_ ( self : str ) ->Optional[Any]: if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Any = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE__ : Tuple = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Dict = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Tuple = model(**self._prepare_for_class(a , a ) ) SCREAMING_SNAKE_CASE__ : Dict = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**self._prepare_for_class(a , a ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(a ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE__ : List[str] = True SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : int = model(**self._prepare_for_class(a , a ) ) self.assertEqual(out_len + 1 , len(a ) ) SCREAMING_SNAKE_CASE__ : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def A_ ( self : List[str] ) ->List[str]: def check_hidden_states_output(a : Optional[int] , a : Optional[Any] , a : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : Tuple = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(**self._prepare_for_class(a , a ) ) SCREAMING_SNAKE_CASE__ : List[str] = outputs.hidden_states SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a ) , a ) SCREAMING_SNAKE_CASE__ : str = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : List[Any] = True check_hidden_states_output(a , a , a ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A_ ( self : str ) ->int: pass def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) SCREAMING_SNAKE_CASE__ : List[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _a ( unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self : Optional[Any] ) ->str: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def A_ ( self : Optional[Any] ) ->List[Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( a ) SCREAMING_SNAKE_CASE__ : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE__ : str = prepare_video() SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor(a , return_tensors="pt" ).to(a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = model(**a ) # verify the logits SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , a ) SCREAMING_SNAKE_CASE__ : Dict = torch.tensor([0.3669, -0.0688, -0.2421] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) ) @slow def A_ ( self : Union[str, Any] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : List[Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(a ) SCREAMING_SNAKE_CASE__ : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : Optional[Any] = prepare_video() SCREAMING_SNAKE_CASE__ : List[str] = image_processor(a , return_tensors="pt" ).to(a ) # add boolean mask, indicating which patches to mask SCREAMING_SNAKE_CASE__ : Any = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) SCREAMING_SNAKE_CASE__ : str = torch.load(a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = model(**a ) # verify the logits SCREAMING_SNAKE_CASE__ : List[str] = torch.Size([1, 14_08, 15_36] ) SCREAMING_SNAKE_CASE__ : str = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=a ) self.assertEqual(outputs.logits.shape , a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([0.5142] , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) SCREAMING_SNAKE_CASE__ : Union[str, Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=a ).to( a ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**a ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor(torch.tensor([0.6469] ) , device=a ) self.assertTrue(torch.allclose(outputs.loss , a , atol=1E-4 ) )
26
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowercase :str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( lowercase__ ): """simple docstring""" def __init__( self : List[str] , a : Optional[int] , a : str , a : int=None , a : Optional[Any]=1 ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict = tokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = dataset SCREAMING_SNAKE_CASE__ : Optional[Any] = len(a ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE__ : Dict = n_copies def __iter__( self : str ) ->Tuple: SCREAMING_SNAKE_CASE__ : str = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) SCREAMING_SNAKE_CASE__ : int = self.tokenizer(a , padding=a , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( lowercase__ ): """simple docstring""" def __init__( self : Dict , a : int , a : int , a : Tuple ) ->Dict: SCREAMING_SNAKE_CASE__ : Dict = start_length SCREAMING_SNAKE_CASE__ : Any = eof_strings SCREAMING_SNAKE_CASE__ : Any = tokenizer def __call__( self : Any , a : Optional[int] , a : int , **a : Union[str, Any] ) ->List[str]: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE__ : int = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(a ) def UpperCAmelCase ( _lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = re.split("(%s)" % "|".join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : str=20 , **_lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = batch["ids"].shape[-1] SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times SCREAMING_SNAKE_CASE__ : Dict = batch["task_id"].repeat(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE__ : Dict = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE__ : str = "false" if args.num_workers is None: SCREAMING_SNAKE_CASE__ : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE__ : Dict = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE__ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE__ : List[Any] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE__ : str = load_dataset("openai_humaneval" ) SCREAMING_SNAKE_CASE__ : Any = load_metric("code_eval" ) SCREAMING_SNAKE_CASE__ : Dict = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE__ : Dict = TokenizedDataset(_lowerCamelCase , human_eval["test"] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE__ : Optional[int] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE__ : int = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for task in tqdm(range(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : List[Any] = human_eval["test"][task]["test"] SCREAMING_SNAKE_CASE__ : List[Any] = f"""check({human_eval['test'][task]['entry_point']})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
26
1
"""simple docstring""" from heapq import heappop, heappush import numpy as np def snake_case__ ( _snake_case : np.ndarray , _snake_case : tuple[int, int] , _snake_case : tuple[int, int] , _snake_case : bool , ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = grid.shape UpperCamelCase__ = [-1, 1, 0, 0] UpperCamelCase__ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCamelCase__ , UpperCamelCase__ = [(0, source)], set() UpperCamelCase__ = np.full((rows, cols) , np.inf ) UpperCamelCase__ = 0 UpperCamelCase__ = np.empty((rows, cols) , dtype=_snake_case ) UpperCamelCase__ = None while queue: ((UpperCamelCase__) , (UpperCamelCase__)) = heappop(_snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCamelCase__ = [] while (x, y) != source: path.append((x, y) ) UpperCamelCase__ , UpperCamelCase__ = predecessors[x, y] path.append(_snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_snake_case ) ): UpperCamelCase__ , UpperCamelCase__ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCamelCase__ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_snake_case , (dist + 1, (nx, ny)) ) UpperCamelCase__ = dist + 1 UpperCamelCase__ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
516
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A : Tuple = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def snake_case__ ( _snake_case : Dict ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_snake_case ) def snake_case__ ( _snake_case : List[str] ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase__ = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_snake_case , id=_snake_case )
516
1
def A__ ( lowerCamelCase ) -> list: UpperCamelCase_: str = len(lowerCamelCase ) for _ in range(lowerCamelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: UpperCamelCase_, UpperCamelCase_: Dict = arr[i + 1], arr[i] return arr if __name__ == "__main__": lowerCamelCase_ : Any = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
670
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
1
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ : bool , snake_case_ : bool ) -> Union[str, Any]: '''simple docstring''' def run_func(snake_case_ : Any ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : Tuple , **snake_case_ : Any ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : Any , **snake_case_ : str ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: '''simple docstring''' UpperCAmelCase_ = random.Random() UpperCAmelCase_ = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __A ( UpperCamelCase__ ): a__ : TensorFlowBenchmarkArguments a__ : PretrainedConfig a__ : str = "TensorFlow" @property def _lowercase (self : List[str] ): return tf.__version__ def _lowercase (self : Optional[Any] , __a : str , __a : int , __a : int ): # initialize GPU on separate process UpperCAmelCase_ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase_ = self._prepare_inference_func(__a , __a , __a ) return self._measure_speed(_inference ) def _lowercase (self : Optional[Any] , __a : str , __a : int , __a : int ): UpperCAmelCase_ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase_ = self._prepare_train_func(__a , __a , __a ) return self._measure_speed(_train ) def _lowercase (self : Optional[int] , __a : str , __a : int , __a : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __a ) UpperCAmelCase_ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase_ = self._prepare_inference_func(__a , __a , __a ) return self._measure_memory(_inference ) def _lowercase (self : Dict , __a : str , __a : int , __a : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __a ) UpperCAmelCase_ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase_ = self._prepare_train_func(__a , __a , __a ) return self._measure_memory(_train ) def _lowercase (self : Optional[Any] , __a : str , __a : int , __a : int ): UpperCAmelCase_ = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase_ = ( hasattr(__a , "architectures" ) and isinstance(config.architectures , __a ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase_ = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase_ = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase_ = getattr(__a , __a ) UpperCAmelCase_ = model_cls(__a ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase_ = TF_MODEL_MAPPING[config.__class__](__a ) # encoder-decoder has vocab size saved differently UpperCAmelCase_ = config.vocab_size if hasattr(__a , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase_ = random_input_ids(__a , __a , __a ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__a , decoder_input_ids=__a , training=__a ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__a , training=__a ) UpperCAmelCase_ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _lowercase (self : Dict , __a : str , __a : int , __a : int ): UpperCAmelCase_ = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase_ = ( hasattr(__a , "architectures" ) and isinstance(config.architectures , __a ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase_ = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase_ = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase_ = getattr(__a , __a ) UpperCAmelCase_ = model_cls(__a ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase_ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__a ) # encoder-decoder has vocab size saved differently UpperCAmelCase_ = config.vocab_size if hasattr(__a , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase_ = random_input_ids(__a , __a , __a ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCAmelCase_ = model(__a , decoder_input_ids=__a , labels=__a , training=__a )[0] UpperCAmelCase_ = tf.gradients(__a , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCAmelCase_ = model(__a , labels=__a , training=__a )[0] UpperCAmelCase_ = tf.gradients(__a , model.trainable_variables ) return gradients UpperCAmelCase_ = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _lowercase (self : Dict , __a : str ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(__a , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase_ = timeit.repeat( __a , repeat=self.args.repeat , number=10 , ) return min(__a ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def _lowercase (self : Dict , __a : Callable[[], None] ): logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) UpperCAmelCase_ = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) UpperCAmelCase_ = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() UpperCAmelCase_ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCAmelCase_ = nvml.nvmlDeviceGetMemoryInfo(__a ) UpperCAmelCase_ = meminfo.used UpperCAmelCase_ = Memory(__a ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) UpperCAmelCase_ = None else: UpperCAmelCase_ = measure_peak_memory_cpu(__a ) UpperCAmelCase_ = Memory(__a ) if isinstance(__a , __a ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase_ = stop_memory_tracing(__a ) if memory is None: UpperCAmelCase_ = summary.total else: UpperCAmelCase_ = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
78
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a__: List[Any] = logging.getLogger(__name__) a__: str = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) a__: Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCamelCase__ )} , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''The input training data file (a text file).'''} ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) __SCREAMING_SNAKE_CASE = field(default=UpperCamelCase__ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) __SCREAMING_SNAKE_CASE = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) __SCREAMING_SNAKE_CASE = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) __SCREAMING_SNAKE_CASE = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) __SCREAMING_SNAKE_CASE = field( default=UpperCamelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCamelCase__( UpperCamelCase__ : DataTrainingArguments , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[str] = None , )->str: def _dataset(UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def UpperCamelCase__( )->List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__ , A__ , A__ = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: A__ = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: A__ = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: A__ = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: A__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: A__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: A__ = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) A__ = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: A__ = tokenizer.max_len # Our input block size will be the max possible for the model else: A__ = min(data_args.block_size , tokenizer.max_len ) # Get datasets A__ = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) A__ = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": A__ = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: A__ = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: A__ = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A__ = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: A__ = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A__ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A__ = trainer.evaluate() A__ = math.exp(eval_output['''eval_loss'''] ) A__ = {'''perplexity''': perplexity} A__ = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , UpperCamelCase__ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def UpperCamelCase__( UpperCamelCase__ : List[str] )->List[str]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
190
0
SCREAMING_SNAKE_CASE : List[str] = range(2, 20 + 1) SCREAMING_SNAKE_CASE : Any = [10**k for k in range(ks[-1] + 1)] SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : Dict = sum(a_i[j] for j in range(lowerCamelCase_ , len(lowerCamelCase_ ) ) ) _lowercase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase_ ) , lowerCamelCase_ ) ) ) _lowercase , _lowercase : Optional[Any] = 0, 0 _lowercase : Optional[Any] = n - i _lowercase : Dict = memo.get(lowerCamelCase_ ) if sub_memo is not None: _lowercase : List[Any] = sub_memo.get(lowerCamelCase_ ) if jumps is not None and len(lowerCamelCase_ ) > 0: # find and make the largest jump without going over _lowercase : List[str] = -1 for _k in range(len(lowerCamelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowercase : int = _k break if max_jump >= 0: _lowercase , _lowercase , _lowercase : List[str] = jumps[max_jump] # since the difference between jumps is cached, add c _lowercase : Tuple = diff + c for j in range(min(lowerCamelCase_ , len(lowerCamelCase_ ) ) ): _lowercase , _lowercase : Tuple = divmod(lowerCamelCase_ , 10 ) if new_c > 0: add(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: _lowercase : str = [] else: _lowercase : Any = {c: []} _lowercase : str = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowercase , _lowercase : Optional[Any] = next_term(lowerCamelCase_ , k - 1 , i + dn , lowerCamelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowercase , _lowercase : Tuple = compute(lowerCamelCase_ , lowerCamelCase_ , i + dn , lowerCamelCase_ ) diff += _diff dn += terms_jumped _lowercase : Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowercase : str = 0 while j < len(lowerCamelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase_ , (diff, dn, k) ) return (diff, dn) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: if i >= n: return 0, i if k > len(lowerCamelCase_ ): a_i.extend([0 for _ in range(k - len(lowerCamelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowercase : Any = i _lowercase , _lowercase , _lowercase : str = 0, 0, 0 for j in range(len(lowerCamelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowercase : List[str] = ds_c + ds_b diff += addend _lowercase : List[Any] = 0 for j in range(lowerCamelCase_ ): _lowercase : int = a_i[j] + addend _lowercase , _lowercase : Any = divmod(lowerCamelCase_ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return diff, i - start_i def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: for j in range(lowerCamelCase_ , len(lowerCamelCase_ ) ): _lowercase : int = digits[j] + addend if s >= 10: _lowercase , _lowercase : Any = divmod(lowerCamelCase_ , 10 ) _lowercase : Dict = addend // 10 + quotient else: _lowercase : str = s _lowercase : Any = addend // 10 if addend == 0: break while addend > 0: _lowercase , _lowercase : Optional[int] = divmod(lowerCamelCase_ , 10 ) digits.append(lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ = 10**15 ) -> int: _lowercase : Union[str, Any] = [1] _lowercase : List[Any] = 1 _lowercase : Union[str, Any] = 0 while True: _lowercase , _lowercase : Dict = next_term(lowerCamelCase_ , 20 , i + dn , lowerCamelCase_ ) dn += terms_jumped if dn == n - i: break _lowercase : List[str] = 0 for j in range(len(lowerCamelCase_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"{solution() = }")
354
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
354
1
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class a ( __UpperCAmelCase ): lowercase_ : Optional[int] = (DDPMParallelScheduler,) def UpperCAmelCase__ ( self : str , **snake_case__ : List[Any] ): """simple docstring""" __lowerCAmelCase = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case__ ) return config def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase__ ( self : int ): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case__ ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case__ ) def UpperCAmelCase__ ( self : int ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" self.check_over_configs(thresholding=snake_case__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase__ ( self : int ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**snake_case__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**snake_case__ ) __lowerCAmelCase = len(snake_case__ ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter __lowerCAmelCase = self.dummy_sample_deter + 0.1 __lowerCAmelCase = self.dummy_sample_deter - 0.1 __lowerCAmelCase = samplea.shape[0] __lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) __lowerCAmelCase = torch.arange(snake_case__ )[0:3, None].repeat(1 , snake_case__ ) __lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __lowerCAmelCase = scheduler.batch_step_no_noise(snake_case__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __lowerCAmelCase = torch.sum(torch.abs(snake_case__ ) ) __lowerCAmelCase = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1E-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1E-3 def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**snake_case__ ) __lowerCAmelCase = len(snake_case__ ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter __lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(snake_case__ ) ): # 1. predict noise residual __lowerCAmelCase = model(snake_case__ , snake_case__ ) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase = scheduler.step(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample __lowerCAmelCase = pred_prev_sample __lowerCAmelCase = torch.sum(torch.abs(snake_case__ ) ) __lowerCAmelCase = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) __lowerCAmelCase = scheduler_class(**snake_case__ ) __lowerCAmelCase = len(snake_case__ ) __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter __lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(snake_case__ ) ): # 1. predict noise residual __lowerCAmelCase = model(snake_case__ , snake_case__ ) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase = scheduler.step(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample __lowerCAmelCase = pred_prev_sample __lowerCAmelCase = torch.sum(torch.abs(snake_case__ ) ) __lowerCAmelCase = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**snake_case__ ) __lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case__ ) __lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(snake_case__ ): if i == len(snake_case__ ) - 1: __lowerCAmelCase = -1 else: __lowerCAmelCase = timesteps[i + 1] __lowerCAmelCase = scheduler.previous_timestep(snake_case__ ) __lowerCAmelCase = prev_t.item() self.assertEqual(snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**snake_case__ ) __lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(snake_case__ , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case__ ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**snake_case__ ) __lowerCAmelCase = [100, 87, 50, 1, 0] __lowerCAmelCase = len(snake_case__ ) with self.assertRaises(snake_case__ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case__ , timesteps=snake_case__ ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**snake_case__ ) __lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case__ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case__ )
611
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger("transformers.models.speecht5") def _UpperCAmelCase ( UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[int] ): """simple docstring""" hf_model.apply_weight_norm() __lowerCAmelCase = checkpoint["input_conv.weight_g"] __lowerCAmelCase = checkpoint["input_conv.weight_v"] __lowerCAmelCase = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): __lowerCAmelCase = checkpoint[F"upsamples.{i}.1.weight_g"] __lowerCAmelCase = checkpoint[F"upsamples.{i}.1.weight_v"] __lowerCAmelCase = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __lowerCAmelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] __lowerCAmelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] __lowerCAmelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] __lowerCAmelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] __lowerCAmelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] __lowerCAmelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] __lowerCAmelCase = checkpoint["output_conv.1.weight_g"] __lowerCAmelCase = checkpoint["output_conv.1.weight_v"] __lowerCAmelCase = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def _UpperCAmelCase ( UpperCamelCase: Tuple , UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: str=None , UpperCamelCase: Tuple=None , ): """simple docstring""" if config_path is not None: __lowerCAmelCase = SpeechTaHifiGanConfig.from_pretrained(UpperCamelCase ) else: __lowerCAmelCase = SpeechTaHifiGanConfig() __lowerCAmelCase = SpeechTaHifiGan(UpperCamelCase ) __lowerCAmelCase = torch.load(UpperCamelCase ) load_weights(orig_checkpoint["model"]["generator"] , UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = np.load(UpperCamelCase ) __lowerCAmelCase = stats[0].reshape(-1 ) __lowerCAmelCase = stats[1].reshape(-1 ) __lowerCAmelCase = torch.from_numpy(UpperCamelCase ).float() __lowerCAmelCase = torch.from_numpy(UpperCamelCase ).float() model.save_pretrained(UpperCamelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
611
1
'''simple docstring''' from math import ceil, sqrt def __a(SCREAMING_SNAKE_CASE_ : int = 1000000 ): '''simple docstring''' _lowerCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _lowerCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _lowerCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
705
'''simple docstring''' _SCREAMING_SNAKE_CASE = range(2, 20 + 1) _SCREAMING_SNAKE_CASE = [10**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE = {} def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) ) _lowerCAmelCase = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) ) _lowerCAmelCase , _lowerCAmelCase = 0, 0 _lowerCAmelCase = n - i _lowerCAmelCase = memo.get(SCREAMING_SNAKE_CASE_ ) if sub_memo is not None: _lowerCAmelCase = sub_memo.get(SCREAMING_SNAKE_CASE_ ) if jumps is not None and len(SCREAMING_SNAKE_CASE_ ) > 0: # find and make the largest jump without going over _lowerCAmelCase = -1 for _k in range(len(SCREAMING_SNAKE_CASE_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCAmelCase = _k break if max_jump >= 0: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCAmelCase = diff + c for j in range(min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) ): _lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 10 ) if new_c > 0: add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: _lowerCAmelCase = [] else: _lowerCAmelCase = {c: []} _lowerCAmelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCAmelCase , _lowerCAmelCase = next_term(SCREAMING_SNAKE_CASE_ , k - 1 , i + dn , SCREAMING_SNAKE_CASE_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCAmelCase , _lowerCAmelCase = compute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i + dn , SCREAMING_SNAKE_CASE_ ) diff += _diff dn += terms_jumped _lowerCAmelCase = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCAmelCase = 0 while j < len(SCREAMING_SNAKE_CASE_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(SCREAMING_SNAKE_CASE_ , (diff, dn, k) ) return (diff, dn) def __a(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' if i >= n: return 0, i if k > len(SCREAMING_SNAKE_CASE_ ): a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCAmelCase = i _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0, 0, 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCAmelCase = ds_c + ds_b diff += addend _lowerCAmelCase = 0 for j in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = a_i[j] + addend _lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return diff, i - start_i def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): _lowerCAmelCase = digits[j] + addend if s >= 10: _lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 10 ) _lowerCAmelCase = addend // 10 + quotient else: _lowerCAmelCase = s _lowerCAmelCase = addend // 10 if addend == 0: break while addend > 0: _lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 10 ) digits.append(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : int = 10**15 ): '''simple docstring''' _lowerCAmelCase = [1] _lowerCAmelCase = 1 _lowerCAmelCase = 0 while True: _lowerCAmelCase , _lowerCAmelCase = next_term(SCREAMING_SNAKE_CASE_ , 20 , i + dn , SCREAMING_SNAKE_CASE_ ) dn += terms_jumped if dn == n - i: break _lowerCAmelCase = 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
489
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowerCamelCase : str = "" __lowerCamelCase : List[Any] = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __lowerCamelCase : Tuple = None # compression type in fsspec. ex: "gzip" __lowerCamelCase : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowerCamelCase__ = "", lowerCamelCase__ = None, lowerCamelCase__ = None, **lowerCamelCase__ ): super().__init__(self, **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode A : int = fsspec.open( __snake_case, mode="""rb""", protocol=__snake_case, compression=self.compression, client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""", {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) A : List[Any] = os.path.basename(self.file.path.split("""::""" )[0] ) A : List[Any] = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) A : Tuple = None @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__ ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip("""/""" ) def _lowerCAmelCase ( self ): if self.dir_cache is None: A : Any = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} A : Optional[int] = {f["""name"""]: f} def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.file.open().read() def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = "rb", lowerCamelCase__=None, lowerCamelCase__=True, lowerCamelCase__=None, **lowerCamelCase__, ): A : Optional[Any] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowerCamelCase : List[Any] = "bz2" __lowerCamelCase : List[Any] = "bz2" __lowerCamelCase : Dict = ".bz2" class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowerCamelCase : int = "gzip" __lowerCamelCase : Optional[int] = "gzip" __lowerCamelCase : Dict = ".gz" class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowerCamelCase : List[Any] = "lz4" __lowerCamelCase : Union[str, Any] = "lz4" __lowerCamelCase : int = ".lz4" class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowerCamelCase : Optional[Any] = "xz" __lowerCamelCase : Any = "xz" __lowerCamelCase : List[Any] = ".xz" class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = "zstd" __lowerCamelCase : Optional[Any] = "zstd" __lowerCamelCase : int = ".zst" def __init__( self, lowerCamelCase__, lowerCamelCase__ = "rb", lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = DEFAULT_BLOCK_SIZE, **lowerCamelCase__, ): super().__init__( fo=__snake_case, mode=__snake_case, target_protocol=__snake_case, target_options=__snake_case, block_size=__snake_case, **__snake_case, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 A : Union[str, Any] = self.file.__enter__ class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__ ): A : Optional[Any] = file_ def __enter__( self ): self._file.__enter__() return self def __exit__( self, *lowerCamelCase__, **lowerCamelCase__ ): self._file.__exit__(*__snake_case, **__snake_case ) def __iter__( self ): return iter(self._file ) def _lowerCAmelCase ( self ): return next(self._file ) def __getattr__( self, lowerCamelCase__ ): return getattr(self._file, __snake_case ) def fixed_enter(*lowerCamelCase__, **lowerCamelCase__ ): return WrappedFile(_enter(*__snake_case, **__snake_case ) ) A : Tuple = fixed_enter
662
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ) -> Tuple: __magic_name__: Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __magic_name__: Any = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(__UpperCAmelCase ) # Let's go __magic_name__: int = parser.parse_args() if not hasattr(__UpperCAmelCase , """func""" ): parser.print_help() exit(1 ) # Run __magic_name__: Optional[Any] = args.func(__UpperCAmelCase ) service.run() if __name__ == "__main__": main()
96
0
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCAmelCase ( unittest.TestCase ): def _a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def _a ( self ): lowerCamelCase__ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowerCamelCase__ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowerCamelCase__ ="xvjiarui/stable-diffusion-2-inpainting" lowerCamelCase__ , lowerCamelCase__ =FlaxStableDiffusionInpaintPipeline.from_pretrained(_lowerCamelCase , safety_checker=_lowerCamelCase ) lowerCamelCase__ ="Face of a yellow cat, high resolution, sitting on a park bench" lowerCamelCase__ =jax.random.PRNGKey(0 ) lowerCamelCase__ =50 lowerCamelCase__ =jax.device_count() lowerCamelCase__ =num_samples * [prompt] lowerCamelCase__ =num_samples * [init_image] lowerCamelCase__ =num_samples * [mask_image] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ =pipeline.prepare_inputs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # shard inputs and rng lowerCamelCase__ =replicate(_lowerCamelCase ) lowerCamelCase__ =jax.random.split(_lowerCamelCase , jax.device_count() ) lowerCamelCase__ =shard(_lowerCamelCase ) lowerCamelCase__ =shard(_lowerCamelCase ) lowerCamelCase__ =shard(_lowerCamelCase ) lowerCamelCase__ =pipeline( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase ) lowerCamelCase__ =output.images.reshape(_lowerCamelCase , 512 , 512 , 3 ) lowerCamelCase__ =images[0, 253:256, 253:256, -1] lowerCamelCase__ =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ =jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
132
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a ={ 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
132
1
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): __lowerCAmelCase : str = True from torch.cuda.amp import autocast __lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Tuple=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=_lowerCAmelCase ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=lowerCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) a_ = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) a_ = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) a_ = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) a_ = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) a_ = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) a_ = field( default=0.05 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) a_ = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class A : a_ = field( default=lowerCamelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) a_ = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) a_ = field( default=lowerCamelCase__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) a_ = field( default=lowerCamelCase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) a_ = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) a_ = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) a_ = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class A : a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : Optional[Any] , __a : Optional[Any] ) -> Dict[str, torch.Tensor]: __UpperCAmelCase = [{"input_values": feature["input_values"]} for feature in features] __UpperCAmelCase = [{"input_ids": feature["labels"]} for feature in features] __UpperCAmelCase = self.processor.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) __UpperCAmelCase = self.processor.pad( labels=__UpperCamelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly __UpperCAmelCase = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __UpperCAmelCase = labels return batch class A ( lowerCamelCase__ ): def snake_case__ ( self : Tuple , __a : Optional[int] , __a : Optional[Any] ) -> torch.Tensor: model.train() __UpperCAmelCase = self._prepare_inputs(__UpperCamelCase ) if self.use_amp: with autocast(): __UpperCAmelCase = self.compute_loss(__UpperCamelCase , __UpperCamelCase ) else: __UpperCAmelCase = self.compute_loss(__UpperCamelCase , __UpperCamelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __UpperCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __UpperCAmelCase = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']""" ) if self.args.gradient_accumulation_steps > 1: __UpperCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__UpperCamelCase ).backward() elif self.use_apex: with amp.scale_loss(__UpperCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__UpperCamelCase ) else: loss.backward() return loss.detach() def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , _lowerCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __UpperCAmelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) __UpperCAmelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer __UpperCAmelCase = f"""[{''.join(data_args.chars_to_ignore )}]""" def remove_special_characters(UpperCamelCase__ : Optional[int] ): __UpperCAmelCase = re.sub(_lowerCAmelCase , '''''' , batch['''sentence'''] ).lower() + " " return batch __UpperCAmelCase = train_dataset.map(_lowerCAmelCase , remove_columns=['''sentence'''] ) __UpperCAmelCase = eval_dataset.map(_lowerCAmelCase , remove_columns=['''sentence'''] ) def extract_all_chars(UpperCamelCase__ : Optional[int] ): __UpperCAmelCase = " ".join(batch['''text'''] ) __UpperCAmelCase = list(set(_lowerCAmelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} __UpperCAmelCase = train_dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , batch_size=-1 , keep_in_memory=_lowerCAmelCase , remove_columns=train_dataset.column_names , ) __UpperCAmelCase = train_dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , batch_size=-1 , keep_in_memory=_lowerCAmelCase , remove_columns=eval_dataset.column_names , ) __UpperCAmelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) __UpperCAmelCase = {v: k for k, v in enumerate(_lowerCAmelCase )} __UpperCAmelCase = vocab_dict[" "] del vocab_dict[" "] __UpperCAmelCase = len(_lowerCAmelCase ) __UpperCAmelCase = len(_lowerCAmelCase ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) __UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0.0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase ) __UpperCAmelCase = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) __UpperCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __UpperCAmelCase = min(len(_lowerCAmelCase ) , data_args.max_train_samples ) __UpperCAmelCase = train_dataset.select(range(_lowerCAmelCase ) ) if data_args.max_val_samples is not None: __UpperCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __UpperCAmelCase = torchaudio.transforms.Resample(4_8_0_0_0 , 1_6_0_0_0 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(UpperCamelCase__ : List[str] ): __UpperCAmelCase = torchaudio.load(batch['''path'''] ) __UpperCAmelCase = resampler(_lowerCAmelCase ).squeeze().numpy() __UpperCAmelCase = 1_6_0_0_0 __UpperCAmelCase = batch["text"] return batch __UpperCAmelCase = train_dataset.map( _lowerCAmelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __UpperCAmelCase = eval_dataset.map( _lowerCAmelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(UpperCamelCase__ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __UpperCAmelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(_lowerCAmelCase ) return batch __UpperCAmelCase = train_dataset.map( _lowerCAmelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) __UpperCAmelCase = eval_dataset.map( _lowerCAmelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric __UpperCAmelCase = datasets.load_metric('''wer''' ) def compute_metrics(UpperCamelCase__ : List[Any] ): __UpperCAmelCase = pred.predictions __UpperCAmelCase = np.argmax(_lowerCAmelCase , axis=-1 ) __UpperCAmelCase = processor.tokenizer.pad_token_id __UpperCAmelCase = processor.batch_decode(_lowerCAmelCase ) # we do not want to group tokens when computing the metrics __UpperCAmelCase = processor.batch_decode(pred.label_ids , group_tokens=_lowerCAmelCase ) __UpperCAmelCase = wer_metric.compute(predictions=_lowerCAmelCase , references=_lowerCAmelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __UpperCAmelCase = DataCollatorCTCWithPadding(processor=_lowerCAmelCase , padding=_lowerCAmelCase ) # Initialize our Trainer __UpperCAmelCase = CTCTrainer( model=_lowerCAmelCase , data_collator=_lowerCAmelCase , args=_lowerCAmelCase , compute_metrics=_lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __UpperCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __UpperCAmelCase = model_args.model_name_or_path else: __UpperCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __UpperCAmelCase = trainer.train(resume_from_checkpoint=_lowerCAmelCase ) trainer.save_model() __UpperCAmelCase = train_result.metrics __UpperCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCAmelCase ) ) __UpperCAmelCase = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics('''train''' , _lowerCAmelCase ) trainer.save_metrics('''train''' , _lowerCAmelCase ) trainer.save_state() # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(_lowerCAmelCase ) __UpperCAmelCase = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics('''eval''' , _lowerCAmelCase ) trainer.save_metrics('''eval''' , _lowerCAmelCase ) return results if __name__ == "__main__": main()
262
from math import isclose, sqrt def UpperCAmelCase_ (_lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ): __UpperCamelCase : Optional[Any] = point_y / 4 / point_x __UpperCamelCase : Any = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __UpperCamelCase : List[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __UpperCamelCase : Optional[int] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __UpperCamelCase : List[str] = outgoing_gradient**2 + 4 __UpperCamelCase : List[str] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __UpperCamelCase : Dict = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 __UpperCamelCase : Union[str, Any] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __UpperCamelCase : List[Any] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __UpperCamelCase : List[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus __UpperCamelCase : Tuple = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def UpperCAmelCase_ (_lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ): __UpperCamelCase : int = 0 __UpperCamelCase : float = first_x_coord __UpperCamelCase : float = first_y_coord __UpperCamelCase : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
327
0
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = np.inf def set_batch_size(_lowercase ) -> None: nonlocal batch_size if isinstance(_lowercase , _lowercase ): UpperCAmelCase : int = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowercase , _lowercase ): UpperCAmelCase : Tuple = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowercase , _lowercase ) and feature.dtype == "binary": UpperCAmelCase : Optional[Any] = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowercase , _lowercase ) return None if batch_size is np.inf else batch_size class UpperCamelCase_ ( UpperCamelCase_ ): def __init__( self , A , A = None , A = None , A = None , A = False , A = False , A = None , **A , ) -> int: super().__init__( UpperCamelCase__ , split=UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ , streaming=UpperCamelCase__ , num_proc=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCAmelCase : Optional[int] = path_or_paths if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else {self.split: path_or_paths} UpperCAmelCase : Union[str, Any] = _PACKAGED_DATASETS_MODULES['''parquet'''][1] UpperCAmelCase : Optional[Any] = Parquet( cache_dir=UpperCamelCase__ , data_files=UpperCamelCase__ , features=UpperCamelCase__ , hash=UpperCamelCase__ , **UpperCamelCase__ , ) def _lowercase( self ) -> Dict: if self.streaming: UpperCAmelCase : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCAmelCase : Tuple = None UpperCAmelCase : Any = None UpperCAmelCase : str = None UpperCAmelCase : Optional[Any] = None self.builder.download_and_prepare( download_config=UpperCamelCase__ , download_mode=UpperCamelCase__ , verification_mode=UpperCamelCase__ , base_path=UpperCamelCase__ , num_proc=self.num_proc , ) UpperCAmelCase : str = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase__ , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A = None , **A , ) -> str: UpperCAmelCase : Optional[Any] = dataset UpperCAmelCase : Any = path_or_buf UpperCAmelCase : Any = batch_size or get_writer_batch_size(dataset.features ) UpperCAmelCase : Tuple = parquet_writer_kwargs def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , """wb+""" ) as buffer: UpperCAmelCase : Optional[int] = self._write(file_obj=UpperCamelCase__ , batch_size=UpperCamelCase__ , **self.parquet_writer_kwargs ) else: UpperCAmelCase : List[Any] = self._write(file_obj=self.path_or_buf , batch_size=UpperCamelCase__ , **self.parquet_writer_kwargs ) return written def _lowercase( self , A , A , **A ) -> str: UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : str = parquet_writer_kwargs.pop("""path_or_buf""" , UpperCamelCase__ ) UpperCAmelCase : List[Any] = self.dataset.features.arrow_schema UpperCAmelCase : List[Any] = pq.ParquetWriter(UpperCamelCase__ , schema=UpperCamelCase__ , **UpperCamelCase__ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCamelCase__ ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ): UpperCAmelCase : List[Any] = query_table( table=self.dataset._data , key=slice(UpperCamelCase__ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCamelCase__ ) written += batch.nbytes writer.close() return written
712
