code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations from math import pow, sqrt def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) - pow(SCREAMING_SNAKE_CASE , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) - pow(SCREAMING_SNAKE_CASE , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(SCREAMING_SNAKE_CASE , 2 ) + pow(SCREAMING_SNAKE_CASE , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
345
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: SCREAMING_SNAKE_CASE_ : int = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : Optional[int] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: SCREAMING_SNAKE_CASE_ : Optional[int] = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : List[str] = {'text': 'string'} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: SCREAMING_SNAKE_CASE_ : Dict = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : str = {'text': 'string'} SCREAMING_SNAKE_CASE_ : Union[str, Any] = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : int = [text_path] SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : Optional[int] = {'text': 'string'} SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=("train",) ) -> Dict: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: SCREAMING_SNAKE_CASE_ : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: SCREAMING_SNAKE_CASE_ : Optional[Any] = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : Tuple = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : int = TextDatasetReader({'train': text_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Optional[Any] = {'text': 'string'} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Dict = TextDatasetReader({'train': text_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: if split: SCREAMING_SNAKE_CASE_ : Optional[Any] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : str = 'train' SCREAMING_SNAKE_CASE_ : int = {'train': text_path, 'test': text_path} SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : Tuple = {'text': 'string'} SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
345
1
import sys from collections import defaultdict class snake_case_ : '''simple docstring''' def __init__( self ) -> Union[str, Any]: UpperCAmelCase__ =[] def __UpperCAmelCase ( self, A_ ) -> Optional[Any]: return self.node_position[vertex] def __UpperCAmelCase ( self, A_, A_ ) -> Optional[Any]: UpperCAmelCase__ =pos def __UpperCAmelCase ( self, A_, A_, A_, A_ ) -> Tuple: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCAmelCase__ =2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCAmelCase__ =2 * start + 1 else: UpperCAmelCase__ =2 * start + 2 if heap[smallest_child] < heap[start]: UpperCAmelCase__ , UpperCAmelCase__ =heap[smallest_child], positions[smallest_child] UpperCAmelCase__ , UpperCAmelCase__ =( heap[start], positions[start], ) UpperCAmelCase__ , UpperCAmelCase__ =temp, tempa UpperCAmelCase__ =self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child], self.get_position(positions[start] ) ) self.set_position(positions[start], __a ) self.top_to_bottom(__a, __a, __a, __a ) def __UpperCAmelCase ( self, A_, A_, A_, A_ ) -> Optional[Any]: UpperCAmelCase__ =position[index] while index != 0: UpperCAmelCase__ =int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCAmelCase__ =heap[parent] UpperCAmelCase__ =position[parent] self.set_position(position[parent], __a ) else: UpperCAmelCase__ =val UpperCAmelCase__ =temp self.set_position(__a, __a ) break UpperCAmelCase__ =parent else: UpperCAmelCase__ =val UpperCAmelCase__ =temp self.set_position(__a, 0 ) def __UpperCAmelCase ( self, A_, A_ ) -> Optional[Any]: UpperCAmelCase__ =len(__a ) // 2 - 1 for i in range(__a, -1, -1 ): self.top_to_bottom(__a, __a, len(__a ), __a ) def __UpperCAmelCase ( self, A_, A_ ) -> Union[str, Any]: UpperCAmelCase__ =positions[0] UpperCAmelCase__ =sys.maxsize self.top_to_bottom(__a, 0, len(__a ), __a ) return temp def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =Heap() UpperCAmelCase__ =[0] * len(__snake_case ) UpperCAmelCase__ =[-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCAmelCase__ =[] # Heap of Distance of vertices from their neighboring vertex UpperCAmelCase__ =[] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) UpperCAmelCase__ =[] UpperCAmelCase__ =1 UpperCAmelCase__ =sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCAmelCase__ =0 UpperCAmelCase__ =distance heap.heapify(__snake_case , __snake_case ) for _ in range(1 , len(__snake_case ) ): UpperCAmelCase__ =heap.delete_minimum(__snake_case , __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCAmelCase__ =1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): UpperCAmelCase__ =distance heap.bottom_to_top( __snake_case , heap.get_position(__snake_case ) , __snake_case , __snake_case ) UpperCAmelCase__ =vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCamelCase_ = int(input('Enter number of edges: ').strip()) UpperCamelCase_ = defaultdict(list) for _ in range(edges_number): UpperCamelCase_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
712
import string from math import logaa def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) UpperCAmelCase__ =document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase__ =corpus_without_punctuation.split("\n" ) UpperCAmelCase__ =term.lower() return (len([doc for doc in docs if term in doc] ), len(A )) def _UpperCAmelCase ( A , A , A=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def _UpperCAmelCase ( A , A ): '''simple docstring''' return round(tf * idf , 3 )
510
0
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _a = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _a = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _a = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowerCamelCase__ ( __snake_case, __snake_case ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase = len([g for position, g in enumerate(__snake_case ) if g == main_target[position]] ) return (item, float(__snake_case )) def lowerCamelCase__ ( __snake_case, __snake_case ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase = random.randint(0, len(__snake_case ) - 1 ) _UpperCamelCase = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" _UpperCamelCase = list(__snake_case ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: _UpperCamelCase = random.choice(__snake_case ) return "".join(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, ) -> list[str]: """simple docstring""" _UpperCamelCase = [] # Generate more children proportionally to the fitness score. _UpperCamelCase = int(parent_a[1] * 1_00 ) + 1 _UpperCamelCase = 10 if child_n >= 10 else child_n for _ in range(__snake_case ): _UpperCamelCase = population_score[random.randint(0, __snake_case )][0] _UpperCamelCase , _UpperCamelCase = crossover(parent_a[0], __snake_case ) # Append new string to the population list. pop.append(mutate(__snake_case, __snake_case ) ) pop.append(mutate(__snake_case, __snake_case ) ) return pop def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(__snake_case ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(__snake_case ) # Generate random starting population. _UpperCamelCase = [] for _ in range(__snake_case ): population.append(''''''.join([random.choice(__snake_case ) for i in range(len(__snake_case ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase , _UpperCamelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__snake_case ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase = [evaluate(__snake_case, __snake_case ) for item in population] # Check if there is a matching evolution. _UpperCamelCase = sorted(__snake_case, key=lambda __snake_case : x[1], reverse=__snake_case ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__snake_case ) # Normalize population score to be between 0 and 1. _UpperCamelCase = [ (item, score / len(__snake_case )) for item, score in population_score ] # This is selection for i in range(__snake_case ): population.extend(select(population_score[int(__snake_case )], __snake_case, __snake_case ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__snake_case ) > N_POPULATION: break if __name__ == "__main__": _a = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) _a = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) _a , _a , _a = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
19
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A = F'https://www.google.com/search?q={query}&num=100' A = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
0
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 while repunit: SCREAMING_SNAKE_CASE = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowerCamelCase_ ( SCREAMING_SNAKE_CASE = 1_00_00_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(SCREAMING_SNAKE_CASE ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
450
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __A : Any = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __A : Optional[int] = 2_5_6_0_4_7 __A : Dict = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( A , unittest.TestCase ): '''simple docstring''' a__ = NllbTokenizer a__ = NllbTokenizerFast a__ = True a__ = True a__ = {} def _UpperCAmelCase ( self : Any ) -> int: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE = NllbTokenizer(a , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self : int ) -> str: SCREAMING_SNAKE_CASE = NllbTokenizer(a , keep_accents=a ) SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _UpperCAmelCase ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(a , **a ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(a , **a ) SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(a ) SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(a , a ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(a ) SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a , a ) ) shutil.rmtree(a ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(a , legacy_format=a ) SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(a ) # Checks it save with the same files self.assertSequenceEqual(a , a ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(a ) SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a , a ) ) shutil.rmtree(a ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(a , legacy_format=a ) SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(a ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(a ) SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a , a ) ) shutil.rmtree(a ) @require_torch def _UpperCAmelCase ( self : Dict ) -> List[str]: if not self.test_seqaseq: return SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. SCREAMING_SNAKE_CASE = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] SCREAMING_SNAKE_CASE = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: SCREAMING_SNAKE_CASE = tokenizer.prepare_seqaseq_batch( src_texts=a , tgt_texts=a , max_length=3 , max_target_length=10 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified SCREAMING_SNAKE_CASE = tokenizer.prepare_seqaseq_batch( a , tgt_texts=a , max_length=3 , return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) SCREAMING_SNAKE_CASE = tokenizer.prepare_seqaseq_batch( src_texts=a , max_length=3 , max_target_length=10 , return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("""decoder_input_ids""" , a ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def _UpperCAmelCase ( self : int ) -> Optional[int]: pass def _UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = [AddedToken("""<special>""" , lstrip=a )] SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( a , additional_special_tokens=a , **a ) SCREAMING_SNAKE_CASE = tokenizer_r.encode("""Hey this is a <special> token""" ) SCREAMING_SNAKE_CASE = tokenizer_r.encode("""<special>""" , add_special_tokens=a )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( a , additional_special_tokens=a , **a , ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained( a , additional_special_tokens=a , **a ) SCREAMING_SNAKE_CASE = tokenizer_p.encode("""Hey this is a <special> token""" ) SCREAMING_SNAKE_CASE = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(a , a ) self.assertEqual(a , a ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' a__ = '''facebook/nllb-200-distilled-600M''' a__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] a__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] a__ = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def _UpperCAmelCase ( cls : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" ) SCREAMING_SNAKE_CASE = 1 return cls def _UpperCAmelCase ( self : Dict ) -> Dict: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 256_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 256_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 256_057 ) def _UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a ) def _UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: self.assertIn(a , self.tokenizer.all_special_ids ) # fmt: off SCREAMING_SNAKE_CASE = [RO_CODE, 4_254, 98_068, 112_923, 39_072, 3_909, 713, 102_767, 26, 17_314, 35_642, 14_683, 33_118, 2_022, 66_987, 2, 256_047] # fmt: on SCREAMING_SNAKE_CASE = self.tokenizer.decode(a , skip_special_tokens=a ) SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a ) self.assertEqual(a , a ) self.assertNotIn(self.tokenizer.eos_token , a ) def _UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , a ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.tokenizer(a , max_length=a , truncation=a ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , a ) self.assertEqual(len(a ) , a ) def _UpperCAmelCase ( self : Dict ) -> Any: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [256_203, 3] ) def _UpperCAmelCase ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a ) SCREAMING_SNAKE_CASE = NllbTokenizer.from_pretrained(a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a ) @require_torch def _UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a , truncation=a , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) SCREAMING_SNAKE_CASE = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(a , a ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a ) self.assertEqual(a , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _UpperCAmelCase ( self : str ) -> Dict: SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , padding=a , truncation=a , max_length=3 , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE = self.tokenizer( text_target=self.tgt_text , padding=a , truncation=a , max_length=10 , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE = targets["""input_ids"""] SCREAMING_SNAKE_CASE = shift_tokens_right( a , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _UpperCAmelCase ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(a ) , { # A, test, EOS, en_XX """input_ids""": [[256_047, 70, 7_356, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 256_057, } , ) @require_torch def _UpperCAmelCase ( self : str ) -> int: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2, 256_047] ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [256_047, 16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2] )
450
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __magic_name__ : Dict = logging.getLogger(__name__) def lowercase__ ( _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=16 , _UpperCamelCase = 10 , _UpperCamelCase = 2) -> Dict: """simple docstring""" def get_dataset(_UpperCamelCase): UpperCamelCase = torch.randn(batch_size * n_batches , 1) return TensorDataset(lowercase_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1)) UpperCamelCase = get_dataset(lowercase_) UpperCamelCase = get_dataset(lowercase_) UpperCamelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4) UpperCamelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4) return (train_dataloader, valid_dataloader) def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None) -> List[str]: """simple docstring""" UpperCamelCase = [] for epoch in range(lowercase_): # Train quickly model.train() for batch in dataloader: UpperCamelCase , UpperCamelCase = batch UpperCamelCase = model(lowercase_) UpperCamelCase = torch.nn.functional.mse_loss(lowercase_ , lowercase_) accelerator.backward(lowercase_) optimizer.step() optimizer.zero_grad() rands.append(random.random()) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class A__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ): """simple docstring""" super().__init__() UpperCamelCase = nn.Parameter(torch.randn(1 ) ) UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" return x * self.a + self.b class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=snake_case_ , automatic_checkpoint_naming=snake_case_ ) # Train baseline UpperCamelCase = Accelerator(project_config=snake_case_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() # Train baseline UpperCamelCase = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial UpperCamelCase = os.path.join(snake_case_ , 'initial' ) accelerator.save_state(snake_case_ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() UpperCamelCase = train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.load_state(snake_case_ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) UpperCamelCase = train(2 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save everything UpperCamelCase = os.path.join(snake_case_ , 'checkpoint' ) accelerator.save_state(snake_case_ ) # Load everything back in and make sure all states work accelerator.load_state(snake_case_ ) test_rands += train(1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ ) # Train baseline UpperCamelCase = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() UpperCamelCase = train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=snake_case_ ) UpperCamelCase = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.load_state(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) UpperCamelCase = train(2 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" UpperCamelCase = torch.tensor([1, 2, 3] ) UpperCamelCase = torch.tensor([2, 3, 4] ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(net.parameters() ) UpperCamelCase = Accelerator() with self.assertRaises(snake_case_ ) as ve: accelerator.register_for_checkpointing(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase = torch.optim.lr_scheduler.StepLR(snake_case_ , step_size=1 , gamma=0.9_9 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ ) # Train baseline UpperCamelCase = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Save initial accelerator.save_state() UpperCamelCase = scheduler.state_dict() train(3 , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(snake_case_ , scheduler.state_dict() ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase = DummyModel() UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=snake_case_ , total_limit=2 ) # Train baseline UpperCamelCase = Accelerator(project_dir=snake_case_ , project_config=snake_case_ ) UpperCamelCase = accelerator.prepare(snake_case_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case_ , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" UpperCamelCase = ['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if __name__ == "__main__": __magic_name__ : List[str] = '''/tmp/accelerate/state_checkpointing''' __magic_name__ : str = DummyModel() __magic_name__ : Optional[int] = torch.optim.Adam(params=model.parameters(), lr=1e-3) __magic_name__ : Tuple = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __magic_name__ : Union[str, Any] = dummy_dataloaders() __magic_name__ : List[str] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __magic_name__ : Optional[int] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __magic_name__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __magic_name__ : Tuple = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __magic_name__ : Optional[Any] = group['''params'''][0].device break assert param_device.type == accelerator.device.type __magic_name__ : List[Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: __magic_name__ : Any = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: __magic_name__ : int = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