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Dict=False , __lowerCamelCase : int=True ) -> Dict: if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __lowerCAmelCase =cached_file(__lowerCamelCase , __lowerCamelCase , force_download=not use_cached_models ) __lowerCAmelCase =config_class.from_json_file(__lowerCamelCase ) __lowerCAmelCase =True __lowerCAmelCase =True print(f"""Building TensorFlow model from configuration: {config}""" ) __lowerCAmelCase =model_class(__lowerCamelCase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __lowerCAmelCase =cached_file( __lowerCamelCase , __lowerCamelCase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __lowerCAmelCase =load_pytorch_checkpoint_in_tfa_model(__lowerCamelCase , __lowerCamelCase ) if compare_with_pt_model: __lowerCAmelCase =tf_model(tf_model.dummy_inputs , training=__lowerCamelCase ) # build the network __lowerCAmelCase =torch.load(__lowerCamelCase , map_location="""cpu""" ) __lowerCAmelCase =pt_model_class.from_pretrained( pretrained_model_name_or_path=__lowerCamelCase , config=__lowerCamelCase , state_dict=__lowerCamelCase ) with torch.no_grad(): __lowerCAmelCase =pt_model(**pt_model.dummy_inputs ) __lowerCAmelCase =pto[0].numpy() __lowerCAmelCase =tfo[0].numpy() __lowerCAmelCase =np.amax(np.abs(np_pt - np_tf ) ) print(f"""Max absolute difference between models outputs {diff}""" ) assert diff <= 2E-2, f"""Error, model absolute difference is >2e-2: {diff}""" # Save pytorch-model print(f"""Save TensorFlow model to {tf_dump_path}""" ) tf_model.save_weights(__lowerCamelCase , save_format="""h5""" ) def __lowerCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple=None , __lowerCamelCase : Any=None , __lowerCamelCase : Any=False , __lowerCamelCase : str=False , __lowerCamelCase : List[str]=False , __lowerCamelCase : Tuple=False , ) -> Dict: if args_model_type is None: __lowerCAmelCase =list(MODEL_CLASSES.keys() ) else: __lowerCAmelCase =[args_model_type] for j, model_type in enumerate(__lowerCamelCase , start=1 ): print("""=""" * 100 ) print(f""" Converting model type {j}/{len(__lowerCamelCase )}: {model_type}""" ) print("""=""" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __lowerCAmelCase =list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __lowerCAmelCase =model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__lowerCamelCase , __lowerCamelCase ) , start=1 ): print("""-""" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f""" Skipping finetuned checkpoint {model_shortcut_name}""" ) continue __lowerCAmelCase =model_shortcut_name elif only_convert_finetuned_models: print(f""" Skipping not finetuned checkpoint {model_shortcut_name}""" ) continue print( f""" Converting checkpoint {i}/{len(__lowerCamelCase )}: {model_shortcut_name} - model_type {model_type}""" ) print("""-""" * 100 ) if config_shortcut_name in aws_config_map: __lowerCAmelCase =cached_file(__lowerCamelCase , __lowerCamelCase , force_download=not use_cached_models ) else: __lowerCAmelCase =config_shortcut_name if model_shortcut_name in aws_model_maps: __lowerCAmelCase =cached_file(__lowerCamelCase , __lowerCamelCase , force_download=not use_cached_models ) else: __lowerCAmelCase =model_shortcut_name if os.path.isfile(__lowerCamelCase ): __lowerCAmelCase ="""converted_model""" convert_pt_checkpoint_to_tf( model_type=__lowerCamelCase , pytorch_checkpoint_path=__lowerCamelCase , config_file=__lowerCamelCase , tf_dump_path=os.path.join(__lowerCamelCase , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__lowerCamelCase , ) if remove_cached_files: os.remove(__lowerCamelCase ) os.remove(__lowerCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and " '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') lowercase_ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
354
from __future__ import annotations import time import numpy as np lowercase_ = [8, 5, 9, 7] lowercase_ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowercase_ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __a : def __init__( self : Tuple , snake_case_ : list[int] , snake_case_ : list[list[int]] , snake_case_ : list[list[int]] , )-> None: __lowerCAmelCase =claim_vector __lowerCAmelCase =allocated_resources_table __lowerCAmelCase =maximum_claim_table def UpperCamelCase ( self : Optional[int])-> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table) for i in range(len(self.__allocated_resources_table[0])) ] def UpperCamelCase ( self : Dict)-> list[int]: return np.array(self.__claim_vector) - np.array( self.__processes_resource_summation()) def UpperCamelCase ( self : Optional[Any])-> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i]) - np.array(snake_case_)) for i, allocated_resource in enumerate(self.__allocated_resources_table) ] def UpperCamelCase ( self : Dict)-> dict[int, list[int]]: return {self.__need().index(snake_case_): i for i in self.__need()} def UpperCamelCase ( self : Optional[Any] , **snake_case_ : Optional[Any])-> None: __lowerCAmelCase =self.__need() __lowerCAmelCase =self.__allocated_resources_table __lowerCAmelCase =self.__available_resources() __lowerCAmelCase =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""") while need_list: __lowerCAmelCase =False for each_need in need_list: __lowerCAmelCase =True for index, need in enumerate(snake_case_): if need > available_resources[index]: __lowerCAmelCase =False break if execution: __lowerCAmelCase =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowerCAmelCase =original_need_index print(F"""Process {process_number + 1} is executing.""") # remove the process run from stack need_list.remove(snake_case_) # update available/freed resources stack __lowerCAmelCase =np.array(snake_case_) + np.array( alloc_resources_table[process_number]) print( """Updated available resource stack for processes: """ + """ """.join([str(snake_case_) for x in available_resources])) break if safe: print("""The process is in a safe state.\n""") else: print("""System in unsafe state. Aborting...\n""") break def UpperCamelCase ( self : List[str])-> Optional[Any]: print(""" """ * 9 + """Allocated Resource Table""") for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(snake_case_) + 1}""" + """ """.join(F"""{it:>8}""" for it in item) + """\n""") print(""" """ * 9 + """System Resource Table""") for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(snake_case_) + 1}""" + """ """.join(F"""{it:>8}""" for it in item) + """\n""") print( """Current Usage by Active Processes: """ + """ """.join(str(snake_case_) for x in self.__claim_vector)) print( """Initial Available Resources: """ + """ """.join(str(snake_case_) for x in self.__available_resources())) time.sleep(1) if __name__ == "__main__": import doctest doctest.testmod()
354
1
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _snake_case (__lowercase): if isinstance(__lowercase , collections.abc.Iterable): return x return (x, x) @require_flax class _a : """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = np.abs((a - b) ).max() self.assertLessEqual(_UpperCAmelCase , _UpperCAmelCase , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ) -> List[str]: UpperCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel(_UpperCAmelCase ) UpperCamelCase_ = model(input_ids=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.get_vision_text_model(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = {'vision_model': vision_model, 'text_model': text_model} UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_UpperCAmelCase ) UpperCamelCase_ = model(input_ids=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.get_vision_text_model(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = {'vision_model': vision_model, 'text_model': text_model} UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_UpperCAmelCase ) UpperCamelCase_ = model(input_ids=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) UpperCamelCase_ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained(_UpperCAmelCase ) UpperCamelCase_ = model(input_ids=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) UpperCamelCase_ = after_output[0] UpperCamelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCAmelCase , 1e-3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ) -> str: UpperCamelCase_ , UpperCamelCase_ = self.get_vision_text_model(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = {'vision_model': vision_model, 'text_model': text_model} UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_UpperCAmelCase ) UpperCamelCase_ = model( input_ids=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , output_attentions=_UpperCAmelCase ) UpperCamelCase_ = output.vision_model_output.attentions self.assertEqual(len(_UpperCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase_ = to_atuple(vision_model.config.image_size ) UpperCamelCase_ = to_atuple(vision_model.config.patch_size ) UpperCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCamelCase_ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCamelCase_ = output.text_model_output.attentions self.assertEqual(len(_UpperCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: pt_model.to(_UpperCAmelCase ) pt_model.eval() # prepare inputs UpperCamelCase_ = inputs_dict UpperCamelCase_ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCamelCase_ = pt_model(**_UpperCAmelCase ).to_tuple() UpperCamelCase_ = fx_model(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_UpperCAmelCase , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_UpperCAmelCase ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) UpperCamelCase_ = fx_model_loaded(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_UpperCAmelCase , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_UpperCAmelCase ) UpperCamelCase_ = VisionTextDualEncoderModel.from_pretrained(_UpperCAmelCase , from_flax=_UpperCAmelCase ) pt_model_loaded.to(_UpperCAmelCase ) pt_model_loaded.eval() with torch.no_grad(): UpperCamelCase_ = pt_model_loaded(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_UpperCAmelCase , pt_output_loaded.numpy() , 4e-2 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = VisionTextDualEncoderModel(_UpperCAmelCase ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel(_UpperCAmelCase ) UpperCamelCase_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _UpperCAmelCase ) UpperCamelCase_ = fx_state self.check_pt_flax_equivalence(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = VisionTextDualEncoderModel(_UpperCAmelCase ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel(_UpperCAmelCase ) UpperCamelCase_ = load_flax_weights_in_pytorch_model(_UpperCAmelCase , fx_model.params ) self.check_pt_flax_equivalence(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.prepare_config_and_inputs() self.check_save_load(**_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_UpperCAmelCase ) @is_pt_flax_cross_test def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = config_inputs_dict.pop('vision_config' ) UpperCamelCase_ = config_inputs_dict.pop('text_config' ) UpperCamelCase_ = config_inputs_dict self.check_equivalence_pt_to_flax(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.check_equivalence_flax_to_pt(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ , UpperCamelCase_ = self.get_pretrained_model_and_inputs() UpperCamelCase_ = model_a(**_UpperCAmelCase ) UpperCamelCase_ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_UpperCAmelCase ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained(_UpperCAmelCase ) UpperCamelCase_ = model_a(**_UpperCAmelCase ) UpperCamelCase_ = after_outputs[0] UpperCamelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCAmelCase , 1e-5 ) @require_flax class _a ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_UpperCAmelCase , text_from_pt=_UpperCAmelCase , ) UpperCamelCase_ = 13 UpperCamelCase_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase_ = random_attention_mask([batch_size, 4] ) UpperCamelCase_ = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> int: UpperCamelCase_ = FlaxViTModel(_UpperCAmelCase ) UpperCamelCase_ = FlaxBertModel(_UpperCAmelCase ) return vision_model, text_model def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = FlaxViTModelTester(self ) UpperCamelCase_ = FlaxBertModelTester(self ) UpperCamelCase_ = vit_model_tester.prepare_config_and_inputs() UpperCamelCase_ = bert_model_tester.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ = vision_config_and_inputs UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _a ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_UpperCAmelCase , text_from_pt=_UpperCAmelCase , ) UpperCamelCase_ = 13 UpperCamelCase_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase_ = random_attention_mask([batch_size, 4] ) UpperCamelCase_ = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> int: UpperCamelCase_ = FlaxCLIPVisionModel(_UpperCAmelCase ) UpperCamelCase_ = FlaxBertModel(_UpperCAmelCase ) return vision_model, text_model def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = FlaxCLIPVisionModelTester(self ) UpperCamelCase_ = FlaxBertModelTester(self ) UpperCamelCase_ = clip_model_tester.prepare_config_and_inputs() UpperCamelCase_ = bert_model_tester.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ = vision_config_and_inputs UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _a ( unittest.TestCase ): """simple docstring""" @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) UpperCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCamelCase_ = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='np' ) UpperCamelCase_ = model(**_UpperCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCamelCase_ = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _UpperCAmelCase , atol=1e-3 ) )
711
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class _a ( unittest.TestCase ): """simple docstring""" A_ = inspect.getfile(accelerate.test_utils ) A_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) A_ = ["""accelerate""", """launch"""] A_ = Path.home() / """.cache/huggingface/accelerate""" A_ = """default_config.yaml""" A_ = config_folder / config_file A_ = config_folder / """_default_config.yaml""" A_ = Path("""tests/test_configs""" ) @classmethod def _UpperCAmelCase ( cls ) -> Union[str, Any]: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _UpperCAmelCase ( cls ) -> List[str]: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _UpperCAmelCase ( self ) -> Optional[int]: for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=_UpperCAmelCase ): execute_subprocess_async( self.base_cmd + ['--config_file', str(_UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() ) def _UpperCAmelCase ( self ) -> Tuple: execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class _a ( unittest.TestCase ): """simple docstring""" A_ = """test-tpu""" A_ = """us-central1-a""" A_ = """ls""" A_ = ["""accelerate""", """tpu-config"""] A_ = """cd /usr/share""" A_ = """tests/test_samples/test_command_file.sh""" A_ = """Running gcloud compute tpus tpu-vm ssh""" def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_UpperCAmelCase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _UpperCAmelCase , )
618
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : List[str] = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class _A ( __magic_name__ , __magic_name__): SCREAMING_SNAKE_CASE : Optional[int] = '''focalnet''' def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=96 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=[192, 384, 768, 768] , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , _SCREAMING_SNAKE_CASE=[3, 3, 3, 3] , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1e-4 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_size SCREAMING_SNAKE_CASE_ : Any = patch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Optional[Any] = embed_dim SCREAMING_SNAKE_CASE_ : List[Any] = use_conv_embed SCREAMING_SNAKE_CASE_ : str = hidden_sizes SCREAMING_SNAKE_CASE_ : List[Any] = depths SCREAMING_SNAKE_CASE_ : int = focal_levels SCREAMING_SNAKE_CASE_ : Union[str, Any] = focal_windows SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = mlp_ratio SCREAMING_SNAKE_CASE_ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : str = use_layerscale SCREAMING_SNAKE_CASE_ : Tuple = layerscale_value SCREAMING_SNAKE_CASE_ : Optional[int] = use_post_layernorm SCREAMING_SNAKE_CASE_ : str = use_post_layernorm_in_modulation SCREAMING_SNAKE_CASE_ : List[Any] = normalize_modulator SCREAMING_SNAKE_CASE_ : List[str] = initializer_range SCREAMING_SNAKE_CASE_ : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[Any] = encoder_stride SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
511
from __future__ import annotations from collections.abc import MutableSequence class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) SCREAMING_SNAKE_CASE_ : list[float] = list(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = degree def __add__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if self.degree > polynomial_a.degree: SCREAMING_SNAKE_CASE_ : Tuple = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : Any = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _SCREAMING_SNAKE_CASE ) def __sub__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ): """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_SCREAMING_SNAKE_CASE ) return polynomial def __repr__( self ): """simple docstring""" return self.__str__() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : list[float] = [0] * self.degree for i in range(self.degree ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : list[float] = [0] * (self.degree + 2) SCREAMING_SNAKE_CASE_ : Optional[int] = constant for i in range(self.degree + 1 ): SCREAMING_SNAKE_CASE_ : List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _SCREAMING_SNAKE_CASE ) def __eq__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return not self.__eq__(_SCREAMING_SNAKE_CASE )
511
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCAmelCase_ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : List[str] , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Dict ) -> None: warnings.warn( 'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DeiTImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
443
UpperCAmelCase_ : Optional[int] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase_ : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase_ : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
443
1
from ..utils import DummyObject, requires_backends class lowercase ( metaclass=snake_case__): """simple docstring""" a__ : Optional[Any] = ["onnx"] def __init__( self : str , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : List[str] ) -> List[str]: requires_backends(self , ["""onnx"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Optional[int] ) -> Optional[Any]: requires_backends(cls , ["""onnx"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[str] ) -> int: requires_backends(cls , ["""onnx"""] )
593
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __A = get_logger(__name__) def __a ( lowerCAmelCase_ : List[str] ,lowerCAmelCase_ : str ,lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : str=0 ) -> Tuple: '''simple docstring''' os.makedirs(lowerCAmelCase_ ,exist_ok=lowerCAmelCase_ ) with FSDP.state_dict_type( lowerCAmelCase_ ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): UpperCAmelCase_= model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase_= F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase_= os.path.join(lowerCAmelCase_ ,lowerCAmelCase_ ) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""" ) torch.save(lowerCAmelCase_ ,lowerCAmelCase_ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase_= ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase_= os.path.join(lowerCAmelCase_ ,lowerCAmelCase_ ) logger.info(F"""Saving model to {output_model_file}""" ) torch.save(lowerCAmelCase_ ,lowerCAmelCase_ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase_= os.path.join(lowerCAmelCase_ ,F"""{MODEL_NAME}_{model_index}""" ) os.makedirs(lowerCAmelCase_ ,exist_ok=lowerCAmelCase_ ) logger.info(F"""Saving model to {ckpt_dir}""" ) UpperCAmelCase_= {"""model""": state_dict} dist_cp.save_state_dict( state_dict=lowerCAmelCase_ ,storage_writer=dist_cp.FileSystemWriter(lowerCAmelCase_ ) ,planner=DefaultSavePlanner() ,) logger.info(F"""Model saved to {ckpt_dir}""" ) def __a ( lowerCAmelCase_ : Dict ,lowerCAmelCase_ : str ,lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Union[str, Any]=0 ) -> Optional[Any]: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCAmelCase_ ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(lowerCAmelCase_ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return UpperCAmelCase_= F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase_= os.path.join(lowerCAmelCase_ ,lowerCAmelCase_ ) logger.info(F"""Loading model from {input_model_file}""" ) UpperCAmelCase_= torch.load(lowerCAmelCase_ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase_= ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase_= os.path.join(lowerCAmelCase_ ,lowerCAmelCase_ ) logger.info(F"""Loading model from {input_model_file}""" ) UpperCAmelCase_= torch.load(lowerCAmelCase_ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase_= ( os.path.join(lowerCAmelCase_ ,F"""{MODEL_NAME}_{model_index}""" ) if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""" ) UpperCAmelCase_= {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=lowerCAmelCase_ ,storage_reader=dist_cp.FileSystemReader(lowerCAmelCase_ ) ,planner=DefaultLoadPlanner() ,) UpperCAmelCase_= state_dict["""model"""] logger.info(F"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(lowerCAmelCase_ ) def __a ( lowerCAmelCase_ : str ,lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : str ,lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : Any=0 ) -> List[str]: '''simple docstring''' os.makedirs(lowerCAmelCase_ ,exist_ok=lowerCAmelCase_ ) with FSDP.state_dict_type( lowerCAmelCase_ ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): UpperCAmelCase_= FSDP.optim_state_dict(lowerCAmelCase_ ,lowerCAmelCase_ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCAmelCase_= ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase_= os.path.join(lowerCAmelCase_ ,lowerCAmelCase_ ) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(lowerCAmelCase_ ,lowerCAmelCase_ ) logger.info(F"""Optimizer state saved in {output_optimizer_file}""" ) else: UpperCAmelCase_= os.path.join(lowerCAmelCase_ ,F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(lowerCAmelCase_ ,exist_ok=lowerCAmelCase_ ) logger.info(F"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} ,storage_writer=dist_cp.FileSystemWriter(lowerCAmelCase_ ) ,planner=DefaultSavePlanner() ,) logger.info(F"""Optimizer state saved in {ckpt_dir}""" ) def __a ( lowerCAmelCase_ : Union[str, Any] ,lowerCAmelCase_ : Dict ,lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : int ,lowerCAmelCase_ : int ,lowerCAmelCase_ : str=0 ) -> Union[str, Any]: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCAmelCase_ ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase_= None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCAmelCase_= ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase_= os.path.join(lowerCAmelCase_ ,lowerCAmelCase_ ) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""" ) UpperCAmelCase_= torch.load(lowerCAmelCase_ ) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""" ) else: UpperCAmelCase_= ( os.path.join(lowerCAmelCase_ ,F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""" ) UpperCAmelCase_= load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() ,optimizer_key="""optimizer""" ,storage_reader=dist_cp.FileSystemReader(lowerCAmelCase_ ) ,) UpperCAmelCase_= optim_state["""optimizer"""] logger.info(F"""Optimizer loaded from {ckpt_dir}""" ) UpperCAmelCase_= FSDP.optim_state_dict_to_load(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) optimizer.load_state_dict(lowerCAmelCase_ )
593
1
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __magic_name__ : Any = 5_0_0_0_3 __magic_name__ : int = 5_0_0_0_2 @require_sentencepiece @require_tokenizers class lowerCamelCase ( __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = PLBartTokenizer lowerCAmelCase_ = None lowerCAmelCase_ = False def lowercase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing A_ = PLBartTokenizer(__UpperCamelCase , language_codes="base" , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ): A_ = PLBartTokenizer(__UpperCamelCase , language_codes="base" , keep_accents=__UpperCamelCase ) A_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) A_ = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A_ = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) A_ = tokenizer.vocab_size A_ = [tokenizer.convert_ids_to_tokens(__UpperCamelCase ) for x in range(end - 4 , __UpperCamelCase )] self.assertListEqual(__UpperCamelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) A_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" A_ = tokenizer(__UpperCamelCase ).input_ids self.assertEqual( tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) , __UpperCamelCase , ) def lowercase_ ( self ): A_ = PLBartTokenizer(__UpperCamelCase , language_codes="multi" , keep_accents=__UpperCamelCase ) A_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) A_ = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A_ = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) A_ = tokenizer.vocab_size A_ = [tokenizer.convert_ids_to_tokens(__UpperCamelCase ) for x in range(end - 7 , __UpperCamelCase )] self.assertListEqual( __UpperCamelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) A_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" A_ = tokenizer(__UpperCamelCase ).input_ids self.assertEqual( tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) , __UpperCamelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = """uclanlp/plbart-python-en_XX""" lowerCAmelCase_ = [ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] lowerCAmelCase_ = [ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] lowerCAmelCase_ = [ 134, 5_452, 33_460, 33_441, 33_463, 33_465, 33_463, 33_449, 988, 20, 33_456, 19, 33_456, 771, 39, 4_258, 889, 3_318, 33_441, 33_463, 33_465, 33_463, 33_449, 2_471, 2, PYTHON_CODE, ] @classmethod def lowercase_ ( cls ): A_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) A_ = 1 return cls def lowercase_ ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def lowercase_ ( self ): A_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) def lowercase_ ( self ): self.assertIn(__UpperCamelCase , self.tokenizer.all_special_ids ) A_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] A_ = self.tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) A_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCamelCase ) def lowercase_ ( self ): A_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , __UpperCamelCase ) A_ = 10 A_ = self.tokenizer(__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __UpperCamelCase ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) def lowercase_ ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def lowercase_ ( self ): A_ = tempfile.mkdtemp() A_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__UpperCamelCase ) A_ = PLBartTokenizer.from_pretrained(__UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCamelCase ) @require_torch def lowercase_ ( self ): A_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , return_tensors="pt" ) A_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __UpperCamelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase_ ( self ): A_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) A_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase_ ( self ): A_ = self.tokenizer(self.src_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=3 , return_tensors="pt" ) A_ = self.tokenizer( text_target=self.tgt_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=10 , return_tensors="pt" ) A_ = targets["input_ids"] A_ = shift_tokens_right(__UpperCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase_ ( self ): A_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
608
import math def lowerCAmelCase ( snake_case__ : int )-> str: A_ = 0 A_ = 0 while num > 0: A_ = num % 8 A_ = octal + (remainder * math.floor(math.pow(10 , snake_case__ ) )) counter += 1 A_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f'0o{int(snake_case__ )}' def lowerCAmelCase ( )-> None: print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
608
1
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class a_ : '''simple docstring''' def __init__( self , A , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = 30 _SCREAMING_SNAKE_CASE = self.seq_length + self.mem_len _SCREAMING_SNAKE_CASE = 15 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = [10, 50, 80] _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = 128 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = self.vocab_size - 1 _SCREAMING_SNAKE_CASE = 0.01 def snake_case_( self ) -> Dict: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def snake_case_( self ) -> List[Any]: random.seed(self.seed ) tf.random.set_seed(self.seed ) def snake_case_( self , A , A , A , A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFTransfoXLModel(__A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model(__A ).to_tuple() _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids_a, """mems""": mems_a} _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model(__A ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def snake_case_( self , A , A , A , A ) -> str: _SCREAMING_SNAKE_CASE = TFTransfoXLLMHeadModel(__A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model(__A ).to_tuple() _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids_a, """labels""": lm_labels} _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model(__A ).to_tuple() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model([input_ids_a, mems_a] ).to_tuple() _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model(__A ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def snake_case_( self , A , A , A , A ) -> Dict: _SCREAMING_SNAKE_CASE = TFTransfoXLForSequenceClassification(__A ) _SCREAMING_SNAKE_CASE = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) UpperCamelCase = () if is_tf_available() else () UpperCamelCase = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def snake_case_( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def snake_case_( self ) -> List[str]: _SCREAMING_SNAKE_CASE = TFTransfoXLModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__A , d_embed=37 ) def snake_case_( self ) -> List[Any]: self.config_tester.run_common_tests() def snake_case_( self ) -> List[Any]: self.model_tester.set_seed() _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*__A ) def snake_case_( self ) -> List[str]: self.model_tester.set_seed() _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*__A ) def snake_case_( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__A ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(__A ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _SCREAMING_SNAKE_CASE = model.get_output_embeddings() assert isinstance(__A , tf.keras.layers.Layer ) _SCREAMING_SNAKE_CASE = model.get_bias() assert name is None else: _SCREAMING_SNAKE_CASE = model.get_output_embeddings() assert x is None _SCREAMING_SNAKE_CASE = model.get_bias() assert name is None def snake_case_( self ) -> int: # TODO JP: Make TransfoXL XLA compliant pass @slow def snake_case_( self ) -> List[Any]: for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFTransfoXLModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @unittest.skip(reason="""This model doesn\'t play well with fit() due to not returning a single loss.""" ) def snake_case_( self ) -> List[Any]: pass @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def snake_case_( self ) -> Dict: _SCREAMING_SNAKE_CASE = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _SCREAMING_SNAKE_CASE = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _SCREAMING_SNAKE_CASE = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _SCREAMING_SNAKE_CASE = model.generate(__A , max_length=200 , do_sample=__A ) self.assertListEqual(output_ids[0].numpy().tolist() , __A )
314
def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Union[str, Any]: _lowercase = len(snake_case__ ) _lowercase = sum(snake_case__ ) _lowercase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _lowercase = True for i in range(1 , s + 1 ): _lowercase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _lowercase = dp[i][j - 1] if arr[i - 1] <= j: _lowercase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _lowercase = s - 2 * j break return diff
67
0
"""simple docstring""" import copy import re class a__ : snake_case_ = "hp" snake_case_ = {} snake_case_ = None @classmethod def snake_case__ ( cls, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = prefix lowercase__ = defaults cls.build_naming_info() @staticmethod def snake_case__ ( _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if len(_UpperCAmelCase ) == 0: return "" lowercase__ = None if any(char.isdigit() for char in word ): raise Exception(F'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(_UpperCAmelCase ) + 1 ): lowercase__ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowercase__ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_UpperCAmelCase ): lowercase__ = "" while integer != 0: lowercase__ = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s lowercase__ = 0 while True: lowercase__ = word + "#" + int_to_alphabetic(_UpperCAmelCase ) if sword in info["reverse_short_word"]: continue else: lowercase__ = sword break lowercase__ = short_word lowercase__ = word return short_word @staticmethod def snake_case__ ( _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = param_name.split("_" ) lowercase__ = [TrialShortNamer.shortname_for_word(_UpperCAmelCase, _UpperCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowercase__ = ["", "_"] for separator in separators: lowercase__ = separator.join(_UpperCAmelCase ) if shortname not in info["reverse_short_param"]: lowercase__ = shortname lowercase__ = param_name return shortname return param_name @staticmethod def snake_case__ ( _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = TrialShortNamer.shortname_for_key(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = short_name lowercase__ = param_name @classmethod def snake_case__ ( cls ): '''simple docstring''' if cls.NAMING_INFO is not None: return lowercase__ = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } lowercase__ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = info @classmethod def snake_case__ ( cls, _UpperCAmelCase ): '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None lowercase__ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowercase__ = cls.NAMING_INFO["short_param"][k] if isinstance(_UpperCAmelCase, _UpperCAmelCase ): lowercase__ = 1 if v else 0 lowercase__ = "" if isinstance(_UpperCAmelCase, (int, float) ) else "-" lowercase__ = F'''{key}{sep}{v}''' name.append(_UpperCAmelCase ) return "_".join(_UpperCAmelCase ) @classmethod def snake_case__ ( cls, _UpperCAmelCase ): '''simple docstring''' lowercase__ = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowercase__ = [] else: lowercase__ = repr.split("_" ) lowercase__ = {} for value in values: if "-" in value: lowercase__ , lowercase__ = value.split("-" ) else: lowercase__ = re.sub("[0-9.]", "", _UpperCAmelCase ) lowercase__ = float(re.sub("[^0-9.]", "", _UpperCAmelCase ) ) lowercase__ = cls.NAMING_INFO["reverse_short_param"][p_k] lowercase__ = p_v for k in cls.DEFAULTS: if k not in parameters: lowercase__ = cls.DEFAULTS[k] return parameters
668
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def snake_case__ ( lowerCamelCase_ , lowerCamelCase_=False ): A : Optional[Any] = OmegaConf.load(lowerCamelCase_ ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase_ ) ) ) return config def snake_case__ ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None ): if conf_path is None: A : int = '''./model_checkpoints/vqgan_only.yaml''' A : Optional[Any] = load_config(lowerCamelCase_ , display=lowerCamelCase_ ) A : List[Any] = VQModel(**config.model.params ) if ckpt_path is None: A : Dict = '''./model_checkpoints/vqgan_only.pt''' A : Optional[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_ ) if ".ckpt" in ckpt_path: A : Optional[int] = sd['''state_dict'''] model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) model.to(lowerCamelCase_ ) del sd return model def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A , A , A : Optional[int] = model.encode(lowerCamelCase_ ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) A : Optional[int] = model.decode(lowerCamelCase_ ) return xrec def snake_case__ ( lowerCamelCase_ , lowerCamelCase_=False ): A , A : List[Any] = string.rsplit('''.''' , 1 ) if reload: A : Tuple = importlib.import_module(lowerCamelCase_ ) importlib.reload(lowerCamelCase_ ) return getattr(importlib.import_module(lowerCamelCase_ , package=lowerCamelCase_ ) , cls ) def snake_case__ ( lowerCamelCase_ ): if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=True , lowerCamelCase_=True ): A : str = instantiate_from_config(lowerCamelCase_ ) if sd is not None: model.load_state_dict(lowerCamelCase_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): # load the specified checkpoint if ckpt: A : List[Any] = torch.load(lowerCamelCase_ , map_location='''cpu''' ) A : List[str] = pl_sd['''global_step'''] print(F'loaded model from global step {global_step}.' ) else: A : List[Any] = {'''state_dict''': None} A : List[str] = None A : Optional[int] = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=lowerCamelCase_ , eval_mode=lowerCamelCase_ )['''model'''] return model, global_step
542
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case__ ( lowerCamelCase_ ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case__ ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case__ ( ): A : List[Any] = '''mock-s3-bucket''' A : Union[str, Any] = F's3://{mock_bucket}' A : str = extract_path_from_uri(lowerCamelCase_ ) assert dataset_path.startswith('''s3://''' ) is False A : Tuple = '''./local/path''' A : Tuple = extract_path_from_uri(lowerCamelCase_ ) assert dataset_path == new_dataset_path def snake_case__ ( lowerCamelCase_ ): A : int = is_remote_filesystem(lowerCamelCase_ ) assert is_remote is True A : Dict = fsspec.filesystem('''file''' ) A : Tuple = is_remote_filesystem(lowerCamelCase_ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , lowerCamelCase_ ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): A : List[str] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} A : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: A : int = F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase_ ) A : Dict = fsspec.filesystem(compression_fs_class.protocol , fo=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) A : str = os.path.basename(lowerCamelCase_ ) A : str = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' ) as f, open(lowerCamelCase_ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): A : Union[str, Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} A : int = compressed_file_paths[protocol] A : List[str] = '''dataset.jsonl''' A : List[str] = F'{protocol}://{member_file_path}::{compressed_file_path}' A , *A : List[Any] = fsspec.get_fs_token_paths(lowerCamelCase_ ) assert fs.isfile(lowerCamelCase_ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): A : List[Any] = hf_api.dataset_info(lowerCamelCase_ , token=lowerCamelCase_ ) A : List[str] = HfFileSystem(repo_info=lowerCamelCase_ , token=lowerCamelCase_ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(lowerCamelCase_ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case__ ( ): A : Tuple = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowerCamelCase_ , lowerCamelCase_ , clobber=lowerCamelCase_ ) with pytest.warns(lowerCamelCase_ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowerCamelCase_ ) == 1 assert ( str(warning_info[0].message ) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
542
1
from pathlib import Path import fire from tqdm import tqdm def _lowerCamelCase( lowerCAmelCase__ : Any="ro" , lowerCAmelCase__ : Dict="en" , lowerCAmelCase__ : Dict="wmt16" , lowerCAmelCase__ : List[Any]=None ): '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) SCREAMING_SNAKE_CASE_ : List[Any] = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) SCREAMING_SNAKE_CASE_ : str = datasets.load_dataset(A__ , A__ ) if save_dir is None: SCREAMING_SNAKE_CASE_ : Dict = F'''{dataset}-{pair}''' SCREAMING_SNAKE_CASE_ : List[str] = Path(A__ ) save_dir.mkdir(exist_ok=A__ ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets SCREAMING_SNAKE_CASE_ : str = 'val' if split == 'validation' else split SCREAMING_SNAKE_CASE_ : List[str] = save_dir.joinpath(F'''{fn}.source''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = save_dir.joinpath(F'''{fn}.target''' ) SCREAMING_SNAKE_CASE_ : Dict = src_path.open('w+' ) SCREAMING_SNAKE_CASE_ : List[Any] = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): SCREAMING_SNAKE_CASE_ : str = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
714
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __a ( __A ): '''simple docstring''' def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = SMALL_MODEL_IDENTIFIER SCREAMING_SNAKE_CASE_ : List[Any] = 'pt' SCREAMING_SNAKE_CASE_ : Tuple = 'tf' def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Dict = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : int = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase__ ) model_tf.save_pretrained(UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'mock_framework' # Framework provided - return whatever the user provides SCREAMING_SNAKE_CASE_ : Union[str, Any] = FeaturesManager.determine_framework(self.test_model , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = FeaturesManager.determine_framework(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = FeaturesManager.determine_framework(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = FeaturesManager.determine_framework(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FeaturesManager.determine_framework(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Any = FeaturesManager.determine_framework(UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = MagicMock(return_value=UpperCamelCase__ ) with patch('transformers.onnx.features.is_tf_available' , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : str = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow SCREAMING_SNAKE_CASE_ : List[str] = MagicMock(return_value=UpperCamelCase__ ) with patch('transformers.onnx.features.is_torch_available' , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase__ , self.framework_tf ) # Both in environment -> use PyTorch SCREAMING_SNAKE_CASE_ : Union[str, Any] = MagicMock(return_value=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = MagicMock(return_value=UpperCamelCase__ ) with patch('transformers.onnx.features.is_tf_available' , UpperCamelCase__ ), patch( 'transformers.onnx.features.is_torch_available' , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase__ , self.framework_pt ) # Both not in environment -> raise error SCREAMING_SNAKE_CASE_ : Tuple = MagicMock(return_value=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Any = MagicMock(return_value=UpperCamelCase__ ) with patch('transformers.onnx.features.is_tf_available' , UpperCamelCase__ ), patch( 'transformers.onnx.features.is_torch_available' , UpperCamelCase__ ): with self.assertRaises(UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = FeaturesManager.determine_framework(self.test_model )
97
0
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
26
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( a__ : List[Any] , a__ : int , a__ : Dict ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = MobileBertConfig.from_json_file(a__ ) print(f'''Building PyTorch model from configuration: {config}''' ) _UpperCamelCase = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint _UpperCamelCase = load_tf_weights_in_mobilebert(a__ , a__ , a__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
589
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _lowercase ( a__ : List[str] , a__ : Dict , a__ : Any ) -> Any: """simple docstring""" _UpperCamelCase = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _UpperCamelCase = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } _UpperCamelCase = f'''{src_lang}-{tgt_lang}''' _UpperCamelCase = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(a__ , exist_ok=a__ ) _UpperCamelCase = os.path.join(a__ , "README.md" ) print(f'''Generating {path}''' ) with open(a__ , "w" , encoding="utf-8" ) as f: f.write(a__ ) # make sure we are under the root of the project __lowerCAmelCase = Path(__file__).resolve().parent.parent.parent __lowerCAmelCase = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model_name.split("""-""") __lowerCAmelCase = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
589
1
'''simple docstring''' from math import isqrt, loga def _snake_case ( A_ : int ): """simple docstring""" a_ : str = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , A_ , A_ ): a_ : Dict = False return [i for i in range(2 , A_ ) if is_prime[i]] def _snake_case ( A_ : int = 80_0800 , A_ : int = 80_0800 ): """simple docstring""" a_ : str = degree * loga(A_ ) a_ : str = int(A_ ) a_ : Tuple = calculate_prime_numbers(A_ ) a_ : int = 0 a_ : Tuple = 0 a_ : Tuple = len(A_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
577
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): """simple docstring""" @register_to_config def __init__( self , lowerCAmelCase_ = 16 , lowerCAmelCase_ = 88 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 32 , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = "geglu" , lowerCAmelCase_ = True , lowerCAmelCase_ = True , ): '''simple docstring''' super().__init__() a_ : List[Any] = num_attention_heads a_ : Optional[int] = attention_head_dim a_ : Union[str, Any] = num_attention_heads * attention_head_dim a_ : Any = in_channels a_ : List[str] = torch.nn.GroupNorm(num_groups=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , eps=1E-6 , affine=lowerCAmelCase_ ) a_ : List[Any] = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. Define transformers blocks a_ : Any = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dropout=lowerCAmelCase_ , cross_attention_dim=lowerCAmelCase_ , activation_fn=lowerCAmelCase_ , attention_bias=lowerCAmelCase_ , double_self_attention=lowerCAmelCase_ , norm_elementwise_affine=lowerCAmelCase_ , ) for d in range(lowerCAmelCase_ ) ] ) a_ : List[str] = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=1 , lowerCAmelCase_=None , lowerCAmelCase_ = True , ): '''simple docstring''' a_ , a_ , a_ , a_ : Optional[Any] = hidden_states.shape a_ : List[Any] = batch_frames // num_frames a_ : Tuple = hidden_states a_ : str = hidden_states[None, :].reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Union[str, Any] = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) a_ : Optional[Any] = self.norm(lowerCAmelCase_ ) a_ : str = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Union[str, Any] = self.proj_in(lowerCAmelCase_ ) # 2. Blocks for block in self.transformer_blocks: a_ : List[str] = block( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , timestep=lowerCAmelCase_ , cross_attention_kwargs=lowerCAmelCase_ , class_labels=lowerCAmelCase_ , ) # 3. Output a_ : Tuple = self.proj_out(lowerCAmelCase_ ) a_ : int = ( hidden_states[None, None, :] .reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) a_ : Tuple = hidden_states.reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Optional[Any] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCAmelCase_ )