280
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _UpperCAmelCase : Union[str, Any] = datasets.logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' _UpperCAmelCase : str = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' _UpperCAmelCase : Optional[int] = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def UpperCamelCase ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any]=False , lowercase_ : Optional[Any]=False , lowercase_ : Optional[Any]=True , lowercase_ : Optional[Any]=False , lowercase_ : int="dummy_doc" ) -> str: '''simple docstring''' lowercase ={doc: key_lines} lowercase ={doc: sys_lines} lowercase ={} lowercase =0 lowercase =0 lowercase =0 lowercase =0 lowercase =0 lowercase =0 lowercase , lowercase =reader.get_doc_mentions(lowercase_ , key_doc_lines[doc] , lowercase_ ) key_singletons_num += singletons_num if NP_only or min_span: lowercase =reader.set_annotated_parse_trees(lowercase_ , key_doc_lines[doc] , lowercase_ , lowercase_ ) lowercase , lowercase =reader.get_doc_mentions(lowercase_ , sys_doc_lines[doc] , lowercase_ ) sys_singletons_num += singletons_num if NP_only or min_span: lowercase =reader.set_annotated_parse_trees(lowercase_ , key_doc_lines[doc] , lowercase_ , lowercase_ ) if remove_nested: lowercase , lowercase =reader.remove_nested_coref_mentions(lowercase_ , lowercase_ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowercase , lowercase =reader.remove_nested_coref_mentions(lowercase_ , lowercase_ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowercase =reader.get_mention_assignments(lowercase_ , lowercase_ ) lowercase =reader.get_mention_assignments(lowercase_ , lowercase_ ) lowercase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( '''Number of resulting singleton clusters in the key ''' f'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( f'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' '''files, respectively''' ) return doc_coref_infos def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Tuple ) -> Dict: '''simple docstring''' lowercase =get_coref_infos(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase ={} lowercase =0 lowercase =0 for name, metric in metrics: lowercase , lowercase , lowercase =evaluator.evaluate_documents(lowercase_ , lowercase_ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'{name}/recall': recall, f'{name}/precision': precision, f'{name}/f1': fa} ) logger.info( name.ljust(1_0 ) , f'Recall: {recall * 1_0_0:.2f}' , f' Precision: {precision * 1_0_0:.2f}' , f' F1: {fa * 1_0_0:.2f}' , ) if conll_subparts_num == 3: lowercase =(conll / 3) * 1_0_0 logger.info(f'CoNLL score: {conll:.2f}' ) output_scores.update({'''conll_score''': conll} ) return output_scores def UpperCamelCase ( lowercase_ : Any ) -> List[Any]: '''simple docstring''' lowercase =False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowercase =line.split()[5] if not parse_col == "-": lowercase =True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _A( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def _A( self , snake_case_ , snake_case_ , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False ): lowercase =[ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowercase =util.check_gold_parse_annotation(snake_case_ ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowercase =evaluate( key_lines=snake_case_ , sys_lines=snake_case_ , metrics=snake_case_ , NP_only=snake_case_ , remove_nested=snake_case_ , keep_singletons=snake_case_ , min_span=snake_case_ , ) return score
72
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = AudioLDMPipeline UpperCAmelCase = TEXT_TO_AUDIO_PARAMS UpperCAmelCase = TEXT_TO_AUDIO_BATCH_PARAMS UpperCAmelCase = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_a , ) _SCREAMING_SNAKE_CASE =DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) _SCREAMING_SNAKE_CASE =ClapTextModelWithProjection(_a ) _SCREAMING_SNAKE_CASE =RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77 ) _SCREAMING_SNAKE_CASE =SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_a , ) _SCREAMING_SNAKE_CASE =SpeechTaHifiGan(_a ) _SCREAMING_SNAKE_CASE ={ '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def __UpperCamelCase ( self : Tuple , _a : List[Any] , _a : str=0 ) -> Tuple: """simple docstring""" if str(_a ).startswith('''mps''' ): _SCREAMING_SNAKE_CASE =torch.manual_seed(_a ) else: _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE ={ '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =AudioLDMPipeline(**_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe(**_a ) _SCREAMING_SNAKE_CASE =output.audios[0] assert audio.ndim == 1 assert len(_a ) == 256 _SCREAMING_SNAKE_CASE =audio[:10] _SCREAMING_SNAKE_CASE =np.array( [-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self : Dict ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =AudioLDMPipeline(**_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe.to(_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =3 * [inputs['''prompt''']] # forward _SCREAMING_SNAKE_CASE =audioldm_pipe(**_a ) _SCREAMING_SNAKE_CASE =output.audios[0] _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =3 * [inputs.pop('''prompt''' )] _SCREAMING_SNAKE_CASE =audioldm_pipe.tokenizer( _a , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_a , return_tensors='''pt''' , ) _SCREAMING_SNAKE_CASE =text_inputs['''input_ids'''].to(_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe.text_encoder( _a , ) _SCREAMING_SNAKE_CASE =prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _SCREAMING_SNAKE_CASE =F.normalize(_a , dim=-1 ) _SCREAMING_SNAKE_CASE =prompt_embeds # forward _SCREAMING_SNAKE_CASE =audioldm_pipe(**_a ) _SCREAMING_SNAKE_CASE =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =AudioLDMPipeline(**_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe.to(_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =3 * ['''this is a negative prompt'''] _SCREAMING_SNAKE_CASE =negative_prompt _SCREAMING_SNAKE_CASE =3 * [inputs['''prompt''']] # forward _SCREAMING_SNAKE_CASE =audioldm_pipe(**_a ) _SCREAMING_SNAKE_CASE =output.audios[0] _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =3 * [inputs.pop('''prompt''' )] _SCREAMING_SNAKE_CASE =[] for p in [prompt, negative_prompt]: _SCREAMING_SNAKE_CASE =audioldm_pipe.tokenizer( _a , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_a , return_tensors='''pt''' , ) _SCREAMING_SNAKE_CASE =text_inputs['''input_ids'''].to(_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe.text_encoder( _a , ) _SCREAMING_SNAKE_CASE =text_embeds.text_embeds # additional L_2 normalization over each hidden-state _SCREAMING_SNAKE_CASE =F.normalize(_a , dim=-1 ) embeds.append(_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =embeds # forward _SCREAMING_SNAKE_CASE =audioldm_pipe(**_a ) _SCREAMING_SNAKE_CASE =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =PNDMScheduler(skip_prk_steps=_a ) _SCREAMING_SNAKE_CASE =AudioLDMPipeline(**_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE ='''egg cracking''' _SCREAMING_SNAKE_CASE =audioldm_pipe(**_a , negative_prompt=_a ) _SCREAMING_SNAKE_CASE =output.audios[0] assert audio.ndim == 1 assert len(_a ) == 256 _SCREAMING_SNAKE_CASE =audio[:10] _SCREAMING_SNAKE_CASE =np.array( [-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =PNDMScheduler(skip_prk_steps=_a ) _SCREAMING_SNAKE_CASE =AudioLDMPipeline(**_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE ='''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) _SCREAMING_SNAKE_CASE =audioldm_pipe(_a , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =audioldm_pipe(_a , num_inference_steps=2 , num_waveforms_per_prompt=_a ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_a ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =AudioLDMPipeline(**_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe.vocoder.config.sampling_rate _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe(audio_length_in_s=0.0_16 , **_a ) _SCREAMING_SNAKE_CASE =output.audios[0] assert audio.ndim == 1 assert len(_a ) / vocoder_sampling_rate == 0.0_16 _SCREAMING_SNAKE_CASE =audioldm_pipe(audio_length_in_s=0.0_32 , **_a ) _SCREAMING_SNAKE_CASE =output.audios[0] assert audio.ndim == 1 assert len(_a ) / vocoder_sampling_rate == 0.0_32 def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =AudioLDMPipeline(**_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =['''hey'''] _SCREAMING_SNAKE_CASE =audioldm_pipe(_a , num_inference_steps=1 ) _SCREAMING_SNAKE_CASE =output.audios.shape assert audio_shape == (1, 256) _SCREAMING_SNAKE_CASE =audioldm_pipe.vocoder.config config.model_in_dim *= 2 _SCREAMING_SNAKE_CASE =SpeechTaHifiGan(_a ).to(_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe(_a , num_inference_steps=1 ) _SCREAMING_SNAKE_CASE =output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_a ) def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=_a ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_a ) @slow class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Union[str, Any] , _a : Tuple , _a : Optional[int]="cpu" , _a : Optional[int]=torch.floataa , _a : Tuple=0 ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE =np.random.RandomState(_a ).standard_normal((1, 8, 128, 16) ) _SCREAMING_SNAKE_CASE =torch.from_numpy(_a ).to(device=_a , dtype=_a ) _SCREAMING_SNAKE_CASE ={ '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) _SCREAMING_SNAKE_CASE =audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_inputs(_a ) _SCREAMING_SNAKE_CASE =25 _SCREAMING_SNAKE_CASE =audioldm_pipe(**_a ).audios[0] assert audio.ndim == 1 assert len(_a ) == 8_1920 _SCREAMING_SNAKE_CASE =audio[7_7230:7_7240] _SCREAMING_SNAKE_CASE =np.array( [-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] ) _SCREAMING_SNAKE_CASE =np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) _SCREAMING_SNAKE_CASE =LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _SCREAMING_SNAKE_CASE =audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_inputs(_a ) _SCREAMING_SNAKE_CASE =audioldm_pipe(**_a ).audios[0] assert audio.ndim == 1 assert len(_a ) == 8_1920 _SCREAMING_SNAKE_CASE =audio[2_7780:2_7790] _SCREAMING_SNAKE_CASE =np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] ) _SCREAMING_SNAKE_CASE =np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
191
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase( a__): for param in module.parameters(): _SCREAMING_SNAKE_CASE =False def lowerCamelCase( ): _SCREAMING_SNAKE_CASE ='''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _SCREAMING_SNAKE_CASE ='''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''') return device def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =plt.imshow(a__) fig.axes.get_xaxis().set_visible(a__) fig.axes.get_yaxis().set_visible(a__) plt.show() def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =datetime.now() _SCREAMING_SNAKE_CASE =current_time.strftime('''%H:%M:%S''') return timestamp
191
1
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase__ = open # noqa: we just need to have a builtin inside this module to test it properly
645
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase__ = open # noqa: we just need to have a builtin inside this module to test it properly
645
1
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate a_ : Dict = trt.Logger(trt.Logger.WARNING) a_ : int = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) a_ : Optional[int] = logging.getLogger(__name__) a_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) a_ : str = parser.parse_args() if args.tokenizer_name: a_ : int = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) a_ : Tuple = args.per_device_eval_batch_size a_ : Optional[Any] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties a_ : Optional[Any] = True a_ : List[Any] = 'temp_engine/bert-fp32.engine' if args.fpaa: a_ : Any = 'temp_engine/bert-fp16.engine' if args.inta: a_ : int = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') a_ : List[Any] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network a_ : List[str] = [network.get_input(i) for i in range(network.num_inputs)] a_ : int = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: a_ : Optional[Any] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) a_ : List[str] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) a_ : List[str] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ): __magic_name__ = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) __magic_name__ = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) __magic_name__ = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , snake_case_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , snake_case_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , snake_case_ ) # start time __magic_name__ = time.time() # Run inference context.execute_async( bindings=[int(snake_case_ ) for d_inp in d_inputs] + [int(snake_case_ ), int(snake_case_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(snake_case_ , snake_case_ , snake_case_ ) cuda.memcpy_dtoh_async(snake_case_ , snake_case_ , snake_case_ ) # Synchronize the stream and take time stream.synchronize() # end time __magic_name__ = time.time() __magic_name__ = end_time - start_time __magic_name__ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. a_ : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. a_ : Dict = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. a_ : Tuple = raw_datasets['validation'].column_names a_ : Optional[int] = 'question' if 'question' in column_names else column_names[0] a_ : List[Any] = 'context' if 'context' in column_names else column_names[1] a_ : Optional[Any] = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). a_ : Optional[int] = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) a_ : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __magic_name__ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __magic_name__ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=snake_case_ , stride=args.doc_stride , return_overflowing_tokens=snake_case_ , return_offsets_mapping=snake_case_ , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __magic_name__ = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __magic_name__ = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __magic_name__ = tokenized_examples.sequence_ids(snake_case_ ) __magic_name__ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __magic_name__ = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __magic_name__ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples a_ : Dict = raw_datasets['validation'] # Validation Feature Creation a_ : int = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) a_ : List[str] = default_data_collator a_ : Tuple = eval_dataset.remove_columns(['example_id', 'offset_mapping']) a_ : Optional[int] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __magic_name__ = postprocess_qa_predictions( examples=snake_case_ , features=snake_case_ , predictions=snake_case_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=snake_case_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __magic_name__ = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: __magic_name__ = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] __magic_name__ = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=snake_case_ , label_ids=snake_case_ ) a_ : Any = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): return trt.volume(engine.get_binding_shape(snake_case_ ) ) * engine.get_binding_dtype(snake_case_ ).itemsize # Allocate device memory for inputs and outputs. a_ : Any = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer a_ : Tuple = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) a_ : Union[str, Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) a_ : Union[str, Any] = cuda.mem_alloc(h_outputa.nbytes) a_ : List[str] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. a_ : Optional[int] = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(F""" Num examples = {len(eval_dataset)}""") logger.info(F""" Batch size = {args.per_device_eval_batch_size}""") a_ : Tuple = 0.0 a_ : List[Any] = 0 a_ : int = timeit.default_timer() a_ : Dict = None for step, batch in enumerate(eval_dataloader): a_ : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 a_ : Union[str, Any] = outputs a_ : Any = torch.tensor(start_logits) a_ : Tuple = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered a_ : List[str] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) a_ : List[str] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) a_ : str = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) a_ : Optional[Any] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: a_ : Optional[Any] = nested_truncate(all_preds, len(eval_dataset)) a_ : Optional[Any] = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1000)) logger.info('Total Number of Inference = %d', niter) a_ : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) a_ : List[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"""Evaluation metrics: {eval_metric}""")
700