577
1
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() a__ = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def _UpperCAmelCase ( a : int , a : Tuple , a : Optional[Any] , a : List[str] , a : List[str]=False , a : List[Any]=True ): if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) snake_case__ , snake_case__ , snake_case__ , snake_case__ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: snake_case__ = cached_file(a , a , force_download=not use_cached_models ) snake_case__ = config_class.from_json_file(a ) snake_case__ = True snake_case__ = True print(F'''Building TensorFlow model from configuration: {config}''' ) snake_case__ = model_class(a ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): snake_case__ = cached_file( a , a , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: snake_case__ = load_pytorch_checkpoint_in_tfa_model(a , a ) if compare_with_pt_model: snake_case__ = tf_model(tf_model.dummy_inputs , training=a ) # build the network snake_case__ = torch.load(a , map_location="""cpu""" ) snake_case__ = pt_model_class.from_pretrained( pretrained_model_name_or_path=a , config=a , state_dict=a ) with torch.no_grad(): snake_case__ = pt_model(**pt_model.dummy_inputs ) snake_case__ = pto[0].numpy() snake_case__ = tfo[0].numpy() snake_case__ = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2e-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(a , save_format="""h5""" ) def _UpperCAmelCase ( a : Dict , a : int , a : str=None , a : int=None , a : str=False , a : Any=False , a : str=False , a : List[str]=False , ): if args_model_type is None: snake_case__ = list(MODEL_CLASSES.keys() ) else: snake_case__ = [args_model_type] for j, model_type in enumerate(a , start=1 ): print("""=""" * 100 ) print(F''' Converting model type {j}/{len(a )}: {model_type}''' ) print("""=""" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: snake_case__ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: snake_case__ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(a , a ) , start=1 ): print("""-""" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue snake_case__ = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(a )}: {model_shortcut_name} - model_type {model_type}''' ) print("""-""" * 100 ) if config_shortcut_name in aws_config_map: snake_case__ = cached_file(a , a , force_download=not use_cached_models ) else: snake_case__ = config_shortcut_name if model_shortcut_name in aws_model_maps: snake_case__ = cached_file(a , a , force_download=not use_cached_models ) else: snake_case__ = model_shortcut_name if os.path.isfile(a ): snake_case__ = """converted_model""" convert_pt_checkpoint_to_tf( model_type=a , pytorch_checkpoint_path=a , config_file=a , tf_dump_path=os.path.join(a , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=a , ) if remove_cached_files: os.remove(a ) os.remove(a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") a__ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
99
import requests from bsa import BeautifulSoup def _UpperCAmelCase ( a : str , a : dict ): snake_case__ = BeautifulSoup(requests.get(a , params=a ).content , """html.parser""" ) snake_case__ = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case__ = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": a__ = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 3_0, """pages""": """3979-3990""", """year""": 2_0_1_8, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
99
1
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowercase_ ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('foo.json',)] ) def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : str ): _A = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCAmelCase , config_name=_UpperCAmelCase ) _A = GenerationConfig.from_pretrained(_UpperCAmelCase , config_name=_UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = AutoConfig.from_pretrained('gpt2' ) _A = GenerationConfig.from_model_config(_UpperCAmelCase ) _A = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase_ ( self : Dict ): _A = GenerationConfig() _A = { 'max_new_tokens': 1_024, 'foo': 'bar', } _A = copy.deepcopy(_UpperCAmelCase ) _A = generation_config.update(**_UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_UpperCAmelCase , {'foo': 'bar'} ) def lowerCAmelCase_ ( self : str ): _A = GenerationConfig() _A = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(_UpperCAmelCase ) _A = GenerationConfig.from_pretrained(_UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) _A = GenerationConfig.from_model_config(_UpperCAmelCase ) assert not hasattr(_UpperCAmelCase , 'foo' ) # no new kwargs should be initialized if from config def lowerCAmelCase_ ( self : Any ): _A = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) _A = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCAmelCase ) _A = GenerationConfig.from_pretrained(_UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowercase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase_ ( cls : Any ): _A = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : str ): try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def lowerCAmelCase_ ( self : List[Any] ): _A = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) _A = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCAmelCase , repo_id='test-generation-config' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) _A = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) _A = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCAmelCase , repo_id='valid_org/test-generation-config-org' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) _A = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
7
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __a ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = "gpt_neo" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Optional[int] , snake_case_ : int=5_02_57 , snake_case_ : Tuple=20_48 , snake_case_ : Optional[int]=20_48 , snake_case_ : int=24 , snake_case_ : List[Any]=[[["global", "local"], 12]] , snake_case_ : Tuple=16 , snake_case_ : Optional[int]=None , snake_case_ : Dict=2_56 , snake_case_ : List[str]="gelu_new" , snake_case_ : List[Any]=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : str=0.1 , snake_case_ : Union[str, Any]=1e-5 , snake_case_ : str=0.0_2 , snake_case_ : Union[str, Any]=True , snake_case_ : Optional[int]=5_02_56 , snake_case_ : Tuple=5_02_56 , **snake_case_ : Optional[int] , )-> Tuple: __lowerCAmelCase =vocab_size __lowerCAmelCase =max_position_embeddings __lowerCAmelCase =hidden_size __lowerCAmelCase =num_layers __lowerCAmelCase =num_heads __lowerCAmelCase =intermediate_size __lowerCAmelCase =window_size __lowerCAmelCase =activation_function __lowerCAmelCase =resid_dropout __lowerCAmelCase =embed_dropout __lowerCAmelCase =attention_dropout __lowerCAmelCase =classifier_dropout __lowerCAmelCase =layer_norm_epsilon __lowerCAmelCase =initializer_range __lowerCAmelCase =use_cache __lowerCAmelCase =bos_token_id __lowerCAmelCase =eos_token_id __lowerCAmelCase =attention_types __lowerCAmelCase =self.expand_attention_types_params(snake_case_) if len(self.attention_layers) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F"""but is `len(config.attention_layers) = {len(self.attention_layers)}`, """ F"""`config.num_layers = {self.num_layers}`. """ """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""") super().__init__(bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_) @staticmethod def UpperCamelCase ( snake_case_ : Optional[int])-> Any: __lowerCAmelCase =[] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def __lowerCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ) -> int: import torch __lowerCAmelCase =input.size() __lowerCAmelCase =len(__lowerCamelCase ) __lowerCAmelCase =shape[dimension] __lowerCAmelCase =torch.arange(0 , __lowerCamelCase , __lowerCamelCase ) __lowerCAmelCase =torch.div(sizedim - size , __lowerCamelCase , rounding_mode="""floor""" ) + 1 __lowerCAmelCase =torch.arange(__lowerCamelCase ) + low_indices[:min_length][:, None] __lowerCAmelCase =[slice(__lowerCamelCase )] * rank __lowerCAmelCase =indices __lowerCAmelCase =input[s] __lowerCAmelCase =list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__lowerCamelCase ) def __lowerCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ) -> List[str]: import torch __lowerCAmelCase =torch.arange(1 , __lowerCamelCase ) __lowerCAmelCase =torch.remainder(__lowerCamelCase , __lowerCamelCase ) __lowerCAmelCase =remainders == 0 __lowerCAmelCase =candidates[divisor_indices] __lowerCAmelCase =torch.max(__lowerCamelCase ) return largest_divisor, torch.div(__lowerCamelCase , __lowerCamelCase , rounding_mode="""floor""" ) class __a ( SCREAMING_SNAKE_CASE ): @property def UpperCamelCase ( self : Union[str, Any])-> Mapping[str, Mapping[int, str]]: __lowerCAmelCase =OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}}) if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="""inputs""") __lowerCAmelCase ={0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase ={0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase ( self : Optional[int])-> int: return self._config.num_heads def UpperCamelCase ( self : int , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , )-> Mapping[str, Any]: __lowerCAmelCase =super(snake_case_ , self).generate_dummy_inputs( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_) # We need to order the input in the way they appears in the forward() __lowerCAmelCase =OrderedDict({"""input_ids""": common_inputs["""input_ids"""]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""") else: import torch __lowerCAmelCase , __lowerCAmelCase =common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase =seqlen + 2 __lowerCAmelCase =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase =[ (torch.zeros(snake_case_), torch.zeros(snake_case_)) for _ in range(self.num_layers) ] __lowerCAmelCase =common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase =ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase =torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_)] , dim=1) return ordered_inputs @property def UpperCamelCase ( self : Union[str, Any])-> int: return 13
354
0
import numpy as np import qiskit def __UpperCAmelCase ( __a : int = 8 ,__a : int | None = None ) -> Any: """simple docstring""" _a : Optional[Any] = np.random.default_rng(seed=_lowerCamelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _a : Optional[Any] = 6 * key_len # Measurement basis for Alice's qubits. _a : List[str] = rng.integers(2 ,size=_lowerCamelCase ) # The set of states Alice will prepare. _a : str = rng.integers(2 ,size=_lowerCamelCase ) # Measurement basis for Bob's qubits. _a : List[str] = rng.integers(2 ,size=_lowerCamelCase ) # Quantum Circuit to simulate BB84 _a : Tuple = qiskit.QuantumCircuit(_lowerCamelCase ,name='''BB84''' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if alice_state[index] == 1: bbaa_circ.x(_lowerCamelCase ) if alice_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if bob_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _a : Optional[Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _a : Tuple = qiskit.execute(_lowerCamelCase ,_lowerCamelCase ,shots=1 ,seed_simulator=_lowerCamelCase ) # Returns the result of measurement. _a : Optional[int] = job.result().get_counts(_lowerCamelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _a : Any = "".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _a : Optional[int] = gen_key[:key_len] if len(_lowerCamelCase ) >= key_len else gen_key.ljust(_lowerCamelCase ,'''0''' ) return key if __name__ == "__main__": print(f'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
704
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ['''names''', '''prefix'''] a__ = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] a__ = ['''encoding_errors''', '''on_bad_lines'''] a__ = ['''date_format'''] @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : str = "," UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : Optional[Union[int, List[int], str]] = "infer" UpperCAmelCase__ : Optional[List[str]] = None UpperCAmelCase__ : Optional[List[str]] = None UpperCAmelCase__ : Optional[Union[int, str, List[int], List[str]]] = None UpperCAmelCase__ : Optional[Union[List[int], List[str]]] = None UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : bool = True UpperCAmelCase__ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCAmelCase__ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCAmelCase__ : Optional[list] = None UpperCAmelCase__ : Optional[list] = None UpperCAmelCase__ : bool = False UpperCAmelCase__ : Optional[Union[int, List[int]]] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[Union[str, List[str]]] = None UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = True UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : str = "." UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : str = '"' UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = True UpperCAmelCase__ : int = 0 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : int = 10000 UpperCAmelCase__ : Optional[datasets.Features] = None UpperCAmelCase__ : Optional[str] = "strict" UpperCAmelCase__ : Literal["error", "warn", "skip"] = "error" UpperCAmelCase__ : Optional[str] = None def __lowercase ( self ) -> Union[str, Any]: if self.delimiter is not None: _a : str = self.delimiter if self.column_names is not None: _a : Optional[int] = self.column_names @property def __lowercase ( self ) -> Any: _a : int = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _a ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = CsvConfig def __lowercase ( self ) -> List[str]: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self , _a ) -> int: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _a : Optional[int] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _a : Optional[int] = data_files if isinstance(_a , _a ): _a : Union[str, Any] = [files] _a : Any = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a : List[str] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _a : List[Any] = [files] _a : Tuple = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __lowercase ( self , _a ) -> pa.Table: if self.config.features is not None: _a : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(_a ) for feature in self.config.features.values() ): # cheaper cast _a : Dict = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_a ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _a : int = table_cast(_a , _a ) return pa_table def __lowercase ( self , _a ) -> Union[str, Any]: _a : List[Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _a : Any = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_a ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): _a : Any = pd.read_csv(_a , iterator=_a , dtype=_a , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_a ): _a : Optional[Any] = pa.Table.from_pandas(_a ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(_a )}: {e}""" ) raise
578
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Dict ="codegen" lowerCamelCase__ : Dict ={ "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowerCamelCase=50400 , lowerCamelCase=2048 , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=28 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase=None , lowerCamelCase="gelu_new" , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=1e-5 , lowerCamelCase=0.0_2 , lowerCamelCase=True , lowerCamelCase=50256 , lowerCamelCase=50256 , lowerCamelCase=False , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" __magic_name__ : List[Any] = vocab_size __magic_name__ : List[Any] = n_ctx __magic_name__ : List[Any] = n_positions __magic_name__ : Optional[int] = n_embd __magic_name__ : Tuple = n_layer __magic_name__ : Optional[int] = n_head __magic_name__ : List[Any] = n_inner __magic_name__ : Optional[Any] = rotary_dim __magic_name__ : Optional[int] = activation_function __magic_name__ : Optional[int] = resid_pdrop __magic_name__ : Tuple = embd_pdrop __magic_name__ : List[str] = attn_pdrop __magic_name__ : Dict = layer_norm_epsilon __magic_name__ : List[str] = initializer_range __magic_name__ : Tuple = use_cache __magic_name__ : Dict = bos_token_id __magic_name__ : str = eos_token_id super().__init__( bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , tie_word_embeddings=lowerCamelCase , **lowerCamelCase ) class A__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , lowerCamelCase , lowerCamelCase = "default" , lowerCamelCase = None , lowerCamelCase = False , ) -> Any: """simple docstring""" super().__init__(lowerCamelCase , task=lowerCamelCase , patching_specs=lowerCamelCase , use_past=lowerCamelCase ) if not getattr(self._config , '''pad_token_id''' , lowerCamelCase ): # TODO: how to do that better? __magic_name__ : int = 0 @property def lowercase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __magic_name__ : List[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase , direction='''inputs''' ) __magic_name__ : List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __magic_name__ : Optional[int] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def lowercase ( self ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase ( self ) -> int: """simple docstring""" return self._config.n_head def lowercase ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ) -> Mapping[str, Any]: """simple docstring""" __magic_name__ : Union[str, Any] = super(lowerCamelCase , self ).generate_dummy_inputs( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) # We need to order the input in the way they appears in the forward() __magic_name__ : Optional[int] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __magic_name__ , __magic_name__ : List[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __magic_name__ : Union[str, Any] = seqlen + 2 __magic_name__ : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __magic_name__ : Any = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(self.num_layers ) ] __magic_name__ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: __magic_name__ : Any = ordered_inputs['''attention_mask'''].dtype __magic_name__ : List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(lowerCamelCase , lowerCamelCase , dtype=lowerCamelCase )] , dim=1 ) return ordered_inputs @property def lowercase ( self ) -> int: """simple docstring""" return 13
154
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Any ="openai/whisper-base" lowerCamelCase__ : Any =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) lowerCamelCase__ : Union[str, Any] ="transcriber" lowerCamelCase__ : List[str] =WhisperProcessor lowerCamelCase__ : Tuple =WhisperForConditionalGeneration lowerCamelCase__ : Tuple =["audio"] lowerCamelCase__ : List[str] =["text"] def lowercase ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.pre_processor(lowerCamelCase , return_tensors='''pt''' ).input_features def lowercase ( self , lowerCamelCase ) -> Dict: """simple docstring""" return self.model.generate(inputs=lowerCamelCase ) def lowercase ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
154
1
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int: torch.manual_seed(0 ) A : Optional[int] =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: A : Dict =self.dummy_uncond_unet A : int =ScoreSdeVeScheduler() A : Union[str, Any] =ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =torch.manual_seed(0 ) A : Dict =sde_ve(num_inference_steps=2 , output_type='numpy' , generator=SCREAMING_SNAKE_CASE__ ).images A : List[Any] =torch.manual_seed(0 ) A : List[str] =sde_ve(num_inference_steps=2 , output_type='numpy' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[ 0 ] A : List[Any] =image[0, -3:, -3:, -1] A : List[Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A : str =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]: A : int ='google/ncsnpp-church-256' A : Dict =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : str =ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : str =ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : Any =torch.manual_seed(0 ) A : List[str] =sde_ve(num_inference_steps=10 , output_type='numpy' , generator=SCREAMING_SNAKE_CASE__ ).images A : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) A : Dict =np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
661
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int =logging.get_logger(__name__) _lowercase : Dict ={ '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[int] = "xglm" lowercase : Any = ["past_key_values"] lowercase : Dict = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int: A : str =vocab_size A : Union[str, Any] =max_position_embeddings A : Optional[Any] =d_model A : Optional[int] =ffn_dim A : int =num_layers A : Any =attention_heads A : Dict =activation_function A : List[Any] =dropout A : str =attention_dropout A : List[Any] =activation_dropout A : List[Any] =layerdrop A : List[Any] =init_std A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True A : List[str] =use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
661
1
"""simple docstring""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __lowercase ( _a ): snake_case_ : Optional[int] = VideoMAEConfig() set_architecture_configs(_a , _a ) if "finetuned" not in model_name: snake_case_ : int = False if "finetuned" in model_name: snake_case_ : List[Any] = '''huggingface/label-files''' if "kinetics" in model_name: snake_case_ : Optional[int] = 400 snake_case_ : List[Any] = '''kinetics400-id2label.json''' elif "ssv2" in model_name: snake_case_ : int = 174 snake_case_ : Dict = '''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) snake_case_ : Union[str, Any] = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ : Any = {int(_a ): v for k, v in idalabel.items()} snake_case_ : Optional[Any] = idalabel snake_case_ : str = {v: k for k, v in idalabel.items()} return config def __lowercase ( _a , _a ): if "small" in model_name: snake_case_ : Optional[Any] = 384 snake_case_ : Optional[Any] = 1_536 snake_case_ : Tuple = 12 snake_case_ : List[str] = 16 snake_case_ : int = 12 snake_case_ : Union[str, Any] = 3 snake_case_ : Any = 192 snake_case_ : Any = 768 elif "large" in model_name: snake_case_ : Any = 1_024 snake_case_ : Optional[int] = 4_096 snake_case_ : Optional[Any] = 24 snake_case_ : Optional[int] = 16 snake_case_ : Optional[Any] = 12 snake_case_ : Any = 8 snake_case_ : Optional[int] = 512 snake_case_ : List[Any] = 2_048 elif "huge" in model_name: snake_case_ : int = 1_280 snake_case_ : Tuple = 5_120 snake_case_ : str = 32 snake_case_ : Dict = 16 snake_case_ : List[Any] = 12 snake_case_ : Union[str, Any] = 8 snake_case_ : str = 640 snake_case_ : Optional[int] = 2_560 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def __lowercase ( _a ): if "encoder." in name: snake_case_ : int = name.replace('''encoder.''' , '''''' ) if "cls_token" in name: snake_case_ : Dict = name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: snake_case_ : Optional[Any] = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: snake_case_ : Tuple = name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: snake_case_ : Optional[int] = name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: snake_case_ : str = name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: snake_case_ : Union[str, Any] = name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: snake_case_ : Optional[int] = name.replace('''blocks''' , '''videomae.encoder.layer''' ) if "attn.proj" in name: snake_case_ : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "bias" not in name: snake_case_ : Tuple = name.replace('''attn''' , '''attention.self''' ) if "attn" in name: snake_case_ : Any = name.replace('''attn''' , '''attention.attention''' ) if "norm1" in name: snake_case_ : Optional[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case_ : str = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: snake_case_ : str = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case_ : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: snake_case_ : Union[str, Any] = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: snake_case_ : Optional[Any] = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: snake_case_ : str = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: snake_case_ : Dict = name.replace('''norm.weight''' , '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: snake_case_ : Union[str, Any] = name.replace('''norm.bias''' , '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: snake_case_ : str = name.replace('''head''' , '''classifier''' ) return name def __lowercase ( _a , _a ): for key in orig_state_dict.copy().keys(): snake_case_ : Union[str, Any] = orig_state_dict.pop(_a ) if key.startswith('''encoder.''' ): snake_case_ : Union[str, Any] = key.replace('''encoder.''' , '''''' ) if "qkv" in key: snake_case_ : Optional[int] = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): snake_case_ : int = config.decoder_hidden_size snake_case_ : List[str] = int(key_split[2] ) snake_case_ : Tuple = '''decoder.decoder_layers.''' if "weight" in key: snake_case_ : Dict = val[:dim, :] snake_case_ : Union[str, Any] = val[dim : dim * 2, :] snake_case_ : List[Any] = val[-dim:, :] else: snake_case_ : Optional[int] = config.hidden_size snake_case_ : Any = int(key_split[1] ) snake_case_ : int = '''videomae.encoder.layer.''' if "weight" in key: snake_case_ : Any = val[:dim, :] snake_case_ : Dict = val[dim : dim * 2, :] snake_case_ : Dict = val[-dim:, :] else: snake_case_ : str = val return orig_state_dict def __lowercase ( ): snake_case_ : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) snake_case_ : Optional[Any] = np.load(_a ) return list(_a ) def __lowercase ( _a , _a , _a , _a ): snake_case_ : Any = get_videomae_config(_a ) if "finetuned" in model_name: snake_case_ : Tuple = VideoMAEForVideoClassification(_a ) else: snake_case_ : Optional[Any] = VideoMAEForPreTraining(_a ) # download original checkpoint, hosted on Google Drive snake_case_ : Union[str, Any] = '''pytorch_model.bin''' gdown.cached_download(_a , _a , quiet=_a ) snake_case_ : Optional[Any] = torch.load(_a , map_location='''cpu''' ) if "model" in files: snake_case_ : Tuple = files['''model'''] else: snake_case_ : Optional[Any] = files['''module'''] snake_case_ : Optional[Any] = convert_state_dict(_a , _a ) model.load_state_dict(_a ) model.eval() # verify model on basic input snake_case_ : Optional[int] = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) snake_case_ : int = prepare_video() snake_case_ : Dict = image_processor(_a , return_tensors='''pt''' ) if "finetuned" not in model_name: snake_case_ : List[Any] = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) snake_case_ : Union[str, Any] = torch.load(_a ) snake_case_ : Tuple = model(**_a ) snake_case_ : Optional[int] = outputs.logits snake_case_ : Union[str, Any] = [ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": snake_case_ : Any = torch.Size([1, 400] ) snake_case_ : int = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": snake_case_ : Tuple = torch.Size([1, 174] ) snake_case_ : Optional[Any] = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": snake_case_ : int = torch.Size([1, 1_408, 1_536] ) snake_case_ : Dict = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": snake_case_ : int = torch.Size([1, 1_408, 1_536] ) snake_case_ : Optional[Any] = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one snake_case_ : List[str] = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": snake_case_ : List[str] = torch.Size([1, 1_408, 1_536] ) snake_case_ : Optional[int] = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": snake_case_ : List[str] = torch.Size([1, 400] ) snake_case_ : int = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": snake_case_ : List[str] = torch.Size([1, 400] ) snake_case_ : Optional[Any] = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": snake_case_ : Tuple = torch.Size([1, 400] ) snake_case_ : List[str] = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": snake_case_ : Tuple = torch.Size([1, 400] ) snake_case_ : str = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": snake_case_ : Optional[Any] = torch.Size([1, 1_408, 1_536] ) snake_case_ : Dict = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": snake_case_ : str = torch.Size([1, 174] ) snake_case_ : int = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": snake_case_ : str = torch.Size([1, 1_408, 1_536] ) snake_case_ : Optional[Any] = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": snake_case_ : Dict = torch.Size([1, 174] ) snake_case_ : Union[str, Any] = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(f"Model name not supported. Should be one of {model_names}" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , _a , atol=1E-4 ) else: print('''Logits:''' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , _a , atol=1E-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": snake_case_ : List[str] = outputs.loss assert torch.allclose(_a , _a , atol=1E-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_a ) model.save_pretrained(_a ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(_a , organization='''nielsr''' ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''', type=str, help=( '''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct''' ''' download link.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''/Users/nielsrogge/Documents/VideoMAE/Test''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase__ : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
123
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : List[Any] = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Any = """gpt_bigcode""" _lowerCAmelCase : Union[str, Any] = ["""past_key_values"""] _lowerCAmelCase : List[str] = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , lowercase_ : int=50257 , lowercase_ : List[Any]=1024 , lowercase_ : Optional[int]=768 , lowercase_ : List[str]=12 , lowercase_ : Any=12 , lowercase_ : List[str]=None , lowercase_ : Dict="gelu_pytorch_tanh" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Tuple=1E-5 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Union[str, Any]=True , lowercase_ : Union[str, Any]=True , lowercase_ : Union[str, Any]=50256 , lowercase_ : Any=50256 , lowercase_ : int=True , lowercase_ : List[Any]=True , lowercase_ : Tuple=True , **lowercase_ : List[Any] , ): snake_case_ : int = vocab_size snake_case_ : List[Any] = n_positions snake_case_ : List[Any] = n_embd snake_case_ : Any = n_layer snake_case_ : List[Any] = n_head snake_case_ : Any = n_inner snake_case_ : Dict = activation_function snake_case_ : Tuple = resid_pdrop snake_case_ : Optional[int] = embd_pdrop snake_case_ : List[str] = attn_pdrop snake_case_ : str = layer_norm_epsilon snake_case_ : Tuple = initializer_range snake_case_ : Optional[int] = scale_attn_weights snake_case_ : str = use_cache snake_case_ : Tuple = attention_softmax_in_fpaa snake_case_ : Optional[int] = scale_attention_softmax_in_fpaa snake_case_ : Optional[int] = multi_query snake_case_ : str = bos_token_id snake_case_ : Union[str, Any] = eos_token_id super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
123
1
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : str=13 , _UpperCamelCase : List[Any]=7 , _UpperCamelCase : List[Any]=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Any=99 , _UpperCamelCase : Union[str, Any]=32 , _UpperCamelCase : List[str]=5 , _UpperCamelCase : Any=4 , _UpperCamelCase : List[Any]=37 , _UpperCamelCase : Optional[Any]="gelu" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : List[Any]=512 , _UpperCamelCase : Optional[Any]=16 , _UpperCamelCase : int=2 , _UpperCamelCase : Dict=0.0_2 , _UpperCamelCase : Any=3 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : Optional[Any]=None , ) ->Any: """simple docstring""" _lowerCamelCase : Dict = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Optional[Any] = seq_length _lowerCamelCase : List[str] = is_training _lowerCamelCase : List[Any] = use_input_mask _lowerCamelCase : Union[str, Any] = use_token_type_ids _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Dict = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : Optional[int] = type_vocab_size _lowerCamelCase : Dict = type_sequence_label_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : str = num_labels _lowerCamelCase : int = num_choices _lowerCamelCase : Dict = scope def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: """simple docstring""" _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowerCamelCase : List[Any] = None if self.use_input_mask: _lowerCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length]) _lowerCamelCase : int = None if self.use_token_type_ids: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _lowerCamelCase : Dict = None _lowerCamelCase : List[Any] = None _lowerCamelCase : List[str] = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices) _lowerCamelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = NystromformerModel(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() _lowerCamelCase : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__) _lowerCamelCase : Any = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__) _lowerCamelCase : Any = model(UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Any) ->Any: """simple docstring""" _lowerCamelCase : Tuple = NystromformerForMaskedLM(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() _lowerCamelCase : Tuple = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : List[Any]) ->str: """simple docstring""" _lowerCamelCase : Optional[Any] = NystromformerForQuestionAnswering(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() _lowerCamelCase : int = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _lowerCamelCase : Optional[Any] = self.num_labels _lowerCamelCase : Any = NystromformerForSequenceClassification(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() _lowerCamelCase : Optional[int] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any]) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = self.num_labels _lowerCamelCase : Optional[Any] = NystromformerForTokenClassification(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() _lowerCamelCase : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : Any = self.num_choices _lowerCamelCase : List[str] = NystromformerForMultipleChoice(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() _lowerCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : int = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : Union[str, Any] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Dict = self.prepare_config_and_inputs() ( _lowerCamelCase ) : Union[str, Any] = config_and_inputs _lowerCamelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _snake_case = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) _snake_case = False _snake_case = False def _SCREAMING_SNAKE_CASE ( self : int) ->str: """simple docstring""" _lowerCamelCase : List[Any] = NystromformerModelTester(self) _lowerCamelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->int: """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : Dict = type self.model_tester.create_and_check_model(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: """simple docstring""" _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : str) ->List[str]: """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : List[Any] = NystromformerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Dict = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""") _lowerCamelCase : Any = torch.tensor([[0, 1, 2, 3, 4, 5]]) with torch.no_grad(): _lowerCamelCase : Tuple = model(UpperCAmelCase__)[0] _lowerCamelCase : int = torch.Size((1, 6, 768)) self.assertEqual(output.shape , UpperCAmelCase__) _lowerCamelCase : Dict = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = '''the [MASK] of Belgium is Brussels''' _lowerCamelCase : Dict = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""") _lowerCamelCase : Optional[int] = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""") _lowerCamelCase : List[Any] = tokenizer(UpperCAmelCase__ , return_tensors="""pt""") with torch.no_grad(): _lowerCamelCase : Optional[int] = model(encoding.input_ids).logits _lowerCamelCase : Tuple = token_logits[:, 2, :].argmax(-1)[0] self.assertEqual(tokenizer.decode(UpperCAmelCase__) , """capital""")
721
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
0
from typing import Any class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = data lowerCAmelCase_ = None class a_ : '''simple docstring''' def __init__( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = None def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.head while temp is not None: print(temp.data , end=' ' ) lowerCAmelCase_ = temp.next print() def _lowercase ( self , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = Node(lowercase_ ) lowerCAmelCase_ = self.head lowerCAmelCase_ = new_node def _lowercase ( self , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if node_data_a == node_data_a: return else: lowerCAmelCase_ = self.head while node_a is not None and node_a.data != node_data_a: lowerCAmelCase_ = node_a.next lowerCAmelCase_ = self.head while node_a is not None and node_a.data != node_data_a: lowerCAmelCase_ = node_a.next if node_a is None or node_a is None: return lowerCAmelCase_ , lowerCAmelCase_ = node_a.data, node_a.data if __name__ == "__main__": lowerCamelCase_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
318
def lowerCamelCase ( a_ , a_ , a_ ) -> int: def update_area_of_max_square(a_ , a_ ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowerCAmelCase_ = update_area_of_max_square(a_ , col + 1 ) lowerCAmelCase_ = update_area_of_max_square(row + 1 , col + 1 ) lowerCAmelCase_ = update_area_of_max_square(row + 1 , a_ ) if mat[row][col]: lowerCAmelCase_ = 1 + min([right, diagonal, down] ) lowerCAmelCase_ = max(largest_square_area[0] , a_ ) return sub_problem_sol else: return 0 lowerCAmelCase_ = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def lowerCamelCase ( a_ , a_ , a_ ) -> int: def update_area_of_max_square_using_dp_array( a_ , a_ , a_ ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowerCAmelCase_ = update_area_of_max_square_using_dp_array(a_ , col + 1 , a_ ) lowerCAmelCase_ = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , a_ ) lowerCAmelCase_ = update_area_of_max_square_using_dp_array(row + 1 , a_ , a_ ) if mat[row][col]: lowerCAmelCase_ = 1 + min([right, diagonal, down] ) lowerCAmelCase_ = max(largest_square_area[0] , a_ ) lowerCAmelCase_ = sub_problem_sol return sub_problem_sol else: return 0 lowerCAmelCase_ = [0] lowerCAmelCase_ = [[-1] * cols for _ in range(a_ )] update_area_of_max_square_using_dp_array(0 , 0 , a_ ) return largest_square_area[0] def lowerCamelCase ( a_ , a_ , a_ ) -> int: lowerCAmelCase_ = [[0] * (cols + 1) for _ in range(rows + 1 )] lowerCAmelCase_ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCAmelCase_ = dp_array[row][col + 1] lowerCAmelCase_ = dp_array[row + 1][col + 1] lowerCAmelCase_ = dp_array[row + 1][col] if mat[row][col] == 1: lowerCAmelCase_ = 1 + min(a_ , a_ , a_ ) lowerCAmelCase_ = max(dp_array[row][col] , a_ ) else: lowerCAmelCase_ = 0 return largest_square_area def lowerCamelCase ( a_ , a_ , a_ ) -> int: lowerCAmelCase_ = [0] * (cols + 1) lowerCAmelCase_ = [0] * (cols + 1) lowerCAmelCase_ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCAmelCase_ = current_row[col + 1] lowerCAmelCase_ = next_row[col + 1] lowerCAmelCase_ = next_row[col] if mat[row][col] == 1: lowerCAmelCase_ = 1 + min(a_ , a_ , a_ ) lowerCAmelCase_ = max(current_row[col] , a_ ) else: lowerCAmelCase_ = 0 lowerCAmelCase_ = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
318
1
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor lowercase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __snake_case ): def __init__(self , *_lowercase , **_lowercase ): '''simple docstring''' warnings.warn( """The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ImageGPTImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
702
"""simple docstring""" def __magic_name__ ( _lowerCamelCase : list[int] ): if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) __a : Any = sum(_lowerCamelCase ) / len(_lowerCamelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
63
0
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "spiece.model"} lowercase_ = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } lowercase_ = { "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__(self , A , A=False , A=False , A=False , A=None , A=None , A=None , A=None , A = None , **A , ) -> None: """simple docstring""" _a = {} if sp_model_kwargs is None else sp_model_kwargs _a = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) _a = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _a = '''<|endoftext|>''' if eos_token is None else eos_token _a = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _a = unk_token if pad_token is None else pad_token _a = eos_token if bos_token is None else bos_token else: _a = '''<pad>''' if pad_token is None else pad_token _a = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # Used for whitespace normalization in input texts # fmt : off _a = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _a = re.compile( f'''[{''.join(map(A , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]''' ) def __getstate__(self ) -> Tuple: """simple docstring""" _a = self.__dict__.copy() _a = None return state def __setstate__(self , A ) -> str: """simple docstring""" _a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def a__ (self ) -> int: """simple docstring""" return len(self.sp_model ) def a__ (self , A ) -> str: """simple docstring""" _a = self.non_printing_characters_re.sub('''''' , A ) # Normalize whitespaces _a = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization _a = unicodedata.normalize('''NFC''' , A ) return text def a__ (self , A , **A ) -> List[str]: """simple docstring""" _a = self.preprocess_text(A ) return self.sp_model.encode(A , out_type=A ) def a__ (self , A ) -> int: """simple docstring""" return self.sp_model.PieceToId(A ) def a__ (self , A ) -> str: """simple docstring""" return self.sp_model.IdToPiece(A ) @staticmethod def a__ (A ) -> str: """simple docstring""" return out_string def a__ (self , A ) -> str: """simple docstring""" _a = [] _a = '''''' _a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token _a = True _a = [] else: current_sub_tokens.append(A ) _a = False out_string += self.sp_model.decode(A ) return out_string def a__ (self ) -> Dict[str, int]: """simple docstring""" _a = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ (self , A , A = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _a = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def a__ (self , A , A = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(A , A ): _a = self.preprocess_text(A ) _a = self.sp_model.encode(A ) else: _a = [self.preprocess_text(A ) for t in text] _a = self.sp_model.encode(A ) if return_tensors is True or return_tensors == "pt": _a = torch.tensor(A ) return token_ids def a__ (self , A ) -> str: """simple docstring""" return self.sp_model.decode(A ) def a__ (self , A ) -> List[int]: """simple docstring""" _a = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] _a = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=A )
11
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def a__ ( UpperCamelCase_ : Tuple ): UpperCAmelCase__ :Dict = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(UpperCamelCase_, UpperCamelCase_ ) def a__ ( UpperCamelCase_ : Union[str, Any] ): UpperCAmelCase__ , UpperCAmelCase__ :Optional[Any] = emb.weight.shape UpperCAmelCase__ :int = nn.Linear(UpperCamelCase_, UpperCamelCase_, bias=UpperCamelCase_ ) UpperCAmelCase__ :Tuple = emb.weight.data return lin_layer def a__ ( UpperCamelCase_ : str ): UpperCAmelCase__ :List[str] = torch.load(UpperCamelCase_, map_location='''cpu''' ) UpperCAmelCase__ :List[Any] = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] UpperCAmelCase__ :List[Any] = mam_aaa['''model'''] remove_ignore_keys_(UpperCamelCase_ ) UpperCAmelCase__ :Tuple = state_dict['''encoder.embed_tokens.weight'''].shape[0] UpperCAmelCase__ :Union[str, Any] = MaMaaaConfig( vocab_size=UpperCamelCase_, max_position_embeddings=1_024, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', ) UpperCAmelCase__ :str = state_dict['''decoder.embed_tokens.weight'''] UpperCAmelCase__ :Tuple = MaMaaaForConditionalGeneration(UpperCamelCase_ ) model.model.load_state_dict(UpperCamelCase_, strict=UpperCamelCase_ ) UpperCAmelCase__ :Optional[int] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __lowerCamelCase = parser.parse_args() __lowerCamelCase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
467
0
"""simple docstring""" def snake_case ( UpperCamelCase__ : int = 4000000 ) -> int: lowerCamelCase : List[Any] = [0, 1] lowerCamelCase : Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCamelCase : Any = 0 for j in range(len(UpperCamelCase__ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
42
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__ ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : str =StableDiffusionXLImgaImgPipeline snake_case__ : Any =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} snake_case__ : Optional[int] =PipelineTesterMixin.required_optional_params - {'''latents'''} snake_case__ : Dict =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ : Tuple =IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ : List[str] =IMAGE_TO_IMAGE_IMAGE_PARAMS def a__ ( self: List[str] )-> int: torch.manual_seed(0 ) lowerCamelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=__a , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCamelCase : Any = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) lowerCamelCase : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=32 , ) lowerCamelCase : Dict = CLIPTextModel(__a ) lowerCamelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__a ) lowerCamelCase : Dict = CLIPTextModelWithProjection(__a ) lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__a ) lowerCamelCase : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def a__ ( self: Any , __a: str , __a: Tuple=0 )-> Union[str, Any]: lowerCamelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) lowerCamelCase : Any = image / 2 + 0.5 if str(__a ).startswith("""mps""" ): lowerCamelCase : Dict = torch.manual_seed(__a ) else: lowerCamelCase : Tuple = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def a__ ( self: Dict )-> Optional[Any]: lowerCamelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase : Union[str, Any] = self.get_dummy_components() lowerCamelCase : Optional[int] = StableDiffusionXLImgaImgPipeline(**__a ) lowerCamelCase : int = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase : Optional[Any] = self.get_dummy_inputs(__a ) lowerCamelCase : Optional[int] = sd_pipe(**__a ).images lowerCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase : Any = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self: Optional[int] )-> Union[str, Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def a__ ( self: Optional[Any] )-> str: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def a__ ( self: List[str] )-> Optional[Any]: pass def a__ ( self: List[Any] )-> Union[str, Any]: lowerCamelCase : Tuple = self.get_dummy_components() lowerCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline(**__a ) lowerCamelCase : str = sd_pipe.to(__a ) lowerCamelCase : Any = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) # forward without prompt embeds lowerCamelCase : Dict = self.get_dummy_inputs(__a ) lowerCamelCase : Any = 3 * ["""this is a negative prompt"""] lowerCamelCase : Optional[int] = negative_prompt lowerCamelCase : Tuple = 3 * [inputs["""prompt"""]] lowerCamelCase : List[Any] = sd_pipe(**__a ) lowerCamelCase : Optional[int] = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCamelCase : Tuple = self.get_dummy_inputs(__a ) lowerCamelCase : List[Any] = 3 * ["""this is a negative prompt"""] lowerCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )] ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Union[str, Any] = sd_pipe.encode_prompt(__a , negative_prompt=__a ) lowerCamelCase : int = sd_pipe( **__a , prompt_embeds=__a , negative_prompt_embeds=__a , pooled_prompt_embeds=__a , negative_pooled_prompt_embeds=__a , ) lowerCamelCase : Union[str, Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class A__ ( unittest.TestCase): """simple docstring""" def a__ ( self: Dict )-> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self: Union[str, Any] , __a: Any , __a: Any="cpu" , __a: str=torch.floataa , __a: Any=0 )-> Optional[Any]: lowerCamelCase : Optional[Any] = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase : List[Any] = np.random.RandomState(__a ).standard_normal((1, 4, 64, 64) ) lowerCamelCase : List[str] = torch.from_numpy(__a ).to(device=__a , dtype=__a ) lowerCamelCase : int = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def a__ ( self: Optional[int] )-> List[str]: lowerCamelCase : Tuple = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase : Optional[int] = self.get_inputs(__a ) lowerCamelCase : Optional[Any] = pipe(**__a ).images lowerCamelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCamelCase : List[str] = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
42
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : List[str] = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
255
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : List[Any] = "audio-spectrogram-transformer" def __init__( self , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=3_0_7_2 , _A="gelu" , _A=0.0 , _A=0.0 , _A=0.02 , _A=1E-12 , _A=1_6 , _A=True , _A=1_0 , _A=1_0 , _A=1_0_2_4 , _A=1_2_8 , **_A , ): '''simple docstring''' super().__init__(**_A ) _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =qkv_bias _SCREAMING_SNAKE_CASE =frequency_stride _SCREAMING_SNAKE_CASE =time_stride _SCREAMING_SNAKE_CASE =max_length _SCREAMING_SNAKE_CASE =num_mel_bins
255
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __a: """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=13 ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=99 ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=37 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=None ,) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : List[Any] = 13 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Any = 99 UpperCAmelCase_ : List[Any] = 384 UpperCAmelCase_ : int = 2 UpperCAmelCase_ : Optional[Any] = 4 UpperCAmelCase_ : Optional[Any] = 37 UpperCAmelCase_ : List[str] = '''gelu''' UpperCAmelCase_ : Tuple = 0.1 UpperCAmelCase_ : Optional[Any] = 0.1 UpperCAmelCase_ : Tuple = 512 UpperCAmelCase_ : Union[str, Any] = 16 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : int = 0.02 UpperCAmelCase_ : str = 3 UpperCAmelCase_ : Union[str, Any] = 4 UpperCAmelCase_ : Union[str, Any] = 128 UpperCAmelCase_ : Tuple = 2 UpperCAmelCase_ : List[str] = 9 UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : Optional[int] = None def a__ ( self ) -> Dict: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : int = None if self.use_input_mask: UpperCAmelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : List[str] = ConvBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,return_dict=_SCREAMING_SNAKE_CASE ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[str]: UpperCAmelCase_ : str = TFConvBertModel(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : List[str] = [input_ids, input_mask] UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : str = TFConvBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : str = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = TFConvBertForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : Dict = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : List[str] = self.num_choices UpperCAmelCase_ : Optional[int] = TFConvBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase_ : List[Any] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase_ : Tuple = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase_ : Optional[Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : int = TFConvBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : int = TFConvBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : List[str] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ) : str = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __a( _a , _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def a__ ( self ) -> List[Any]: UpperCAmelCase_ : List[Any] = TFConvBertModelTester(self ) UpperCAmelCase_ : Optional[int] = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,hidden_size=37 ) def a__ ( self ) -> int: self.config_tester.run_common_tests() def a__ ( self ) -> str: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def a__ ( self ) -> Tuple: UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : int = True UpperCAmelCase_ : Union[str, Any] = True if hasattr(_SCREAMING_SNAKE_CASE ,'''use_cache''' ): UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : Any = getattr(self.model_tester ,'''encoder_seq_length''' ,self.model_tester.seq_length ) UpperCAmelCase_ : str = getattr(self.model_tester ,'''key_length''' ,_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[int] = self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = len(model(_SCREAMING_SNAKE_CASE ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ,saved_model=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = os.path.join(_SCREAMING_SNAKE_CASE ,'''saved_model''' ,'''1''' ) UpperCAmelCase_ : Optional[int] = tf.keras.models.load_model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = model(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: UpperCAmelCase_ : Tuple = outputs['''encoder_hidden_states'''] UpperCAmelCase_ : Optional[int] = outputs['''encoder_attentions'''] else: UpperCAmelCase_ : int = outputs['''hidden_states'''] UpperCAmelCase_ : Optional[int] = outputs['''attentions'''] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) ,[self.model_tester.seq_length, self.model_tester.hidden_size] ,) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] ,) @slow def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: UpperCAmelCase_, UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Optional[Any] = getattr(self.model_tester ,'''decoder_seq_length''' ,self.model_tester.seq_length ) UpperCAmelCase_ : Tuple = getattr(self.model_tester ,'''encoder_seq_length''' ,self.model_tester.seq_length ) UpperCAmelCase_ : Optional[Any] = getattr(self.model_tester ,'''key_length''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = getattr(self.model_tester ,'''key_length''' ,_SCREAMING_SNAKE_CASE ) def check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Dict = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(out_len % 2 ,0 ) UpperCAmelCase_ : List[str] = outputs.decoder_attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] ,) def check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] ,) for model_class in self.all_model_classes: UpperCAmelCase_ : int = True UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : Any = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : List[Any] = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states ,_SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: UpperCAmelCase_ : Dict = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states ,_SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase_ : Any = True UpperCAmelCase_ : Optional[Any] = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states ,_SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states ,_SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) @require_tf class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) UpperCAmelCase_ : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase_ : Union[str, Any] = [1, 6, 768] self.assertEqual(output.shape ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 )
300
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __a = logging.get_logger(__name__) if is_vision_available(): import PIL class __a( _a ): """simple docstring""" lowerCAmelCase = ['''pixel_values'''] def __init__( self ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = 1 / 255 ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,**_SCREAMING_SNAKE_CASE ,) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ : List[str] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ,param_name='''crop_size''' ) UpperCAmelCase_ : List[Any] = do_resize UpperCAmelCase_ : List[Any] = size UpperCAmelCase_ : Optional[Any] = resample UpperCAmelCase_ : List[str] = do_center_crop UpperCAmelCase_ : str = crop_size UpperCAmelCase_ : List[str] = do_rescale UpperCAmelCase_ : Any = rescale_factor UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ : Dict = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ : List[str] = do_convert_rgb def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: UpperCAmelCase_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase_ : Tuple = get_resize_output_image_size(_SCREAMING_SNAKE_CASE ,size=size['''shortest_edge'''] ,default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: UpperCAmelCase_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE ,size=(size['''height'''], size['''width''']) ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> Any: return rescale(_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = ChannelDimension.FIRST ,**_SCREAMING_SNAKE_CASE ,) -> PIL.Image.Image: UpperCAmelCase_ : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : Optional[int] = size if size is not None else self.size UpperCAmelCase_ : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name='''size''' ,default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = resample if resample is not None else self.resample UpperCAmelCase_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name='''crop_size''' ,default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[str] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : int = image_std if image_std is not None else self.image_std UpperCAmelCase_ : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ : Dict = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ : List[Any] = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ : Any = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCAmelCase_ : List[str] = [self.resize(image=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCAmelCase_ : str = [self.center_crop(image=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCAmelCase_ : int = [self.rescale(image=_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCAmelCase_ : str = [self.normalize(image=_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ) for image in images] UpperCAmelCase_ : List[str] = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for image in images] UpperCAmelCase_ : int = {'''pixel_values''': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE ,tensor_type=_SCREAMING_SNAKE_CASE )
300
1
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCAmelCase_ = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class __lowerCAmelCase ( tr.AbstractTransform ): def __init__(self , __magic_name__ = " " ) -> int: '''simple docstring''' snake_case_ : Dict = sentence_delimiter def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' return list(__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> Tuple: '''simple docstring''' snake_case_ : Any = [] for sent_idx, sentence in enumerate(__magic_name__ ): chars.extend(self.process_string(__magic_name__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__magic_name__ ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCAmelCase_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCAmelCase_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCAmelCase_ = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCAmelCase_ = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' lowerCAmelCase_ = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase (self ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__=False ) -> Dict: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( __magic_name__ , __magic_name__ , truth_transform=__magic_name__ , hypothesis_transform=__magic_name__ , )["wer"] snake_case_ : List[Any] = 0 snake_case_ : int = 0 for prediction, reference in zip(__magic_name__ , __magic_name__ ): snake_case_ : Dict = jiwer.compute_measures( __magic_name__ , __magic_name__ , truth_transform=__magic_name__ , hypothesis_transform=__magic_name__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
60
import warnings from ..trainer import Trainer from ..utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class __lowerCAmelCase ( _a ): def __init__(self , __magic_name__=None , **__magic_name__ ) -> Dict: '''simple docstring''' warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , __magic_name__ , ) super().__init__(args=__magic_name__ , **__magic_name__ )
60
1
'''simple docstring''' from typing import Any def _lowerCAmelCase( UpperCAmelCase_ : list ) -> list[Any]: if not input_list: return [] lowerCAmelCase__ = [input_list.count(UpperCAmelCase_ ) for value in input_list] lowerCAmelCase__ = max(UpperCAmelCase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(UpperCAmelCase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
211
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _UpperCamelCase = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _UpperCamelCase = logging.get_logger(__name__) class lowerCamelCase__ ( _A ): '''simple docstring''' A__ = '''maskformer''' A__ = {'''hidden_size''': '''mask_feature_size'''} A__ = ['''resnet''', '''swin'''] A__ = ['''detr'''] def __init__( self : Tuple , __A : int = 256 , __A : int = 256 , __A : float = 0.1 , __A : bool = False , __A : Optional[Dict] = None , __A : Optional[Dict] = None , __A : float = 0.0_2 , __A : float = 1.0 , __A : float = 1.0 , __A : float = 1.0 , __A : float = 2_0.0 , __A : Optional[bool] = None , **__A : Tuple , ) -> List[Any]: '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowerCAmelCase__ = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__A , __A ): lowerCAmelCase__ = backbone_config.pop("""model_type""" ) lowerCAmelCase__ = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase__ = config_class.from_dict(__A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowerCAmelCase__ = DetrConfig() else: # verify that the decoder is supported lowerCAmelCase__ = ( decoder_config.pop("""model_type""" ) if isinstance(__A , __A ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {",".join(self.decoders_supported )}''' ) if isinstance(__A , __A ): lowerCAmelCase__ = CONFIG_MAPPING[decoder_type] lowerCAmelCase__ = config_class.from_dict(__A ) lowerCAmelCase__ = backbone_config lowerCAmelCase__ = decoder_config # main feature dimension for the model lowerCAmelCase__ = fpn_feature_size lowerCAmelCase__ = mask_feature_size # initializer lowerCAmelCase__ = init_std lowerCAmelCase__ = init_xavier_std # Hungarian matcher && loss lowerCAmelCase__ = cross_entropy_weight lowerCAmelCase__ = dice_weight lowerCAmelCase__ = mask_weight lowerCAmelCase__ = use_auxiliary_loss lowerCAmelCase__ = no_object_weight lowerCAmelCase__ = output_auxiliary_logits lowerCAmelCase__ = self.decoder_config.encoder_attention_heads lowerCAmelCase__ = self.decoder_config.num_hidden_layers super().__init__(**__A ) @classmethod def lowercase__ ( cls : List[Any] , __A : PretrainedConfig , __A : PretrainedConfig , **__A : Tuple ) -> Any: '''simple docstring''' return cls( backbone_config=__A , decoder_config=__A , **__A , ) def lowercase__ ( self : Optional[int] ) -> Dict[str, any]: '''simple docstring''' lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ = self.backbone_config.to_dict() lowerCAmelCase__ = self.decoder_config.to_dict() lowerCAmelCase__ = self.__class__.model_type return output
211
1
def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if n == 1 or not isinstance(a_ , a_ ): return 0 elif n == 2: return 1 else: __A = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = 2 while digits < n: index += 1 __A = len(str(fibonacci(a_ ) ) ) return index def UpperCAmelCase ( a_ = 1_0_0_0 ) -> int: """simple docstring""" return fibonacci_digits_index(a_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": UpperCAmelCase__ : Any = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) UpperCAmelCase__ : int = parser.parse_args() UpperCAmelCase__ : Tuple = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
410
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A =logging.get_logger(__name__) A ={ 'shi-labs/dinat-mini-in1k-224': 'https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json', # See all Dinat models at https://huggingface.co/models?filter=dinat } class _a ( UpperCamelCase__ , UpperCamelCase__ ): __a : Tuple = """dinat""" __a : Union[str, Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Dict , lowercase : Tuple=4 , lowercase : str=3 , lowercase : str=64 , lowercase : Optional[Any]=[3, 4, 6, 5] , lowercase : str=[2, 4, 8, 16] , lowercase : Dict=7 , lowercase : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowercase : str=3.0 , lowercase : Optional[Any]=True , lowercase : Dict=0.0 , lowercase : Optional[Any]=0.0 , lowercase : Union[str, Any]=0.1 , lowercase : List[str]="gelu" , lowercase : str=0.02 , lowercase : Tuple=1E-5 , lowercase : Any=0.0 , lowercase : Union[str, Any]=None , lowercase : Tuple=None , **lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__(**_a ) UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = depths UpperCAmelCase = len(_a ) UpperCAmelCase = num_heads UpperCAmelCase = kernel_size UpperCAmelCase = dilations UpperCAmelCase = mlp_ratio UpperCAmelCase = qkv_bias UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = drop_path_rate UpperCAmelCase = hidden_act UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase = int(embed_dim * 2 ** (len(_a ) - 1) ) UpperCAmelCase = layer_scale_init_value UpperCAmelCase = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(_a ) + 1 )] UpperCAmelCase = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names )
710
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A =logging.get_logger(__name__) @add_end_docstrings(__a ) class _a ( __a ): def __init__( self : Optional[int] , *lowercase : Any , **lowercase : Optional[int] ): '''simple docstring''' super().__init__(*lowercase , **lowercase ) self.check_model_type(lowercase ) def A ( self : List[str] , lowercase : str=None , lowercase : List[str]=None , lowercase : List[str]=None , **lowercase : List[str] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = {}, {} if padding is not None: UpperCAmelCase = padding if truncation is not None: UpperCAmelCase = truncation if top_k is not None: UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[Any] , lowercase : Union["Image.Image", str] , lowercase : str = None , **lowercase : Optional[int] ): '''simple docstring''' if isinstance(lowercase , (Image.Image, str) ) and isinstance(lowercase , lowercase ): UpperCAmelCase = {'''image''': image, '''question''': question} else: UpperCAmelCase = image UpperCAmelCase = super().__call__(lowercase , **lowercase ) return results def A ( self : List[Any] , lowercase : List[str] , lowercase : Any=False , lowercase : Any=False ): '''simple docstring''' UpperCAmelCase = load_image(inputs['''image'''] ) UpperCAmelCase = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=lowercase , truncation=lowercase ) UpperCAmelCase = self.image_processor(images=lowercase , return_tensors=self.framework ) model_inputs.update(lowercase ) return model_inputs def A ( self : Dict , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model(**lowercase ) return model_outputs def A ( self : Union[str, Any] , lowercase : int , lowercase : Optional[Any]=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase = model_outputs.logits.sigmoid()[0] UpperCAmelCase , UpperCAmelCase = probs.topk(lowercase ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase = scores.tolist() UpperCAmelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase , lowercase )]
358
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = CLIPTokenizer __snake_case = CLIPTokenizerFast __snake_case = True __snake_case = {} __snake_case = False def _snake_case ( self: Union[str, Any] ): super().setUp() # fmt: off __lowerCamelCase : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __lowerCamelCase : Tuple = dict(zip(a , range(len(a ) ) ) ) __lowerCamelCase : List[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] __lowerCamelCase : Tuple = {'unk_token': '<unk>'} __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a ) ) def _snake_case ( self: Tuple , **a: Union[str, Any] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **a ) def _snake_case ( self: Union[str, Any] , **a: List[str] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a ) def _snake_case ( self: Optional[int] , a: List[Any] ): __lowerCamelCase : Tuple = 'lower newer' __lowerCamelCase : Tuple = 'lower newer' return input_text, output_text def _snake_case ( self: List[str] ): __lowerCamelCase : List[Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase : Optional[Any] = 'lower newer' __lowerCamelCase : int = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] __lowerCamelCase : Optional[int] = tokenizer.tokenize(a ) self.assertListEqual(a , a ) __lowerCamelCase : int = tokens + [tokenizer.unk_token] __lowerCamelCase : int = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) @require_ftfy def _snake_case ( self: Union[str, Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase : List[Any] = self.tokenizer_class.from_pretrained(a , **a ) __lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained(a , **a ) __lowerCamelCase : str = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' __lowerCamelCase : Optional[Any] = tokenizer_s.tokenize(a ) __lowerCamelCase : Optional[Any] = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __lowerCamelCase : List[Any] = 'xa\u0303y' + ' ' + 'x\xe3y' __lowerCamelCase : Tuple = tokenizer_s.tokenize(a ) __lowerCamelCase : Any = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) # Test that the tokenization is identical on unicode of space type __lowerCamelCase : List[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __lowerCamelCase : List[Any] = tokenizer_s.tokenize(a ) __lowerCamelCase : Optional[int] = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) # Test that the tokenization is identical on unicode of line break type __lowerCamelCase : str = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __lowerCamelCase : Dict = tokenizer_s.tokenize(a ) __lowerCamelCase : List[str] = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) def _snake_case ( self: List[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __lowerCamelCase : Optional[int] = F'{text_of_1_token} {text_of_1_token}' __lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , ) __lowerCamelCase : Any = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) __lowerCamelCase : List[Any] = F' {text}' __lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , ) __lowerCamelCase : Any = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ) + 1, 1 + len(a ) + 1 + len(a )) , ) def _snake_case ( self: str ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(a ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def _snake_case ( self: Tuple ): super().test_tokenization_python_rust_equals() def _snake_case ( self: Tuple ): # CLIP always lower cases letters pass
669
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ConsistencyModelPipeline __snake_case = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __snake_case = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __snake_case = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def _snake_case ( self: str ): __lowerCamelCase : Tuple = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def _snake_case ( self: Tuple ): __lowerCamelCase : List[str] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def _snake_case ( self: int , a: str=False ): if class_cond: __lowerCamelCase : str = self.dummy_cond_unet else: __lowerCamelCase : str = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCamelCase : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def _snake_case ( self: int , a: List[str] , a: Any=0 ): if str(a ).startswith('mps' ): __lowerCamelCase : List[Any] = torch.manual_seed(a ) else: __lowerCamelCase : Tuple = torch.Generator(device=a ).manual_seed(a ) __lowerCamelCase : Optional[Any] = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def _snake_case ( self: Optional[Any] ): __lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Dict = self.get_dummy_components() __lowerCamelCase : str = ConsistencyModelPipeline(**a ) __lowerCamelCase : str = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Any = self.get_dummy_inputs(a ) __lowerCamelCase : Optional[int] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] __lowerCamelCase : str = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self: Optional[int] ): __lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Dict = self.get_dummy_components(class_cond=a ) __lowerCamelCase : Optional[int] = ConsistencyModelPipeline(**a ) __lowerCamelCase : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(a ) __lowerCamelCase : Tuple = 0 __lowerCamelCase : List[str] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase : Dict = image[0, -3:, -3:, -1] __lowerCamelCase : Any = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self: Optional[int] ): __lowerCamelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Optional[int] = self.get_dummy_components() __lowerCamelCase : Tuple = ConsistencyModelPipeline(**a ) __lowerCamelCase : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Tuple = self.get_dummy_inputs(a ) __lowerCamelCase : str = 1 __lowerCamelCase : Optional[int] = None __lowerCamelCase : Any = pipe(**a ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase : int = image[0, -3:, -3:, -1] __lowerCamelCase : Optional[int] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self: List[str] ): __lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : List[Any] = self.get_dummy_components(class_cond=a ) __lowerCamelCase : Optional[Any] = ConsistencyModelPipeline(**a ) __lowerCamelCase : List[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : List[str] = self.get_dummy_inputs(a ) __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[str] = None __lowerCamelCase : str = 0 __lowerCamelCase : Tuple = pipe(**a ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase : int = image[0, -3:, -3:, -1] __lowerCamelCase : Any = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self: Optional[int] , a: str=0 , a: Tuple=False , a: Tuple="cpu" , a: List[str]=torch.floataa , a: Optional[Any]=(1, 3, 64, 64) ): __lowerCamelCase : Optional[Any] = torch.manual_seed(a ) __lowerCamelCase : Optional[int] = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: __lowerCamelCase : Dict = self.get_fixed_latents(seed=a , device=a , dtype=a , shape=a ) __lowerCamelCase : Optional[Any] = latents return inputs def _snake_case ( self: Any , a: Any=0 , a: List[str]="cpu" , a: Optional[Any]=torch.floataa , a: int=(1, 3, 64, 64) ): if type(a ) == str: __lowerCamelCase : Dict = torch.device(a ) __lowerCamelCase : Union[str, Any] = torch.Generator(device=a ).manual_seed(a ) __lowerCamelCase : str = randn_tensor(a , generator=a , device=a , dtype=a ) return latents def _snake_case ( self: str ): __lowerCamelCase : Optional[int] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : str = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : int = self.get_inputs() __lowerCamelCase : Optional[int] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCamelCase : Any = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case ( self: Optional[int] ): __lowerCamelCase : int = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : Dict = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : List[str] = self.get_inputs() __lowerCamelCase : Optional[Any] = 1 __lowerCamelCase : Dict = None __lowerCamelCase : Union[str, Any] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCamelCase : Tuple = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case ( self: List[str] ): __lowerCamelCase : Optional[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : List[Any] = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : int = self.get_inputs(get_fixed_latents=a , device=a ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): __lowerCamelCase : int = pipe(**a ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCamelCase : Optional[Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case ( self: Dict ): __lowerCamelCase : Dict = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCamelCase : str = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : str = self.get_inputs(get_fixed_latents=a , device=a ) __lowerCamelCase : str = 1 __lowerCamelCase : Union[str, Any] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): __lowerCamelCase : Optional[int] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase : str = image[0, -3:, -3:, -1] __lowerCamelCase : str = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
669
1
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 1_0_0_0 )->int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
664
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE : Tuple )->List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Exception )->bool: _lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : callable = None , _SCREAMING_SNAKE_CASE : int = 1_2_8 )->Optional[int]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE , starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = starting_batch_size def decorator(*_SCREAMING_SNAKE_CASE : Optional[int] , **_SCREAMING_SNAKE_CASE : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowerCAmelCase = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowerCAmelCase = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
664
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = ['pixel_values'] def __init__( self : Optional[int] , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 255 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : bool = True , **snake_case_ : List[Any] , ): """simple docstring""" super().__init__(**snake_case_ ) A : List[str] = size if size is not None else {'''shortest_edge''': 224} A : Optional[int] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) A : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} A : List[str] = get_size_dict(snake_case_ , default_to_square=snake_case_ , param_name='''crop_size''' ) A : str = do_resize A : Tuple = size A : Tuple = resample A : int = do_center_crop A : List[str] = crop_size A : List[str] = do_rescale A : Optional[int] = rescale_factor A : Tuple = do_normalize A : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A : int = image_std if image_std is not None else OPENAI_CLIP_STD A : List[Any] = do_convert_rgb def _UpperCAmelCase ( self : Optional[Any] , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Union[str, Any] , ): """simple docstring""" A : Optional[int] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) A : Dict = get_resize_output_image_size(snake_case_ , size=size['''shortest_edge'''] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _UpperCAmelCase ( self : Dict , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : List[Any] , ): """simple docstring""" A : Tuple = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(snake_case_ , size=(size['''height'''], size['''width''']) , data_format=snake_case_ , **snake_case_ ) def _UpperCAmelCase ( self : Optional[int] , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : List[str] , ): """simple docstring""" return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _UpperCAmelCase ( self : Union[str, Any] , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : str , ): """simple docstring""" return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _UpperCAmelCase ( self : Any , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : int = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : bool = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **snake_case_ : Any , ): """simple docstring""" A : Optional[Any] = do_resize if do_resize is not None else self.do_resize A : Optional[int] = size if size is not None else self.size A : Optional[Any] = get_size_dict(snake_case_ , param_name='''size''' , default_to_square=snake_case_ ) A : Tuple = resample if resample is not None else self.resample A : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop A : Union[str, Any] = crop_size if crop_size is not None else self.crop_size A : Optional[int] = get_size_dict(snake_case_ , param_name='''crop_size''' , default_to_square=snake_case_ ) A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor A : Any = do_normalize if do_normalize is not None else self.do_normalize A : List[str] = image_mean if image_mean is not None else self.image_mean A : str = image_std if image_std is not None else self.image_std A : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A : Dict = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A : Optional[int] = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. A : Dict = [to_numpy_array(snake_case_ ) for image in images] if do_resize: A : List[Any] = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: A : Dict = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: A : Optional[int] = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: A : Any = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] A : int = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] A : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
256
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = "▁" UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } UpperCamelCase_ = { "google/pegasus-xsum": 5_12, } UpperCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : int="<pad>" , snake_case_ : Any="</s>" , snake_case_ : List[Any]="<unk>" , snake_case_ : Optional[Any]="<mask_2>" , snake_case_ : Union[str, Any]="<mask_1>" , snake_case_ : Any=None , snake_case_ : str=103 , snake_case_ : Optional[Dict[str, Any]] = None , **snake_case_ : Union[str, Any] , ): """simple docstring""" A : str = offset if additional_special_tokens is not None: if not isinstance(snake_case_ , snake_case_ ): raise TypeError( f"""additional_special_tokens should be of type {type(snake_case_ )}, but is""" f""" {type(snake_case_ )}""" ) A : int = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(snake_case_ ) , self.offset - 1 ) ] if len(set(snake_case_ ) ) != len(snake_case_ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) A : Union[str, Any] = additional_special_tokens_extended else: A : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] A : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , mask_token=snake_case_ , pad_token=snake_case_ , mask_token_sent=snake_case_ , offset=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) A : Dict = mask_token_sent A : Optional[int] = vocab_file A : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) # add special tokens to encoder dict A : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) A : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def _UpperCAmelCase ( self : str ): """simple docstring""" return len(self.sp_model ) + self.offset def _UpperCAmelCase ( self : str ): """simple docstring""" A : Dict = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): """simple docstring""" A : Optional[Any] = self.__dict__.copy() A : Union[str, Any] = None return state def __setstate__( self : str , snake_case_ : Tuple ): """simple docstring""" A : str = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A : Union[str, Any] = {} A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self : Tuple , snake_case_ : str ): """simple docstring""" return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def _UpperCAmelCase ( self : Tuple , snake_case_ : str ): """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] A : int = self.sp_model.piece_to_id(snake_case_ ) return sp_id + self.offset def _UpperCAmelCase ( self : Optional[int] , snake_case_ : int ): """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: A : Any = self.sp_model.IdToPiece(index - self.offset ) return token def _UpperCAmelCase ( self : Dict , snake_case_ : Dict ): """simple docstring""" A : List[Any] = [] A : Union[str, Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token A : Any = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def _UpperCAmelCase ( self : str , snake_case_ : Any=False ): """simple docstring""" return 1 def _UpperCAmelCase ( self : int , snake_case_ : Union[str, Any] ): """simple docstring""" A : str = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _UpperCAmelCase ( self : int , snake_case_ : List , snake_case_ : Optional[List] = None , snake_case_ : bool = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(snake_case_ ) elif token_ids_a is None: return self._special_token_mask(snake_case_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _UpperCAmelCase ( self : List[Any] , snake_case_ : Any , snake_case_ : Tuple=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : Tuple , snake_case_ : str , snake_case_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(snake_case_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A : int = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , '''wb''' ) as fi: A : Any = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
256
1
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCAmelCase =logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,**lowerCamelCase_ ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) requires_backends(self ,"""vision""" ) requires_backends(self ,"""torch""" ) if self.framework != "pt": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(lowerCamelCase_ ) def UpperCamelCase__ ( self ,**lowerCamelCase_ ) -> Tuple: A = {} A = {} A = {} # preprocess args if "points_per_batch" in kwargs: A = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: A = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: A = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: A = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: A = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: A = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: A = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: A = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: A = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: A = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: A = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: A = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self ,lowerCamelCase_ ,*lowerCamelCase_ ,lowerCamelCase_=None ,lowerCamelCase_=None ,**lowerCamelCase_ ) -> List[str]: return super().__call__(lowerCamelCase_ ,*lowerCamelCase_ ,num_workers=lowerCamelCase_ ,batch_size=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=6_4 ,lowerCamelCase_ = 0 ,lowerCamelCase_ = 5_1_2 / 1_5_0_0 ,lowerCamelCase_ = 3_2 ,lowerCamelCase_ = 1 ,) -> List[Any]: A = load_image(lowerCamelCase_ ) A = self.image_processor.size["""longest_edge"""] A , A , A , A = self.image_processor.generate_crop_boxes( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) A = self.image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": A = self.get_inference_context() with inference_context(): A = self._ensure_tensor_on_device(lowerCamelCase_ ,device=self.device ) A = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) A = image_embeddings A = grid_points.shape[1] A = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): A = grid_points[:, i : i + points_per_batch, :, :] A = input_labels[:, i : i + points_per_batch] A = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=0.88 ,lowerCamelCase_=0.95 ,lowerCamelCase_=0 ,lowerCamelCase_=1 ,) -> Optional[Any]: A = model_inputs.pop("""input_boxes""" ) A = model_inputs.pop("""is_last""" ) A = model_inputs.pop("""original_sizes""" ).tolist() A = model_inputs.pop("""reshaped_input_sizes""" ).tolist() A = self.model(**lowerCamelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks A = model_outputs["""pred_masks"""] A = self.image_processor.post_process_masks( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,binarize=lowerCamelCase_ ) A = model_outputs["""iou_scores"""] A , A , A = self.image_processor.filter_masks( masks[0] ,iou_scores[0] ,original_sizes[0] ,input_boxes[0] ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=False ,lowerCamelCase_=False ,lowerCamelCase_=0.7 ,) -> Optional[int]: A = [] A = [] A = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) A = torch.cat(lowerCamelCase_ ) A = torch.cat(lowerCamelCase_ ) A , A , A , A = self.image_processor.post_process_for_mask_generation( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) A = defaultdict(lowerCamelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCamelCase_ ) A = {} if output_rle_mask: A = rle_mask if output_bboxes_mask: A = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
702
"""simple docstring""" from __future__ import annotations def _A ( _a : list[int] , _a : int ): """simple docstring""" A = [] A = [] A = 0 A = sum(_a ) create_state_space_tree(_a , _a , _a , _a , _a , _a ) return result def _A ( _a : list[int] , _a : int , _a : int , _a : list[int] , _a : list[list[int]] , _a : int , ): """simple docstring""" if sum(_a ) > max_sum or (remaining_nums_sum + sum(_a )) < max_sum: return if sum(_a ) == max_sum: result.append(_a ) return for index in range(_a , len(_a ) ): create_state_space_tree( _a , _a , index + 1 , [*path, nums[index]] , _a , remaining_nums_sum - nums[index] , ) UpperCAmelCase =[3, 34, 4, 12, 5, 2] UpperCAmelCase =9 UpperCAmelCase =generate_sum_of_subsets_soln(nums, max_sum) print(*result)
255
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class __snake_case ( _lowercase): snake_case__ : List[Any] = "falcon" snake_case__ : Any = ["past_key_values"] def __init__( self : Any , __lowerCAmelCase : Union[str, Any]=6_5_0_2_4 , __lowerCAmelCase : Optional[Any]=4_5_4_4 , __lowerCAmelCase : Optional[Any]=3_2 , __lowerCAmelCase : List[Any]=7_1 , __lowerCAmelCase : Any=1E-5 , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : List[str]=0.0 , __lowerCAmelCase : int=None , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : int=True , __lowerCAmelCase : str=True , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : int=1_1 , __lowerCAmelCase : Optional[Any]=1_1 , **__lowerCAmelCase : Dict , ): """simple docstring""" _lowerCamelCase : Union[str, Any] = vocab_size # Backward compatibility with n_embed kwarg _lowerCamelCase : Any = kwargs.pop('''n_embed''' , __lowerCAmelCase ) _lowerCamelCase : Tuple = hidden_size if n_embed is None else n_embed _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : Dict = layer_norm_epsilon _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Tuple = hidden_dropout _lowerCamelCase : List[str] = attention_dropout _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : Optional[Any] = eos_token_id _lowerCamelCase : Optional[int] = num_attention_heads if num_kv_heads is None else num_kv_heads _lowerCamelCase : Optional[Any] = alibi _lowerCamelCase : str = new_decoder_architecture _lowerCamelCase : Union[str, Any] = multi_query # Ignored when new_decoder_architecture is True _lowerCamelCase : List[Any] = parallel_attn _lowerCamelCase : str = bias super().__init__(bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return self.hidden_size // self.num_attention_heads @property def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return not self.alibi
83
"""simple docstring""" snake_case_ : List[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def lowercase_ ( _lowercase : bytes ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): UpperCAmelCase : int = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_lowercase ) UpperCAmelCase : List[Any] = "".join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) UpperCAmelCase : Any = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCAmelCase : int = B"=" * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: UpperCAmelCase : List[Any] = B"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowercase ) , 6 ) ).encode() + padding ) def lowercase_ ( _lowercase : str ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ) and not isinstance(_lowercase , _lowercase ): UpperCAmelCase : Optional[Any] = ( "argument should be a bytes-like object or ASCII string, " F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase , _lowercase ): try: UpperCAmelCase : List[Any] = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) UpperCAmelCase : List[str] = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCAmelCase : List[str] = encoded_data[:-padding] UpperCAmelCase : Any = "".join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCAmelCase : Any = "".join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) UpperCAmelCase : str = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowercase ) , 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