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : List[str] = 256 class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = ["""melgan"""] def __init__( self , A , A , A , A , A , ) -> None: '''simple docstring''' super().__init__() # From MELGAN __magic_name__ = math.log(1E-5 ) # Matches MelGAN training. __magic_name__ = 4.0 # Largest value for most examples __magic_name__ = 1_28 self.register_modules( notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , ) def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> List[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = output_range if clip: __magic_name__ = torch.clip(A , self.min_value , self.max_value ) # Scale to [0, 1]. __magic_name__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> Optional[int]: '''simple docstring''' __magic_name__ , __magic_name__ = input_range __magic_name__ = torch.clip(A , A , A ) if clip else outputs # Scale to [0, 1]. __magic_name__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = input_tokens > 0 __magic_name__ , __magic_name__ = self.notes_encoder( encoder_input_tokens=A , encoder_inputs_mask=A ) __magic_name__ , __magic_name__ = self.continuous_encoder( encoder_inputs=A , encoder_inputs_mask=A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __A ( self , A , A , A ) -> Optional[int]: '''simple docstring''' __magic_name__ = noise_time if not torch.is_tensor(A ): __magic_name__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A ) and len(timesteps.shape ) == 0: __magic_name__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __magic_name__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __magic_name__ = self.decoder( encodings_and_masks=A , decoder_input_tokens=A , decoder_noise_time=A ) return logits @torch.no_grad() def __call__( self , A , A = None , A = 1_00 , A = True , A = "numpy" , A = None , A = 1 , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(A )}.' ) __magic_name__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __magic_name__ = np.zeros([1, 0, self.n_dims] , np.floataa ) __magic_name__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) for i, encoder_input_tokens in enumerate(A ): if i == 0: __magic_name__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __magic_name__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __magic_name__ = ones __magic_name__ = self.scale_features( A , output_range=[-1.0, 1.0] , clip=A ) __magic_name__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A , continuous_mask=A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __magic_name__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __magic_name__ = self.decode( encodings_and_masks=A , input_tokens=A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __magic_name__ = self.scheduler.step(A , A , A , generator=A ).prev_sample __magic_name__ = self.scale_to_features(A , input_range=[-1.0, 1.0] ) __magic_name__ = mel[:1] __magic_name__ = mel.cpu().float().numpy() __magic_name__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A ) logger.info('''Generated segment''' , A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": __magic_name__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __magic_name__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A )
678
0
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ): _lowercase : int = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) _lowercase : Union[str, Any] = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) sd_pipe.set_scheduler('sample_euler' ) _lowercase : Any = 'A painting of a squirrel eating a burger' _lowercase : Any = torch.manual_seed(0 ) _lowercase : Union[str, Any] = sd_pipe([prompt] , generator=_lowerCAmelCase , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) _lowercase : Tuple = output.images _lowercase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowercase : Any = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ): _lowercase : List[Any] = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _lowercase : List[str] = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) sd_pipe.set_scheduler('sample_euler' ) _lowercase : Optional[Any] = 'A painting of a squirrel eating a burger' _lowercase : List[str] = torch.manual_seed(0 ) _lowercase : str = sd_pipe([prompt] , generator=_lowerCAmelCase , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) _lowercase : List[Any] = output.images _lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowercase : Union[str, Any] = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __a ( self ): _lowercase : int = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _lowercase : Any = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) _lowercase : int = 'A painting of a squirrel eating a burger' _lowercase : Tuple = torch.manual_seed(0 ) _lowercase : Optional[Any] = sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='np' , use_karras_sigmas=_lowerCAmelCase , ) _lowercase : Any = output.images _lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowercase : List[Any] = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
66
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConvNextFeatureExtractor"] UpperCamelCase = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
66
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float, ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a (unittest.TestCase ): @property def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet UpperCAmelCase_ : Dict = KarrasVeScheduler() UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0] UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256''' UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = KarrasVeScheduler() UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
644
0
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowerCamelCase__ = { "bart": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), "bert": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-cased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-base-cased-finetuned-mrpc": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "dpr": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), "gpt2": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlnet": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm-roberta": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "transfo-xl": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "openai-gpt": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "roberta": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "layoutlm": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), "roberta-large-mnli": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "camembert": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "flaubert": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert-base-distilled-squad": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert-visual-feature-encoder": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "ctrl": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "albert": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "t5": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "electra": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "wav2vec2": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=False ,lowercase_=True ) -> Tuple: """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: _UpperCamelCase : List[Any] = cached_file(lowercase_ ,lowercase_ ,force_download=not use_cached_models ) _UpperCamelCase : List[str] = config_class.from_json_file(lowercase_ ) _UpperCamelCase : Any = True _UpperCamelCase : Tuple = True print(F'''Building TensorFlow model from configuration: {config}''' ) _UpperCamelCase : str = model_class(lowercase_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): _UpperCamelCase : Optional[int] = cached_file( lowercase_ ,lowercase_ ,force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: _UpperCamelCase : Dict = load_pytorch_checkpoint_in_tfa_model(lowercase_ ,lowercase_ ) if compare_with_pt_model: _UpperCamelCase : List[str] = tf_model(tf_model.dummy_inputs ,training=lowercase_ ) # build the network _UpperCamelCase : List[Any] = torch.load(lowercase_ ,map_location="cpu" ) _UpperCamelCase : List[str] = pt_model_class.from_pretrained( pretrained_model_name_or_path=lowercase_ ,config=lowercase_ ,state_dict=lowercase_ ) with torch.no_grad(): _UpperCamelCase : List[Any] = pt_model(**pt_model.dummy_inputs ) _UpperCamelCase : Dict = pto[0].numpy() _UpperCamelCase : Optional[Any] = tfo[0].numpy() _UpperCamelCase : Dict = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2e-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(lowercase_ ,save_format="h5" ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=False ,lowercase_=False ,lowercase_=False ,lowercase_=False ,) -> Optional[int]: """simple docstring""" if args_model_type is None: _UpperCamelCase : str = list(MODEL_CLASSES.keys() ) else: _UpperCamelCase : Optional[int] = [args_model_type] for j, model_type in enumerate(lowercase_ ,start=1 ): print("=" * 100 ) print(F''' Converting model type {j}/{len(lowercase_ )}: {model_type}''' ) print("=" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: _UpperCamelCase : int = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: _UpperCamelCase : int = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowercase_ ,lowercase_ ) ,start=1 ): print("-" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue _UpperCamelCase : List[Any] = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(lowercase_ )}: {model_shortcut_name} - model_type {model_type}''' ) print("-" * 100 ) if config_shortcut_name in aws_config_map: _UpperCamelCase : Dict = cached_file(lowercase_ ,lowercase_ ,force_download=not use_cached_models ) else: _UpperCamelCase : List[Any] = config_shortcut_name if model_shortcut_name in aws_model_maps: _UpperCamelCase : Tuple = cached_file(lowercase_ ,lowercase_ ,force_download=not use_cached_models ) else: _UpperCamelCase : Optional[Any] = model_shortcut_name if os.path.isfile(lowercase_ ): _UpperCamelCase : Any = "converted_model" convert_pt_checkpoint_to_tf( model_type=lowercase_ ,pytorch_checkpoint_path=lowercase_ ,config_file=lowercase_ ,tf_dump_path=os.path.join(lowercase_ ,model_shortcut_name + "-tf_model.h5" ) ,compare_with_pt_model=lowercase_ ,) if remove_cached_files: os.remove(lowercase_ ) os.remove(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( f"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") lowerCamelCase__ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
624
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowercase__ ( lowercase_ ,lowercase_=10 ) -> Tuple: """simple docstring""" _UpperCamelCase : str = [] for _ in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowercase__ ( lowercase_ ,lowercase_=10 ) -> str: """simple docstring""" _UpperCamelCase : Optional[int] = [] for step in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase : List[str] = os.path.join(lowercase_ ,"schedule.bin" ) torch.save(scheduler.state_dict() ,lowercase_ ) _UpperCamelCase : Optional[int] = torch.load(lowercase_ ) scheduler.load_state_dict(lowercase_ ) return lrs @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Dict , __a : Any , __a : List[str] ) -> List[str]: self.assertEqual(len(__a ) , len(__a ) ) for a, b in zip(__a , __a ): self.assertAlmostEqual(__a , __a , delta=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> str: _UpperCamelCase : Optional[int] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__a ) _UpperCamelCase : List[Any] = torch.tensor([0.4, 0.2, -0.5] ) _UpperCamelCase : Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCamelCase : Dict = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _UpperCamelCase : List[Any] = criterion(__a , __a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : List[Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__a ) _UpperCamelCase : Any = torch.tensor([0.4, 0.2, -0.5] ) _UpperCamelCase : List[str] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCamelCase : Dict = Adafactor( params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__a , weight_decay=0.0 , relative_step=__a , scale_parameter=__a , warmup_init=__a , ) for _ in range(1000 ): _UpperCamelCase : Optional[Any] = criterion(__a , __a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = nn.Linear(50 , 50 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ :List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ :List[str] = 10 def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : List[Any] , __a : Dict , __a : str=None ) -> List[Any]: self.assertEqual(len(__a ) , len(__a ) ) for a, b in zip(__a , __a ): self.assertAlmostEqual(__a , __a , delta=__a , msg=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Union[str, Any] = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _UpperCamelCase : Optional[Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): _UpperCamelCase, _UpperCamelCase : List[str] = data _UpperCamelCase : List[str] = scheduler_func(self.optimizer , **__a ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _UpperCamelCase : Optional[int] = unwrap_schedule(__a , self.num_steps ) self.assertListAlmostEqual( __a , __a , tol=1e-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) _UpperCamelCase : List[str] = scheduler_func(self.optimizer , **__a ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__a ) # wrap to test picklability of the schedule _UpperCamelCase : int = unwrap_and_save_reload_schedule(__a , self.num_steps ) self.assertListEqual(__a , __a , msg=F'''failed for {scheduler_func} in save and reload''' ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> Tuple: _UpperCamelCase : Any = fn def __call__( self : Tuple , *__a : Optional[Any] , **__a : str ) -> Any: return self.fn(*__a , **__a ) @classmethod def __SCREAMING_SNAKE_CASE ( self : Any , __a : Any ) -> Tuple: _UpperCamelCase : Any = list(map(self , scheduler.lr_lambdas ) )
624
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( __snake_case , unittest.TestCase ): '''simple docstring''' __A = BioGptTokenizer __A = False def UpperCamelCase ( self : Optional[int] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCAmelCase_ = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) UpperCAmelCase_ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase_ ) ) def UpperCamelCase ( self : Tuple , lowerCAmelCase_ : Tuple ) -> Any: UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = '''lower newer''' return input_text, output_text def UpperCamelCase ( self : Dict ) -> Optional[int]: UpperCAmelCase_ = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase_ = '''lower''' UpperCAmelCase_ = ['''low''', '''er</w>'''] UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ = tokens + ['''<unk>'''] UpperCAmelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) @slow def UpperCamelCase ( self : Union[str, Any] ) -> str: UpperCAmelCase_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
407
def _lowerCAmelCase ( __magic_name__ :int = 1_0_0 ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
407
1
from collections import defaultdict def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : List[Any] = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def a__ ( ): dfs(1 ) if __name__ == "__main__": lowerCAmelCase__ : Optional[int] =10, 9 lowerCAmelCase__ : str =defaultdict(list) lowerCAmelCase__ : dict[int, bool] ={} lowerCAmelCase__ : list[int] =[] lowerCAmelCase__ : int =0 lowerCAmelCase__ : int =[(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
101
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=3 , __a=7 , __a=True , __a=True , __a=False , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.0_2 , __a=3 , __a=4 , __a=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def snake_case ( self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__a , ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = FalconModel(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a , attention_mask=__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = True __lowerCAmelCase = FalconModel(__a ) model.to(__a ) model.eval() __lowerCAmelCase = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , ) __lowerCAmelCase = model( __a , attention_mask=__a , encoder_hidden_states=__a , ) __lowerCAmelCase = model(__a , attention_mask=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = FalconForCausalLM(config=__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = FalconForCausalLM(config=__a ) model.to(__a ) model.eval() # first forward pass __lowerCAmelCase = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , use_cache=__a , ) __lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowerCAmelCase = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , output_hidden_states=__a , )["hidden_states"][0] __lowerCAmelCase = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )["hidden_states"][0] # select random slice __lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int =( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] =(FalconForCausalLM,) if is_torch_available() else () __UpperCAmelCase : List[Any] =( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Any =False __UpperCAmelCase : Tuple =False def snake_case ( self ): __lowerCAmelCase = FalconModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a , hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case ( self ): __lowerCAmelCase , *__lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __lowerCAmelCase = alibi self.model_tester.create_and_check_model(__a , *__a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = input_dict["input_ids"] __lowerCAmelCase = input_ids.ne(1 ).to(__a ) __lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowerCAmelCase = FalconForSequenceClassification(__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a , attention_mask=__a , labels=__a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = "single_label_classification" __lowerCAmelCase = input_dict["input_ids"] __lowerCAmelCase = input_ids.ne(1 ).to(__a ) __lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowerCAmelCase = FalconForSequenceClassification(__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a , attention_mask=__a , labels=__a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = input_dict["input_ids"] __lowerCAmelCase = FalconForCausalLM(__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a , use_cache=__a ) __lowerCAmelCase = input_ids.shape[0] __lowerCAmelCase = model._convert_to_rw_cache(result.past_key_values ) __lowerCAmelCase = model._convert_cache_to_standard_format(__a , __a ) for layer in range(len(__a ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = "multi_label_classification" __lowerCAmelCase = input_dict["input_ids"] __lowerCAmelCase = input_ids.ne(1 ).to(__a ) __lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __lowerCAmelCase = FalconForSequenceClassification(__a ) model.to(__a ) model.eval() __lowerCAmelCase = model(__a , attention_mask=__a , labels=__a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__a , "use_cache" ): return __lowerCAmelCase = model_class(__a ).to(__a ) if "use_cache" not in inputs: __lowerCAmelCase = True __lowerCAmelCase = model(**__a ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __lowerCAmelCase = ( getattr(__a , "decoder_layers" , __a ) or getattr(__a , "num_decoder_layers" , __a ) or config.num_hidden_layers ) __lowerCAmelCase = getattr(__a , "num_kv_heads" , config.num_attention_heads ) __lowerCAmelCase = getattr(__a , "d_model" , config.hidden_size ) __lowerCAmelCase = embed_dim // num_attention_heads __lowerCAmelCase = outputs["past_key_values"] self.assertEqual(len(__a ) , __a ) __lowerCAmelCase , __lowerCAmelCase = inputs["input_ids"].shape for i in range(__a ): if config.new_decoder_architecture: __lowerCAmelCase = config.num_attention_heads elif config.multi_query: __lowerCAmelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def snake_case ( self ): __lowerCAmelCase = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) __lowerCAmelCase = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(__a ) __lowerCAmelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(__a ) __lowerCAmelCase = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) __lowerCAmelCase = model.generate(**__a , do_sample=__a , max_new_tokens=19 ) __lowerCAmelCase = tokenizer.batch_decode(__a )[0] self.assertEqual(__a , __a ) @slow def snake_case ( self ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = FalconForCausalLM.from_pretrained(__a ) model.eval() model.to(__a ) __lowerCAmelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(__a ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__a , do_sample=__a , max_new_tokens=4 ) model.generate(**__a , do_sample=__a , max_new_tokens=4 ) model.generate(**__a , num_beams=2 , max_new_tokens=4 ) @slow def snake_case ( self ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = FalconForCausalLM.from_pretrained(__a ) model.eval() model.to(device=__a ) __lowerCAmelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(__a ) # Test results are the same with and without cache __lowerCAmelCase = model.generate(**__a , do_sample=__a , max_new_tokens=20 , use_cache=__a ) __lowerCAmelCase = model.generate(**__a , do_sample=__a , max_new_tokens=20 , use_cache=__a ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