595
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __A : int = logging.getLogger(__name__) @dataclass class lowercase_ : __UpperCamelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) __UpperCamelCase = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field(default=lowerCAmelCase__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __UpperCamelCase = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class lowercase_ : __UpperCamelCase = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) __UpperCamelCase = field( default=lowerCAmelCase__ , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) __UpperCamelCase = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> int: '''simple docstring''' __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) __lowerCAmelCase = import_module("""tasks""" ) try: __lowerCAmelCase = getattr(UpperCamelCase__ , model_args.task_type ) __lowerCAmelCase = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __lowerCAmelCase = token_classification_task.get_labels(data_args.labels ) __lowerCAmelCase = dict(enumerate(UpperCamelCase__ ) ) __lowerCAmelCase = len(UpperCamelCase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid={label: i for i, label in enumerate(UpperCamelCase__ )} , cache_dir=model_args.cache_dir , ) __lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __lowerCAmelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets __lowerCAmelCase = ( TokenClassificationDataset( token_classification_task=UpperCamelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCamelCase__ , labels=UpperCamelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __lowerCAmelCase = ( TokenClassificationDataset( token_classification_task=UpperCamelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCamelCase__ , labels=UpperCamelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(UpperCamelCase__ , UpperCamelCase__ ) -> Tuple[List[int], List[int]]: __lowerCAmelCase = np.argmax(UpperCamelCase__ , axis=2 ) __lowerCAmelCase , __lowerCAmelCase = preds.shape __lowerCAmelCase = [[] for _ in range(UpperCamelCase__ )] __lowerCAmelCase = [[] for _ in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(UpperCamelCase__ ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(UpperCamelCase__ , UpperCamelCase__ ), "precision": precision_score(UpperCamelCase__ , UpperCamelCase__ ), "recall": recall_score(UpperCamelCase__ , UpperCamelCase__ ), "f1": fa_score(UpperCamelCase__ , UpperCamelCase__ ), } # Data collator __lowerCAmelCase = DataCollatorWithPadding(UpperCamelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __lowerCAmelCase = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , UpperCamelCase__ , UpperCamelCase__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(UpperCamelCase__ ) # Predict if training_args.do_predict: __lowerCAmelCase = TokenClassificationDataset( token_classification_task=UpperCamelCase__ , data_dir=data_args.data_dir , tokenizer=UpperCamelCase__ , labels=UpperCamelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = trainer.predict(UpperCamelCase__ ) __lowerCAmelCase , __lowerCAmelCase = align_predictions(UpperCamelCase__ , UpperCamelCase__ ) __lowerCAmelCase = os.path.join(training_args.output_dir , """test_results.txt""" ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , """w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" , UpperCamelCase__ , UpperCamelCase__ ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions __lowerCAmelCase = os.path.join(training_args.output_dir , """test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , """w""" ) as writer: with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f: token_classification_task.write_predictions_to_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return results def UpperCAmelCase ( UpperCamelCase__ ) -> Tuple: '''simple docstring''' main() if __name__ == "__main__": main()
334
import argparse import os import re __A : List[Any] = "src/diffusers" # Pattern that looks at the indentation in a line. __A : Dict = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. __A : Optional[int] = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __A : Union[str, Any] = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. __A : List[Any] = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __A : List[str] = re.compile(r"\[([^\]]+)\]") def UpperCAmelCase ( UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = _re_indent.search(UpperCamelCase__ ) return "" if search is None else search.groups()[0] def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__="" , UpperCamelCase__=None , UpperCamelCase__=None ) -> List[str]: '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(UpperCamelCase__ ): index += 1 __lowerCAmelCase = ["""\n""".join(lines[:index] )] else: __lowerCAmelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowerCAmelCase = [lines[index]] index += 1 while index < len(UpperCamelCase__ ) and (end_prompt is None or not lines[index].startswith(UpperCamelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCamelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(UpperCamelCase__ ) ) if index < len(UpperCamelCase__ ) - 1: __lowerCAmelCase = [lines[index + 1]] index += 1 else: __lowerCAmelCase = [] else: blocks.append("""\n""".join(UpperCamelCase__ ) ) __lowerCAmelCase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCamelCase__ ) > 0: blocks.append("""\n""".join(UpperCamelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCamelCase__ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def UpperCAmelCase ( UpperCamelCase__ ) -> Dict: '''simple docstring''' def _inner(UpperCamelCase__ ): return key(UpperCamelCase__ ).lower().replace("""_""" , """""" ) return _inner def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__=None ) -> Tuple: '''simple docstring''' def noop(UpperCamelCase__ ): return x if key is None: __lowerCAmelCase = noop # Constants are all uppercase, they go first. __lowerCAmelCase = [obj for obj in objects if key(UpperCamelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowerCAmelCase = [obj for obj in objects if key(UpperCamelCase__ )[0].isupper() and not key(UpperCamelCase__ ).isupper()] # Functions begin with a lowercase, they go last. __lowerCAmelCase = [obj for obj in objects if not key(UpperCamelCase__ )[0].isupper()] __lowerCAmelCase = ignore_underscore(UpperCamelCase__ ) return sorted(UpperCamelCase__ , key=UpperCamelCase__ ) + sorted(UpperCamelCase__ , key=UpperCamelCase__ ) + sorted(UpperCamelCase__ , key=UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' def _replace(UpperCamelCase__ ): __lowerCAmelCase = match.groups()[0] if "," not in imports: return F'''[{imports}]''' __lowerCAmelCase = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCAmelCase = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(UpperCamelCase__ )] ) + "]" __lowerCAmelCase = import_statement.split("""\n""" ) if len(UpperCamelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowerCAmelCase = 2 if lines[1].strip() == """[""" else 1 __lowerCAmelCase = [(i, _re_strip_line.search(UpperCamelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowerCAmelCase = sort_objects(UpperCamelCase__ , key=lambda UpperCamelCase__ : x[1] ) __lowerCAmelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCamelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowerCAmelCase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowerCAmelCase = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCAmelCase = keys[:-1] __lowerCAmelCase = get_indent(lines[1] ) + """, """.join([F'''"{k}"''' for k in sort_objects(UpperCamelCase__ )] ) return "\n".join(UpperCamelCase__ ) else: # Finally we have to deal with imports fitting on one line __lowerCAmelCase = _re_bracket_content.sub(_replace , UpperCamelCase__ ) return import_statement def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__=True ) -> Optional[int]: '''simple docstring''' with open(UpperCamelCase__ , """r""" ) as f: __lowerCAmelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowerCAmelCase = split_code_in_indented_blocks( UpperCamelCase__ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCamelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowerCAmelCase = main_blocks[block_idx] __lowerCAmelCase = block.split("""\n""" ) # Get to the start of the imports. __lowerCAmelCase = 0 while line_idx < len(UpperCamelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowerCAmelCase = len(UpperCamelCase__ ) else: line_idx += 1 if line_idx >= len(UpperCamelCase__ ): continue # Ignore beginning and last line: they don't contain anything. __lowerCAmelCase = """\n""".join(block_lines[line_idx:-1] ) __lowerCAmelCase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowerCAmelCase = split_code_in_indented_blocks(UpperCamelCase__ , indent_level=UpperCamelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowerCAmelCase = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowerCAmelCase = [(pattern.search(UpperCamelCase__ ).groups()[0] if pattern.search(UpperCamelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowerCAmelCase = [(i, key) for i, key in enumerate(UpperCamelCase__ ) if key is not None] __lowerCAmelCase = [x[0] for x in sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowerCAmelCase = 0 __lowerCAmelCase = [] for i in range(len(UpperCamelCase__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowerCAmelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(UpperCamelCase__ ) count += 1 # And we put our main block back together with its first and last line. __lowerCAmelCase = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCamelCase__ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(UpperCamelCase__ , """w""" ) as f: f.write("""\n""".join(UpperCamelCase__ ) ) def UpperCAmelCase ( UpperCamelCase__=True ) -> Tuple: '''simple docstring''' __lowerCAmelCase = [] for root, _, files in os.walk(UpperCamelCase__ ): if "__init__.py" in files: __lowerCAmelCase = sort_imports(os.path.join(UpperCamelCase__ , """__init__.py""" ) , check_only=UpperCamelCase__ ) if result: __lowerCAmelCase = [os.path.join(UpperCamelCase__ , """__init__.py""" )] if len(UpperCamelCase__ ) > 0: raise ValueError(F'''Would overwrite {len(UpperCamelCase__ )} files, run `make style`.''' ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __A : Any = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
334
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCamelCase_ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCamelCase_ = TaTokenizerFast UpperCamelCase_ = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCamelCase_ = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
256
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _lowerCamelCase ( ): '''simple docstring''' print('''Making key files...''' ) make_key_files('''rsa''' , 1024 ) print('''Key files generation successful.''' ) def _lowerCamelCase ( lowerCamelCase_: int ): '''simple docstring''' print('''Generating prime p...''' ) A : Optional[Any] = rabinMiller.generate_large_prime(lowerCamelCase_ ) print('''Generating prime q...''' ) A : Tuple = rabinMiller.generate_large_prime(lowerCamelCase_ ) A : Optional[Any] = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: A : Any = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(lowerCamelCase_ , (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) A : Optional[Any] = cryptoMath.find_mod_inverse(lowerCamelCase_ , (p - 1) * (q - 1) ) A : List[Any] = (n, e) A : Optional[Any] = (n, d) return (public_key, private_key) def _lowerCamelCase ( lowerCamelCase_: str , lowerCamelCase_: int ): '''simple docstring''' if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('''\nWARNING:''' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() A , A : Union[str, Any] = generate_key(lowerCamelCase_ ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , '''w''' ) as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , '''w''' ) as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
256
1
'''simple docstring''' def __A ( lowerCAmelCase_ = 100_0000 ): _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : Optional[Any] = {1: 1} for inputa in range(2 , lowerCAmelCase_ ): _UpperCAmelCase : int = 0 _UpperCAmelCase : List[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _UpperCAmelCase : List[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: _UpperCAmelCase : Tuple = counter if counter > pre_counter: _UpperCAmelCase : Dict = inputa _UpperCAmelCase : Optional[Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
156
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ : Dict = logging.getLogger(__name__) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): return (preds == labels).mean() @dataclass class __lowerCAmelCase : snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCAmelCase : snake_case : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) snake_case : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) snake_case : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase_ ) # Set seed set_seed(training_args.seed ) try: _UpperCAmelCase : Union[str, Any] = processors[data_args.task_name]() _UpperCAmelCase : int = processor.get_labels() _UpperCAmelCase : Optional[int] = len(lowerCAmelCase_ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase : Optional[int] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCAmelCase : int = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCAmelCase : Tuple = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCAmelCase_ ) -> Dict: _UpperCAmelCase : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCAmelCase_ , p.label_ids )} # Data collator _UpperCAmelCase : List[str] = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCAmelCase : List[Any] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCAmelCase : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase : int = trainer.evaluate() _UpperCAmelCase : List[str] = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowerCAmelCase_ ) return results def __A ( lowerCAmelCase_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
156
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCamelCase_ = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def _UpperCAmelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict=None , _lowerCamelCase : Any=None , _lowerCamelCase : Tuple=None ) -> List[str]: _lowerCAmelCase : Optional[int] = True while ask_again: _lowerCAmelCase : Dict = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int]=[] , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Optional[Any]=0 ) -> str: _lowerCAmelCase : Tuple = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase : Optional[Any] = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: _lowerCAmelCase : Optional[int] = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> str: _lowerCAmelCase : Tuple = int(_SCREAMING_SNAKE_CASE ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def _UpperCAmelCase ( _lowerCamelCase : Any ) -> str: _lowerCAmelCase : Union[str, Any] = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _UpperCAmelCase ( _lowerCamelCase : Any ) -> Optional[Any]: _lowerCAmelCase : Optional[Any] = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Union[str, Any]: _lowerCAmelCase : str = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def _UpperCAmelCase ( _lowerCamelCase : str ) -> Any: return {"yes": True, "no": False}[value.lower()] class a_ (argparse.RawDescriptionHelpFormatter ): def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Any = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = usage.replace("""<command> [<args>] """ , """""" ) return usage
384
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """yjernite/retribert-base-uncased""": 512, } lowercase_ = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Tuple = VOCAB_FILES_NAMES _UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Optional[Any] = RetriBertTokenizer _UpperCamelCase : Dict = ['input_ids', 'attention_mask'] def __init__( self : str , a : Any=None , a : Optional[Any]=None , a : Dict=True , a : Union[str, Any]="[UNK]" , a : int="[SEP]" , a : Union[str, Any]="[PAD]" , a : str="[CLS]" , a : List[Any]="[MASK]" , a : Dict=True , a : Optional[Any]=None , **a : Any , )-> Optional[int]: """simple docstring""" super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , a ) != do_lower_case or normalizer_state.get('strip_accents' , a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , a ) != tokenize_chinese_chars ): lowercase__ = getattr(a , normalizer_state.pop('type' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**a ) lowercase__ = do_lower_case def SCREAMING_SNAKE_CASE_ ( self : Dict , a : List[Any] , a : int=None )-> Optional[Any]: """simple docstring""" lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE_ ( self : Any , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(a , name=a ) return tuple(a )
235
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class A_ ( UpperCAmelCase ): """simple docstring""" def __get__( self : Dict ,__A : Any ,__A : Tuple=None ) -> Optional[Any]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) _lowercase = '__cached_' + self.fget.__name__ _lowercase = getattr(__A ,__A ,__A ) if cached is None: _lowercase = self.fget(__A ) setattr(__A ,__A ,__A ) return cached def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[int] ) -> Optional[int]: _lowercase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple ) -> List[str]: if is_torch_fx_proxy(snake_case__ ): return True if is_torch_available(): import torch if isinstance(snake_case__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(snake_case__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(snake_case__ , (jnp.ndarray, Tracer) ): return True return isinstance(snake_case__ , np.ndarray ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Dict: return isinstance(snake_case__ , np.ndarray ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[Any] ) -> Any: return _is_numpy(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Dict ) -> Optional[int]: import torch return isinstance(snake_case__ , torch.Tensor ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[Any] ) -> Union[str, Any]: return False if not is_torch_available() else _is_torch(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple ) -> List[str]: import torch return isinstance(snake_case__ , torch.device ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[Any] ) -> int: return False if not is_torch_available() else _is_torch_device(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Union[str, Any] ) -> List[Any]: import torch if isinstance(snake_case__ , snake_case__ ): if hasattr(snake_case__ , snake_case__ ): _lowercase = getattr(snake_case__ , snake_case__ ) else: return False return isinstance(snake_case__ , torch.dtype ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Dict: return False if not is_torch_available() else _is_torch_dtype(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[Any] ) -> List[Any]: import tensorflow as tf return isinstance(snake_case__ , tf.Tensor ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(snake_case__ , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(snake_case__ ) return type(snake_case__ ) == tf.Tensor def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[int] ) -> Tuple: return False if not is_tf_available() else _is_tf_symbolic_tensor(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] ) -> Optional[int]: import jax.numpy as jnp # noqa: F811 return isinstance(snake_case__ , jnp.ndarray ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Any ) -> Optional[Any]: return False if not is_flax_available() else _is_jax(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[Any] ) -> int: if isinstance(snake_case__ , (dict, UserDict) ): return {k: to_py_obj(snake_case__ ) for k, v in obj.items()} elif isinstance(snake_case__ , (list, tuple) ): return [to_py_obj(snake_case__ ) for o in obj] elif is_tf_tensor(snake_case__ ): return obj.numpy().tolist() elif is_torch_tensor(snake_case__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(snake_case__ ): return np.asarray(snake_case__ ).tolist() elif isinstance(snake_case__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[Any] ) -> Dict: if isinstance(snake_case__ , (dict, UserDict) ): return {k: to_numpy(snake_case__ ) for k, v in obj.items()} elif isinstance(snake_case__ , (list, tuple) ): return np.array(snake_case__ ) elif is_tf_tensor(snake_case__ ): return obj.numpy() elif is_torch_tensor(snake_case__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(snake_case__ ): return np.asarray(snake_case__ ) else: return obj class A_ ( UpperCAmelCase ): """simple docstring""" def __UpperCAmelCase ( self : List[Any] ) -> List[str]: _lowercase = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(F"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"""{self.__class__.__name__} should not have more than one required field.""" ) _lowercase = getattr(self ,class_fields[0].name ) _lowercase = all(getattr(self ,field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A ,__A ): _lowercase = first_field.items() _lowercase = True else: try: _lowercase = iter(__A ) _lowercase = True except TypeError: _lowercase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A ,(list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0] ,__A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _lowercase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self ,element[0] ,element[1] ) if element[1] is not None: _lowercase = element[1] elif first_field is not None: _lowercase = first_field else: for field in class_fields: _lowercase = getattr(self ,field.name ) if v is not None: _lowercase = v def __delitem__( self : List[str] ,*__A : Dict ,**__A : Tuple ) -> List[Any]: raise Exception(F"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def __UpperCAmelCase ( self : Optional[int] ,*__A : Tuple ,**__A : Dict ) -> List[str]: raise Exception(F"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def __UpperCAmelCase ( self : List[Any] ,*__A : List[str] ,**__A : str ) -> Optional[Any]: raise Exception(F"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def __UpperCAmelCase ( self : List[Any] ,*__A : List[Any] ,**__A : Union[str, Any] ) -> Any: raise Exception(F"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : Optional[int] ,__A : Dict ) -> Union[str, Any]: if isinstance(__A ,__A ): _lowercase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : List[str] ,__A : str ,__A : Optional[Any] ) -> Any: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A ,__A ) super().__setattr__(__A ,__A ) def __setitem__( self : Any ,__A : List[Any] ,__A : List[str] ) -> Optional[Any]: # Will raise a KeyException if needed super().__setitem__(__A ,__A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A ,__A ) def __UpperCAmelCase ( self : str ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class A_ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" @classmethod def __UpperCAmelCase ( cls : str ,__A : int ) -> List[str]: raise ValueError( F"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = '''longest''' SCREAMING_SNAKE_CASE_ : Optional[int] = '''max_length''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''do_not_pad''' class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = '''pt''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''tf''' SCREAMING_SNAKE_CASE_ : List[str] = '''np''' SCREAMING_SNAKE_CASE_ : Any = '''jax''' class A_ : """simple docstring""" def __init__( self : List[str] ,__A : List[ContextManager] ) -> List[str]: _lowercase = context_managers _lowercase = ExitStack() def __enter__( self : Any ) -> List[str]: for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self : Tuple ,*__A : List[str] ,**__A : Any ) -> Tuple: self.stack.__exit__(*__A ,**__A ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Any ) -> str: _lowercase = infer_framework(snake_case__ ) if framework == "tf": _lowercase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowercase = inspect.signature(model_class.forward ) # PyTorch models else: _lowercase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def SCREAMING_SNAKE_CASE__ ( snake_case__ :Union[str, Any] ) -> str: _lowercase = model_class.__name__ _lowercase = infer_framework(snake_case__ ) if framework == "tf": _lowercase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowercase = inspect.signature(model_class.forward ) # PyTorch models else: _lowercase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def SCREAMING_SNAKE_CASE__ ( snake_case__ :MutableMapping , snake_case__ :str = "" , snake_case__ :str = "." ) -> List[str]: def _flatten_dict(snake_case__ :Tuple , snake_case__ :Tuple="" , snake_case__ :List[Any]="." ): for k, v in d.items(): _lowercase = str(snake_case__ ) + delimiter + str(snake_case__ ) if parent_key else k if v and isinstance(snake_case__ , snake_case__ ): yield from flatten_dict(snake_case__ , snake_case__ , delimiter=snake_case__ ).items() else: yield key, v return dict(_flatten_dict(snake_case__ , snake_case__ , snake_case__ ) ) @contextmanager def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[int] , snake_case__ :bool = False ) -> str: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :Union[str, Any]=None ) -> Tuple: if is_numpy_array(snake_case__ ): return np.transpose(snake_case__ , axes=snake_case__ ) elif is_torch_tensor(snake_case__ ): return array.T if axes is None else array.permute(*snake_case__ ) elif is_tf_tensor(snake_case__ ): import tensorflow as tf return tf.transpose(snake_case__ , perm=snake_case__ ) elif is_jax_tensor(snake_case__ ): return jnp.transpose(snake_case__ , axes=snake_case__ ) else: raise ValueError(F"""Type not supported for transpose: {type(snake_case__ )}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Dict , snake_case__ :Tuple ) -> Union[str, Any]: if is_numpy_array(snake_case__ ): return np.reshape(snake_case__ , snake_case__ ) elif is_torch_tensor(snake_case__ ): return array.reshape(*snake_case__ ) elif is_tf_tensor(snake_case__ ): import tensorflow as tf return tf.reshape(snake_case__ , snake_case__ ) elif is_jax_tensor(snake_case__ ): return jnp.reshape(snake_case__ , snake_case__ ) else: raise ValueError(F"""Type not supported for reshape: {type(snake_case__ )}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple , snake_case__ :int=None ) -> Dict: if is_numpy_array(snake_case__ ): return np.squeeze(snake_case__ , axis=snake_case__ ) elif is_torch_tensor(snake_case__ ): return array.squeeze() if axis is None else array.squeeze(dim=snake_case__ ) elif is_tf_tensor(snake_case__ ): import tensorflow as tf return tf.squeeze(snake_case__ , axis=snake_case__ ) elif is_jax_tensor(snake_case__ ): return jnp.squeeze(snake_case__ , axis=snake_case__ ) else: raise ValueError(F"""Type not supported for squeeze: {type(snake_case__ )}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :str , snake_case__ :Tuple ) -> str: if is_numpy_array(snake_case__ ): return np.expand_dims(snake_case__ , snake_case__ ) elif is_torch_tensor(snake_case__ ): return array.unsqueeze(dim=snake_case__ ) elif is_tf_tensor(snake_case__ ): import tensorflow as tf return tf.expand_dims(snake_case__ , axis=snake_case__ ) elif is_jax_tensor(snake_case__ ): return jnp.expand_dims(snake_case__ , axis=snake_case__ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(snake_case__ )}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Dict ) -> Optional[Any]: if is_numpy_array(snake_case__ ): return np.size(snake_case__ ) elif is_torch_tensor(snake_case__ ): return array.numel() elif is_tf_tensor(snake_case__ ): import tensorflow as tf return tf.size(snake_case__ ) elif is_jax_tensor(snake_case__ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(snake_case__ )}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple , snake_case__ :Dict ) -> Optional[Any]: for key, value in auto_map.items(): if isinstance(snake_case__ , (tuple, list) ): _lowercase = [F"""{repo_id}--{v}""" if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: _lowercase = F"""{repo_id}--{value}""" return auto_map def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[int] ) -> Union[str, Any]: for base_class in inspect.getmro(snake_case__ ): _lowercase = base_class.__module__ _lowercase = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
535
from itertools import count def SCREAMING_SNAKE_CASE__ ( snake_case__ :int = 50 ) -> int: _lowercase = [1] * min_block_length for n in count(snake_case__ ): fill_count_functions.append(1 ) for block_length in range(snake_case__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
535
1
_lowerCamelCase : Union[str, Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowerCamelCase : Dict = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowerCamelCase : Dict = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
87
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
0
def UpperCamelCase ( snake_case__ : Any = 200_0000 ): '''simple docstring''' __snake_case :Tuple = [0 for i in range(n + 1 )] __snake_case :Tuple = 1 __snake_case :List[str] = 1 for i in range(2 ,int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i ,n + 1 ,_lowerCamelCase ): __snake_case :List[str] = 1 __snake_case :Any = 0 for i in range(_lowerCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
716
import os def UpperCamelCase ( ): '''simple docstring''' __snake_case :List[str] = os.path.dirname(os.path.realpath(snake_case__ ) ) __snake_case :Union[str, Any] = os.path.join(snake_case__ ,"""triangle.txt""" ) with open(snake_case__ ) as f: __snake_case :int = f.readlines() __snake_case :int = [] for line in triangle: __snake_case :List[Any] = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(snake_case__ ) ) a.append(snake_case__ ) for i in range(1 ,len(snake_case__ ) ): for j in range(len(a[i] ) ): __snake_case :Union[str, Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 __snake_case :Dict = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(snake_case__ ,snake_case__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
291
0
'''simple docstring''' lowercase__ = 0 # The first color of the flag. lowercase__ = 1 # The second color of the flag. lowercase__ = 2 # The third color of the flag. lowercase__ = (red, white, blue) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Dict: '''simple docstring''' if not sequence: return [] if len(_SCREAMING_SNAKE_CASE ) == 1: return list(_SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = 0 snake_case : Optional[int] = len(_SCREAMING_SNAKE_CASE ) - 1 snake_case : Dict = 0 while mid <= high: if sequence[mid] == colors[0]: snake_case ,snake_case : Any = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: snake_case ,snake_case : List[str] = sequence[high], sequence[mid] high -= 1 else: snake_case : Optional[Any] = F'The elements inside the sequence must contains only {colors} values' raise ValueError(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = input("Enter numbers separated by commas:\n").strip() lowercase__ = [int(item.strip()) for item in user_input.split(",")] print(f"{dutch_national_flag_sort(unsorted)}")
638
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Optional[Any] , __lowercase : Any , __lowercase : Union[str, Any]=7 , __lowercase : List[str]=3 , __lowercase : List[Any]=18 , __lowercase : str=30 , __lowercase : Optional[Any]=400 , __lowercase : Dict=True , __lowercase : int=None , __lowercase : Tuple=True , __lowercase : Optional[Any]=None , __lowercase : List[str]=True , __lowercase : List[Any]=[0.5, 0.5, 0.5] , __lowercase : Any=[0.5, 0.5, 0.5] , ): '''simple docstring''' __a = size if size is not None else {"""shortest_edge""": 18} __a = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_center_crop __a = crop_size __a = do_normalize __a = image_mean __a = image_std def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Dict =LevitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = LevitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , """image_mean""" ) ) self.assertTrue(hasattr(__lowercase , """image_std""" ) ) self.assertTrue(hasattr(__lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowercase , """do_resize""" ) ) self.assertTrue(hasattr(__lowercase , """do_center_crop""" ) ) self.assertTrue(hasattr(__lowercase , """size""" ) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __a = image_processing(__lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __a = image_processing(__lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str ): '''simple docstring''' # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __a = image_processing(__lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
225
0
lowerCamelCase : List[str] = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
303
import sys from collections import defaultdict class snake_case__ : def __init__( self : List[Any] ): snake_case__ : Dict = [] def UpperCAmelCase__ ( self : List[str] , _lowerCamelCase : Tuple ): return self.node_position[vertex] def UpperCAmelCase__ ( self : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : str ): snake_case__ : Union[str, Any] = pos def UpperCAmelCase__ ( self : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case__ : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case__ : Optional[int] = 2 * start + 1 else: snake_case__ : str = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case__ , snake_case__ : int = heap[smallest_child], positions[smallest_child] snake_case__ , snake_case__ : str = ( heap[start], positions[start], ) snake_case__ , snake_case__ : int = temp, tempa snake_case__ : int = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _lowerCamelCase ) self.top_to_bottom(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] ): snake_case__ : Optional[Any] = position[index] while index != 0: snake_case__ : Optional[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case__ : Optional[Any] = heap[parent] snake_case__ : Dict = position[parent] self.set_position(position[parent] , _lowerCamelCase ) else: snake_case__ : Tuple = val snake_case__ : Optional[Any] = temp self.set_position(_lowerCamelCase , _lowerCamelCase ) break snake_case__ : Optional[int] = parent else: snake_case__ : List[str] = val snake_case__ : List[Any] = temp self.set_position(_lowerCamelCase , 0 ) def UpperCAmelCase__ ( self : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Dict ): snake_case__ : int = len(_lowerCamelCase ) // 2 - 1 for i in range(_lowerCamelCase , -1 , -1 ): self.top_to_bottom(_lowerCamelCase , _lowerCamelCase , len(_lowerCamelCase ) , _lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : List[str] ): snake_case__ : Any = positions[0] snake_case__ : List[str] = sys.maxsize self.top_to_bottom(_lowerCamelCase , 0 , len(_lowerCamelCase ) , _lowerCamelCase ) return temp def lowercase__( A ): snake_case__ : int = Heap() snake_case__ : Optional[int] = [0] * len(A ) snake_case__ : Any = [-1] * len(A ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case__ : Union[str, Any] = [] # Heap of Distance of vertices from their neighboring vertex snake_case__ : Dict = [] for vertex in range(len(A ) ): distance_tv.append(sys.maxsize ) positions.append(A ) heap.node_position.append(A ) snake_case__ : Tuple = [] snake_case__ : int = 1 snake_case__ : int = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case__ : Optional[int] = 0 snake_case__ : Optional[int] = distance heap.heapify(A , A ) for _ in range(1 , len(A ) ): snake_case__ : Tuple = heap.delete_minimum(A , A ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case__ : List[str] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(A )] ): snake_case__ : Any = distance heap.bottom_to_top( A , heap.get_position(A ) , A , A ) snake_case__ : Union[str, Any] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowerCamelCase : Union[str, Any] = int(input('Enter number of edges: ').strip()) lowerCamelCase : str = defaultdict(list) for _ in range(edges_number): lowerCamelCase : Any = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
303
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A_ = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'ylacombe/bark-small' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = 'en_speaker_1' lowerCamelCase_ = 'This is a test string' lowerCamelCase_ = 'speaker_embeddings_path.json' lowerCamelCase_ = 'speaker_embeddings' def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase_ = 35 lowerCamelCase_ = 2 lowerCamelCase_ = 8 lowerCamelCase_ = { 'semantic_prompt': np.ones(SCREAMING_SNAKE_CASE_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCamelCase_ = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCamelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string ) lowerCamelCase_ = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
42
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase: int = logging.get_logger(__name__) class UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" ,_lowerCAmelCase ,) super().__init__(*_lowerCAmelCase ,**_lowerCAmelCase )
709
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _lowercase : Union[str, Any] = mf_knapsack(i - 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _lowercase : Tuple = max( mf_knapsack(i - 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , mf_knapsack(i - 1 , __UpperCAmelCase , __UpperCAmelCase , j - wt[i - 1] ) + val[i - 1] , ) _lowercase : int = val return f[i][j] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: _lowercase : Optional[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: _lowercase : Union[str, Any] = dp[i - 1][w_] return dp[n][w_], dp def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if not (isinstance(__UpperCAmelCase , (list, tuple) ) and isinstance(__UpperCAmelCase , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) _lowercase : List[str] = len(__UpperCAmelCase ) if num_items != len(__UpperCAmelCase ): _lowercase : Union[str, Any] = ( """The number of weights must be the same as the number of values.\n""" F"""But got {num_items} weights and {len(__UpperCAmelCase )} values""" ) raise ValueError(__UpperCAmelCase ) for i in range(__UpperCAmelCase ): if not isinstance(wt[i] , __UpperCAmelCase ): _lowercase : List[str] = ( """All weights must be integers but got weight of """ F"""type {type(wt[i] )} at index {i}""" ) raise TypeError(__UpperCAmelCase ) _lowercase , _lowercase : Dict = knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowercase : set = set() _construct_solution(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return optimal_val, example_optional_set def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__UpperCAmelCase , __UpperCAmelCase , i - 1 , __UpperCAmelCase , __UpperCAmelCase ) else: optimal_set.add(__UpperCAmelCase ) _construct_solution(__UpperCAmelCase , __UpperCAmelCase , i - 1 , j - wt[i - 1] , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: str = [3, 2, 4, 4] UpperCAmelCase: Dict = [4, 3, 2, 3] UpperCAmelCase: Optional[int] = 4 UpperCAmelCase: Optional[int] = 6 UpperCAmelCase: Union[str, Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCAmelCase , UpperCAmelCase: List[Any] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCAmelCase , UpperCAmelCase: Union[str, Any] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
600
0
def lowerCamelCase__ ( _a): if len(_a) <= 1: return lst SCREAMING_SNAKE_CASE : List[str] = 1 while i < len(_a): if lst[i - 1] <= lst[i]: i += 1 else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = lst[i], lst[i - 1] i -= 1 if i == 0: SCREAMING_SNAKE_CASE : Optional[Any] = 1 return lst if __name__ == "__main__": a_ = input('Enter numbers separated by a comma:\n').strip() a_ = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
25
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class A_ ( __lowercase ): '''simple docstring''' def __init__( self , **_A) -> List[Any]: """simple docstring""" super().__init__(**_A) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''') requires_backends(self , '''vision''') self.check_model_type(_A) def __call__( self , _A , _A = None , **_A , ) -> Optional[Any]: """simple docstring""" if "text_queries" in kwargs: _UpperCAmelCase : int = kwargs.pop('''text_queries''') if isinstance(_A , (str, Image.Image)): _UpperCAmelCase : int = {'''image''': image, '''candidate_labels''': candidate_labels} else: _UpperCAmelCase : int = image _UpperCAmelCase : Dict = super().__call__(_A , **_A) return results def snake_case__ ( self , **_A) -> Any: """simple docstring""" _UpperCAmelCase : int = {} if "threshold" in kwargs: _UpperCAmelCase : List[Any] = kwargs['''threshold'''] if "top_k" in kwargs: _UpperCAmelCase : List[str] = kwargs['''top_k'''] return {}, {}, postprocess_params def snake_case__ ( self , _A) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = load_image(inputs['''image''']) _UpperCAmelCase : Optional[Any] = inputs['''candidate_labels'''] if isinstance(_A , _A): _UpperCAmelCase : Tuple = candidate_labels.split(''',''') _UpperCAmelCase : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(_A): _UpperCAmelCase : List[Any] = self.tokenizer(_A , return_tensors=self.framework) _UpperCAmelCase : str = self.image_processor(_A , return_tensors=self.framework) yield { "is_last": i == len(_A) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def snake_case__ ( self , _A) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = model_inputs.pop('''target_size''') _UpperCAmelCase : List[Any] = model_inputs.pop('''candidate_label''') _UpperCAmelCase : Optional[Any] = model_inputs.pop('''is_last''') _UpperCAmelCase : Dict = self.model(**_A) _UpperCAmelCase : str = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def snake_case__ ( self , _A , _A=0.1 , _A=None) -> int: """simple docstring""" _UpperCAmelCase : List[str] = [] for model_output in model_outputs: _UpperCAmelCase : int = model_output['''candidate_label'''] _UpperCAmelCase : Any = BaseModelOutput(_A) _UpperCAmelCase : Optional[int] = self.image_processor.post_process_object_detection( outputs=_A , threshold=_A , target_sizes=model_output['''target_size'''])[0] for index in outputs["scores"].nonzero(): _UpperCAmelCase : Optional[int] = outputs['''scores'''][index].item() _UpperCAmelCase : Dict = self._get_bounding_box(outputs['''boxes'''][index][0]) _UpperCAmelCase : Any = {'''score''': score, '''label''': label, '''box''': box} results.append(_A) _UpperCAmelCase : int = sorted(_A , key=lambda _A: x["score"] , reverse=_A) if top_k: _UpperCAmelCase : str = results[:top_k] return results def snake_case__ ( self , _A) -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''') _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = box.int().tolist() _UpperCAmelCase : Optional[Any] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
485
0
a_ :dict[str, float] = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.602176634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def a ( A__ , A__ , A__ ) -> float: '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( f"""Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(A__ )}""" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
703
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ :Tuple = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
0
"""simple docstring""" from __future__ import annotations def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if len(_UpperCamelCase ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(_UpperCamelCase ) or left < -len(_UpperCamelCase ) or right >= len(_UpperCamelCase ) or right < -len(_UpperCamelCase ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] __lowerCAmelCase = (left + right) >> 1 # the middle __lowerCAmelCase = find_max(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # find max in range[left, mid] __lowerCAmelCase = find_max(_UpperCamelCase , mid + 1 , _UpperCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
636
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration A : List[str] = pytest.mark.integration A : Optional[Any] = {"comet"} A : int = importlib.util.find_spec("fairseq") is not None A : Union[str, Any] = {"code_eval"} A : Dict = os.name == "nt" A : Dict = {"bertscore", "frugalscore", "perplexity"} A : Any = importlib.util.find_spec("transformers") is not None def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self , _UpperCamelCase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , _UpperCamelCase ) return wrapper def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self , _UpperCamelCase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , _UpperCamelCase ) return wrapper def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' @wraps(_UpperCamelCase ) def wrapper(self , _UpperCamelCase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , _UpperCamelCase ) return wrapper def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) @local class _UpperCamelCase ( parameterized.TestCase ): '''simple docstring''' __UpperCAmelCase : Any ={} __UpperCAmelCase : List[str] =None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def snake_case ( self , __a ): __lowerCAmelCase = "[...]" __lowerCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __a ) ).module_path ) __lowerCAmelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=__a ) # check parameters __lowerCAmelCase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__a , metric_module.__name__ ): with self.use_local_metrics(): try: __lowerCAmelCase = doctest.testmod(__a , verbose=__a , raise_on_error=__a ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def snake_case ( self , __a ): __lowerCAmelCase = "[...]" __lowerCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , __a ) ).module_path ) # run doctest with self.use_local_metrics(): __lowerCAmelCase = doctest.testmod(__a , verbose=__a , raise_on_error=__a ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def snake_case ( self , __a , __a ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__a ): yield else: yield @contextmanager def snake_case ( self ): def load_local_metric(__a , *__a , **__a ): return load_metric(os.path.join("metrics" , __a ) , *__a , **__a ) with patch("datasets.load_metric" ) as mock_load_metric: __lowerCAmelCase = load_local_metric yield @classmethod def snake_case ( cls , __a ): def wrapper(__a ): __lowerCAmelCase = contextmanager(__a ) __lowerCAmelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def snake_case ( self , __a ): assert len(input_dict["input_ids"] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: __lowerCAmelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' import torch def bert_cos_score_idf(_UpperCamelCase , _UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_UpperCamelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: __lowerCAmelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' def load_from_checkpoint(_UpperCamelCase ): class _UpperCamelCase : '''simple docstring''' def snake_case ( self , __a , *__a , **__a ): assert len(__a ) == 2 __lowerCAmelCase = [0.1_9, 0.9_2] return scores, sum(__a ) / len(__a ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: __lowerCAmelCase = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: __lowerCAmelCase = load_from_checkpoint yield def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = load_metric(os.path.join("metrics" , "seqeval" ) ) __lowerCAmelCase = "ERROR" __lowerCAmelCase = f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(_UpperCamelCase , match=re.escape(_UpperCamelCase ) ): metric.compute(predictions=[] , references=[] , scheme=_UpperCamelCase )
636
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :List[Any] = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') __magic_name__ :Optional[Any] = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(snake_case ): os.makedirs(snake_case ) __magic_name__ :Optional[Any] = model.state_dict() def to_tf_var_name(snake_case ): for patt, repl in iter(snake_case ): __magic_name__ :Dict = name.replace(snake_case, snake_case ) return f'''bert/{name}''' def create_tf_var(snake_case, snake_case, snake_case ): __magic_name__ :str = tf.dtypes.as_dtype(tensor.dtype ) __magic_name__ :Dict = tf.get_variable(dtype=snake_case, shape=tensor.shape, name=snake_case, initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(snake_case ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __magic_name__ :Any = to_tf_var_name(snake_case ) __magic_name__ :List[str] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __magic_name__ :Optional[int] = torch_tensor.T __magic_name__ :Union[str, Any] = create_tf_var(tensor=snake_case, name=snake_case, session=snake_case ) tf.keras.backend.set_value(snake_case, snake_case ) __magic_name__ :str = session.run(snake_case ) print(f'''Successfully created {tf_name}: {np.allclose(snake_case, snake_case )}''' ) __magic_name__ :List[str] = tf.train.Saver(tf.trainable_variables() ) saver.save(snake_case, os.path.join(snake_case, model_name.replace('''-''', '''_''' ) + '''.ckpt''' ) ) def __lowercase ( snake_case=None ): """simple docstring""" __magic_name__ :Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--model_name''', type=snake_case, required=snake_case, help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''', type=snake_case, default=snake_case, required=snake_case, help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''', type=snake_case, required=snake_case, help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''', type=snake_case, required=snake_case, help='''Directory in which to save tensorflow model''' ) __magic_name__ :str = parser.parse_args(snake_case ) __magic_name__ :Optional[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name, state_dict=torch.load(args.pytorch_model_path ), cache_dir=args.cache_dir, ) convert_pytorch_checkpoint_to_tf(model=snake_case, ckpt_dir=args.tf_cache_dir, model_name=args.model_name ) if __name__ == "__main__": main()
180
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __lowercase ( snake_case ): """simple docstring""" if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def __lowercase ( snake_case ): """simple docstring""" for char in word: __magic_name__ :Union[str, Any] = ord(snake_case ) if not _is_chinese_char(snake_case ): return 0 return 1 def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Any = set() for token in tokens: __magic_name__ :Dict = len(snake_case ) > 1 and is_chinese(snake_case ) if chinese_word: word_set.add(snake_case ) __magic_name__ :str = list(snake_case ) return word_list def __lowercase ( snake_case, snake_case ): """simple docstring""" if not chinese_word_set: return bert_tokens __magic_name__ :int = max([len(snake_case ) for w in chinese_word_set] ) __magic_name__ :Any = bert_tokens __magic_name__ , __magic_name__ :List[Any] = 0, len(snake_case ) while start < end: __magic_name__ :str = True if is_chinese(bert_word[start] ): __magic_name__ :Optional[Any] = min(end - start, snake_case ) for i in range(snake_case, 1, -1 ): __magic_name__ :Any = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): __magic_name__ :Optional[int] = '''##''' + bert_word[j] __magic_name__ :List[str] = start + i __magic_name__ :Optional[Any] = False break if single_word: start += 1 return bert_word def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :Optional[int] = [] for i in range(0, len(snake_case ), 1_0_0 ): __magic_name__ :List[str] = ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0] __magic_name__ :List[str] = [get_chinese_word(snake_case ) for r in res] ltp_res.extend(snake_case ) assert len(snake_case ) == len(snake_case ) __magic_name__ :Union[str, Any] = [] for i in range(0, len(snake_case ), 1_0_0 ): __magic_name__ :str = bert_tokenizer(lines[i : i + 1_0_0], add_special_tokens=snake_case, truncation=snake_case, max_length=5_1_2 ) bert_res.extend(res['''input_ids'''] ) assert len(snake_case ) == len(snake_case ) __magic_name__ :Union[str, Any] = [] for input_ids, chinese_word in zip(snake_case, snake_case ): __magic_name__ :Any = [] for id in input_ids: __magic_name__ :List[Any] = bert_tokenizer._convert_id_to_token(snake_case ) input_tokens.append(snake_case ) __magic_name__ :Dict = add_sub_symbol(snake_case, snake_case ) __magic_name__ :Optional[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case ): if token[:2] == "##": __magic_name__ :Optional[int] = token[2:] # save chinese tokens' pos if len(snake_case ) == 1 and _is_chinese_char(ord(snake_case ) ): ref_id.append(snake_case ) ref_ids.append(snake_case ) assert len(snake_case ) == len(snake_case ) return ref_ids def __lowercase ( snake_case ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: __magic_name__ :Union[str, Any] = f.readlines() __magic_name__ :int = [line.strip() for line in data if len(snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __magic_name__ :List[Any] = LTP(args.ltp ) # faster in GPU device __magic_name__ :List[str] = BertTokenizer.from_pretrained(args.bert ) __magic_name__ :Optional[int] = prepare_ref(snake_case, snake_case, snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: __magic_name__ :Dict = [json.dumps(snake_case ) + '''\n''' for ref in ref_ids] f.writelines(snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") SCREAMING_SNAKE_CASE__ : int = parser.parse_args() main(args)
180
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def lowercase__ ( lowerCamelCase : List[Any] ) -> Union[str, Any]: lowerCAmelCase__ : List[str] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase__ : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase__ : Optional[Any] = 4 lowerCAmelCase__ : List[Any] = 4_8 lowerCAmelCase__ : Union[str, Any] = "pixelshuffle_aux" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase__ : int = [6, 6, 6, 6] lowerCAmelCase__ : List[Any] = 6_0 lowerCAmelCase__ : List[str] = [6, 6, 6, 6] lowerCAmelCase__ : Union[str, Any] = "pixelshuffledirect" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase__ : Any = 4 lowerCAmelCase__ : Union[str, Any] = "nearest+conv" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : List[str] = 1 lowerCAmelCase__ : Dict = 1_2_6 lowerCAmelCase__ : Dict = 7 lowerCAmelCase__ : Optional[Any] = 2_55.0 lowerCAmelCase__ : Optional[int] = "" return config def lowercase__ ( lowerCamelCase : str , lowerCamelCase : Optional[Any] ) -> Union[str, Any]: if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase__ : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCAmelCase__ : Dict = name.replace("patch_embed.norm" , "embeddings.patch_embeddings.layernorm" ) if "layers" in name: lowerCAmelCase__ : Dict = name.replace("layers" , "encoder.stages" ) if "residual_group.blocks" in name: lowerCAmelCase__ : Any = name.replace("residual_group.blocks" , "layers" ) if "attn.proj" in name: lowerCAmelCase__ : Tuple = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCAmelCase__ : Any = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCAmelCase__ : Dict = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCAmelCase__ : Dict = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCAmelCase__ : List[Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCAmelCase__ : Tuple = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: lowerCAmelCase__ : List[Any] = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: lowerCAmelCase__ : List[str] = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: lowerCAmelCase__ : Optional[Any] = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: lowerCAmelCase__ : Optional[int] = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if "patch_embed.proj" in name: lowerCAmelCase__ : int = name.replace("patch_embed.proj" , "patch_embed.projection" ) if name == "norm.weight": lowerCAmelCase__ : int = "layernorm.weight" if name == "norm.bias": lowerCAmelCase__ : List[str] = "layernorm.bias" if "conv_first" in name: lowerCAmelCase__ : str = name.replace("conv_first" , "first_convolution" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase__ : int = name.replace("conv_last" , "final_convolution" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase__ : Tuple = name.replace("conv_before_upsample.0" , "conv_before_upsample" ) if "upsample.0" in name: lowerCAmelCase__ : int = name.replace("upsample.0" , "upsample.convolution_0" ) if "upsample.2" in name: lowerCAmelCase__ : str = name.replace("upsample.2" , "upsample.convolution_1" ) lowerCAmelCase__ : Union[str, Any] = "upsample." + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase__ : Dict = name.replace("upsample.0.weight" , "upsample.conv.weight" ) lowerCAmelCase__ : List[Any] = name.replace("upsample.0.bias" , "upsample.conv.bias" ) else: pass else: lowerCAmelCase__ : str = "swin2sr." + name return name def lowercase__ ( lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] ) -> int: for key in orig_state_dict.copy().keys(): lowerCAmelCase__ : Union[str, Any] = orig_state_dict.pop(lowerCamelCase ) if "qkv" in key: lowerCAmelCase__ : Optional[int] = key.split("." ) lowerCAmelCase__ : List[Any] = int(key_split[1] ) lowerCAmelCase__ : int = int(key_split[4] ) lowerCAmelCase__ : Union[str, Any] = config.embed_dim if "weight" in key: lowerCAmelCase__ : List[Any] = val[:dim, :] lowerCAmelCase__ : str = val[dim : dim * 2, :] lowerCAmelCase__ : Optional[Any] = val[-dim:, :] else: lowerCAmelCase__ : List[Any] = val[:dim] lowerCAmelCase__ : Union[str, Any] = val[dim : dim * 2] lowerCAmelCase__ : Union[str, Any] = val[-dim:] pass else: lowerCAmelCase__ : List[str] = val return orig_state_dict def lowercase__ ( lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Any ) -> List[Any]: lowerCAmelCase__ : Tuple = get_config(lowerCamelCase ) lowerCAmelCase__ : Optional[int] = SwinaSRForImageSuperResolution(lowerCamelCase ) model.eval() lowerCAmelCase__ : Dict = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="cpu" ) lowerCAmelCase__ : Optional[int] = convert_state_dict(lowerCamelCase , lowerCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) if len(lowerCamelCase ) > 0: raise ValueError("Missing keys when converting: {}".format(lowerCamelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"Unexpected key {key} in state_dict" ) # verify values lowerCAmelCase__ : str = "https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true" lowerCAmelCase__ : int = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert("RGB" ) lowerCAmelCase__ : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase__ : Optional[int] = 1_2_6 if "Jpeg" in checkpoint_url else 2_5_6 lowerCAmelCase__ : Optional[Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) lowerCAmelCase__ : List[str] = transforms(lowerCamelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase__ : Optional[int] = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase__ : Dict = model(lowerCamelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase__ : Dict = torch.Size([1, 3, 5_1_2, 5_1_2] ) lowerCAmelCase__ : Union[str, Any] = torch.tensor( [[-0.70_87, -0.71_38, -0.67_21], [-0.83_40, -0.80_95, -0.72_98], [-0.91_49, -0.84_14, -0.79_40]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase__ : Tuple = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) lowerCAmelCase__ : Any = torch.tensor( [[-0.77_75, -0.81_05, -0.89_33], [-0.77_64, -0.83_56, -0.92_25], [-0.79_76, -0.86_86, -0.95_79]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase__ : List[Any] = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) lowerCAmelCase__ : Any = torch.tensor( [[-0.80_35, -0.75_04, -0.74_91], [-0.85_38, -0.81_24, -0.77_82], [-0.88_04, -0.86_51, -0.84_93]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase__ : str = torch.Size([1, 3, 5_1_2, 5_1_2] ) lowerCAmelCase__ : Tuple = torch.tensor( [[-0.76_69, -0.86_62, -0.87_67], [-0.88_10, -0.99_62, -0.98_20], [-0.93_40, -1.03_22, -1.11_49]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase__ : List[Any] = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) lowerCAmelCase__ : List[Any] = torch.tensor( [[-0.52_38, -0.55_57, -0.63_21], [-0.60_16, -0.59_03, -0.63_91], [-0.62_44, -0.63_34, -0.68_89]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowerCamelCase , atol=1e-3 ) print("Looks ok!" ) lowerCAmelCase__ : List[Any] = { "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth": ( "swin2SR-classical-sr-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth": ( "swin2SR-classical-sr-x4-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth": ( "swin2SR-compressed-sr-x4-48" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth": ( "swin2SR-lightweight-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth": ( "swin2SR-realworld-sr-x4-64-bsrgan-psnr" ), } lowerCAmelCase__ : List[str] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(lowerCamelCase ) if push_to_hub: model.push_to_hub(F"caidas/{model_name}" ) processor.push_to_hub(F"caidas/{model_name}" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") __UpperCAmelCase = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
308
"""simple docstring""" from typing import Any def lowercase__ ( lowerCamelCase : list , lowerCamelCase : list , lowerCamelCase : dict , lowerCamelCase : dict , lowerCamelCase : dict , ) -> list: _validation( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) # Creates data structures and fill initial step lowerCAmelCase__ : dict = {} lowerCAmelCase__ : dict = {} for state in states_space: lowerCAmelCase__ : Optional[int] = observations_space[0] lowerCAmelCase__ : Dict = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase__ : Tuple = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCamelCase ) ): lowerCAmelCase__ : Dict = observations_space[o] lowerCAmelCase__ : Dict = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase__ : int = "" lowerCAmelCase__ : Union[str, Any] = -1 for k_state in states_space: lowerCAmelCase__ : Optional[Any] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase__ : int = probability lowerCAmelCase__ : List[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase__ : Tuple = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase__ : List[str] = arg_max # The final observation lowerCAmelCase__ : Optional[int] = observations_space[len(lowerCamelCase ) - 1] # argmax for given final observation lowerCAmelCase__ : Dict = "" lowerCAmelCase__ : Dict = -1 for k_state in states_space: lowerCAmelCase__ : int = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase__ : Any = probability lowerCAmelCase__ : Any = k_state lowerCAmelCase__ : Optional[int] = arg_max # Process pointers backwards lowerCAmelCase__ : Tuple = last_state lowerCAmelCase__ : Dict = [] for o in range(len(lowerCamelCase ) - 1 , -1 , -1 ): result.append(lowerCamelCase ) lowerCAmelCase__ : Optional[int] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : Any , ) -> None: _validate_not_empty( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) _validate_lists(lowerCamelCase , lowerCamelCase ) _validate_dicts( lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase__ ( lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase__ ( lowerCamelCase : Any , lowerCamelCase : Any ) -> None: _validate_list(lowerCamelCase , "observations_space" ) _validate_list(lowerCamelCase , "states_space" ) def lowercase__ ( lowerCamelCase : Any , lowerCamelCase : str ) -> None: if not isinstance(_object , lowerCamelCase ): lowerCAmelCase__ : Optional[int] = F"{var_name} must be a list" raise ValueError(lowerCamelCase ) else: for x in _object: if not isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase__ : Tuple = F"{var_name} must be a list of strings" raise ValueError(lowerCamelCase ) def lowercase__ ( lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : Any , ) -> None: _validate_dict(lowerCamelCase , "initial_probabilities" , lowerCamelCase ) _validate_nested_dict(lowerCamelCase , "transition_probabilities" ) _validate_nested_dict(lowerCamelCase , "emission_probabilities" ) def lowercase__ ( lowerCamelCase : Any , lowerCamelCase : str ) -> None: _validate_dict(_object , lowerCamelCase , lowerCamelCase ) for x in _object.values(): _validate_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase__ ( lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : type , lowerCamelCase : bool = False ) -> None: if not isinstance(_object , lowerCamelCase ): lowerCAmelCase__ : Tuple = F"{var_name} must be a dict" raise ValueError(lowerCamelCase ) if not all(isinstance(lowerCamelCase , lowerCamelCase ) for x in _object ): lowerCAmelCase__ : str = F"{var_name} all keys must be strings" raise ValueError(lowerCamelCase ) if not all(isinstance(lowerCamelCase , lowerCamelCase ) for x in _object.values() ): lowerCAmelCase__ : str = "nested dictionary " if nested else "" lowerCAmelCase__ : int = F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
308
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( _UpperCamelCase ): UpperCamelCase : int = ["image_processor", "tokenizer"] UpperCamelCase : List[str] = "FlavaImageProcessor" UpperCamelCase : List[Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , __magic_name__=None , __magic_name__=None , **__magic_name__ ): """simple docstring""" _lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __magic_name__ , ) _lowerCAmelCase = kwargs.pop('feature_extractor' ) _lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__magic_name__ , __magic_name__ ) _lowerCAmelCase = self.image_processor def __call__( self , __magic_name__ = None , __magic_name__ = None , __magic_name__ = True , __magic_name__ = False , __magic_name__ = False , __magic_name__ = None , __magic_name__ = 0 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = True , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if images is not None: _lowerCAmelCase = self.image_processor( __magic_name__ , return_image_mask=__magic_name__ , return_codebook_pixels=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if text is not None and images is not None: encoding.update(__magic_name__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def _lowerCamelCase ( self , *__magic_name__ , **__magic_name__ ): """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def _lowerCamelCase ( self , *__magic_name__ , **__magic_name__ ): """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __magic_name__ , ) return self.image_processor_class @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __magic_name__ , ) return self.image_processor
309
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : str = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class __magic_name__ ( _UpperCamelCase ): UpperCamelCase : Optional[int] = "mvp" UpperCamelCase : Optional[Any] = ["past_key_values"] UpperCamelCase : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __magic_name__=5_0_2_6_7 , __magic_name__=1_0_2_4 , __magic_name__=1_2 , __magic_name__=4_0_9_6 , __magic_name__=1_6 , __magic_name__=1_2 , __magic_name__=4_0_9_6 , __magic_name__=1_6 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__="gelu" , __magic_name__=1_0_2_4 , __magic_name__=0.1 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.02 , __magic_name__=0.0 , __magic_name__=False , __magic_name__=True , __magic_name__=1 , __magic_name__=0 , __magic_name__=2 , __magic_name__=True , __magic_name__=2 , __magic_name__=2 , __magic_name__=False , __magic_name__=1_0_0 , __magic_name__=8_0_0 , **__magic_name__ , ): """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = classifier_dropout _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase = use_prompt _lowerCAmelCase = prompt_length _lowerCAmelCase = prompt_mid_dim super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , __magic_name__ ): _lowerCAmelCase = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' )
309
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : int=7 , lowerCamelCase__ : int=3 , lowerCamelCase__ : int=18 , lowerCamelCase__ : List[Any]=30 , lowerCamelCase__ : Tuple=400 , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=None , lowerCamelCase__ : str=True , ): a__ : Any = size if size is not None else {"""height""": 18, """width""": 18} a__ : List[str] = parent a__ : Any = batch_size a__ : Tuple = num_channels a__ : Tuple = image_size a__ : List[str] = min_resolution a__ : Optional[Any] = max_resolution a__ : Tuple = do_resize a__ : int = size a__ : Optional[int] = apply_ocr def _UpperCamelCase( self : int ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowercase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _UpperCamelCase( self : Optional[int] ): a__ : Tuple = LayoutLMvaImageProcessingTester(self ) @property def _UpperCamelCase( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase( self : Tuple ): a__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , "do_resize" ) ) self.assertTrue(hasattr(snake_case_ , "size" ) ) self.assertTrue(hasattr(snake_case_ , "apply_ocr" ) ) def _UpperCamelCase( self : Dict ): a__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) a__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def _UpperCamelCase( self : str ): pass def _UpperCamelCase( self : int ): a__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input a__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , snake_case_ ) self.assertIsInstance(encoding.boxes , snake_case_ ) # Test batched a__ : List[Any] = image_processing(snake_case_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCamelCase( self : Union[str, Any] ): a__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input a__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a__ : Dict = image_processing(snake_case_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCamelCase( self : int ): a__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input a__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a__ : Tuple = image_processing(snake_case_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCamelCase( self : Dict ): a__ : List[str] = LayoutLMvaImageProcessor() from datasets import load_dataset a__ : Tuple = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) a__ : str = Image.open(ds[0]["file"] ).convert("RGB" ) a__ : List[Any] = image_processing(snake_case_ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a__ : Optional[Any] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 a__ : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , snake_case_ ) self.assertListEqual(encoding.boxes , snake_case_ ) # with apply_OCR = False a__ : str = LayoutLMvaImageProcessor(apply_ocr=snake_case_ ) a__ : Tuple = image_processing(snake_case_ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
37
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE_ = 'RegNetConfig' # Base docstring SCREAMING_SNAKE_CASE_ = 'facebook/regnet-y-040' SCREAMING_SNAKE_CASE_ = [1, 10_88, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE_ = 'facebook/regnet-y-040' SCREAMING_SNAKE_CASE_ = 'tabby, tabby cat' SCREAMING_SNAKE_CASE_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ = 3 , snake_case_ = 1 , snake_case_ = 1 , snake_case_ = "relu" , ): '''simple docstring''' super().__init__() __UpperCAmelCase: Optional[int] = nn.Convad( snake_case_ , snake_case_ , kernel_size=snake_case_ , stride=snake_case_ , padding=kernel_size // 2 , groups=snake_case_ , bias=snake_case_ , ) __UpperCAmelCase: Any = nn.BatchNormad(snake_case_ ) __UpperCAmelCase: Optional[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Tuple = self.convolution(snake_case_ ) __UpperCAmelCase: str = self.normalization(snake_case_ ) __UpperCAmelCase: Optional[Any] = self.activation(snake_case_ ) return hidden_state class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' super().__init__() __UpperCAmelCase: List[str] = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __UpperCAmelCase: Tuple = config.num_channels def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) __UpperCAmelCase: int = self.embedder(snake_case_ ) return hidden_state class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ = 2 ): '''simple docstring''' super().__init__() __UpperCAmelCase: Any = nn.Convad(snake_case_ , snake_case_ , kernel_size=1 , stride=snake_case_ , bias=snake_case_ ) __UpperCAmelCase: Union[str, Any] = nn.BatchNormad(snake_case_ ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: List[str] = self.convolution(snake_case_ ) __UpperCAmelCase: Optional[int] = self.normalization(snake_case_ ) return hidden_state class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ ): '''simple docstring''' super().__init__() __UpperCAmelCase: Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) __UpperCAmelCase: Union[str, Any] = nn.Sequential( nn.Convad(snake_case_ , snake_case_ , kernel_size=1 ) , nn.ReLU() , nn.Convad(snake_case_ , snake_case_ , kernel_size=1 ) , nn.Sigmoid() , ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = self.pooler(snake_case_ ) __UpperCAmelCase: List[Any] = self.attention(snake_case_ ) __UpperCAmelCase: int = hidden_state * attention return hidden_state class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 1 ): '''simple docstring''' super().__init__() __UpperCAmelCase: Union[str, Any] = in_channels != out_channels or stride != 1 __UpperCAmelCase: Optional[Any] = max(1 , out_channels // config.groups_width ) __UpperCAmelCase: List[str] = ( RegNetShortCut(snake_case_ , snake_case_ , stride=snake_case_ ) if should_apply_shortcut else nn.Identity() ) __UpperCAmelCase: Optional[int] = nn.Sequential( RegNetConvLayer(snake_case_ , snake_case_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(snake_case_ , snake_case_ , stride=snake_case_ , groups=snake_case_ , activation=config.hidden_act ) , RegNetConvLayer(snake_case_ , snake_case_ , kernel_size=1 , activation=snake_case_ ) , ) __UpperCAmelCase: Optional[Any] = ACTaFN[config.hidden_act] def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: str = hidden_state __UpperCAmelCase: List[str] = self.layer(snake_case_ ) __UpperCAmelCase: Any = self.shortcut(snake_case_ ) hidden_state += residual __UpperCAmelCase: List[str] = self.activation(snake_case_ ) return hidden_state class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 1 ): '''simple docstring''' super().__init__() __UpperCAmelCase: Dict = in_channels != out_channels or stride != 1 __UpperCAmelCase: List[str] = max(1 , out_channels // config.groups_width ) __UpperCAmelCase: int = ( RegNetShortCut(snake_case_ , snake_case_ , stride=snake_case_ ) if should_apply_shortcut else nn.Identity() ) __UpperCAmelCase: Tuple = nn.Sequential( RegNetConvLayer(snake_case_ , snake_case_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(snake_case_ , snake_case_ , stride=snake_case_ , groups=snake_case_ , activation=config.hidden_act ) , RegNetSELayer(snake_case_ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(snake_case_ , snake_case_ , kernel_size=1 , activation=snake_case_ ) , ) __UpperCAmelCase: Tuple = ACTaFN[config.hidden_act] def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: int = hidden_state __UpperCAmelCase: List[Any] = self.layer(snake_case_ ) __UpperCAmelCase: int = self.shortcut(snake_case_ ) hidden_state += residual __UpperCAmelCase: Optional[Any] = self.activation(snake_case_ ) return hidden_state class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 2 , snake_case_ = 2 , ): '''simple docstring''' super().__init__() __UpperCAmelCase: Tuple = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer __UpperCAmelCase: Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( snake_case_ , snake_case_ , snake_case_ , stride=snake_case_ , ) , *[layer(snake_case_ , snake_case_ , snake_case_ ) for _ in range(depth - 1 )] , ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Any = self.layers(snake_case_ ) return hidden_state class a ( nn.Module ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' super().__init__() __UpperCAmelCase: List[str] = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( snake_case_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __UpperCAmelCase: int = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(snake_case_ , config.depths[1:] ): self.stages.append(RegNetStage(snake_case_ , snake_case_ , snake_case_ , depth=snake_case_ ) ) def lowercase_ ( self , snake_case_ , snake_case_ = False , snake_case_ = True ): '''simple docstring''' __UpperCAmelCase: List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCAmelCase: Any = hidden_states + (hidden_state,) __UpperCAmelCase: Dict = stage_module(snake_case_ ) if output_hidden_states: __UpperCAmelCase: Any = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=snake_case_ , hidden_states=snake_case_ ) class a ( __lowerCAmelCase ): """simple docstring""" __lowerCAmelCase = RegNetConfig __lowerCAmelCase = """regnet""" __lowerCAmelCase = """pixel_values""" __lowerCAmelCase = True def lowercase_ ( self , snake_case_ ): '''simple docstring''' if isinstance(snake_case_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(snake_case_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowercase_ ( self , snake_case_ , snake_case_=False ): '''simple docstring''' if isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase: Dict = value SCREAMING_SNAKE_CASE_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' SCREAMING_SNAKE_CASE_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , __lowerCAmelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' super().__init__(snake_case_ ) __UpperCAmelCase: Dict = config __UpperCAmelCase: List[str] = RegNetEmbeddings(snake_case_ ) __UpperCAmelCase: List[str] = RegNetEncoder(snake_case_ ) __UpperCAmelCase: Any = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase_ ( self , snake_case_ , snake_case_ = None , snake_case_ = None ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase: str = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase: Tuple = self.embedder(snake_case_ ) __UpperCAmelCase: List[str] = self.encoder( snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ ) __UpperCAmelCase: List[Any] = encoder_outputs[0] __UpperCAmelCase: Dict = self.pooler(snake_case_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case_ , pooler_output=snake_case_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , __lowerCAmelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' super().__init__(snake_case_ ) __UpperCAmelCase: int = config.num_labels __UpperCAmelCase: List[str] = RegNetModel(snake_case_ ) # classification head __UpperCAmelCase: Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase_ ( self , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase: List[str] = self.regnet(snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ ) __UpperCAmelCase: Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] __UpperCAmelCase: List[Any] = self.classifier(snake_case_ ) __UpperCAmelCase: str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCAmelCase: int = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCAmelCase: Optional[Any] = """single_label_classification""" else: __UpperCAmelCase: Union[str, Any] = """multi_label_classification""" if self.config.problem_type == "regression": __UpperCAmelCase: Any = MSELoss() if self.num_labels == 1: __UpperCAmelCase: Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: __UpperCAmelCase: Tuple = loss_fct(snake_case_ , snake_case_ ) elif self.config.problem_type == "single_label_classification": __UpperCAmelCase: Dict = CrossEntropyLoss() __UpperCAmelCase: int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __UpperCAmelCase: List[str] = BCEWithLogitsLoss() __UpperCAmelCase: Any = loss_fct(snake_case_ , snake_case_ ) if not return_dict: __UpperCAmelCase: List[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=snake_case_ , logits=snake_case_ , hidden_states=outputs.hidden_states )
523
0
"""simple docstring""" import requests def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Tuple = {'''Content-Type''': '''application/json'''} __lowercase : List[str] = requests.post(_lowerCAmelCase , json={'''text''': message_body} , headers=_lowerCAmelCase ) if response.status_code != 2_00: __lowercase : int = ( '''Request to slack returned an error ''' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(_lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
701
"""simple docstring""" import argparse import json from tqdm import tqdm def __UpperCAmelCase ( ): __lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__UpperCamelCase , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__UpperCamelCase , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__UpperCamelCase , help='''where to store parsed gold_data_path file''' , ) __lowercase : Dict = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: __lowercase : str = json.load(__UpperCamelCase ) for dpr_record in tqdm(__UpperCamelCase ): __lowercase : Optional[int] = dpr_record['''question'''] __lowercase : Optional[int] = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__UpperCamelCase ) + '''\n''' ) if __name__ == "__main__": main()
523
0
'''simple docstring''' def _snake_case ( A ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) lowerCAmelCase__ = sum(A ) / len(A ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(A ) if __name__ == "__main__": import doctest doctest.testmod()
90
"""simple docstring""" def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
434
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __magic_name__ : int = logging.get_logger(__name__) __magic_name__ : Union[str, Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } __magic_name__ : int = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def lowercase__ ( _UpperCamelCase) -> Tuple: """simple docstring""" UpperCamelCase = {} with open(_UpperCamelCase , 'r') as file: for line_number, line in enumerate(_UpperCamelCase): UpperCamelCase = line.strip() if line: UpperCamelCase = line.split() UpperCamelCase = line_number UpperCamelCase = words[0] UpperCamelCase = value return result def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Dict: """simple docstring""" for attribute in key.split('.'): UpperCamelCase = getattr(_UpperCamelCase , _UpperCamelCase) UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_UpperCamelCase): UpperCamelCase = PARAM_MAPPING[full_name.split('.')[-1]] UpperCamelCase = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase = getattr(_UpperCamelCase , _UpperCamelCase).shape elif weight_type is not None and weight_type == "param": UpperCamelCase = hf_pointer for attribute in hf_param_name.split('.'): UpperCamelCase = getattr(_UpperCamelCase , _UpperCamelCase) UpperCamelCase = shape_pointer.shape # let's reduce dimension UpperCamelCase = value[0] else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}') if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split('.'): UpperCamelCase = getattr(_UpperCamelCase , _UpperCamelCase) UpperCamelCase = value else: UpperCamelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> List[str]: """simple docstring""" UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_UpperCamelCase): UpperCamelCase = PARAM_MAPPING[full_name.split('.')[-1]] UpperCamelCase = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase = '.'.join([key, weight_type]) elif weight_type is not None and weight_type == "param": UpperCamelCase = '.'.join([key, hf_param_name]) else: UpperCamelCase = key UpperCamelCase = value if 'lm_head' in full_key else value[0] __magic_name__ : Dict = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None) -> Any: """simple docstring""" UpperCamelCase = False for key, mapped_key in MAPPING.items(): UpperCamelCase = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(_UpperCamelCase)[0].split('.')[-2] UpperCamelCase = mapped_key.replace('*' , _UpperCamelCase) if "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase = 'weight' else: UpperCamelCase = None if hf_dict is not None: rename_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) else: set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) return is_used return is_used def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Optional[Any]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = fairseq_model.state_dict() UpperCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase = True else: UpperCamelCase = load_wavaveca_layer(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) if not is_used: unused_weights.append(_UpperCamelCase) logger.warning(F'Unused weights: {unused_weights}') def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> List[Any]: """simple docstring""" UpperCamelCase = full_name.split('conv_layers.')[-1] UpperCamelCase = name.split('.') UpperCamelCase = int(items[0]) UpperCamelCase = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.') UpperCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.') UpperCamelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.') UpperCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.') UpperCamelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(_UpperCamelCase) @torch.no_grad() def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=False) -> Tuple: """simple docstring""" if config_path is not None: UpperCamelCase = WavaVecaConfig.from_pretrained(_UpperCamelCase) else: UpperCamelCase = WavaVecaConfig() if is_seq_class: UpperCamelCase = read_txt_into_dict(_UpperCamelCase) UpperCamelCase = idalabel UpperCamelCase = WavaVecaForSequenceClassification(_UpperCamelCase) UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) feature_extractor.save_pretrained(_UpperCamelCase) elif is_finetuned: if dict_path: UpperCamelCase = Dictionary.load(_UpperCamelCase) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase = target_dict.pad_index UpperCamelCase = target_dict.bos_index UpperCamelCase = target_dict.eos_index UpperCamelCase = len(target_dict.symbols) UpperCamelCase = os.path.join(_UpperCamelCase , 'vocab.json') if not os.path.isdir(_UpperCamelCase): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCamelCase)) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase) UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase = 0 UpperCamelCase = 1 with open(_UpperCamelCase , 'w' , encoding='utf-8') as vocab_handle: json.dump(_UpperCamelCase , _UpperCamelCase) UpperCamelCase = WavaVecaCTCTokenizer( _UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCamelCase , ) UpperCamelCase = True if config.feat_extract_norm == 'layer' else False UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) UpperCamelCase = WavaVecaProcessor(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase) processor.save_pretrained(_UpperCamelCase) UpperCamelCase = WavaVecaForCTC(_UpperCamelCase) else: UpperCamelCase = WavaVecaForPreTraining(_UpperCamelCase) if is_finetuned or is_seq_class: UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1])}) else: UpperCamelCase = argparse.Namespace(task='audio_pretraining') UpperCamelCase = fairseq.tasks.setup_task(_UpperCamelCase) UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_UpperCamelCase) UpperCamelCase = model[0].eval() recursively_load_weights(_UpperCamelCase , _UpperCamelCase , not is_finetuned) hf_wavavec.save_pretrained(_UpperCamelCase) if __name__ == "__main__": __magic_name__ : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) __magic_name__ : int = parser.parse_args() __magic_name__ : List[str] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
410
import argparse import os import re import packaging.version __magic_name__ : Dict = '''examples/''' __magic_name__ : List[str] = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __magic_name__ : Any = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __magic_name__ : int = '''README.md''' def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Union[str, Any]: """simple docstring""" with open(_UpperCamelCase , 'r' , encoding='utf-8' , newline='\n') as f: UpperCamelCase = f.read() UpperCamelCase , UpperCamelCase = REPLACE_PATTERNS[pattern] UpperCamelCase = replace.replace('VERSION' , _UpperCamelCase) UpperCamelCase = re_pattern.sub(_UpperCamelCase , _UpperCamelCase) with open(_UpperCamelCase , 'w' , encoding='utf-8' , newline='\n') as f: f.write(_UpperCamelCase) def lowercase__ ( _UpperCamelCase) -> Dict: """simple docstring""" for folder, directories, fnames in os.walk(_UpperCamelCase): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects') if "legacy" in directories: directories.remove('legacy') for fname in fnames: if fname.endswith('.py'): update_version_in_file(os.path.join(_UpperCamelCase , _UpperCamelCase) , _UpperCamelCase , pattern='examples') def lowercase__ ( _UpperCamelCase , _UpperCamelCase=False) -> Any: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) if not patch: update_version_in_examples(_UpperCamelCase) def lowercase__ ( ) -> str: """simple docstring""" UpperCamelCase = '🤗 Transformers currently provides the following architectures' UpperCamelCase = '1. Want to contribute a new model?' with open(_UpperCamelCase , 'r' , encoding='utf-8' , newline='\n') as f: UpperCamelCase = f.readlines() # Find the start of the list. UpperCamelCase = 0 while not lines[start_index].startswith(_start_prompt): start_index += 1 start_index += 1 UpperCamelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt): if lines[index].startswith('1.'): UpperCamelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCamelCase , 'w' , encoding='utf-8' , newline='\n') as f: f.writelines(_UpperCamelCase) def lowercase__ ( ) -> str: """simple docstring""" with open(REPLACE_FILES['init'] , 'r') as f: UpperCamelCase = f.read() UpperCamelCase = REPLACE_PATTERNS['init'][0].search(_UpperCamelCase).groups()[0] return packaging.version.parse(_UpperCamelCase) def lowercase__ ( _UpperCamelCase=False) -> str: """simple docstring""" UpperCamelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!') if default_version.is_devrelease: UpperCamelCase = default_version.base_version elif patch: UpperCamelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: UpperCamelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. UpperCamelCase = input(F'Which version are you releasing? [{default_version}]') if len(_UpperCamelCase) == 0: UpperCamelCase = default_version print(F'Updating version to {version}.') global_version_update(_UpperCamelCase , patch=_UpperCamelCase) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.') clean_main_ref_in_model_list() def lowercase__ ( ) -> int: """simple docstring""" UpperCamelCase = get_version() UpperCamelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' UpperCamelCase = current_version.base_version # Check with the user we got that right. UpperCamelCase = input(F'Which version are we developing now? [{dev_version}]') if len(_UpperCamelCase) == 0: UpperCamelCase = dev_version print(F'Updating version to {version}.') global_version_update(_UpperCamelCase) print('Cleaning main README, don\'t forget to run `make fix-copies`.') clean_main_ref_in_model_list() if __name__ == "__main__": __magic_name__ : List[str] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __magic_name__ : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
410
1
'''simple docstring''' __lowerCAmelCase = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def _UpperCAmelCase ( __A : dict , __A : Optional[Any] , __A : Tuple ): a_ : List[str] = set() # keep track of all the paths to be checked a_ : List[Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue a_ : List[Any] = queue.pop(0 ) # get the last node from the path a_ : Union[str, Any] = path[-1] if node not in explored: a_ : Optional[int] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: a_ : Union[str, Any] = list(__A ) new_path.append(__A ) queue.append(__A ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__A ) # in case there's no path between the 2 nodes return [] def _UpperCAmelCase ( __A : dict , __A : Optional[int] , __A : List[Any] ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 a_ : Optional[int] = [start] a_ : Dict = set(__A ) # Keep tab on distances from `start` node. a_ : Optional[Any] = {start: 0, target: -1} while queue: a_ : List[str] = queue.pop(0 ) if node == target: a_ : Optional[Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__A ) queue.append(__A ) a_ : Any = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
466