636
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging A : Optional[Any] = logging.get_logger(__name__) A : Tuple = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowerCamelCase ( __UpperCAmelCase ): _SCREAMING_SNAKE_CASE = "trajectory_transformer" _SCREAMING_SNAKE_CASE = ["past_key_values"] _SCREAMING_SNAKE_CASE = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Dict , __snake_case : Dict=1_00 , __snake_case : Tuple=5 , __snake_case : Tuple=1 , __snake_case : List[str]=1 , __snake_case : str=2_49 , __snake_case : Optional[Any]=6 , __snake_case : str=17 , __snake_case : Dict=25 , __snake_case : Union[str, Any]=4 , __snake_case : Any=4 , __snake_case : Dict=1_28 , __snake_case : Dict=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[Any]=0.0_006 , __snake_case : Any=5_12 , __snake_case : Optional[int]=0.02 , __snake_case : List[Any]=1e-12 , __snake_case : List[str]=1 , __snake_case : List[Any]=True , __snake_case : Dict=1 , __snake_case : List[Any]=5_02_56 , __snake_case : str=5_02_56 , **__snake_case : int , ): '''simple docstring''' _snake_case: List[Any] = vocab_size _snake_case: Optional[Any] = action_weight _snake_case: Any = reward_weight _snake_case: str = value_weight _snake_case: Union[str, Any] = max_position_embeddings _snake_case: Optional[int] = block_size _snake_case: int = action_dim _snake_case: Tuple = observation_dim _snake_case: Dict = transition_dim _snake_case: int = learning_rate _snake_case: Optional[int] = n_layer _snake_case: Optional[int] = n_head _snake_case: List[Any] = n_embd _snake_case: List[Any] = embd_pdrop _snake_case: Union[str, Any] = attn_pdrop _snake_case: Dict = resid_pdrop _snake_case: List[Any] = initializer_range _snake_case: List[Any] = layer_norm_eps _snake_case: int = kaiming_initializer_range _snake_case: Optional[Any] = use_cache super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
720
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar A : str = TypeVar('T') class lowerCamelCase ( Generic[T] ): _SCREAMING_SNAKE_CASE = 42 # Cache store of keys _SCREAMING_SNAKE_CASE = 42 # References of the keys in cache _SCREAMING_SNAKE_CASE = 10 # Maximum capacity of cache def __init__( self : List[Any] , __snake_case : int ): '''simple docstring''' _snake_case: Dict = deque() _snake_case: Union[str, Any] = set() if not n: _snake_case: Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: _snake_case: Tuple = n def SCREAMING_SNAKE_CASE_ ( self : Any , __snake_case : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _snake_case: int = self.dq_store.pop() self.key_reference.remove(__snake_case ) else: self.dq_store.remove(__snake_case ) self.dq_store.appendleft(__snake_case ) self.key_reference.add(__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' for k in self.dq_store: print(__snake_case ) def __repr__( self : List[Any] ): '''simple docstring''' return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() A : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
273
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''t5''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : List[Any] , _UpperCAmelCase : Tuple=32128 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : int=64 , _UpperCAmelCase : str=2048 , _UpperCAmelCase : Tuple=6 , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : int=128 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Tuple=1e-6 , _UpperCAmelCase : int=1.0 , _UpperCAmelCase : Optional[Any]="relu" , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : Optional[int]=1 , **_UpperCAmelCase : Optional[Any] , ) -> str: '''simple docstring''' UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_model UpperCAmelCase_ = d_kv UpperCAmelCase_ = d_ff UpperCAmelCase_ = num_layers UpperCAmelCase_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase_ = num_heads UpperCAmelCase_ = relative_attention_num_buckets UpperCAmelCase_ = relative_attention_max_distance UpperCAmelCase_ = dropout_rate UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_factor UpperCAmelCase_ = feed_forward_proj UpperCAmelCase_ = use_cache UpperCAmelCase_ = self.feed_forward_proj.split("-" ) UpperCAmelCase_ = act_info[-1] UpperCAmelCase_ = act_info[0] == "gated" if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCAmelCase_ = "gelu_new" super().__init__( pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase , ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' UpperCAmelCase_ = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: UpperCAmelCase_ = "past_encoder_sequence + sequence" UpperCAmelCase_ = {0: "batch"} UpperCAmelCase_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "decoder_sequence"} UpperCAmelCase_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction="inputs" ) return common_inputs @property def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' return 13
82
"""simple docstring""" from bisect import bisect from itertools import accumulate def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = sorted(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , key=lambda lowerCAmelCase__ : x[0] / x[1] , reverse=lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = [i[0] for i in r], [i[1] for i in r] UpperCAmelCase_ = list(accumulate(lowerCAmelCase__ ) ) UpperCAmelCase_ = bisect(lowerCAmelCase__ , lowerCAmelCase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
82
1
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging A_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( lowercase__ ): """simple docstring""" A__ = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = 8 , **_lowerCAmelCase , ): super().__init__(**UpperCAmelCase__ ) lowerCamelCase__ = do_rescale lowerCamelCase__ = rescale_factor lowerCamelCase__ = do_pad lowerCamelCase__ = pad_size def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase ): return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None ): lowerCamelCase__ = get_image_size(UpperCAmelCase__ ) lowerCamelCase__ = (old_height // size + 1) * size - old_height lowerCamelCase__ = (old_width // size + 1) * size - old_width return pad(UpperCAmelCase__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=UpperCAmelCase__ ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ): lowerCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ = do_pad if do_pad is not None else self.do_pad lowerCamelCase__ = pad_size if pad_size is not None else self.pad_size lowerCamelCase__ = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. lowerCamelCase__ = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_rescale: lowerCamelCase__ = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_pad: lowerCamelCase__ = [self.pad(UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] lowerCamelCase__ = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] lowerCamelCase__ = {'''pixel_values''': images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
700
def __UpperCamelCase ( a, a) ->Dict: print("\nThe shortest path matrix using Floyd Warshall algorithm\n") for i in range(a): for j in range(a): if dist[i][j] != float("inf"): print(int(dist[i][j]), end="\t") else: print("INF", end="\t") print() def __UpperCamelCase ( a, a) ->Optional[int]: lowerCamelCase__ = [[float("inf") for _ in range(a)] for _ in range(a)] for i in range(a): for j in range(a): lowerCamelCase__ = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a): # looping through rows of graph array for i in range(a): # looping through columns of graph array for j in range(a): if ( dist[i][k] != float("inf") and dist[k][j] != float("inf") and dist[i][k] + dist[k][j] < dist[i][j] ): lowerCamelCase__ = dist[i][k] + dist[k][j] _print_dist(a, a) return dist, v if __name__ == "__main__": A_ = int(input("Enter number of vertices: ")) A_ = int(input("Enter number of edges: ")) A_ = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): A_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) A_ = int(input("Enter source:")) A_ = int(input("Enter destination:")) A_ = float(input("Enter weight:")) A_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
360
0
import pprint import requests lowercase : Dict = '''https://zenquotes.io/api''' def lowerCAmelCase__ ( ): return requests.get(API_ENDPOINT_URL + "/today" ).json() def lowerCAmelCase__ ( ): return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": lowercase : str = random_quotes() pprint.pprint(response)
568
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') lowercase : Optional[Any] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowercase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCAmelCase__ ( _a : str ): with open(_a , "rb" ) as f: snake_case_ : Tuple = Image.open(_a ) return im.convert("RGB" ) @dataclass class UpperCAmelCase_ : '''simple docstring''' A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A folder containing the training data.'} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A folder containing the validation data.'} ) A : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def _lowerCAmelCase ( self ) -> Tuple: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class UpperCAmelCase_ : '''simple docstring''' A : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(SCREAMING_SNAKE_CASE__ )} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) A : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A : str = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'} ) A : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCAmelCase__ ( _a : Tuple ): snake_case_ : List[str] = torch.stack([example["pixel_values"] for example in examples] ) snake_case_ : Optional[Any] = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCAmelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , _a , _a ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ : Tuple = training_args.get_process_log_level() logger.setLevel(_a ) transformers.utils.logging.set_verbosity(_a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case_ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: snake_case_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: snake_case_ : Dict = {} if data_args.train_dir is not None: snake_case_ : int = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: snake_case_ : List[str] = os.path.join(data_args.validation_dir , "**" ) snake_case_ : int = load_dataset( "imagefolder" , data_files=_a , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case_ : Optional[int] = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _a ) and data_args.train_val_split > 0.0: snake_case_ : Union[str, Any] = dataset["train"].train_test_split(data_args.train_val_split ) snake_case_ : str = split["train"] snake_case_ : Optional[int] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. snake_case_ : Union[str, Any] = dataset["train"].features["labels"].names snake_case_ , snake_case_ : Optional[Any] = {}, {} for i, label in enumerate(_a ): snake_case_ : Optional[int] = str(_a ) snake_case_ : Optional[int] = label # Load the accuracy metric from the datasets package snake_case_ : Union[str, Any] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_a : Optional[int] ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) snake_case_ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_a ) , labelaid=_a , idalabel=_a , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Union[str, Any] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) snake_case_ : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: snake_case_ : Optional[Any] = image_processor.size["shortest_edge"] else: snake_case_ : str = (image_processor.size["height"], image_processor.size["width"]) snake_case_ : Optional[Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) snake_case_ : Union[str, Any] = Compose( [ RandomResizedCrop(_a ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) snake_case_ : List[Any] = Compose( [ Resize(_a ), CenterCrop(_a ), ToTensor(), normalize, ] ) def train_transforms(_a : Optional[int] ): snake_case_ : List[str] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(_a : List[Any] ): snake_case_ : int = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: snake_case_ : str = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_a ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: snake_case_ : List[str] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_a ) # Initalize our trainer snake_case_ : Optional[Any] = Trainer( model=_a , args=_a , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=_a , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: snake_case_ : Tuple = None if training_args.resume_from_checkpoint is not None: snake_case_ : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ : str = last_checkpoint snake_case_ : Tuple = trainer.train(resume_from_checkpoint=_a ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case_ : Union[str, Any] = trainer.evaluate() trainer.log_metrics("eval" , _a ) trainer.save_metrics("eval" , _a ) # Write model card and (optionally) push to hub snake_case_ : Union[str, Any] = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**_a ) else: trainer.create_model_card(**_a ) if __name__ == "__main__": main()
568
1
"""simple docstring""" from __future__ import annotations from math import pi def __a ( A , A , A ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
0
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __UpperCAmelCase = re.compile('[^A-Za-z_0-9]') # parameters used in DuplicationIndex __UpperCAmelCase = 10 __UpperCAmelCase = 256 def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' if len(__UpperCamelCase ) < MIN_NUM_TOKENS: return None UpperCAmelCase__ : Union[str, Any] = MinHash(num_perm=__UpperCamelCase ) for token in set(__UpperCamelCase ): min_hash.update(token.encode() ) return min_hash def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' return {t for t in NON_ALPHA.split(__UpperCamelCase ) if len(t.strip() ) > 0} class __lowercase : def __init__( self : Tuple ,*, A : float = 0.8_5 ,): '''simple docstring''' UpperCAmelCase__ : Any = duplication_jaccard_threshold UpperCAmelCase__ : Any = NUM_PERM UpperCAmelCase__ : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold ,num_perm=self._num_perm ) UpperCAmelCase__ : Any = defaultdict(A ) def __lowercase ( self : Union[str, Any] ,A : Tuple ,A : MinHash ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self._index.query(A ) if code_key in self._index.keys: print(f"Duplicate key {code_key}" ) return self._index.insert(A ,A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] for base, duplicates in self._duplicate_clusters.items(): UpperCAmelCase__ : Dict = [base] + list(A ) # reformat the cluster to be a list of dict UpperCAmelCase__ : Tuple = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def __lowercase ( self : Any ,A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_duplicate_clusters() with open(A ,"""w""" ) as f: json.dump(A ,A ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = element UpperCAmelCase__ : List[str] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__UpperCamelCase , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = DuplicationIndex(duplication_jaccard_threshold=__UpperCamelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__UpperCamelCase ) ) , max_queue_size=100 ) ): di.add(__UpperCamelCase , __UpperCamelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = get_tokens(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = get_tokens(__UpperCamelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __UpperCAmelCase = None def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[str] = [] for elementa in cluster: UpperCAmelCase__ : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: UpperCAmelCase__ : Optional[int] = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__UpperCamelCase , __UpperCamelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: UpperCAmelCase__ : Optional[Any] = 1 extremes.append(__UpperCamelCase ) return extremes def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' global _shared_dataset UpperCAmelCase__ : Union[str, Any] = dataset UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Union[str, Any] = partial(_find_cluster_extremes_shared , jaccard_threshold=__UpperCamelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __UpperCamelCase , __UpperCamelCase , ) , total=len(__UpperCamelCase ) , ): extremes_list.append(__UpperCamelCase ) return extremes_list def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase = 0.85 ): '''simple docstring''' UpperCAmelCase__ : Any = make_duplicate_clusters(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Any = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Optional[Any] = find_extremes(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for extremes in extremes_clusters: for element in extremes: UpperCAmelCase__ : Tuple = element UpperCAmelCase__ : List[Any] = duplicate_indices - set(extreme_dict.keys() ) UpperCAmelCase__ : Union[str, Any] = dataset.filter(lambda __UpperCamelCase , __UpperCamelCase : idx not in remove_indices , with_indices=__UpperCamelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: UpperCAmelCase__ : Union[str, Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: UpperCAmelCase__ : Optional[int] = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(__UpperCamelCase )}" ) print(F"Number of duplicate clusters: {len(__UpperCamelCase )}" ) print(F"Files in duplicate cluster: {len(__UpperCamelCase )}" ) print(F"Unique files in duplicate cluster: {len(__UpperCamelCase )}" ) print(F"Filtered dataset size: {len(__UpperCamelCase )}" ) return ds_filter, duplicate_clusters
65
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): # TODO: is there an appropriate internal test set? _UpperCamelCase : int = "ssube/stable-diffusion-x4-upscaler-onnx" def __A ( self , a__=0 ): _lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) _lowerCAmelCase : List[Any] = torch.manual_seed(a__ ) _lowerCAmelCase : Any = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Dict = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = self.get_dummy_inputs() _lowerCAmelCase : str = pipe(**a__ ).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Any = self.get_dummy_inputs() _lowerCAmelCase : str = pipe(**a__ ).images _lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[str] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Tuple = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __A ( unittest.TestCase ): @property def __A ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __A ( self ): _lowerCAmelCase : str = ort.SessionOptions() _lowerCAmelCase : Tuple = False return options def __A ( self ): _lowerCAmelCase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase : Any = init_image.resize((128, 128) ) # using the PNDM scheduler by default _lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = """A fantasy landscape, trending on artstation""" _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : Dict = pipe( prompt=a__ , image=a__ , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : List[str] = output.images _lowerCAmelCase : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __A ( self ): _lowerCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase : Union[str, Any] = init_image.resize((128, 128) ) _lowerCAmelCase : int = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) _lowerCAmelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[Any] = """A fantasy landscape, trending on artstation""" _lowerCAmelCase : List[Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe( prompt=a__ , image=a__ , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : Optional[Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
213
0
'''simple docstring''' from __future__ import annotations lowerCAmelCase_ : Optional[Any] = """Muhammad Umer Farooq""" lowerCAmelCase_ : str = """MIT""" lowerCAmelCase_ : Optional[Any] = """1.0.0""" lowerCAmelCase_ : Union[str, Any] = """Muhammad Umer Farooq""" lowerCAmelCase_ : Any = """contact@muhammadumerfarooq.me""" lowerCAmelCase_ : Dict = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , lowercase__ : str ) ->None: '''simple docstring''' super().__init__() _UpperCamelCase : list[str] = [] _UpperCamelCase : int = domain def snake_case__ ( self : str , lowercase__ : str , lowercase__ : list[tuple[str, str | None]] ) ->None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _UpperCamelCase : Optional[Any] = parse.urljoin(self.domain , lowercase__ ) self.urls.append(lowercase__ ) def __A ( UpperCAmelCase ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(UpperCAmelCase ).split("." )[-2:] ) def __A ( UpperCAmelCase ) -> str: '''simple docstring''' return parse.urlparse(UpperCAmelCase ).netloc def __A ( UpperCAmelCase = "https://github.com" ) -> list[str]: '''simple docstring''' _UpperCamelCase : int = get_domain_name(UpperCAmelCase ) # Initialize the parser _UpperCamelCase : Any = Parser(UpperCAmelCase ) try: # Open URL _UpperCamelCase : Union[str, Any] = requests.get(UpperCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _UpperCamelCase : int = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _UpperCamelCase : Dict = requests.get(UpperCAmelCase ) # Get the valid email. _UpperCamelCase : List[str] = re.findall("[a-zA-Z0-9]+@" + domain ,read.text ) # If not in list then append it. for email in emails: valid_emails.add(UpperCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = emails_from_url("""https://github.com""") print(f"""{len(emails)} emails found:""") print("""\n""".join(sorted(emails)))
204
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def snake_case__ ( self : Dict , lowercase__ : str ) ->Tuple: '''simple docstring''' with open(lowercase__ , encoding="utf-8" ) as input_file: _UpperCamelCase : Optional[int] = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) _UpperCamelCase : Dict = input_file.read() _UpperCamelCase : Dict = regexp.search(lowercase__ ) return match def snake_case__ ( self : str , lowercase__ : str ) ->Tuple: '''simple docstring''' with open(lowercase__ , encoding="utf-8" ) as input_file: _UpperCamelCase : str = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) _UpperCamelCase : Optional[Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _UpperCamelCase : List[str] = regexp.finditer(lowercase__ ) _UpperCamelCase : Any = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def snake_case__ ( self : Optional[int] ) ->int: '''simple docstring''' _UpperCamelCase : Any = Path("./datasets" ) _UpperCamelCase : List[Any] = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowercase__ ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def snake_case__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Any = Path("./datasets" ) _UpperCamelCase : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(lowercase__ ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
204
1
"""simple docstring""" def A_ ( snake_case__ ) -> bool: if not isinstance(snake_case__ , snake_case__ ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(snake_case__ ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(snake_case__ ) == 1: return True _UpperCamelCase :Optional[Any] = series[1] - series[0] for index in range(len(snake_case__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def A_ ( snake_case__ ) -> float: if not isinstance(snake_case__ , snake_case__ ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(snake_case__ ) == 0: raise ValueError('''Input list must be a non empty list''' ) _UpperCamelCase :Union[str, Any] = 0 for val in series: answer += val return answer / len(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" def A_ ( snake_case__ , snake_case__ = " " ) -> list: _UpperCamelCase :List[str] = [] _UpperCamelCase :int = 0 for index, char in enumerate(snake_case__ ): if char == separator: split_words.append(string[last_index:index] ) _UpperCamelCase :Dict = index + 1 elif index + 1 == len(snake_case__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
355
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( __a , unittest.TestCase ): a__ :List[str] = DanceDiffusionPipeline a__ :Union[str, Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS a__ :Tuple = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } a__ :Dict = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS a__ :List[str] = False a__ :List[str] = False def A_ (self ) -> Dict: torch.manual_seed(0 ) UpperCamelCase_ : Union[str, Any] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__UpperCamelCase , use_timestep_embedding=__UpperCamelCase , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) UpperCamelCase_ : Optional[Any] = IPNDMScheduler() UpperCamelCase_ : Optional[int] = { """unet""": unet, """scheduler""": scheduler, } return components def A_ (self , __UpperCamelCase , __UpperCamelCase=0 ) -> Optional[Any]: if str(__UpperCamelCase ).startswith("""mps""" ): UpperCamelCase_ : Any = torch.manual_seed(__UpperCamelCase ) else: UpperCamelCase_ : Optional[int] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def A_ (self ) -> Optional[Any]: UpperCamelCase_ : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ : str = self.get_dummy_components() UpperCamelCase_ : List[str] = DanceDiffusionPipeline(**__UpperCamelCase ) UpperCamelCase_ : Dict = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : int = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ : int = pipe(**__UpperCamelCase ) UpperCamelCase_ : Dict = output.audios UpperCamelCase_ : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase_ : Dict = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def A_ (self ) -> str: return super().test_save_load_local() @skip_mps def A_ (self ) -> Tuple: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def A_ (self ) -> List[str]: return super().test_save_load_optional_components() @skip_mps def A_ (self ) -> Union[str, Any]: return super().test_attention_slicing_forward_pass() def A_ (self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def A_ (self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ (self ) -> Optional[int]: UpperCamelCase_ : Union[str, Any] = torch_device UpperCamelCase_ : Tuple = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) UpperCamelCase_ : int = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCamelCase_ : Union[str, Any] = pipe(generator=__UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) UpperCamelCase_ : Optional[Any] = output.audios UpperCamelCase_ : Dict = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ : List[str] = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def A_ (self ) -> List[str]: UpperCamelCase_ : List[str] = torch_device UpperCamelCase_ : List[str] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) UpperCamelCase_ : Union[str, Any] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Any = torch.manual_seed(0 ) UpperCamelCase_ : Optional[Any] = pipe(generator=__UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) UpperCamelCase_ : Any = output.audios UpperCamelCase_ : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ : int = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
702
import baseaa def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str ): return baseaa.baaencode(string.encode("""utf-8""" ) ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : bytes ): return baseaa.baadecode(_SCREAMING_SNAKE_CASE ).decode("""utf-8""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = "Hello World!" SCREAMING_SNAKE_CASE : int = baseaa_encode(test) print(encoded) SCREAMING_SNAKE_CASE : Union[str, Any] = baseaa_decode(encoded) print(decoded)
138
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["text", "image", "audio"] def lowercase ( SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): inputs.append(create_inputs(SCREAMING_SNAKE_CASE ) ) else: raise ValueError(F'Invalid type requested: {input_type}' ) return inputs def lowercase ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = [] for output in outputs: if isinstance(SCREAMING_SNAKE_CASE , (str, AgentText) ): output_types.append('text' ) elif isinstance(SCREAMING_SNAKE_CASE , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(SCREAMING_SNAKE_CASE , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(F'Invalid output: {output}' ) return output_types @is_tool_test class a_ : def A_( self ) -> int: """simple docstring""" self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) SCREAMING_SNAKE_CASE_ = self.tool.inputs for _input in inputs: if isinstance(_input , SCREAMING_SNAKE_CASE ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE_ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def A_( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_ = self.tool(*SCREAMING_SNAKE_CASE ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE_ = [outputs] self.assertListEqual(output_types(SCREAMING_SNAKE_CASE ) , self.tool.outputs ) def A_( self ) -> Optional[int]: """simple docstring""" self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def A_( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_ = self.tool(*SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) ) for output, output_type in zip(SCREAMING_SNAKE_CASE , self.tool.outputs ): SCREAMING_SNAKE_CASE_ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def A_( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_ = [] for _input, input_type in zip(SCREAMING_SNAKE_CASE , self.tool.inputs ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE_ = self.tool(*SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) )
205
class a_ : def __init__( self , SCREAMING_SNAKE_CASE = "" , SCREAMING_SNAKE_CASE = False ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ = {} # A node will be a leaf if the tree contains its word SCREAMING_SNAKE_CASE_ = is_leaf SCREAMING_SNAKE_CASE_ = prefix def A_( self , SCREAMING_SNAKE_CASE ) -> tuple[str, str, str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = 0 for q, w in zip(self.prefix , SCREAMING_SNAKE_CASE ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def A_( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" for word in words: self.insert(SCREAMING_SNAKE_CASE ) def A_( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if self.prefix == word: SCREAMING_SNAKE_CASE_ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: SCREAMING_SNAKE_CASE_ = RadixNode(prefix=SCREAMING_SNAKE_CASE , is_leaf=SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ = self.nodes[word[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = incoming_node.match( SCREAMING_SNAKE_CASE ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: SCREAMING_SNAKE_CASE_ = remaining_prefix SCREAMING_SNAKE_CASE_ = self.nodes[matching_string[0]] SCREAMING_SNAKE_CASE_ = RadixNode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = aux_node if remaining_word == "": SCREAMING_SNAKE_CASE_ = True else: self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE ) def A_( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE ) if not incoming_node: return False else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = incoming_node.match( SCREAMING_SNAKE_CASE ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(SCREAMING_SNAKE_CASE ) def A_( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE ) if not incoming_node: return False else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = incoming_node.match( SCREAMING_SNAKE_CASE ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(SCREAMING_SNAKE_CASE ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: SCREAMING_SNAKE_CASE_ = list(self.nodes.values() )[0] SCREAMING_SNAKE_CASE_ = merging_node.is_leaf self.prefix += merging_node.prefix SCREAMING_SNAKE_CASE_ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: SCREAMING_SNAKE_CASE_ = False # If there is 1 edge, we merge it with its child else: SCREAMING_SNAKE_CASE_ = list(incoming_node.nodes.values() )[0] SCREAMING_SNAKE_CASE_ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix SCREAMING_SNAKE_CASE_ = merging_node.nodes return True def A_( self , SCREAMING_SNAKE_CASE = 0 ) -> None: """simple docstring""" if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowercase ( ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'banana bananas bandana band apple all beast'.split() SCREAMING_SNAKE_CASE_ = RadixNode() root.insert_many(SCREAMING_SNAKE_CASE ) assert all(root.find(SCREAMING_SNAKE_CASE ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowercase ( ) -> None: '''simple docstring''' assert test_trie() def lowercase ( ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_ = RadixNode() SCREAMING_SNAKE_CASE_ = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(SCREAMING_SNAKE_CASE ) print('Words:' , SCREAMING_SNAKE_CASE ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
205
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case (__lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCAmelCase__ :str = StableDiffusionInpaintPipeline lowerCAmelCase__ :Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase__ :str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ :Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ :Any = frozenset([] ) def _a ( self ) -> List[str]: torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=9 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,attention_head_dim=(2, 4) ,use_linear_projection=__A ,) lowercase__ = PNDMScheduler(skip_prk_steps=__A ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,hidden_act="gelu" ,projection_dim=512 ,) lowercase__ = CLIPTextModel(__A ) lowercase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_=0 ) -> Tuple: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched lowercase__ = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__A ) ).to(__A ) lowercase__ = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowercase__ = Image.fromarray(np.uinta(__A ) ).convert("RGB" ).resize((64, 64) ) lowercase__ = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(__A ).startswith("mps" ): lowercase__ = torch.manual_seed(__A ) else: lowercase__ = torch.Generator(device=__A ).manual_seed(__A ) lowercase__ = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _a ( self ) -> Optional[Any]: lowercase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInpaintPipeline(**__A ) lowercase__ = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) lowercase__ = self.get_dummy_inputs(__A ) lowercase__ = sd_pipe(**__A ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case (unittest.TestCase ): def _a ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Optional[int]: lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) lowercase__ = "stabilityai/stable-diffusion-2-inpainting" lowercase__ = StableDiffusionInpaintPipeline.from_pretrained(__A ,safety_checker=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() lowercase__ = "Face of a yellow cat, high resolution, sitting on a park bench" lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=__A ,image=__A ,mask_image=__A ,generator=__A ,output_type="np" ,) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def _a ( self ) -> Optional[Any]: lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) lowercase__ = "stabilityai/stable-diffusion-2-inpainting" lowercase__ = StableDiffusionInpaintPipeline.from_pretrained( __A ,torch_dtype=torch.floataa ,safety_checker=__A ,) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() lowercase__ = "Face of a yellow cat, high resolution, sitting on a park bench" lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=__A ,image=__A ,mask_image=__A ,generator=__A ,output_type="np" ,) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _a ( self ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowercase__ = "stabilityai/stable-diffusion-2-inpainting" lowercase__ = PNDMScheduler.from_pretrained(__A ,subfolder="scheduler" ) lowercase__ = StableDiffusionInpaintPipeline.from_pretrained( __A ,safety_checker=__A ,scheduler=__A ,torch_dtype=torch.floataa ,) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__ = "Face of a yellow cat, high resolution, sitting on a park bench" lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=__A ,image=__A ,mask_image=__A ,generator=__A ,num_inference_steps=2 ,output_type="np" ,) lowercase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
714
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class snake_case (UpperCamelCase ): def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) -> List[str]: super().__init__(*UpperCAmelCase_ ,**UpperCAmelCase_ ) lowercase__ = {} def _a ( self ,UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) -> str: lowercase__ = super().add_tokens(UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' " `placeholder_token` that is not already in the tokenizer." ) def _a ( self ,UpperCAmelCase_ ,*UpperCAmelCase_ ,UpperCAmelCase_=1 ,**UpperCAmelCase_ ) -> List[Any]: lowercase__ = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) output.append(UpperCAmelCase_ ) else: lowercase__ = [] for i in range(UpperCAmelCase_ ): lowercase__ = placeholder_token + F'''_{i}''' self.try_adding_tokens(UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) output.append(UpperCAmelCase_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) lowercase__ = output def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_=False ,UpperCAmelCase_=1.0 ) -> Optional[int]: if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): lowercase__ = [] for i in range(len(UpperCAmelCase_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] ,vector_shuffle=UpperCAmelCase_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowercase__ = self.token_map[placeholder_token] lowercase__ = tokens[: 1 + int(len(UpperCAmelCase_ ) * prop_tokens_to_load )] if vector_shuffle: lowercase__ = copy.copy(UpperCAmelCase_ ) random.shuffle(UpperCAmelCase_ ) lowercase__ = text.replace(UpperCAmelCase_ ," ".join(UpperCAmelCase_ ) ) return text def __call__( self ,UpperCAmelCase_ ,*UpperCAmelCase_ ,UpperCAmelCase_=False ,UpperCAmelCase_=1.0 ,**UpperCAmelCase_ ) -> int: return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ ,vector_shuffle=UpperCAmelCase_ ,prop_tokens_to_load=UpperCAmelCase_ ) ,*UpperCAmelCase_ ,**UpperCAmelCase_ ,) def _a ( self ,UpperCAmelCase_ ,*UpperCAmelCase_ ,UpperCAmelCase_=False ,UpperCAmelCase_=1.0 ,**UpperCAmelCase_ ) -> Optional[int]: return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ ,vector_shuffle=UpperCAmelCase_ ,prop_tokens_to_load=UpperCAmelCase_ ) ,*UpperCAmelCase_ ,**UpperCAmelCase_ ,)