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) __lowerCAmelCase = logging.getLogger(__name__) __lowerCAmelCase = {'facebook/bart-base': BartForConditionalGeneration} __lowerCAmelCase = {'facebook/bart-base': BartTokenizer} def _UpperCAmelCase ( ): a_ : int = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=__A , default=__A , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=__A , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=__A , default=__A , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=__A , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__A , ) parser.add_argument( '''--config_name''' , type=__A , default=__A , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=__A , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=__A , default=__A , help='''Where to store the final ONNX file.''' ) a_ : Tuple = parser.parse_args() return args def _UpperCAmelCase ( __A : List[str] , __A : Dict="cpu" ): a_ : str = model_dict[model_name].from_pretrained(__A ).to(__A ) a_ : str = tokenizer_dict[model_name].from_pretrained(__A ) if model_name in ["facebook/bart-base"]: a_ : str = 0 a_ : Any = None a_ : int = 0 return huggingface_model, tokenizer def _UpperCAmelCase ( __A : int , __A : Dict , __A : str , __A : Optional[Any] , __A : Any ): model.eval() a_ : Union[str, Any] = None a_ : str = torch.jit.script(BARTBeamSearchGenerator(__A ) ) with torch.no_grad(): a_ : Any = '''My friends are cool but they eat too many carbs.''' a_ : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors='''pt''' ).to(model.device ) a_ : Dict = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=__A , max_length=__A , early_stopping=__A , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __A , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , __A , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=__A , ) logger.info('''Model exported to {}'''.format(__A ) ) a_ : Any = remove_dup_initializers(os.path.abspath(__A ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(__A ) ) a_ : int = onnxruntime.InferenceSession(__A ) a_ : Optional[Any] = ort_sess.run( __A , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(__A ), '''max_length''': np.array(__A ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def _UpperCAmelCase ( ): a_ : int = parse_args() a_ : List[str] = 5 a_ : List[str] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() a_ : Any = torch.device(args.device ) a_ , a_ : Optional[Any] = load_model_tokenizer(args.model_name_or_path , __A ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(__A ) if args.max_length: a_ : Dict = args.max_length if args.num_beams: a_ : str = args.num_beams if args.output_file_path: a_ : str = args.output_file_path else: a_ : Union[str, Any] = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(__A , __A , __A , __A , __A ) if __name__ == "__main__": main()
466
1
"""simple docstring""" _snake_case : Optional[int] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
711
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __snake_case ( SCREAMING_SNAKE_CASE: Optional[int] ): """simple docstring""" _lowerCAmelCase = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __snake_case ( SCREAMING_SNAKE_CASE: Any , SCREAMING_SNAKE_CASE: Tuple ): """simple docstring""" _lowerCAmelCase = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def __snake_case ( ): """simple docstring""" _lowerCAmelCase = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __snake_case ( SCREAMING_SNAKE_CASE: List[Any] , SCREAMING_SNAKE_CASE: Optional[Any] , SCREAMING_SNAKE_CASE: List[str] , SCREAMING_SNAKE_CASE: str ): """simple docstring""" _lowerCAmelCase = 'imagenet-1k-id2label.json' _lowerCAmelCase = 1000 _lowerCAmelCase = 'huggingface/label-files' _lowerCAmelCase = num_labels _lowerCAmelCase = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) ) , 'r' ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = _lowerCAmelCase = CvtConfig(num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": _lowerCAmelCase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": _lowerCAmelCase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: _lowerCAmelCase = [2, 2, 20] _lowerCAmelCase = [3, 12, 16] _lowerCAmelCase = [192, 768, 1024] _lowerCAmelCase = CvtForImageClassification(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) _lowerCAmelCase = image_size _lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('cpu' ) ) _lowerCAmelCase = OrderedDict() _lowerCAmelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: _lowerCAmelCase = list_of_state_dict + cls_token(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = list_of_state_dict + embeddings(SCREAMING_SNAKE_CASE ) for cnt in range(config.depth[idx] ): _lowerCAmelCase = list_of_state_dict + attention(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowerCAmelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=3_8_4, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _snake_case = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
491
0
from datetime import datetime import requests def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' snake_case_ = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(_A ).content if __name__ == "__main__": _UpperCAmelCase : int = input("""Enter Video/IGTV url: """).strip() _UpperCAmelCase : int = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
362
from string import ascii_uppercase A_: int = {char: i for i, char in enumerate(ascii_uppercase)} A_: Optional[Any] = dict(enumerate(ascii_uppercase)) def __lowerCAmelCase ( _A ,_A ): """simple docstring""" _lowercase = len(_A ) _lowercase = 0 while True: if x == i: _lowercase = 0 if len(_A ) == len(_A ): break key += key[i] i += 1 return key def __lowerCAmelCase ( _A ,_A ): """simple docstring""" _lowercase = """""" _lowercase = 0 for letter in message: if letter == " ": cipher_text += " " else: _lowercase = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __lowerCAmelCase ( _A ,_A ): """simple docstring""" _lowercase = """""" _lowercase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: _lowercase = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __lowerCAmelCase ( ): """simple docstring""" _lowercase = """THE GERMAN ATTACK""" _lowercase = """SECRET""" _lowercase = generate_key(_A ,_A ) _lowercase = cipher_text(_A ,_A ) print(f'''Encrypted Text = {s}''' ) print(f'''Original Text = {original_text(_A ,_A )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
398
0
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = '''''' for word_or_phrase in separated: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(lowerCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
721
"""simple docstring""" import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : str = LxmertTokenizer A_ : Any = LxmertTokenizerFast A_ : Optional[int] = True A_ : int = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' super().setUp() __A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __A = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Any ): '''simple docstring''' __A = '''UNwant\u00E9d,running''' __A = '''unwanted, running''' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowerCamelCase, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ), [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' if not self.test_rust_tokenizer: return __A = self.get_tokenizer() __A = self.get_rust_tokenizer() __A = '''I was born in 92000, and this is falsé.''' __A = tokenizer.tokenize(_lowerCamelCase ) __A = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) __A = tokenizer.encode(_lowerCamelCase, add_special_tokens=_lowerCamelCase ) __A = rust_tokenizer.encode(_lowerCamelCase, add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) __A = self.get_rust_tokenizer() __A = tokenizer.encode(_lowerCamelCase ) __A = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, _lowerCamelCase )
215
0
'''simple docstring''' import argparse import os import re _lowerCamelCase : int = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _lowerCamelCase : Union[str, Any] = re.compile(R"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings _lowerCamelCase : Optional[Any] = re.compile(R"\s*\(\s*\"(\S[^\"]+)\"") def __lowerCamelCase ( A__ , A__ = False ) -> Any: """simple docstring""" with open(A__ , 'r' , encoding='utf-8' ) as f: UpperCamelCase = f.read() UpperCamelCase = content.split('\n' ) UpperCamelCase = [] UpperCamelCase = 0 while line_idx < len(A__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: UpperCamelCase = len(re.search(R'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 UpperCamelCase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": UpperCamelCase = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers UpperCamelCase = sorted(A__ , key=lambda A__ : _re_identifier.search(A__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(A__ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(A__ ) ) elif "\n".join(A__ ) != content: return True def __lowerCamelCase ( A__ = False ) -> List[Any]: """simple docstring""" UpperCamelCase = [os.path.join(A__ , A__ ) for f in os.listdir(A__ ) if f.endswith('.py' )] UpperCamelCase = [sort_auto_mapping(A__ , overwrite=A__ ) for fname in fnames] if not overwrite and any(A__ ): UpperCamelCase = [f for f, d in zip(A__ , A__ ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(A__ )}. Run `make style` to fix""" ' this.' ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") _lowerCamelCase : str = parser.parse_args() sort_all_auto_mappings(not args.check_only)
430
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class SCREAMING_SNAKE_CASE ( _a , _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self : Union[str, Any] , UpperCamelCase__ : int = 1_0_0_0 , UpperCamelCase__ : Optional[Union[np.ndarray, List[float]]] = None ): """simple docstring""" self.set_timesteps(UpperCamelCase__ ) # standard deviation of the initial noise distribution UpperCamelCase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCamelCase = 4 # running values UpperCamelCase = [] def A ( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, torch.device] = None ): """simple docstring""" UpperCamelCase = num_inference_steps UpperCamelCase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] UpperCamelCase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCamelCase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: UpperCamelCase = torch.sin(steps * math.pi / 2 ) ** 2 UpperCamelCase = (1.0 - self.betas**2) ** 0.5 UpperCamelCase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] UpperCamelCase = timesteps.to(UpperCamelCase__ ) UpperCamelCase = [] def A ( self : Optional[Any] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : int , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) UpperCamelCase = (self.timesteps == timestep).nonzero().item() UpperCamelCase = timestep_index + 1 UpperCamelCase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCamelCase__ ) if len(self.ets ) == 1: UpperCamelCase = self.ets[-1] elif len(self.ets ) == 2: UpperCamelCase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCamelCase = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: UpperCamelCase = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) UpperCamelCase = self._get_prev_sample(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase__ ) def A ( self : List[str] , UpperCamelCase__ : torch.FloatTensor , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Union[str, Any] ): """simple docstring""" return sample def A ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" UpperCamelCase = self.alphas[timestep_index] UpperCamelCase = self.betas[timestep_index] UpperCamelCase = self.alphas[prev_timestep_index] UpperCamelCase = self.betas[prev_timestep_index] UpperCamelCase = (sample - sigma * ets) / max(UpperCamelCase__ , 1E-8 ) UpperCamelCase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[str] ): """simple docstring""" return self.config.num_train_timesteps
430
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCAmelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" for attribute in key.split('''.''' ): snake_case_ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: snake_case_ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: snake_case_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value else: snake_case_ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) snake_case_ = True else: for key, mapped_key in MAPPING.items(): snake_case_ = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] snake_case_ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: snake_case_ = '''weight_g''' elif "weight_v" in name: snake_case_ = '''weight_v''' elif "bias" in name: snake_case_ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ = '''weight''' else: snake_case_ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" snake_case_ = full_name.split('''conv_layers.''' )[-1] snake_case_ = name.split('''.''' ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True )-> Dict: """simple docstring""" if config_path is not None: snake_case_ = UniSpeechSatConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: snake_case_ = UniSpeechSatConfig() snake_case_ = '''''' if is_finetuned: snake_case_ = UniSpeechSatForCTC(SCREAMING_SNAKE_CASE ) else: snake_case_ = UniSpeechSatForPreTraining(SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) snake_case_ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
700
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCAmelCase = get_logger() UpperCAmelCase = None class lowerCAmelCase_ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): '''simple docstring''' def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): super().__init__(features=_UpperCAmelCase ) import jax from jaxlib.xla_client import Device if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError( F'''Expected {device} to be a `str` not {type(_UpperCAmelCase )}, as `jaxlib.xla_extension.Device` ''' '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) snake_case_ = device if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) snake_case_ = str(jax.devices()[0] ) snake_case_ = jnp_array_kwargs @staticmethod def UpperCamelCase__ ( ): import jax return {str(_UpperCAmelCase ): device for device in jax.devices()} def UpperCamelCase__ ( self , _UpperCAmelCase ): import jax import jax.numpy as jnp if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and column: if all( isinstance(_UpperCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_UpperCAmelCase , axis=0 ) return column def UpperCamelCase__ ( self , _UpperCAmelCase ): import jax import jax.numpy as jnp if isinstance(_UpperCAmelCase , (str, bytes, type(_UpperCAmelCase )) ): return value elif isinstance(_UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case_ = {} if isinstance(_UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case_ = {'''dtype''': jnp.intaa} else: snake_case_ = {'''dtype''': jnp.intaa} elif isinstance(_UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case_ = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_UpperCAmelCase , PIL.Image.Image ): snake_case_ = np.asarray(_UpperCAmelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def UpperCamelCase__ ( self , _UpperCAmelCase ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_UpperCAmelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_UpperCAmelCase , '''__array__''' ) and not isinstance(_UpperCAmelCase , jax.Array ): snake_case_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase ): return map_nested(self._recursive_tensorize , _UpperCAmelCase , map_list=_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = self.numpy_arrow_extractor().extract_row(_UpperCAmelCase ) snake_case_ = self.python_features_decoder.decode_row(_UpperCAmelCase ) return self.recursive_tensorize(_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = self.numpy_arrow_extractor().extract_column(_UpperCAmelCase ) snake_case_ = self.python_features_decoder.decode_column(_UpperCAmelCase , pa_table.column_names[0] ) snake_case_ = self.recursive_tensorize(_UpperCAmelCase ) snake_case_ = self._consolidate(_UpperCAmelCase ) return column def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = self.numpy_arrow_extractor().extract_batch(_UpperCAmelCase ) snake_case_ = self.python_features_decoder.decode_batch(_UpperCAmelCase ) snake_case_ = self.recursive_tensorize(_UpperCAmelCase ) for column_name in batch: snake_case_ = self._consolidate(batch[column_name] ) return batch
531
0
import qiskit def _lowerCamelCase ( __lowerCamelCase = 2 ) -> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase__ : str = qubits # Using Aer's simulator UpperCAmelCase__ : Tuple = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register UpperCAmelCase__ : Tuple = qiskit.QuantumCircuit(__lowerCamelCase , __lowerCamelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , __lowerCamelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , __lowerCamelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(__lowerCamelCase ) ) , list(range(__lowerCamelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator UpperCAmelCase__ : Optional[int] = qiskit.execute(__lowerCamelCase , __lowerCamelCase , shots=1000 ) return job.result().get_counts(__lowerCamelCase ) if __name__ == "__main__": print(f'''Total count for various states are: {quantum_entanglement(3)}''')
79
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( UpperCamelCase_ ): _a = ['''image_processor''', '''tokenizer'''] _a = '''ViltImageProcessor''' _a = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[Any] , A_ : str=None , A_ : Any=None , **A_ : Dict): lowerCAmelCase_ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , A_ , ) lowerCAmelCase_ : Optional[int] = kwargs.pop('''feature_extractor''') lowerCAmelCase_ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(A_ , A_) lowerCAmelCase_ : Any = self.image_processor def __call__( self : str , A_ : str , A_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , A_ : bool = True , A_ : Union[bool, str, PaddingStrategy] = False , A_ : Union[bool, str, TruncationStrategy] = None , A_ : Optional[int] = None , A_ : int = 0 , A_ : Optional[int] = None , A_ : Optional[bool] = None , A_ : Optional[bool] = None , A_ : bool = False , A_ : bool = False , A_ : bool = False , A_ : bool = False , A_ : bool = True , A_ : Optional[Union[str, TensorType]] = None , **A_ : Optional[Any] , ): lowerCAmelCase_ : List[str] = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) # add pixel_values + pixel_mask lowerCAmelCase_ : List[Any] = self.image_processor(A_ , return_tensors=A_) encoding.update(A_) return encoding def UpperCAmelCase__ ( self : Tuple , *A_ : Union[str, Any] , **A_ : Any): return self.tokenizer.batch_decode(*A_ , **A_) def UpperCAmelCase__ ( self : Optional[Any] , *A_ : List[str] , **A_ : Union[str, Any]): return self.tokenizer.decode(*A_ , **A_) @property def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : List[str] = self.tokenizer.model_input_names lowerCAmelCase_ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def UpperCAmelCase__ ( self : Union[str, Any]): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , A_ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self : Dict): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , A_ , ) return self.image_processor
171
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : str = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = "timesformer" def __init__( self : Any , _lowercase : Tuple=2_24 , _lowercase : Tuple=16 , _lowercase : List[Any]=3 , _lowercase : str=8 , _lowercase : Optional[Any]=7_68 , _lowercase : List[str]=12 , _lowercase : List[str]=12 , _lowercase : Dict=30_72 , _lowercase : List[str]="gelu" , _lowercase : List[str]=0.0 , _lowercase : List[str]=0.0 , _lowercase : Tuple=0.02 , _lowercase : List[Any]=1E-6 , _lowercase : List[str]=True , _lowercase : Dict="divided_space_time" , _lowercase : Union[str, Any]=0 , **_lowercase : Union[str, Any] , ): """simple docstring""" super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = num_frames SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = attention_type SCREAMING_SNAKE_CASE__ = drop_path_rate
710
import os __lowerCamelCase : Union[str, Any] = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 while index < len(__UpperCamelCase ) - 1: SCREAMING_SNAKE_CASE__ = SYMBOLS[numerals[index]] SCREAMING_SNAKE_CASE__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = """""" SCREAMING_SNAKE_CASE__ = num // 10_00 numerals += m_count * "M" num %= 10_00 SCREAMING_SNAKE_CASE__ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 SCREAMING_SNAKE_CASE__ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "/p089_roman.txt" ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = 0 with open(os.path.dirname(__UpperCamelCase ) + roman_numerals_filename ) as filea: SCREAMING_SNAKE_CASE__ = filea.readlines() for line in lines: SCREAMING_SNAKE_CASE__ = line.strip() SCREAMING_SNAKE_CASE__ = parse_roman_numerals(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = generate_roman_numerals(__UpperCamelCase ) savings += len(__UpperCamelCase ) - len(__UpperCamelCase ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
379
0
"""simple docstring""" def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: if not (isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) UpperCAmelCase__ : List[Any] = len(lowerCAmelCase ) UpperCAmelCase__ : List[str] = len(lowerCAmelCase ) UpperCAmelCase__ : int = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : Tuple = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: UpperCAmelCase__ : Optional[Any] = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: UpperCAmelCase__ : Tuple = i UpperCAmelCase__ : Optional[Any] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
182
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _A = """▁""" _A = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = BigBirdTokenizer SCREAMING_SNAKE_CASE = BigBirdTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def _a (self ): """simple docstring""" super().setUp() UpperCAmelCase__ : Any = self.tokenizer_class(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = """<s>""" UpperCAmelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """[MASK]""" ) self.assertEqual(len(_lowerCamelCase ) , 1004 ) def _a (self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _a (self ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase__ : Dict = """I was born in 92000, and this is falsé.""" UpperCAmelCase__ : Dict = tokenizer.tokenize(_lowerCamelCase ) UpperCAmelCase__ : int = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : int = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : str = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Any = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = tokenizer.encode(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = BigBirdTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [285, 46, 10, 170, 382] , ) UpperCAmelCase__ : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase__ : Tuple = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase__ : Tuple = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _a (self ): """simple docstring""" return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = """Hello World!""" UpperCAmelCase__ : Union[str, Any] = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off UpperCAmelCase__ : Dict = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @require_torch @slow def _a (self ): """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase__ : int = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase__ : str = """ """.join(_lowerCamelCase ) UpperCAmelCase__ : int = self.big_tokenizer.encode_plus(_lowerCamelCase , return_tensors="""pt""" , return_token_type_ids=_lowerCamelCase ) UpperCAmelCase__ : str = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = BigBirdConfig(attention_type="""original_full""" ) UpperCAmelCase__ : Optional[int] = BigBirdModel(_lowerCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCamelCase ) model(**_lowerCamelCase ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) UpperCAmelCase__ : int = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = {"""input_ids""": [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
182
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = DanceDiffusionPipeline __UpperCamelCase : Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __UpperCamelCase : int = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __UpperCamelCase : Optional[int] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Optional[Any] = False def lowerCAmelCase__ ( self : List[Any] ): torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=snake_case_ , use_timestep_embedding=snake_case_ , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) UpperCamelCase_: Optional[int] = IPNDMScheduler() UpperCamelCase_: Optional[Any] = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self : List[Any] , snake_case_ : List[str] , snake_case_ : int=0 ): if str(snake_case_ ).startswith("""mps""" ): UpperCamelCase_: List[Any] = torch.manual_seed(snake_case_ ) else: UpperCamelCase_: List[Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase_: Tuple = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: Any = self.get_dummy_components() UpperCamelCase_: Optional[Any] = DanceDiffusionPipeline(**snake_case_ ) UpperCamelCase_: str = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Union[str, Any] = self.get_dummy_inputs(snake_case_ ) UpperCamelCase_: Union[str, Any] = pipe(**snake_case_ ) UpperCamelCase_: Optional[int] = output.audios UpperCamelCase_: str = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase_: Tuple = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__ ( self : Any ): return super().test_save_load_local() @skip_mps def lowerCAmelCase__ ( self : Any ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowerCAmelCase__ ( self : str ): return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase__ ( self : str ): return super().test_attention_slicing_forward_pass() def lowerCAmelCase__ ( self : Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[int] = torch_device UpperCamelCase_: Tuple = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) UpperCamelCase_: List[Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[Any] = torch.manual_seed(0 ) UpperCamelCase_: int = pipe(generator=snake_case_ , num_inference_steps=100 , audio_length_in_s=4.096 ) UpperCamelCase_: Optional[int] = output.audios UpperCamelCase_: Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_: List[Any] = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Tuple = torch_device UpperCamelCase_: Union[str, Any] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) UpperCamelCase_: List[Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: Optional[int] = torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = pipe(generator=snake_case_ , num_inference_steps=100 , audio_length_in_s=4.096 ) UpperCamelCase_: Optional[Any] = output.audios UpperCamelCase_: Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_: List[Any] = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
670
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
1
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path UpperCamelCase__ = 'src/transformers' # Matches is_xxx_available() UpperCamelCase__ = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} UpperCamelCase__ = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCamelCase__ = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available UpperCamelCase__ = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") UpperCamelCase__ = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCamelCase__ = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", UpperCamelCase__ = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], UpperCamelCase__ = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo UpperCamelCase__ = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: UpperCamelCase__ = re.compile(r'^\s*try:') # Catches a line with else: UpperCamelCase__ = re.compile(r'^\s*else:') def lowerCamelCase ( _snake_case ): if _re_test_backend.search(_snake_case ) is None: return None UpperCAmelCase__ : Union[str, Any] = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def lowerCamelCase ( _snake_case ): with open(_snake_case ,'r' ,encoding='utf-8' ,newline='\n' ) as f: UpperCAmelCase__ : List[Any] = f.readlines() UpperCAmelCase__ : Union[str, Any] = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure UpperCAmelCase__ : str = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: UpperCAmelCase__ : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): UpperCAmelCase__ : Optional[int] = _re_one_line_import_struct.search(_snake_case ).groups()[0] UpperCAmelCase__ : str = re.findall('\[([^\]]+)\]' ,_snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue UpperCAmelCase__ : List[str] = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: UpperCAmelCase__ : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 UpperCAmelCase__ : Union[str, Any] = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCAmelCase__ : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase__ : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase__ : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): UpperCAmelCase__ : List[Any] = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: UpperCAmelCase__ : Optional[int] = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(', ' ) UpperCAmelCase__ : Tuple = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: UpperCAmelCase__ : Optional[Any] = _re_between_brackets.search(_snake_case ).groups()[0].split(', ' ) UpperCAmelCase__ : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 UpperCAmelCase__ : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCAmelCase__ : Tuple = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): UpperCAmelCase__ : str = lines[line_index] UpperCAmelCase__ : Optional[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCAmelCase__ : List[Any] = {'none': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. UpperCAmelCase__ : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase__ : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase__ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): UpperCAmelCase__ : List[Any] = lines[line_index] UpperCAmelCase__ : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCAmelCase__ : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCamelCase ( _snake_case ,_snake_case ): def find_duplicates(_snake_case ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCAmelCase__ : int = [] for key in import_dict_objects.keys(): UpperCAmelCase__ : Tuple = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) UpperCAmelCase__ : Optional[int] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCAmelCase__ : Any = 'base imports' if key == 'none' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def lowerCamelCase ( ): UpperCAmelCase__ : Optional[Any] = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: UpperCAmelCase__ : List[Any] = os.path.join(_snake_case ,'__init__.py' ) UpperCAmelCase__ : Tuple = parse_init(_snake_case ) if objects is not None: UpperCAmelCase__ : Any = analyze_results(*_snake_case ) if len(_snake_case ) > 0: UpperCAmelCase__ : Optional[int] = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('\n'.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('\n\n'.join(_snake_case ) ) def lowerCamelCase ( ): UpperCAmelCase__ : Union[str, Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('*.py' ) ) ) == 0: continue UpperCAmelCase__ : str = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) UpperCAmelCase__ : Dict = short_path.replace(os.path.sep ,'.' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue UpperCAmelCase__ : List[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) UpperCAmelCase__ : Union[str, Any] = short_path.replace('.py' ,'' ).replace(os.path.sep ,'.' ) if len(submodule.split('.' ) ) == 1: submodules.append(_snake_case ) return submodules UpperCamelCase__ = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def lowerCamelCase ( ): # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ : Tuple = importlib.util.spec_from_file_location( 'transformers' ,os.path.join(_snake_case ,'__init__.py' ) ,submodule_search_locations=[PATH_TO_TRANSFORMERS] ,) UpperCAmelCase__ : int = spec.loader.load_module() UpperCAmelCase__ : Tuple = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: UpperCAmelCase__ : List[Any] = '\n'.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'''{list_of_modules}\n''' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
110
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( lowercase , lowercase , unittest.TestCase ): UpperCamelCase : int = IFImgaImgSuperResolutionPipeline UpperCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} UpperCamelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __snake_case ( self ): return self._get_superresolution_dummy_components() def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith('mps' ): UpperCAmelCase__ : Optional[int] = torch.manual_seed(UpperCamelCase_ ) else: UpperCAmelCase__ : int = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : int = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __snake_case ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __snake_case ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __snake_case ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __snake_case ( self ): self._test_save_load_local() def __snake_case ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
110
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __snake_case ( _UpperCAmelCase=None ): if subparsers is not None: __a = subparsers.add_parser('''env''' ) else: __a = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=_UpperCAmelCase , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def __snake_case ( _UpperCAmelCase ): __a = torch.__version__ __a = torch.cuda.is_available() __a = is_xpu_available() __a = is_npu_available() __a = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): __a = load_config_from_file(args.config_file ).to_dict() __a = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': f'{pt_version} ({pt_cuda_available})', '''PyTorch XPU available''': str(_UpperCAmelCase ), '''PyTorch NPU available''': str(_UpperCAmelCase ), '''System RAM''': f'{psutil.virtual_memory().total / 1024 ** 3:.2f} GB', } if pt_cuda_available: __a = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([f'- {prop}: {val}' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) __a = ( '''\n'''.join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else f'\t{accelerate_config}' ) print(_UpperCAmelCase ) __a = accelerate_config return info def __snake_case ( ): __a = env_command_parser() __a = parser.parse_args() env_command(_UpperCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
60
from __future__ import annotations from random import random from typing import Generic, TypeVar __snake_case :Any = TypeVar('''KT''') __snake_case :List[str] = TypeVar('''VT''') class _A ( Generic[KT, VT] ): def __init__( self : Dict , __SCREAMING_SNAKE_CASE : KT | str = "root" , __SCREAMING_SNAKE_CASE : VT | None = None): '''simple docstring''' __a = key __a = value __a = [] def __repr__( self : Dict): '''simple docstring''' return F'Node({self.key}: {self.value})' @property def _lowerCamelCase ( self : Tuple): '''simple docstring''' return len(self.forward) class _A ( Generic[KT, VT] ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : float = 0.5 , __SCREAMING_SNAKE_CASE : int = 16): '''simple docstring''' __a = Node[KT, VT]() __a = 0 __a = p __a = max_level def __str__( self : Union[str, Any]): '''simple docstring''' __a = list(self) if len(__SCREAMING_SNAKE_CASE) == 0: return F'SkipList(level={self.level})' __a = max((len(str(__SCREAMING_SNAKE_CASE)) for item in items) , default=4) __a = max(__SCREAMING_SNAKE_CASE , 4) + 4 __a = self.head __a = [] __a = node.forward.copy() lines.append(F'[{node.key}]'.ljust(__SCREAMING_SNAKE_CASE , '''-''') + '''* ''' * len(__SCREAMING_SNAKE_CASE)) lines.append(''' ''' * label_size + '''| ''' * len(__SCREAMING_SNAKE_CASE)) while len(node.forward) != 0: __a = node.forward[0] lines.append( F'[{node.key}]'.ljust(__SCREAMING_SNAKE_CASE , '''-''') + ''' '''.join(str(n.key) if n.key == node.key else '''|''' for n in forwards)) lines.append(''' ''' * label_size + '''| ''' * len(__SCREAMING_SNAKE_CASE)) __a = node.forward lines.append('''None'''.ljust(__SCREAMING_SNAKE_CASE) + '''* ''' * len(__SCREAMING_SNAKE_CASE)) return F'SkipList(level={self.level})\n' + "\n".join(__SCREAMING_SNAKE_CASE) def __iter__( self : int): '''simple docstring''' __a = self.head while len(node.forward) != 0: yield node.forward[0].key __a = node.forward[0] def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = 1 while random() < self.p and level < self.max_level: level += 1 return level def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = [] __a = self.head for i in reversed(range(self.level)): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: __a = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__SCREAMING_SNAKE_CASE) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : KT): '''simple docstring''' __a , __a = self._locate_node(__SCREAMING_SNAKE_CASE) if node is not None: for i, update_node in enumerate(__SCREAMING_SNAKE_CASE): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: __a = node.forward[i] else: __a = update_node.forward[:i] def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : KT , __SCREAMING_SNAKE_CASE : VT): '''simple docstring''' __a , __a = self._locate_node(__SCREAMING_SNAKE_CASE) if node is not None: __a = value else: __a = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __SCREAMING_SNAKE_CASE): update_vector.append(self.head) __a = level __a = Node(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for i, update_node in enumerate(update_vector[:level]): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i]) if update_node.level < i + 1: update_node.forward.append(__SCREAMING_SNAKE_CASE) else: __a = new_node def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : VT): '''simple docstring''' __a , __a = self._locate_node(__SCREAMING_SNAKE_CASE) if node is not None: return node.value return None def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 3 ) skip_list.insert('''Key2''' , 12 ) skip_list.insert('''Key3''' , 41 ) skip_list.insert('''Key4''' , -19 ) __a = skip_list.head __a = {} while node.level != 0: __a = node.forward[0] __a = node.value assert len(_UpperCAmelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 10 ) skip_list.insert('''Key1''' , 12 ) skip_list.insert('''Key5''' , 7 ) skip_list.insert('''Key7''' , 10 ) skip_list.insert('''Key10''' , 5 ) skip_list.insert('''Key7''' , 7 ) skip_list.insert('''Key5''' , 5 ) skip_list.insert('''Key10''' , 10 ) __a = skip_list.head __a = {} while node.level != 0: __a = node.forward[0] __a = node.value if len(_UpperCAmelCase ) != 4: print() assert len(_UpperCAmelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __snake_case ( ): __a = SkipList() assert skip_list.find('''Some key''' ) is None def __snake_case ( ): __a = SkipList() skip_list.insert('''Key2''' , 20 ) assert skip_list.find('''Key2''' ) == 20 skip_list.insert('''Some Key''' , 10 ) skip_list.insert('''Key2''' , 8 ) skip_list.insert('''V''' , 13 ) assert skip_list.find('''Y''' ) is None assert skip_list.find('''Key2''' ) == 8 assert skip_list.find('''Some Key''' ) == 10 assert skip_list.find('''V''' ) == 13 def __snake_case ( ): __a = SkipList() skip_list.delete('''Some key''' ) assert len(skip_list.head.forward ) == 0 def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''Key2''' ) is None def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) == 14 assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''X''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key1''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) is None def __snake_case ( ): __a = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 142 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''X''' ) def traverse_keys(_UpperCAmelCase ): yield node.key for forward_node in node.forward: yield from traverse_keys(_UpperCAmelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __snake_case ( ): def is_sorted(_UpperCAmelCase ): return all(next_item >= item for item, next_item in zip(_UpperCAmelCase , lst[1:] ) ) __a = SkipList() for i in range(10 ): skip_list.insert(_UpperCAmelCase , _UpperCAmelCase ) assert is_sorted(list(_UpperCAmelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_UpperCAmelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_UpperCAmelCase ) ) def __snake_case ( ): for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __snake_case ( ): __a = SkipList() skip_list.insert(2 , '''2''' ) skip_list.insert(4 , '''4''' ) skip_list.insert(6 , '''4''' ) skip_list.insert(4 , '''5''' ) skip_list.insert(8 , '''4''' ) skip_list.insert(9 , '''4''' ) skip_list.delete(4 ) print(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
1
def _lowerCamelCase ( __lowerCamelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase__ : Tuple = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
79
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) def UpperCAmelCase ( A : Dict ): SCREAMING_SNAKE_CASE : List[str] = torch.load(A , map_location='''cpu''' ) if "model" in sd.keys(): SCREAMING_SNAKE_CASE : List[Any] = torch.load(A , map_location='''cpu''' )['''model'''] # pop unnecessary weights SCREAMING_SNAKE_CASE : Optional[int] = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(A ) SCREAMING_SNAKE_CASE : int = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: SCREAMING_SNAKE_CASE : Optional[int] = sd.pop(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: SCREAMING_SNAKE_CASE : str = sd[key] # We split QKV in separate Q,K,V SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) SCREAMING_SNAKE_CASE : str = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) SCREAMING_SNAKE_CASE : Any = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) SCREAMING_SNAKE_CASE : Tuple = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = torch.split(A , depth // 3 , dim=0 ) SCREAMING_SNAKE_CASE : List[str] = q SCREAMING_SNAKE_CASE : List[str] = k SCREAMING_SNAKE_CASE : List[Any] = v del sd[key] return sd @torch.no_grad() def UpperCAmelCase ( A : int , A : Union[str, Any] , A : Dict=None ): SCREAMING_SNAKE_CASE : Optional[Any] = load_checkpoint(A ) if config is not None: SCREAMING_SNAKE_CASE : Tuple = OPTConfig.from_pretrained(A ) else: SCREAMING_SNAKE_CASE : int = OPTConfig() SCREAMING_SNAKE_CASE : Union[str, Any] = OPTModel(A ).half().eval() model.load_state_dict(A ) # Check results Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') lowerCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
527
0