539
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__ : int ={ '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] =['''ConvNextFeatureExtractor'''] A__ : Any =['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] =[ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] =[ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A__ : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
207
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip A__ : Union[str, Any] =logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return max(metric_fn(lowerCAmelCase , lowerCAmelCase ) for gt in ground_truths ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [line.strip() for line in open(lowerCAmelCase , """r""" ).readlines()] _lowerCAmelCase = [] if args.gold_data_mode == "qa": _lowerCAmelCase = pd.read_csv(lowerCAmelCase , sep="""\t""" , header=lowerCAmelCase ) for answer_list in data[1]: _lowerCAmelCase = ast.literal_eval(lowerCAmelCase ) answers.append(lowerCAmelCase ) else: _lowerCAmelCase = [line.strip() for line in open(lowerCAmelCase , """r""" ).readlines()] _lowerCAmelCase = [[reference] for reference in references] _lowerCAmelCase = _lowerCAmelCase = _lowerCAmelCase = 0 for prediction, ground_truths in zip(lowerCAmelCase , lowerCAmelCase ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) fa += metric_max_over_ground_truths(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = 100.0 * em / total _lowerCAmelCase = 100.0 * fa / total logger.info(f"F1: {fa:.2f}" ) logger.info(f"EM: {em:.2f}" ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = args.k _lowerCAmelCase = [line.strip() for line in open(lowerCAmelCase , """r""" ).readlines()] _lowerCAmelCase = [line.strip() for line in open(lowerCAmelCase , """r""" ).readlines()] _lowerCAmelCase = _lowerCAmelCase = 0 for hypo, reference in zip(lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = set(hypo.split("""\t""" )[:k] ) _lowerCAmelCase = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowerCAmelCase = 100.0 * em / total logger.info(f"Precision@{k}: {em: .2f}" ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" def strip_title(lowerCAmelCase ): if title.startswith("""\"""" ): _lowerCAmelCase = title[1:] if title.endswith("""\"""" ): _lowerCAmelCase = title[:-1] return title _lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase , return_tensors="""pt""" , padding=lowerCAmelCase , truncation=lowerCAmelCase , )["""input_ids"""].to(args.device ) _lowerCAmelCase = rag_model.rag.question_encoder(lowerCAmelCase ) _lowerCAmelCase = question_enc_outputs[0] _lowerCAmelCase = rag_model.retriever( lowerCAmelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) _lowerCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowerCAmelCase = [] for docs in all_docs: _lowerCAmelCase = [strip_title(lowerCAmelCase ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase ) ) return provenance_strings def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" with torch.no_grad(): _lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase , return_tensors="""pt""" , padding=lowerCAmelCase , truncation=lowerCAmelCase ) _lowerCAmelCase = inputs_dict.input_ids.to(args.device ) _lowerCAmelCase = inputs_dict.attention_mask.to(args.device ) _lowerCAmelCase = rag_model.generate( # rag_model overwrites generate lowerCAmelCase , attention_mask=lowerCAmelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowerCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) if args.print_predictions: for q, a in zip(lowerCAmelCase , lowerCAmelCase ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase , lowerCAmelCase ) ) return answers def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase , type=lowerCAmelCase , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase , type=lowerCAmelCase , required=lowerCAmelCase , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase , type=lowerCAmelCase , required=lowerCAmelCase , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase , type=lowerCAmelCase , required=lowerCAmelCase , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = {} if args.model_type is None: _lowerCAmelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): _lowerCAmelCase = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration _lowerCAmelCase = args.n_docs if args.index_name is not None: _lowerCAmelCase = args.index_name if args.index_path is not None: _lowerCAmelCase = args.index_path else: _lowerCAmelCase = BartForConditionalGeneration _lowerCAmelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase ) _lowerCAmelCase = get_scores if args.eval_mode == """e2e""" else get_precision_at_k _lowerCAmelCase = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): _lowerCAmelCase = RagRetriever.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) _lowerCAmelCase = model_class.from_pretrained(lowerCAmelCase , retriever=lowerCAmelCase , **lowerCAmelCase ) model.retriever.init_retrieval() else: _lowerCAmelCase = model_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: _lowerCAmelCase = [] for line in tqdm(lowerCAmelCase ): questions.append(line.strip() ) if len(lowerCAmelCase ) == args.eval_batch_size: _lowerCAmelCase = evaluate_batch_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) preds_file.write("""\n""".join(lowerCAmelCase ) + """\n""" ) preds_file.flush() _lowerCAmelCase = [] if len(lowerCAmelCase ) > 0: _lowerCAmelCase = evaluate_batch_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) preds_file.write("""\n""".join(lowerCAmelCase ) ) preds_file.flush() score_fn(lowerCAmelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": A__ : Tuple =get_args() main(args)
207
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) SCREAMING_SNAKE_CASE = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase__ ) ) SCREAMING_SNAKE_CASE = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , lowercase__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowercase__ , lowercase__ ) def A ( self , **lowercase__ ) -> Optional[int]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def A ( self , **lowercase__ ) -> Dict: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def A ( self , **lowercase__ ) -> Union[str, Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase__ ) def A ( self ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase__ ) SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase__ ) self.assertIsInstance(processor_fast.tokenizer , lowercase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase__ ) self.assertIsInstance(processor_fast.image_processor , lowercase__ ) def A ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=lowercase__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(lowercase__ , return_tensors='np' ) SCREAMING_SNAKE_CASE = processor(images=lowercase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = processor(text=lowercase__ ) SCREAMING_SNAKE_CASE = tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def A ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(images=lowercase__ , visual_prompt=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def A ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(lowercase__ ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ )
406
0
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _SCREAMING_SNAKE_CASE ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Any = StableUnCLIPPipeline SCREAMING_SNAKE_CASE_: Tuple = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE_: str = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_: List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_: Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false SCREAMING_SNAKE_CASE_: Any = False def __lowerCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" _lowerCAmelCase = 32 _lowerCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase_ , projection_dim=UpperCAmelCase_ , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _lowerCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=UpperCAmelCase_ , num_layers=1 , ) torch.manual_seed(0 ) _lowerCAmelCase = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_000 , clip_sample=UpperCAmelCase_ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) _lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase_ ) _lowerCAmelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase_ , layers_per_block=1 , upcast_attention=UpperCAmelCase_ , use_linear_projection=UpperCAmelCase_ , ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def __lowerCamelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=0 ) -> Any: """simple docstring""" if str(UpperCAmelCase_ ).startswith('mps' ): _lowerCAmelCase = torch.manual_seed(UpperCAmelCase_ ) else: _lowerCAmelCase = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase_ ) def __lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _lowerCAmelCase = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase_ ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) _lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase = pipe('anime turle' , generator=UpperCAmelCase_ , output_type='np' ) _lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) _lowerCAmelCase = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
580
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: str = "gpt_bigcode" SCREAMING_SNAKE_CASE_: str = ["past_key_values"] SCREAMING_SNAKE_CASE_: str = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , UpperCAmelCase_ : Dict=50_257 , UpperCAmelCase_ : Optional[int]=1_024 , UpperCAmelCase_ : int=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple="gelu_pytorch_tanh" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=50_256 , UpperCAmelCase_ : Tuple=50_256 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=True , **UpperCAmelCase_ : Optional[int] , ) -> int: """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = attention_softmax_in_fpaa _lowerCAmelCase = scale_attention_softmax_in_fpaa _lowerCAmelCase = multi_query _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
580
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase__ ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = StableUnCLIPPipeline UpperCamelCase = TEXT_TO_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCamelCase = False def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Any = 32 __UpperCAmelCase : Dict = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase : int = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a_ , projection_dim=a_ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a_ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=a_ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = StableUnCLIPImageNormalizer(embedding_dim=a_ ) __UpperCAmelCase : str = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase : str = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a_ , layers_per_block=1 , upcast_attention=a_ , use_linear_projection=a_ , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=a_ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = AutoencoderKL() __UpperCAmelCase : Union[str, Any] = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def snake_case__ ( self : Optional[Any] , a_ : Dict , a_ : Any=0 ): '''simple docstring''' if str(a_ ).startswith('''mps''' ): __UpperCAmelCase : Any = torch.manual_seed(a_ ) else: __UpperCAmelCase : List[str] = torch.Generator(device=a_ ).manual_seed(a_ ) __UpperCAmelCase : Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Tuple = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=a_ ) def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : int = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=a_ ) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase : Union[str, Any] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase : int = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase : int = pipe('''anime turle''' , generator=a_ , output_type='''np''' ) __UpperCAmelCase : List[Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(a_ , a_ ) def snake_case__ ( self : str ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase : Optional[int] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase : Optional[int] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase : Optional[int] = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
241
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : '''simple docstring''' def __init__( self : Dict , a_ : Tuple , a_ : List[str]=13 , a_ : Dict=7 , a_ : Optional[Any]=True , a_ : List[Any]=True , a_ : Dict=True , a_ : int=True , a_ : int=99 , a_ : int=32 , a_ : str=5 , a_ : int=4 , a_ : Any=37 , a_ : str="gelu" , a_ : List[str]=0.1 , a_ : Optional[Any]=0.1 , a_ : Tuple=5_12 , a_ : Optional[Any]=16 , a_ : Union[str, Any]=2 , a_ : Optional[Any]=0.0_2 , a_ : List[Any]=3 , a_ : Dict=4 , a_ : Tuple=None , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Optional[int] = use_input_mask __UpperCAmelCase : int = use_token_type_ids __UpperCAmelCase : Tuple = use_labels __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : Optional[int] = num_labels __UpperCAmelCase : Union[str, Any] = num_choices __UpperCAmelCase : Any = scope def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Optional[int] = None if self.use_token_type_ids: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : List[str] = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Optional[Any] ): '''simple docstring''' return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) def snake_case__ ( self : Union[str, Any] , a_ : Optional[int] , a_ : Optional[Any] , a_ : Optional[int] , a_ : Any , a_ : Union[str, Any] , a_ : str , a_ : Any ): '''simple docstring''' __UpperCAmelCase : int = NystromformerModel(config=a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : List[str] = model(a_ , attention_mask=a_ , token_type_ids=a_ ) __UpperCAmelCase : List[Any] = model(a_ , token_type_ids=a_ ) __UpperCAmelCase : List[str] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Dict , a_ : Dict , a_ : Any , a_ : Tuple , a_ : Union[str, Any] , a_ : Optional[int] , a_ : Optional[int] , a_ : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = NystromformerForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : Any = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : int , a_ : Dict , a_ : Tuple , a_ : List[str] , a_ : Tuple , a_ : str , a_ : Tuple , a_ : Any ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = NystromformerForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : Optional[int] = model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : str , a_ : Optional[int] , a_ : Union[str, Any] , a_ : List[Any] , a_ : List[Any] , a_ : Optional[int] , a_ : str , a_ : List[str] ): '''simple docstring''' __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : List[Any] = NystromformerForSequenceClassification(a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : Dict = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : str , a_ : str , a_ : List[str] , a_ : Dict , a_ : str , a_ : Optional[Any] , a_ : Dict , a_ : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Optional[int] = NystromformerForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : int = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Dict , a_ : Tuple , a_ : List[str] , a_ : Optional[int] , a_ : Tuple , a_ : int , a_ : Tuple , a_ : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.num_choices __UpperCAmelCase : Any = NystromformerForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Dict = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int ): '''simple docstring''' __UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False def snake_case__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = NystromformerModelTester(self ) __UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*a_ ) def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def snake_case__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a_ ) def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def snake_case__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) @slow def snake_case__ ( self : Dict ): '''simple docstring''' for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = NystromformerModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) __UpperCAmelCase : Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(a_ )[0] __UpperCAmelCase : Optional[int] = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , a_ ) __UpperCAmelCase : List[Any] = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a_ , atol=1e-4 ) ) @slow def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[Any] = '''the [MASK] of Belgium is Brussels''' __UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) __UpperCAmelCase : List[str] = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) __UpperCAmelCase : Any = tokenizer(a_ , return_tensors='''pt''' ) with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(encoding.input_ids ).logits __UpperCAmelCase : Any = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(a_ ) , '''capital''' )
241
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : float , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : bool = False , ) -> Optional[int]: super().__init__() __lowerCAmelCase = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = nn.Dropout(p=lowerCAmelCase_ ) __lowerCAmelCase = TaConfig( vocab_size=lowerCAmelCase_ , d_model=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , feed_forward_proj=lowerCAmelCase_ , is_decoder=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , ) __lowerCAmelCase = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): __lowerCAmelCase = TaBlock(lowerCAmelCase_ ) self.encoders.append(lowerCAmelCase_ ) __lowerCAmelCase = TaLayerNorm(lowerCAmelCase_ ) __lowerCAmelCase = nn.Dropout(p=lowerCAmelCase_ ) def lowercase ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.token_embedder(lowerCAmelCase_ ) __lowerCAmelCase = encoder_input_tokens.shape[1] __lowerCAmelCase = torch.arange(lowerCAmelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCAmelCase_ ) __lowerCAmelCase = self.dropout_pre(lowerCAmelCase_ ) # inverted the attention mask __lowerCAmelCase = encoder_input_tokens.size() __lowerCAmelCase = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ ) for lyr in self.encoders: __lowerCAmelCase = lyr(lowerCAmelCase_ , lowerCAmelCase_ )[0] __lowerCAmelCase = self.layer_norm(lowerCAmelCase_ ) return self.dropout_post(lowerCAmelCase_ ), encoder_inputs_mask
53
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowercase ( A__ , A__ ): '''simple docstring''' @register_to_config def __init__( self , _snake_case = 128 , _snake_case = 256 , _snake_case = 2000.0 , _snake_case = 768 , _snake_case = 12 , _snake_case = 12 , _snake_case = 64 , _snake_case = 2048 , _snake_case = 0.1 , ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCAmelCase = nn.Sequential( nn.Linear(_snake_case , d_model * 4 , bias=_snake_case ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_snake_case ) , nn.SiLU() , ) UpperCAmelCase = nn.Embedding(_snake_case , _snake_case ) UpperCAmelCase = False UpperCAmelCase = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) UpperCAmelCase = nn.Dropout(p=_snake_case ) UpperCAmelCase = nn.ModuleList() for lyr_num in range(_snake_case ): # FiLM conditional T5 decoder UpperCAmelCase = DecoderLayer(d_model=_snake_case , d_kv=_snake_case , num_heads=_snake_case , d_ff=_snake_case , dropout_rate=_snake_case ) self.decoders.append(_snake_case ) UpperCAmelCase = TaLayerNorm(_snake_case ) UpperCAmelCase = nn.Dropout(p=_snake_case ) UpperCAmelCase = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) def snake_case_ ( self , _snake_case , _snake_case ) -> Dict: """simple docstring""" UpperCAmelCase = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case ) -> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCAmelCase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCAmelCase = self.conditioning_emb(_snake_case ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCAmelCase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCAmelCase = torch.broadcast_to( torch.arange(_snake_case , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCAmelCase = self.position_encoding(_snake_case ) UpperCAmelCase = self.continuous_inputs_projection(_snake_case ) inputs += position_encodings UpperCAmelCase = self.dropout(_snake_case ) # decoder: No padding present. UpperCAmelCase = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCAmelCase = [(x, self.encoder_decoder_mask(_snake_case , _snake_case )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCAmelCase = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCAmelCase = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCAmelCase = lyr( _snake_case , conditioning_emb=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , )[0] UpperCAmelCase = self.decoder_norm(_snake_case ) UpperCAmelCase = self.post_dropout(_snake_case ) UpperCAmelCase = self.spec_out(_snake_case ) return spec_out class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=1e-6 ) -> List[str]: """simple docstring""" super().__init__() UpperCAmelCase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_snake_case , d_kv=_snake_case , num_heads=_snake_case , dropout_rate=_snake_case ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_snake_case , d_kv=_snake_case , num_heads=_snake_case , dropout_rate=_snake_case , layer_norm_epsilon=_snake_case , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_snake_case , d_ff=_snake_case , dropout_rate=_snake_case , layer_norm_epsilon=_snake_case ) ) def snake_case_ ( self , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.layer[0]( _snake_case , conditioning_emb=_snake_case , attention_mask=_snake_case , ) if encoder_hidden_states is not None: UpperCAmelCase = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) UpperCAmelCase = self.layer[1]( _snake_case , key_value_states=_snake_case , attention_mask=_snake_case , ) # Apply Film Conditional Feed Forward layer UpperCAmelCase = self.layer[-1](_snake_case , _snake_case ) return (hidden_states,) class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> List[str]: """simple docstring""" super().__init__() UpperCAmelCase = TaLayerNorm(_snake_case ) UpperCAmelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=_snake_case ) UpperCAmelCase = Attention(query_dim=_snake_case , heads=_snake_case , dim_head=_snake_case , out_bias=_snake_case , scale_qk=_snake_case ) UpperCAmelCase = nn.Dropout(_snake_case ) def snake_case_ ( self , _snake_case , _snake_case=None , _snake_case=None , ) -> Optional[int]: """simple docstring""" # pre_self_attention_layer_norm UpperCAmelCase = self.layer_norm(_snake_case ) if conditioning_emb is not None: UpperCAmelCase = self.FiLMLayer(_snake_case , _snake_case ) # Self-attention block UpperCAmelCase = self.attention(_snake_case ) UpperCAmelCase = hidden_states + self.dropout(_snake_case ) return hidden_states class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Any: """simple docstring""" super().__init__() UpperCAmelCase = Attention(query_dim=_snake_case , heads=_snake_case , dim_head=_snake_case , out_bias=_snake_case , scale_qk=_snake_case ) UpperCAmelCase = TaLayerNorm(_snake_case , eps=_snake_case ) UpperCAmelCase = nn.Dropout(_snake_case ) def snake_case_ ( self , _snake_case , _snake_case=None , _snake_case=None , ) -> int: """simple docstring""" UpperCAmelCase = self.layer_norm(_snake_case ) UpperCAmelCase = self.attention( _snake_case , encoder_hidden_states=_snake_case , attention_mask=attention_mask.squeeze(1 ) , ) UpperCAmelCase = hidden_states + self.dropout(_snake_case ) return layer_output class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> Tuple: """simple docstring""" super().__init__() UpperCAmelCase = TaDenseGatedActDense(d_model=_snake_case , d_ff=_snake_case , dropout_rate=_snake_case ) UpperCAmelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=_snake_case ) UpperCAmelCase = TaLayerNorm(_snake_case , eps=_snake_case ) UpperCAmelCase = nn.Dropout(_snake_case ) def snake_case_ ( self , _snake_case , _snake_case=None ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.layer_norm(_snake_case ) if conditioning_emb is not None: UpperCAmelCase = self.film(_snake_case , _snake_case ) UpperCAmelCase = self.DenseReluDense(_snake_case ) UpperCAmelCase = hidden_states + self.dropout(_snake_case ) return hidden_states class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCAmelCase = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) UpperCAmelCase = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) UpperCAmelCase = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) UpperCAmelCase = nn.Dropout(_snake_case ) UpperCAmelCase = NewGELUActivation() def snake_case_ ( self , _snake_case ) -> Any: """simple docstring""" UpperCAmelCase = self.act(self.wi_a(_snake_case ) ) UpperCAmelCase = self.wi_a(_snake_case ) UpperCAmelCase = hidden_gelu * hidden_linear UpperCAmelCase = self.dropout(_snake_case ) UpperCAmelCase = self.wo(_snake_case ) return hidden_states class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case , _snake_case=1e-6 ) -> int: """simple docstring""" super().__init__() UpperCAmelCase = nn.Parameter(torch.ones(_snake_case ) ) UpperCAmelCase = eps def snake_case_ ( self , _snake_case ) -> Optional[Any]: """simple docstring""" # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 UpperCAmelCase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_snake_case ) UpperCAmelCase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCAmelCase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowercase ( nn.Module ): '''simple docstring''' def snake_case_ ( self , _snake_case ) -> torch.Tensor: """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(_snake_case , 3.0 )) )) class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case , _snake_case ) -> List[Any]: """simple docstring""" super().__init__() UpperCAmelCase = nn.Linear(_snake_case , out_features * 2 , bias=_snake_case ) def snake_case_ ( self , _snake_case , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.scale_bias(_snake_case ) UpperCAmelCase , UpperCAmelCase = torch.chunk(_snake_case , 2 , -1 ) UpperCAmelCase = x * (1 + scale) + shift return x
391
from __future__ import annotations import typing from collections import Counter def _lowerCAmelCase ( A__: int ): '''simple docstring''' UpperCAmelCase = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(A__ , max_perimeter + 1 ): UpperCAmelCase = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(A__ ): UpperCAmelCase = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _lowerCAmelCase ( A__: int = 1000 ): '''simple docstring''' UpperCAmelCase = pythagorean_triple(A__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
391
1
from math import isqrt def lowerCAmelCase( __lowerCamelCase ): return all(number % divisor != 0 for divisor in range(2 , isqrt(lowercase_ ) + 1 ) ) def lowerCAmelCase( __lowerCamelCase = 10**6 ): __a = 0 __a = 1 __a = 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase_ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
559
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = ["pixel_values"] def __init__( self : Tuple , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : List[Any] , ) -> None: super().__init__(**__a ) _UpperCamelCase : Optional[int] = size if size is not None else {"shortest_edge": 224} _UpperCamelCase : Optional[int] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a , param_name="crop_size" ) _UpperCamelCase : Optional[Any] = do_resize _UpperCamelCase : Dict = size _UpperCamelCase : Any = resample _UpperCamelCase : Tuple = do_center_crop _UpperCamelCase : str = crop_size _UpperCamelCase : Any = do_rescale _UpperCamelCase : Dict = rescale_factor _UpperCamelCase : int = do_normalize _UpperCamelCase : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCamelCase : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCamelCase : List[Any] = do_convert_rgb def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : str , ) -> np.ndarray: _UpperCamelCase : Any = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _UpperCamelCase : Dict = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: _UpperCamelCase : List[str] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : Union[str, Any] , ) -> PIL.Image.Image: _UpperCamelCase : Tuple = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : int = get_size_dict(__a , param_name="size" , default_to_square=__a ) _UpperCamelCase : List[Any] = resample if resample is not None else self.resample _UpperCamelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : List[Any] = get_size_dict(__a , param_name="crop_size" , default_to_square=__a ) _UpperCamelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : List[Any] = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : List[Any] = image_std if image_std is not None else self.image_std _UpperCamelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCamelCase : Any = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCamelCase : int = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. _UpperCamelCase : List[Any] = [to_numpy_array(__a ) for image in images] if do_resize: _UpperCamelCase : Union[str, Any] = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: _UpperCamelCase : Optional[Any] = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: _UpperCamelCase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: _UpperCamelCase : List[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] _UpperCamelCase : List[Any] = [to_channel_dimension_format(__a , __a ) for image in images] _UpperCamelCase : str = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
624
0
"""simple docstring""" import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __lowerCamelCase ( SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" if subparsers is not None: _UpperCAmelCase = subparsers.add_parser('env' ) else: _UpperCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file',default=_lowerCamelCase,help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase ) return parser def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = torch.__version__ _UpperCAmelCase = torch.cuda.is_available() _UpperCAmelCase = is_xpu_available() _UpperCAmelCase = is_npu_available() _UpperCAmelCase = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_lowerCamelCase ): _UpperCAmelCase = load_config_from_file(args.config_file ).to_dict() _UpperCAmelCase = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F"""{pt_version} ({pt_cuda_available})""", """PyTorch XPU available""": str(_lowerCamelCase ), """PyTorch NPU available""": str(_lowerCamelCase ), """System RAM""": F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: _UpperCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) _UpperCAmelCase = ( """\n""".join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(_lowerCamelCase,_lowerCamelCase ) else F"""\t{accelerate_config}""" ) print(_lowerCamelCase ) _UpperCAmelCase = accelerate_config return info def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = env_command_parser() _UpperCAmelCase = parser.parse_args() env_command(_lowerCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
719
"""simple docstring""" def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> list: """simple docstring""" _UpperCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping _UpperCAmelCase = True for i in range(0,len(SCREAMING_SNAKE_CASE ) - 1,2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _UpperCAmelCase , _UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCAmelCase = False for i in range(1,len(SCREAMING_SNAKE_CASE ) - 1,2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _UpperCAmelCase , _UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCAmelCase = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') lowerCAmelCase_ = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCAmelCase_ = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
494
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _UpperCamelCase = None _UpperCamelCase = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _UpperCamelCase = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __lowercase : _UpperCamelCase = True _UpperCamelCase = None # Automatically constructed _UpperCamelCase = "PIL.Image.Image" _UpperCamelCase = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) _UpperCamelCase = field(default="""Image""" , init=_UpperCAmelCase , repr=_UpperCAmelCase ) def __call__( self ) ->str: '''simple docstring''' return self.pa_type def UpperCamelCase__ ( self , A_ ) ->dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(A_ , A_ ): __lowerCAmelCase : List[Any] = np.array(A_ ) if isinstance(A_ , A_ ): return {"path": value, "bytes": None} elif isinstance(A_ , A_ ): return {"path": None, "bytes": value} elif isinstance(A_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(A_ ) elif isinstance(A_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(A_ ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def UpperCamelCase__ ( self , A_ , A_=None ) ->"PIL.Image.Image": '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: __lowerCAmelCase : Any = {} __lowerCAmelCase, __lowerCAmelCase : str = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(A_ ): __lowerCAmelCase : str = PIL.Image.open(A_ ) else: __lowerCAmelCase : Tuple = path.split('''::''' )[-1] try: __lowerCAmelCase : Any = string_to_dict(A_ , config.HUB_DATASETS_URL )['''repo_id'''] __lowerCAmelCase : Optional[int] = token_per_repo_id.get(A_ ) except ValueError: __lowerCAmelCase : Dict = None with xopen(A_ , '''rb''' , use_auth_token=A_ ) as f: __lowerCAmelCase : List[Any] = BytesIO(f.read() ) __lowerCAmelCase : Optional[int] = PIL.Image.open(bytes_ ) else: __lowerCAmelCase : str = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def UpperCamelCase__ ( self ) ->Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def UpperCamelCase__ ( self , A_ ) ->pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): __lowerCAmelCase : Union[str, Any] = pa.array([None] * len(A_ ) , type=pa.binary() ) __lowerCAmelCase : List[str] = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __lowerCAmelCase : List[Any] = pa.array([None] * len(A_ ) , type=pa.string() ) __lowerCAmelCase : int = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: __lowerCAmelCase : int = storage.field('''bytes''' ) else: __lowerCAmelCase : Dict = pa.array([None] * len(A_ ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: __lowerCAmelCase : Optional[Any] = storage.field('''path''' ) else: __lowerCAmelCase : Optional[Any] = pa.array([None] * len(A_ ) , type=pa.string() ) __lowerCAmelCase : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __lowerCAmelCase : str = pa.array( [encode_np_array(np.array(A_ ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __lowerCAmelCase : List[Any] = pa.array([None] * len(A_ ) , type=pa.string() ) __lowerCAmelCase : Any = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(A_ , self.pa_type ) def UpperCamelCase__ ( self , A_ ) ->pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(A_ ): with xopen(A_ , '''rb''' ) as f: __lowerCAmelCase : str = f.read() return bytes_ __lowerCAmelCase : Tuple = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __lowerCAmelCase : Any = pa.array( [os.path.basename(A_ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) __lowerCAmelCase : int = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(A_ , self.pa_type ) def _lowercase ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __lowerCAmelCase : Union[str, Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _lowercase ( lowercase__ ): __lowerCAmelCase : List[Any] = BytesIO() if image.format in list_image_compression_formats(): __lowerCAmelCase : Tuple = image.format else: __lowerCAmelCase : Dict = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(lowercase__ , format=lowercase__ ) return buffer.getvalue() def _lowercase ( lowercase__ ): if hasattr(lowercase__ , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowercase__ )} def _lowercase ( lowercase__ ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) __lowerCAmelCase : Optional[int] = array.dtype __lowerCAmelCase : str = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER __lowerCAmelCase : Optional[int] = dtype.kind __lowerCAmelCase : Union[str, Any] = dtype.itemsize __lowerCAmelCase : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __lowerCAmelCase : List[str] = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __lowerCAmelCase : int = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __lowerCAmelCase : str = dtype_byteorder + dtype_kind + str(lowercase__ ) __lowerCAmelCase : Tuple = np.dtype(lowercase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) __lowerCAmelCase : Tuple = PIL.Image.fromarray(array.astype(lowercase__ ) ) return {"path": None, "bytes": image_to_bytes(lowercase__ )} def _lowercase ( lowercase__ ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: __lowerCAmelCase, __lowerCAmelCase : Optional[int] = first_non_null_value(lowercase__ ) if isinstance(lowercase__ , lowercase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowercase__ , np.ndarray ): __lowerCAmelCase : int = no_op_if_value_is_null(lowercase__ ) return [obj_to_image_dict_func(lowercase__ ) for obj in objs] elif isinstance(lowercase__ , PIL.Image.Image ): __lowerCAmelCase : Optional[Any] = no_op_if_value_is_null(lowercase__ ) return [obj_to_image_dict_func(lowercase__ ) for obj in objs] else: return objs else: return objs
492
def _lowercase ( lowercase__ ): __lowerCAmelCase : Optional[int] = int(lowercase__ ) if decimal in (0, 1): # Exit cases for the recursion return str(lowercase__ ) __lowerCAmelCase, __lowerCAmelCase : Dict = divmod(lowercase__ , 2 ) return binary_recursive(lowercase__ ) + str(lowercase__ ) def _lowercase ( lowercase__ ): __lowerCAmelCase : Optional[Any] = str(lowercase__ ).strip() if not number: raise ValueError('''No input value was provided''' ) __lowerCAmelCase : Optional[int] = '''-''' if number.startswith('''-''' ) else '''''' __lowerCAmelCase : Dict = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f"""{negative}0b{binary_recursive(int(lowercase__ ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
492