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets snake_case_ : Optional[int] = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" snake_case_ : int = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" snake_case_ : str = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: def remove_articles(SCREAMING_SNAKE_CASE__ : Optional[int] ): UpperCAmelCase_ : Any = re.compile(R'''\b(a|an|the)\b''', re.UNICODE ) return re.sub(SCREAMING_SNAKE_CASE__, ''' ''', SCREAMING_SNAKE_CASE__ ) def white_space_fix(SCREAMING_SNAKE_CASE__ : str ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): UpperCAmelCase_ : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE__ : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE__ ) ) ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: return int(normalize_answer(SCREAMING_SNAKE_CASE__ ) == normalize_answer(SCREAMING_SNAKE_CASE__ ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: UpperCAmelCase_ : Tuple = [any(compute_exact(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) for ref in refs ) for pred, refs in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )] return (sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ )) * 100 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCAmelCase_ : Any = Counter(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = Counter(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = Counter() for sgram, scount in sgramcounter.items(): UpperCAmelCase_ : Optional[Any] = scount * numref UpperCAmelCase_ : List[str] = Counter(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = Counter() for cgram, ccount in cgramcounter.items(): UpperCAmelCase_ : Any = ccount * numref # KEEP UpperCAmelCase_ : List[str] = sgramcounter_rep & cgramcounter_rep UpperCAmelCase_ : Tuple = keepgramcounter_rep & rgramcounter UpperCAmelCase_ : Any = sgramcounter_rep & rgramcounter UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Tuple = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Optional[int] = 1 if len(SCREAMING_SNAKE_CASE__ ) > 0: UpperCAmelCase_ : Optional[Any] = keeptmpscorea / len(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCAmelCase_ : List[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCAmelCase_ : List[Any] = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCAmelCase_ : List[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCAmelCase_ : List[Any] = sgramcounter_rep - cgramcounter_rep UpperCAmelCase_ : Optional[Any] = delgramcounter_rep - rgramcounter UpperCAmelCase_ : List[str] = sgramcounter_rep - rgramcounter UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Tuple = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : Union[str, Any] = 1 if len(SCREAMING_SNAKE_CASE__ ) > 0: UpperCAmelCase_ : Union[str, Any] = deltmpscorea / len(SCREAMING_SNAKE_CASE__ ) # ADDITION UpperCAmelCase_ : str = set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = set(SCREAMING_SNAKE_CASE__ ) & set(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : Any = 1 if len(SCREAMING_SNAKE_CASE__ ) > 0: UpperCAmelCase_ : str = addtmpscore / len(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: UpperCAmelCase_ : Optional[Any] = addtmpscore / len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCAmelCase_ : Any = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Dict: UpperCAmelCase_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Tuple = ssent.split(''' ''' ) UpperCAmelCase_ : Tuple = csent.split(''' ''' ) UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Union[str, Any] = [] for rsent in rsents: UpperCAmelCase_ : List[Any] = rsent.split(''' ''' ) UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Optional[int] = [] ragramslist.append(SCREAMING_SNAKE_CASE__ ) for i in range(0, len(SCREAMING_SNAKE_CASE__ ) - 1 ): if i < len(SCREAMING_SNAKE_CASE__ ) - 1: UpperCAmelCase_ : List[str] = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(SCREAMING_SNAKE_CASE__ ) if i < len(SCREAMING_SNAKE_CASE__ ) - 2: UpperCAmelCase_ : Any = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(SCREAMING_SNAKE_CASE__ ) if i < len(SCREAMING_SNAKE_CASE__ ) - 3: UpperCAmelCase_ : Dict = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(SCREAMING_SNAKE_CASE__ ) ragramslist.append(SCREAMING_SNAKE_CASE__ ) ragramslist.append(SCREAMING_SNAKE_CASE__ ) ragramslist.append(SCREAMING_SNAKE_CASE__ ) for i in range(0, len(SCREAMING_SNAKE_CASE__ ) - 1 ): if i < len(SCREAMING_SNAKE_CASE__ ) - 1: UpperCAmelCase_ : Optional[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(SCREAMING_SNAKE_CASE__ ) if i < len(SCREAMING_SNAKE_CASE__ ) - 2: UpperCAmelCase_ : Optional[int] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(SCREAMING_SNAKE_CASE__ ) if i < len(SCREAMING_SNAKE_CASE__ ) - 3: UpperCAmelCase_ : Union[str, Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(SCREAMING_SNAKE_CASE__ ) for i in range(0, len(SCREAMING_SNAKE_CASE__ ) - 1 ): if i < len(SCREAMING_SNAKE_CASE__ ) - 1: UpperCAmelCase_ : Any = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(SCREAMING_SNAKE_CASE__ ) if i < len(SCREAMING_SNAKE_CASE__ ) - 2: UpperCAmelCase_ : int = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(SCREAMING_SNAKE_CASE__ ) if i < len(SCREAMING_SNAKE_CASE__ ) - 3: UpperCAmelCase_ : str = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(SCREAMING_SNAKE_CASE__ ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Dict = SARIngram(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = SARIngram(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Any = SARIngram(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : List[str] = SARIngram(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCAmelCase_ : Optional[int] = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCAmelCase_ : List[str] = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCAmelCase_ : Dict = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : bool = True, SCREAMING_SNAKE_CASE__ : str = "13a", SCREAMING_SNAKE_CASE__ : bool = True ) -> Optional[Any]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCAmelCase_ : Dict = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCAmelCase_ : Optional[Any] = sacrebleu.metrics.bleu._get_tokenizer(SCREAMING_SNAKE_CASE__ )()(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase_ : Union[str, Any] = sacrebleu.TOKENIZERS[tokenizer]()(SCREAMING_SNAKE_CASE__ ) elif tokenizer == "moses": UpperCAmelCase_ : Optional[int] = sacremoses.MosesTokenizer().tokenize(SCREAMING_SNAKE_CASE__, return_str=SCREAMING_SNAKE_CASE__, escape=SCREAMING_SNAKE_CASE__ ) elif tokenizer == "penn": UpperCAmelCase_ : int = sacremoses.MosesTokenizer().penn_tokenize(SCREAMING_SNAKE_CASE__, return_str=SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase_ : List[Any] = sentence if not return_str: UpperCAmelCase_ : Any = normalized_sent.split() return normalized_sent def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: if not (len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )): raise ValueError('''Sources length must match predictions and references lengths.''' ) UpperCAmelCase_ : Union[str, Any] = 0 for src, pred, refs in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): sari_score += SARIsent(normalize(SCREAMING_SNAKE_CASE__ ), normalize(SCREAMING_SNAKE_CASE__ ), [normalize(SCREAMING_SNAKE_CASE__ ) for sent in refs] ) UpperCAmelCase_ : Optional[int] = sari_score / len(SCREAMING_SNAKE_CASE__ ) return 100 * sari_score def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Optional[int]="exp", SCREAMING_SNAKE_CASE__ : List[str]=None, SCREAMING_SNAKE_CASE__ : Optional[int]=False, SCREAMING_SNAKE_CASE__ : List[str]=False, SCREAMING_SNAKE_CASE__ : Optional[int]=False, ) -> str: UpperCAmelCase_ : Any = len(references[0] ) if any(len(SCREAMING_SNAKE_CASE__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) UpperCAmelCase_ : int = [[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE__ )] UpperCAmelCase_ : int = sacrebleu.corpus_bleu( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, smooth_method=SCREAMING_SNAKE_CASE__, smooth_value=SCREAMING_SNAKE_CASE__, force=SCREAMING_SNAKE_CASE__, lowercase=SCREAMING_SNAKE_CASE__, use_effective_order=SCREAMING_SNAKE_CASE__, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a (datasets.Metric ): def UpperCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = {} result.update({'''sari''': compute_sari(sources=__magic_name__ , predictions=__magic_name__ , references=__magic_name__ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__magic_name__ , references=__magic_name__ )} ) result.update({'''exact''': compute_em(predictions=__magic_name__ , references=__magic_name__ )} ) return result
644
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __a (lowerCamelCase , unittest.TestCase ): __a : List[str] = BlenderbotSmallTokenizer __a : List[Any] = False def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" super().setUp() UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__magic_name__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__magic_name__ ) ) def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = '''adapt act apte''' UpperCAmelCase_ : Tuple = '''adapt act apte''' return input_text, output_text def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ : List[Any] = '''adapt act apte''' UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te'''] UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [13_84] UpperCAmelCase_ : Optional[int] = '''I am a small frog.''' UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids'''] UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) UpperCAmelCase_ : List[Any] = '''I am a small frog .''' UpperCAmelCase_ : Any = '''.''' UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids'''] UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
644
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCamelCase__ ( lowercase , lowercase=10 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = [] for _ in range(lowercase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCamelCase__ ( lowercase , lowercase=10 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = [] for step in range(lowercase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Dict = os.path.join(lowercase , "schedule.bin" ) torch.save(scheduler.state_dict() , lowercase ) SCREAMING_SNAKE_CASE : List[Any] = torch.load(lowercase ) scheduler.load_state_dict(lowercase ) return lrs @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict ): self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertAlmostEqual(UpperCAmelCase_ , UpperCAmelCase_ , delta=UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE : str = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE : Dict = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): SCREAMING_SNAKE_CASE : Optional[Any] = criterion(UpperCAmelCase_ , UpperCAmelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def _A ( self : str ): SCREAMING_SNAKE_CASE : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE : List[str] = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase_ , weight_decay=0.0 , relative_step=UpperCAmelCase_ , scale_parameter=UpperCAmelCase_ , warmup_init=UpperCAmelCase_ , ) for _ in range(1000 ): SCREAMING_SNAKE_CASE : Union[str, Any] = criterion(UpperCAmelCase_ , UpperCAmelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Dict = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCamelCase_ : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None UpperCamelCase_ : str = 1_0 def _A ( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]=None ): self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertAlmostEqual(UpperCAmelCase_ , UpperCAmelCase_ , delta=UpperCAmelCase_ , msg=UpperCAmelCase_ ) def _A ( self : int ): SCREAMING_SNAKE_CASE : List[Any] = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE : Union[str, Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = data SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_func(self.optimizer , **UpperCAmelCase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) SCREAMING_SNAKE_CASE : Optional[int] = unwrap_schedule(UpperCAmelCase_ , self.num_steps ) self.assertListAlmostEqual( UpperCAmelCase_ , UpperCAmelCase_ , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) SCREAMING_SNAKE_CASE : Optional[int] = scheduler_func(self.optimizer , **UpperCAmelCase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase_ ) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE : Optional[Any] = unwrap_and_save_reload_schedule(UpperCAmelCase_ , self.num_steps ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ , msg=f'''failed for {scheduler_func} in save and reload''' ) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : Union[str, Any] = fn def __call__( self : Any , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict ): return self.fn(*UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def _A ( self : Tuple , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = list(map(self , scheduler.lr_lambdas ) )
62
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup a = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def _SCREAMING_SNAKE_CASE ( snake_case = "mumbai" ) -> Generator[tuple[str, str], None, None]: _UpperCAmelCase = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): _UpperCAmelCase = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() _UpperCAmelCase = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
518
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowerCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
from math import pi, sqrt, tan def UpperCamelCase__ ( UpperCAmelCase ) -> float: """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCamelCase__ ( UpperCAmelCase ) -> float: """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCamelCase__ ( UpperCAmelCase ) -> float: """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) _a : str = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(UpperCAmelCase , 2 ) * torus_radius * tube_radius def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCamelCase__ ( UpperCAmelCase ) -> float: """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) _a : List[str] = (sidea + sidea + sidea) / 2 _a : Union[str, Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCamelCase__ ( UpperCAmelCase ) -> float: """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
307
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): def lowerCAmelCase (self : Union[str, Any] ): __a : Union[str, Any] = tempfile.mkdtemp() __a : List[Any] = 8 # DPR tok __a : str = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a : Optional[Any] = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok __a : int = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __a : str = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __a : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __a : Optional[int] = {'''unk_token''': '''<unk>'''} __a : Dict = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) __a : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) __a : str = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase (self : Union[str, Any] ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def lowerCAmelCase (self : List[Any] ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def lowerCAmelCase (self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowerCAmelCase (self : List[str] ): __a : int = os.path.join(self.tmpdirname , '''rag_tokenizer''' ) __a : str = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __a : int = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__SCREAMING_SNAKE_CASE ) rag_tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) __a : Optional[int] = RagTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __SCREAMING_SNAKE_CASE ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __SCREAMING_SNAKE_CASE ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowerCAmelCase (self : Optional[int] ): __a : List[Any] = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' ) __a : List[Any] = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] __a : Dict = tokenizer(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @slow def lowerCAmelCase (self : List[Any] ): __a : str = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' ) __a : List[Any] = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] __a : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
521
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) __lowerCAmelCase = logging.getLogger(__name__) __lowerCAmelCase = {'facebook/bart-base': BartForConditionalGeneration} __lowerCAmelCase = {'facebook/bart-base': BartTokenizer} def _UpperCAmelCase ( ): a_ : int = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=__A , default=__A , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=__A , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=__A , default=__A , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=__A , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__A , ) parser.add_argument( '''--config_name''' , type=__A , default=__A , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=__A , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=__A , default=__A , help='''Where to store the final ONNX file.''' ) a_ : Tuple = parser.parse_args() return args def _UpperCAmelCase ( __A : List[str] , __A : Dict="cpu" ): a_ : str = model_dict[model_name].from_pretrained(__A ).to(__A ) a_ : str = tokenizer_dict[model_name].from_pretrained(__A ) if model_name in ["facebook/bart-base"]: a_ : str = 0 a_ : Any = None a_ : int = 0 return huggingface_model, tokenizer def _UpperCAmelCase ( __A : int , __A : Dict , __A : str , __A : Optional[Any] , __A : Any ): model.eval() a_ : Union[str, Any] = None a_ : str = torch.jit.script(BARTBeamSearchGenerator(__A ) ) with torch.no_grad(): a_ : Any = '''My friends are cool but they eat too many carbs.''' a_ : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors='''pt''' ).to(model.device ) a_ : Dict = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=__A , max_length=__A , early_stopping=__A , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __A , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , __A , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=__A , ) logger.info('''Model exported to {}'''.format(__A ) ) a_ : Any = remove_dup_initializers(os.path.abspath(__A ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(__A ) ) a_ : int = onnxruntime.InferenceSession(__A ) a_ : Optional[Any] = ort_sess.run( __A , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(__A ), '''max_length''': np.array(__A ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def _UpperCAmelCase ( ): a_ : int = parse_args() a_ : List[str] = 5 a_ : List[str] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() a_ : Any = torch.device(args.device ) a_ , a_ : Optional[Any] = load_model_tokenizer(args.model_name_or_path , __A ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(__A ) if args.max_length: a_ : Dict = args.max_length if args.num_beams: a_ : str = args.num_beams if args.output_file_path: a_ : str = args.output_file_path else: a_ : Union[str, Any] = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(__A , __A , __A , __A , __A ) if __name__ == "__main__": main()
466
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def A (__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :float = 1 / sqrt(2 ) ): _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(__lowerCamelCase ) _lowerCAmelCase = cos(__lowerCamelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = (1 - _cos) / 2 _lowerCAmelCase = 1 - _cos _lowerCAmelCase = 1 + alpha _lowerCAmelCase = -2 * _cos _lowerCAmelCase = 1 - alpha _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A (__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :float = 1 / sqrt(2 ) ): _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(__lowerCamelCase ) _lowerCAmelCase = cos(__lowerCamelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = (1 + _cos) / 2 _lowerCAmelCase = -1 - _cos _lowerCAmelCase = 1 + alpha _lowerCAmelCase = -2 * _cos _lowerCAmelCase = 1 - alpha _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A (__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :float = 1 / sqrt(2 ) ): _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(__lowerCamelCase ) _lowerCAmelCase = cos(__lowerCamelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = _sin / 2 _lowerCAmelCase = 0 _lowerCAmelCase = -ba _lowerCAmelCase = 1 + alpha _lowerCAmelCase = -2 * _cos _lowerCAmelCase = 1 - alpha _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A (__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :float = 1 / sqrt(2 ) ): _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(__lowerCamelCase ) _lowerCAmelCase = cos(__lowerCamelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = 1 - alpha _lowerCAmelCase = -2 * _cos _lowerCAmelCase = 1 + alpha _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def A (__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :float , __lowerCamelCase :float = 1 / sqrt(2 ) , ): _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(__lowerCamelCase ) _lowerCAmelCase = cos(__lowerCamelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = 10 ** (gain_db / 40) _lowerCAmelCase = 1 + alpha * big_a _lowerCAmelCase = -2 * _cos _lowerCAmelCase = 1 - alpha * big_a _lowerCAmelCase = 1 + alpha / big_a _lowerCAmelCase = -2 * _cos _lowerCAmelCase = 1 - alpha / big_a _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A (__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :float , __lowerCamelCase :float = 1 / sqrt(2 ) , ): _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(__lowerCamelCase ) _lowerCAmelCase = cos(__lowerCamelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = 10 ** (gain_db / 40) _lowerCAmelCase = (big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase = (big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase = (big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase = (big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase = 2 * sqrt(__lowerCamelCase ) * alpha _lowerCAmelCase = big_a * (pmc + aaa) _lowerCAmelCase = 2 * big_a * mpc _lowerCAmelCase = big_a * (pmc - aaa) _lowerCAmelCase = ppmc + aaa _lowerCAmelCase = -2 * pmpc _lowerCAmelCase = ppmc - aaa _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A (__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :float , __lowerCamelCase :float = 1 / sqrt(2 ) , ): _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(__lowerCamelCase ) _lowerCAmelCase = cos(__lowerCamelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = 10 ** (gain_db / 40) _lowerCAmelCase = (big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase = (big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase = (big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase = (big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase = 2 * sqrt(__lowerCamelCase ) * alpha _lowerCAmelCase = big_a * (ppmc + aaa) _lowerCAmelCase = -2 * big_a * pmpc _lowerCAmelCase = big_a * (ppmc - aaa) _lowerCAmelCase = pmc + aaa _lowerCAmelCase = 2 * mpc _lowerCAmelCase = pmc - aaa _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
701
'''simple docstring''' from heapq import heappop, heappush import numpy as np def A (__lowerCamelCase :np.ndarray , __lowerCamelCase :tuple[int, int] , __lowerCamelCase :tuple[int, int] , __lowerCamelCase :bool , ): _lowerCAmelCase , _lowerCAmelCase = grid.shape _lowerCAmelCase = [-1, 1, 0, 0] _lowerCAmelCase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] _lowerCAmelCase , _lowerCAmelCase = [(0, source)], set() _lowerCAmelCase = np.full((rows, cols) , np.inf ) _lowerCAmelCase = 0 _lowerCAmelCase = np.empty((rows, cols) , dtype=__lowerCamelCase ) _lowerCAmelCase = None while queue: ((_lowerCAmelCase) , (_lowerCAmelCase)) = heappop(__lowerCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: _lowerCAmelCase = [] while (x, y) != source: path.append((x, y) ) _lowerCAmelCase , _lowerCAmelCase = predecessors[x, y] path.append(__lowerCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__lowerCamelCase ) ): _lowerCAmelCase , _lowerCAmelCase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: _lowerCAmelCase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__lowerCamelCase , (dist + 1, (nx, ny)) ) _lowerCAmelCase = dist + 1 _lowerCAmelCase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
162
0
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __SCREAMING_SNAKE_CASE = """\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n""" __SCREAMING_SNAKE_CASE = """\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n""" __SCREAMING_SNAKE_CASE = """\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def SCREAMING_SNAKE_CASE_ ( self :int , UpperCamelCase__ :Tuple , UpperCamelCase__ :Tuple , UpperCamelCase__ :Optional[int]=None , UpperCamelCase__ :Optional[int]=True , UpperCamelCase__ :List[str]=False ): if rouge_types is None: _a = ["rouge1", "rouge2", "rougeL", "rougeLsum"] _a = rouge_scorer.RougeScorer(rouge_types=SCREAMING_SNAKE_CASE_ , use_stemmer=SCREAMING_SNAKE_CASE_ ) if use_aggregator: _a = scoring.BootstrapAggregator() else: _a = [] for ref, pred in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _a = scorer.score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if use_aggregator: aggregator.add_scores(SCREAMING_SNAKE_CASE_ ) else: scores.append(SCREAMING_SNAKE_CASE_ ) if use_aggregator: _a = aggregator.aggregate() else: _a = {} for key in scores[0]: _a = [score[key] for score in scores] return result
388
"""simple docstring""" import datasets from .evaluate import evaluate lowerCAmelCase__ = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' lowerCAmelCase__ = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' lowerCAmelCase__ = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): def _lowercase (self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE_ = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE_ = evaluate(dataset=SCREAMING_SNAKE_CASE_ , predictions=SCREAMING_SNAKE_CASE_ ) return score
626
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Any ={ """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict =[ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __lowercase : Any =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
550
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase : Optional[Any] ={ """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] =[ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __lowercase : str =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
550
1
'''simple docstring''' def __UpperCamelCase ( a : int ) ->int: assert ( isinstance(a , a ) and number_of_steps > 0 ), f"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 snake_case , snake_case = 1, 1 for _ in range(number_of_steps - 1 ): snake_case , snake_case = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
342
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowercase = 250_004 _lowercase = 250_020 @require_sentencepiece @require_tokenizers class _lowercase ( __a , unittest.TestCase ): _UpperCAmelCase = MBartTokenizer _UpperCAmelCase = MBartTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def UpperCamelCase ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing snake_case = MBartTokenizer(A__ , keep_accents=A__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ) -> int: snake_case = MBartTokenizer(A__ , keep_accents=A__ ) snake_case = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) snake_case = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case = tokenizer.convert_tokens_to_ids(A__ ) self.assertListEqual( A__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case = tokenizer.convert_ids_to_tokens(A__ ) self.assertListEqual( A__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def UpperCamelCase ( self ) -> Dict: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) snake_case = self.tokenizer_class.from_pretrained(A__ , **A__ ) snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(A__ ) snake_case = tokenizer_p.save_pretrained(A__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) snake_case = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(A__ , A__ ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(A__ ) snake_case = tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A__ ) # Save tokenizer rust, legacy_format=True snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(A__ , legacy_format=A__ ) snake_case = tokenizer_p.save_pretrained(A__ ) # Checks it save with the same files self.assertSequenceEqual(A__ , A__ ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(A__ ) snake_case = tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) shutil.rmtree(A__ ) # Save tokenizer rust, legacy_format=False snake_case = tempfile.mkdtemp() snake_case = tokenizer_r.save_pretrained(A__ , legacy_format=A__ ) snake_case = tokenizer_p.save_pretrained(A__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case = tokenizer_r.from_pretrained(A__ ) snake_case = tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) shutil.rmtree(A__ ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): _UpperCAmelCase = '''facebook/mbart-large-en-ro''' _UpperCAmelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _UpperCAmelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _UpperCAmelCase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def UpperCamelCase ( cls ) -> Optional[Any]: snake_case = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) snake_case = 1 return cls def UpperCamelCase ( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) def UpperCamelCase ( self ) -> Optional[Any]: snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertIn(A__ , self.tokenizer.all_special_ids ) snake_case = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] snake_case = self.tokenizer.decode(A__ , skip_special_tokens=A__ ) snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A__ ) self.assertEqual(A__ , A__ ) self.assertNotIn(self.tokenizer.eos_token , A__ ) def UpperCamelCase ( self ) -> Tuple: snake_case = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , A__ ) snake_case = 10 snake_case = self.tokenizer(A__ , max_length=A__ , truncation=A__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , A__ ) self.assertEqual(len(A__ ) , A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_26, 25_00_01] ) def UpperCamelCase ( self ) -> Dict: snake_case = tempfile.mkdtemp() snake_case = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A__ ) snake_case = MBartTokenizer.from_pretrained(A__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A__ ) @require_torch def UpperCamelCase ( self ) -> Dict: snake_case = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A__ , return_tensors='''pt''' ) snake_case = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase ( self ) -> List[Any]: snake_case = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A__ , truncation=A__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) snake_case = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(A__ , A__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) snake_case = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase ( self ) -> Dict: snake_case = self.tokenizer(self.src_text , padding=A__ , truncation=A__ , max_length=3 , return_tensors='''pt''' ) snake_case = self.tokenizer( text_target=self.tgt_text , padding=A__ , truncation=A__ , max_length=10 , return_tensors='''pt''' ) snake_case = targets['''input_ids'''] snake_case = shift_tokens_right(A__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(A__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 30_34, 2, 25_00_04]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
342
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _UpperCAmelCase: lowercase__ = 42 lowercase__ = None lowercase__ = None _a = namedtuple("""CoinsDistribResult""", """moves excess""") def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(__snake_case ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__snake_case ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__snake_case ) != count_coins(__snake_case ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__snake_case ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0, 1 ) _UpperCamelCase , _UpperCamelCase = get_distrib(node.left ) _UpperCamelCase , _UpperCamelCase = get_distrib(node.right ) _UpperCamelCase = 1 - left_distrib_excess _UpperCamelCase = 1 - right_distrib_excess _UpperCamelCase = ( left_distrib_moves + right_distrib_moves + abs(__snake_case ) + abs(__snake_case ) ) _UpperCamelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__snake_case, __snake_case ) return get_distrib(__snake_case )[0] if __name__ == "__main__": import doctest doctest.testmod()
78
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=2 , __a=24 , __a=16 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=None , __a=2 , __a=2 , ) -> List[str]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = patch_size _UpperCamelCase = max_length _UpperCamelCase = num_mel_bins _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = frequency_stride _UpperCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _UpperCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _UpperCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 _UpperCamelCase = frequency_out_dimension * time_out_dimension _UpperCamelCase = num_patches + 2 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, input_values, labels def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ASTModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_values''': input_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowercase__ = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self , __a , __a , __a , __a , __a) -> Optional[Any]: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = ASTModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''') def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' pass def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''input_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ASTModel.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''', filename='''sample_audio.flac''', repo_type='''dataset''' ) _UpperCamelCase , _UpperCamelCase = torchaudio.load(__snake_case ) return audio, sampling_rate @require_torch @require_torchaudio class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''') if is_torchaudio_available() else None ) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.default_feature_extractor _UpperCamelCase = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''').to(__a) _UpperCamelCase = self.default_feature_extractor _UpperCamelCase , _UpperCamelCase = prepare_audio() _UpperCamelCase = audio.squeeze().numpy() _UpperCamelCase = feature_extractor(__a , sampling_rate=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 5_27)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-0.8760, -7.0042, -8.6602]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4))
78
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Tuple , __a : int , __a : Dict ) -> Tuple: return None class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Any , __a : Optional[int] , __a : Optional[Any] , __a : Any ) -> Optional[Any]: return None class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__a , "tf" , 12 , **__a ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__a , "pt" , 12 , **__a ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: from transformers import BertModel _UpperCamelCase : str = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__a ) ) vocab_file.flush() _UpperCamelCase : Dict = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _UpperCamelCase : Optional[Any] = BertModel(BertConfig(vocab_size=len(__a ) ) ) model.save_pretrained(__a ) self._test_export(__a , "pt" , 12 , __a ) @require_tf @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _UpperCamelCase : str = self._test_export(__a , "tf" , 12 , **__a ) _UpperCamelCase : str = quantize(Path(__a ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__a ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _UpperCamelCase : Optional[Any] = self._test_export(__a , "pt" , 12 , **__a ) _UpperCamelCase : int = quantize(__a ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__a ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Optional[Any]=None , **__a : str ) -> Any: try: # Compute path with TemporaryDirectory() as tempdir: _UpperCamelCase : Optional[Any] = Path(__a ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__a , __a , __a , __a , __a , **__a ) return path except Exception as e: self.fail(__a ) @require_torch @require_tokenizers @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: from transformers import BertModel _UpperCamelCase : Dict = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) _UpperCamelCase : int = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__a , __a , "pt" ) @require_tf @require_tokenizers @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: from transformers import TFBertModel _UpperCamelCase : str = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) _UpperCamelCase : Optional[int] = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__a , __a , "tf" ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[Any] , __a : Dict , __a : Any ) -> Union[str, Any]: _UpperCamelCase : List[Any] = FeatureExtractionPipeline(__a , __a ) _UpperCamelCase : Tuple = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = infer_shapes(__a , __a ) # Assert all variables are present self.assertEqual(len(__a ) , len(__a ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __a ) self.assertSequenceEqual(variable_names[3:] , __a ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : str = ["input_ids", "attention_mask", "token_type_ids"] _UpperCamelCase : Dict = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} _UpperCamelCase, _UpperCamelCase : Union[str, Any] = ensure_valid_input(FuncContiguousArgs() , __a , __a ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__a ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__a ) , set(__a ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__a , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _UpperCamelCase, _UpperCamelCase : Tuple = ensure_valid_input(FuncNonContiguousArgs() , __a , __a ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__a ) , 1 ) self.assertEqual(len(__a ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: _UpperCamelCase : Tuple = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
624
"""simple docstring""" import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = False if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } lowerCamelCase__ = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } lowerCamelCase__ = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: lowerCamelCase__ = reader.read() lowerCamelCase__ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): lowerCamelCase__ = UNetaDModel(**config) else: lowerCamelCase__ = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel lowerCamelCase__ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCamelCase__ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCamelCase__ = config[key] del config[key] lowerCamelCase__ = [k.replace("UNetRes", "") for k in config["down_block_types"]] lowerCamelCase__ = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: lowerCamelCase__ = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) lowerCamelCase__ = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue lowerCamelCase__ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: lowerCamelCase__ = param_value lowerCamelCase__ = True if not has_changed: lowerCamelCase__ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
624
1
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers snake_case = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ): require_version(deps[pkg], SCREAMING_SNAKE_CASE_ )
720
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case = sys.version_info >= (3, 1_0) def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ): return field(default_factory=lambda: default, metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : int UpperCAmelCase_ : float UpperCAmelCase_ : str UpperCAmelCase_ : bool @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : int = 42 UpperCAmelCase_ : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : Optional[bool] = None class UpperCamelCase ( __magic_name__ ): """simple docstring""" UpperCAmelCase_ : Tuple = "titi" UpperCAmelCase_ : str = "toto" class UpperCamelCase ( __magic_name__ ): """simple docstring""" UpperCAmelCase_ : Dict = "titi" UpperCAmelCase_ : Tuple = "toto" UpperCAmelCase_ : Any = 42 @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : BasicEnum = "toto" def A ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = BasicEnum(self.foo ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : MixedTypeEnum = "toto" def A ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[float] = field(default=__magic_name__ , metadata={"help": "help message"} ) UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[List[str]] = list_field(default=[] ) UpperCAmelCase_ : Optional[List[int]] = list_field(default=[] ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : List[int] = list_field(default=[] ) UpperCAmelCase_ : List[int] = list_field(default=[1, 2, 3] ) UpperCAmelCase_ : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) UpperCAmelCase_ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : List[int] = field() UpperCAmelCase_ : str = field() UpperCAmelCase_ : BasicEnum = field() def A ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : int UpperCAmelCase_ : "BasicEnum" = field() UpperCAmelCase_ : "Optional[bool]" = None UpperCAmelCase_ : "str" = field(default="toto" , metadata={"help": "help message"} ) UpperCAmelCase_ : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : bool | None = None @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : int | None = None UpperCAmelCase_ : float | None = field(default=__magic_name__ , metadata={"help": "help message"} ) UpperCAmelCase_ : str | None = None UpperCAmelCase_ : list[str] | None = list_field(default=[] ) UpperCAmelCase_ : list[int] | None = list_field(default=[] ) class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self , lowercase__ , lowercase__ ) -> Optional[Any]: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): SCREAMING_SNAKE_CASE = {k: v for k, v in vars(lowercase__ ).items() if k != 'container'} SCREAMING_SNAKE_CASE = {k: v for k, v in vars(lowercase__ ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase__ ) and yy.get('choices' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase__ ) , yy['type'](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase__ , required=lowercase__ ) expected.add_argument('--bar' , type=lowercase__ , required=lowercase__ ) expected.add_argument('--baz' , type=lowercase__ , required=lowercase__ ) expected.add_argument('--flag' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='?' ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((SCREAMING_SNAKE_CASE) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase__ ) expected.add_argument('--baz' , default='toto' , type=lowercase__ , help='help message' ) self.argparsersEqual(lowercase__ , lowercase__ ) def A ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='?' ) expected.add_argument('--baz' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase__ , dest='baz' ) expected.add_argument('--opt' , type=lowercase__ , default=lowercase__ ) SCREAMING_SNAKE_CASE = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def A ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def A ( self ) -> Dict: """simple docstring""" @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : Literal["titi", "toto", 42] = "toto" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def A ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase__ ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase__ ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) SCREAMING_SNAKE_CASE = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase__ , type=lowercase__ ) expected.add_argument('--bar' , default=lowercase__ , type=lowercase__ , help='help message' ) expected.add_argument('--baz' , default=lowercase__ , type=lowercase__ ) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase__ ) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase__ ) SCREAMING_SNAKE_CASE = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) SCREAMING_SNAKE_CASE = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def A ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase__ , required=lowercase__ ) expected.add_argument('--required_str' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def A ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=lowercase__ , ) expected.add_argument('--opt' , type=lowercase__ , default=lowercase__ ) expected.add_argument('--baz' , default='toto' , type=lowercase__ , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def A ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } SCREAMING_SNAKE_CASE = parser.parse_dict(lowercase__ )[0] SCREAMING_SNAKE_CASE = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = os.path.join(lowercase__ , 'temp_json' ) os.mkdir(lowercase__ ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] SCREAMING_SNAKE_CASE = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = os.path.join(lowercase__ , 'temp_yaml' ) os.mkdir(lowercase__ ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] SCREAMING_SNAKE_CASE = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
406
0
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ ( snake_case__ ): def __init__( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any]=13 , UpperCamelCase__ : Tuple=7 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Any=99 , UpperCamelCase__ : Any=32 , UpperCamelCase__ : Any=5 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : List[Any]=37 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Optional[Any]=5_12 , UpperCamelCase__ : List[Any]=16 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Any="None" , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : Any=None , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = relative_attention UpperCAmelCase = position_biased_input UpperCAmelCase = pos_att_type UpperCAmelCase = scope def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Dict: '''simple docstring''' UpperCAmelCase = self.get_config() UpperCAmelCase = 3_00 return config def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : Tuple ) -> List[str]: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = DebertaModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case )[0] UpperCAmelCase = model(__snake_case , token_type_ids=__snake_case )[0] UpperCAmelCase = model(__snake_case )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str: '''simple docstring''' UpperCAmelCase = DebertaForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = DebertaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = DebertaForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = DebertaForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( snake_case__, snake_case__, unittest.TestCase ): lowercase : Optional[int] =( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowercase : int =( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) lowercase : Optional[Any] =True lowercase : Any =False lowercase : Dict =False lowercase : str =False lowercase : List[str] =False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase = DebertaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = DebertaModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> str: '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = DebertaModel.from_pretrained("microsoft/deberta-base" ) UpperCAmelCase = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(__snake_case , attention_mask=__snake_case )[0] # compare the actual values for a slice. UpperCAmelCase = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __snake_case , atol=1e-4 ) , F'{output[:, 1:4, 1:4]}' )
323
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'deit' def __init__( self , __snake_case=7_6_8 , __snake_case=1_2 , __snake_case=1_2 , __snake_case=3_0_7_2 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1E-12 , __snake_case=2_2_4 , __snake_case=1_6 , __snake_case=3 , __snake_case=True , __snake_case=1_6 , **__snake_case , ): super().__init__(**__snake_case ) snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = layer_norm_eps snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = qkv_bias snake_case = encoder_stride class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = version.parse('1.11' ) @property def a_ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a_ ( self ): return 1E-4
550
0
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets lowercase_ : int = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' lowercase_ : int = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' lowercase_ : Any = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(snake_case__ , snake_case__ , sample_weight=snake_case__ ) ), }
712
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : str, lowerCamelCase__ : str ) -> Union[str, Any]: print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ), end="\t" ) else: print("INF", end="\t" ) print() def _lowerCAmelCase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Any ) -> List[str]: _SCREAMING_SNAKE_CASE : List[Any] = [[float("inf" ) for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(lowerCamelCase__ ): # looping through rows of graph array for i in range(lowerCamelCase__ ): # looping through columns of graph array for j in range(lowerCamelCase__ ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): _SCREAMING_SNAKE_CASE : List[Any] = dist[i][k] + dist[k][j] _print_dist(lowerCamelCase__, lowerCamelCase__ ) return dist, v if __name__ == "__main__": lowercase_ : Tuple = int(input('''Enter number of vertices: ''')) lowercase_ : List[Any] = int(input('''Enter number of edges: ''')) lowercase_ : Optional[Any] = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): lowercase_ : Tuple = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) lowercase_ : str = int(input('''Enter source:''')) lowercase_ : Optional[Any] = int(input('''Enter destination:''')) lowercase_ : Union[str, Any] = float(input('''Enter weight:''')) lowercase_ : str = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
295
0