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = tmp_path / 'cache' __a = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a = SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_sql_dataset(__lowerCamelCase , __lowerCamelCase ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = tmp_path / 'cache' __a = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __a = features.copy() if features else default_expected_features __a = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __a = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_sql_dataset(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase ): with contextlib.closing(sqlitea.connect(__lowerCamelCase ) ) as con: __a = con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = tmp_path / 'cache' __a = os.path.join(__lowerCamelCase , 'tmp.sql' ) __a = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=__lowerCamelCase ).read() SqlDatasetWriter(__lowerCamelCase , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() __a = iter_sql_file(__lowerCamelCase ) __a = iter_sql_file(__lowerCamelCase ) for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = tmp_path / 'cache' __a = os.path.join(__lowerCamelCase , 'tmp.sql' ) __a = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=__lowerCamelCase ).read() SqlDatasetWriter(__lowerCamelCase , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() __a = iter_sql_file(__lowerCamelCase ) __a = iter_sql_file(__lowerCamelCase ) for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = tmp_path / 'cache' __a = os.path.join(__lowerCamelCase , 'tmp.sql' ) __a = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=__lowerCamelCase ).read() with pytest.raises(__lowerCamelCase ): SqlDatasetWriter(__lowerCamelCase , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
246
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class a__ ( unittest.TestCase ): def __init__( self , UpperCAmelCase , UpperCAmelCase=7 , UpperCAmelCase=3 , UpperCAmelCase=1_0 , UpperCAmelCase=1_8 , UpperCAmelCase=3_0 , UpperCAmelCase=4_0_0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=[0.5, 0.5, 0.5] , UpperCAmelCase=[0.5, 0.5, 0.5] , UpperCAmelCase=None , ) -> Tuple: __a = size if size is not None else {'shortest_edge': 1_8} __a = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} __a = parent __a = batch_size __a = num_channels __a = num_frames __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_normalize __a = image_mean __a = image_std __a = crop_size def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class a__ ( __snake_case , unittest.TestCase ): A__ : Tuple = VivitImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = VivitImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'size' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) __a = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __a = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __a = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __a = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __a = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __a = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for video in video_inputs: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __a = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __a = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
246
1
"""simple docstring""" from math import sqrt def _snake_case ( snake_case__ : int ): A = 0 for i in range(1 , int(sqrt(snake_case__ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case__ ): total += i + n // i elif i == sqrt(snake_case__ ): total += i return total - n def _snake_case ( snake_case__ : int = 1_0000 ): A = sum( i for i in range(1 , snake_case__ ) if sum_of_divisors(sum_of_divisors(snake_case__ ) ) == i and sum_of_divisors(snake_case__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
91
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _lowerCAmelCase : Tuple = 1.0_5457_1817e-34 # unit of ℏ : J * s _lowerCAmelCase : int = 3e8 # unit of c : m * s^-1 def a_ ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: lowerCamelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCamelCase = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCamelCase = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
246
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = os.path.abspath(_A ) logger.info(f"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model lowerCAmelCase_ = tf.train.list_variables(_A ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowerCAmelCase_ = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(f"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' lowerCAmelCase_ = name[1:] # figure out how many levels deep the name is lowerCAmelCase_ = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(_A ) # read data lowerCAmelCase_ = tf.train.load_variable(_A , _A ) names.append('''/'''.join(_A ) ) arrays.append(_A ) logger.info(f"Read a total of {len(_A ):,} layers" ) # Sanity check if len(set(_A ) ) != 1: raise ValueError(f"Found layer names with different depths (layer depth {list(set(_A ) )})" ) lowerCAmelCase_ = list(set(_A ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(_A , _A ): lowerCAmelCase_ = full_name.split('''/''' ) lowerCAmelCase_ = model lowerCAmelCase_ = [] for i, m_name in enumerate(_A ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): lowerCAmelCase_ = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) lowerCAmelCase_ = getattr(_A , '''embeddings''' ) lowerCAmelCase_ = getattr(_A , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) lowerCAmelCase_ = getattr(_A , '''encoder''' ) lowerCAmelCase_ = getattr(_A , '''layer''' ) lowerCAmelCase_ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) lowerCAmelCase_ = getattr(_A , '''pooler''' ) lowerCAmelCase_ = getattr(_A , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) lowerCAmelCase_ = getattr(_A , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) lowerCAmelCase_ = getattr(_A , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) lowerCAmelCase_ = getattr(_A , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) lowerCAmelCase_ = getattr(_A , '''token_type_embeddings''' ) else: raise ValueError(f"Unknown embedding layer with name {full_name}" ) trace.append('''weight''' ) lowerCAmelCase_ = getattr(_A , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) lowerCAmelCase_ = getattr(_A , '''attention''' ) lowerCAmelCase_ = getattr(_A , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) lowerCAmelCase_ = getattr(_A , '''attention''' ) lowerCAmelCase_ = getattr(_A , '''output''' ) lowerCAmelCase_ = getattr(_A , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) lowerCAmelCase_ = getattr(_A , '''attention''' ) lowerCAmelCase_ = getattr(_A , '''output''' ) lowerCAmelCase_ = getattr(_A , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) lowerCAmelCase_ = getattr(_A , '''output''' ) lowerCAmelCase_ = getattr(_A , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) lowerCAmelCase_ = getattr(_A , '''output''' ) lowerCAmelCase_ = getattr(_A , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) lowerCAmelCase_ = getattr(_A , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) lowerCAmelCase_ = getattr(_A , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) lowerCAmelCase_ = getattr(_A , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) lowerCAmelCase_ = getattr(_A , '''intermediate''' ) lowerCAmelCase_ = getattr(_A , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) lowerCAmelCase_ = getattr(_A , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) lowerCAmelCase_ = getattr(_A , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) lowerCAmelCase_ = getattr(_A , '''weight''' ) else: logger.warning(f"Ignored {m_name}" ) # for certain layers reshape is necessary lowerCAmelCase_ = '''.'''.join(_A ) if re.match(r'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , _A ) or re.match( r'''(\S+)\.attention\.output\.dense\.weight''' , _A ): lowerCAmelCase_ = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowerCAmelCase_ = array.transpose() if pointer.shape == array.shape: lowerCAmelCase_ = torch.from_numpy(_A ) else: raise ValueError( f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" f" {array.shape}" ) logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def __UpperCamelCase ( _A , _A , _A ): # Instantiate model logger.info(f"Loading model based on config from {config_path}..." ) lowerCAmelCase_ = BertConfig.from_json_file(_A ) lowerCAmelCase_ = BertModel(_A ) # Load weights from checkpoint logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(_A , _A , _A ) # Save pytorch-model logger.info(f"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) _A = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
325
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = '''ZinengTang/tvlt-base''' lowerCAmelCase_ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor, UpperCamelCase__ ) self.assertIsInstance(processor.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) lowerCAmelCase_ = np.ones([1_2000] ) lowerCAmelCase_ = feature_extractor(UpperCamelCase__, return_tensors='''np''' ) lowerCAmelCase_ = processor(audio=UpperCamelCase__, return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum(), input_processor[key].sum(), delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) lowerCAmelCase_ = np.ones([3, 224, 224] ) lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''np''' ) lowerCAmelCase_ = processor(images=UpperCamelCase__, return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum(), input_processor[key].sum(), delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) lowerCAmelCase_ = np.ones([1_2000] ) lowerCAmelCase_ = np.ones([3, 224, 224] ) lowerCAmelCase_ = processor(audio=UpperCamelCase__, images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) self.assertListEqual( processor.model_input_names, image_processor.model_input_names + feature_extractor.model_input_names, msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''', )
325
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCamelCase : int =logging.get_logger(__name__) def a__ (__lowercase :Optional[Any] , __lowercase :List[Any] , __lowercase :Union[str, Any] ) -> Any: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def a__ (__lowercase :np.ndarray , __lowercase :Optional[str] , __lowercase :Optional[str] ) -> Optional[int]: _A : Tuple = to_pil_image(__lowercase ) _A , _A : Union[str, Any] = pil_image.size _A : Tuple = pytesseract.image_to_data(__lowercase , lang=__lowercase , output_type='''dict''' , config=__lowercase ) _A , _A , _A , _A , _A : Tuple = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates _A : Union[str, Any] = [idx for idx, word in enumerate(__lowercase ) if not word.strip()] _A : int = [word for idx, word in enumerate(__lowercase ) if idx not in irrelevant_indices] _A : List[str] = [coord for idx, coord in enumerate(__lowercase ) if idx not in irrelevant_indices] _A : Tuple = [coord for idx, coord in enumerate(__lowercase ) if idx not in irrelevant_indices] _A : List[str] = [coord for idx, coord in enumerate(__lowercase ) if idx not in irrelevant_indices] _A : Optional[int] = [coord for idx, coord in enumerate(__lowercase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _A : Union[str, Any] = [] for x, y, w, h in zip(__lowercase , __lowercase , __lowercase , __lowercase ): _A : Union[str, Any] = [x, y, x + w, y + h] actual_boxes.append(__lowercase ) # finally, normalize the bounding boxes _A : Union[str, Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__lowercase , __lowercase , __lowercase ) ) assert len(__lowercase ) == len(__lowercase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase__ ( __snake_case ): __snake_case : str = ["pixel_values"] def __init__( self ,A__ = True ,A__ = None ,A__ = PILImageResampling.BILINEAR ,A__ = True ,A__ = 1 / 255 ,A__ = True ,A__ = None ,A__ = None ,A__ = True ,A__ = None ,A__ = "" ,**A__ ,): super().__init__(**A__ ) _A : List[Any] = size if size is not None else {'''height''': 224, '''width''': 224} _A : Any = get_size_dict(A__ ) _A : str = do_resize _A : str = size _A : Optional[Any] = resample _A : Optional[int] = do_rescale _A : List[str] = rescale_value _A : Dict = do_normalize _A : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD _A : Any = apply_ocr _A : Optional[Any] = ocr_lang _A : Union[str, Any] = tesseract_config def A__ ( self ,A__ ,A__ ,A__ = PILImageResampling.BILINEAR ,A__ = None ,**A__ ,): _A : Dict = get_size_dict(A__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _A : Union[str, Any] = (size['''height'''], size['''width''']) return resize(A__ ,size=A__ ,resample=A__ ,data_format=A__ ,**A__ ) def A__ ( self ,A__ ,A__ ,A__ = None ,**A__ ,): return rescale(A__ ,scale=A__ ,data_format=A__ ,**A__ ) def A__ ( self ,A__ ,A__ ,A__ ,A__ = None ,**A__ ,): return normalize(A__ ,mean=A__ ,std=A__ ,data_format=A__ ,**A__ ) def A__ ( self ,A__ ,A__ = None ,A__ = None ,A__=None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = ChannelDimension.FIRST ,**A__ ,): _A : Dict = do_resize if do_resize is not None else self.do_resize _A : Optional[int] = size if size is not None else self.size _A : List[Any] = get_size_dict(A__ ) _A : Tuple = resample if resample is not None else self.resample _A : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _A : int = do_normalize if do_normalize is not None else self.do_normalize _A : List[Any] = image_mean if image_mean is not None else self.image_mean _A : List[Any] = image_std if image_std is not None else self.image_std _A : str = apply_ocr if apply_ocr is not None else self.apply_ocr _A : Optional[int] = ocr_lang if ocr_lang is not None else self.ocr_lang _A : List[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config _A : List[Any] = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _A : Union[str, Any] = [to_numpy_array(A__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self ,'''pytesseract''' ) _A : int = [] _A : Tuple = [] for image in images: _A , _A : List[Any] = apply_tesseract(A__ ,A__ ,A__ ) words_batch.append(A__ ) boxes_batch.append(A__ ) if do_resize: _A : Union[str, Any] = [self.resize(image=A__ ,size=A__ ,resample=A__ ) for image in images] if do_rescale: _A : Optional[Any] = [self.rescale(image=A__ ,scale=A__ ) for image in images] if do_normalize: _A : List[Any] = [self.normalize(image=A__ ,mean=A__ ,std=A__ ) for image in images] _A : Optional[Any] = [to_channel_dimension_format(A__ ,A__ ) for image in images] _A : Any = BatchFeature(data={'''pixel_values''': images} ,tensor_type=A__ ) if apply_ocr: _A : Tuple = words_batch _A : str = boxes_batch return data
206
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCAmelCase__ ( nn.Module ): __snake_case : int __snake_case : int __snake_case : float = 0.0 __snake_case : int = 1 __snake_case : int = 1 __snake_case : bool = True __snake_case : bool = False __snake_case : bool = False __snake_case : bool = False __snake_case : jnp.dtype = jnp.floataa def A__ ( self ): _A : Optional[Any] = [] _A : str = [] for i in range(self.num_layers ): _A : Union[str, Any] = self.in_channels if i == 0 else self.out_channels _A : str = FlaxResnetBlockaD( in_channels=A__ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(A__ ) _A : List[str] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(A__ ) _A : List[str] = resnets _A : Any = attentions if self.add_downsample: _A : Any = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,A__ ,A__ ,A__ ,A__=True ): _A : List[str] = () for resnet, attn in zip(self.resnets ,self.attentions ): _A : Optional[Any] = resnet(A__ ,A__ ,deterministic=A__ ) _A : Tuple = attn(A__ ,A__ ,deterministic=A__ ) output_states += (hidden_states,) if self.add_downsample: _A : Optional[int] = self.downsamplers_a(A__ ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase__ ( nn.Module ): __snake_case : int __snake_case : int __snake_case : float = 0.0 __snake_case : int = 1 __snake_case : bool = True __snake_case : jnp.dtype = jnp.floataa def A__ ( self ): _A : List[Any] = [] for i in range(self.num_layers ): _A : int = self.in_channels if i == 0 else self.out_channels _A : List[Any] = FlaxResnetBlockaD( in_channels=A__ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(A__ ) _A : Tuple = resnets if self.add_downsample: _A : Optional[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,A__ ,A__ ,A__=True ): _A : List[Any] = () for resnet in self.resnets: _A : Optional[int] = resnet(A__ ,A__ ,deterministic=A__ ) output_states += (hidden_states,) if self.add_downsample: _A : List[Any] = self.downsamplers_a(A__ ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase__ ( nn.Module ): __snake_case : int __snake_case : int __snake_case : int __snake_case : float = 0.0 __snake_case : int = 1 __snake_case : int = 1 __snake_case : bool = True __snake_case : bool = False __snake_case : bool = False __snake_case : bool = False __snake_case : jnp.dtype = jnp.floataa def A__ ( self ): _A : List[str] = [] _A : Optional[Any] = [] for i in range(self.num_layers ): _A : Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A : List[str] = self.prev_output_channel if i == 0 else self.out_channels _A : Optional[int] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(A__ ) _A : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(A__ ) _A : Dict = resnets _A : int = attentions if self.add_upsample: _A : str = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,A__ ,A__ ,A__ ,A__ ,A__=True ): for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states _A : List[Any] = res_hidden_states_tuple[-1] _A : int = res_hidden_states_tuple[:-1] _A : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) _A : str = resnet(A__ ,A__ ,deterministic=A__ ) _A : Optional[int] = attn(A__ ,A__ ,deterministic=A__ ) if self.add_upsample: _A : Union[str, Any] = self.upsamplers_a(A__ ) return hidden_states class UpperCAmelCase__ ( nn.Module ): __snake_case : int __snake_case : int __snake_case : int __snake_case : float = 0.0 __snake_case : int = 1 __snake_case : bool = True __snake_case : jnp.dtype = jnp.floataa def A__ ( self ): _A : Optional[Any] = [] for i in range(self.num_layers ): _A : Any = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A : Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels _A : List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(A__ ) _A : int = resnets if self.add_upsample: _A : List[str] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,A__ ,A__ ,A__ ,A__=True ): for resnet in self.resnets: # pop res hidden states _A : Tuple = res_hidden_states_tuple[-1] _A : Optional[int] = res_hidden_states_tuple[:-1] _A : Any = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) _A : Optional[Any] = resnet(A__ ,A__ ,deterministic=A__ ) if self.add_upsample: _A : Tuple = self.upsamplers_a(A__ ) return hidden_states class UpperCAmelCase__ ( nn.Module ): __snake_case : int __snake_case : float = 0.0 __snake_case : int = 1 __snake_case : int = 1 __snake_case : bool = False __snake_case : bool = False __snake_case : jnp.dtype = jnp.floataa def A__ ( self ): # there is always at least one resnet _A : List[str] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] _A : Union[str, Any] = [] for _ in range(self.num_layers ): _A : Any = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(A__ ) _A : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(A__ ) _A : List[str] = resnets _A : str = attentions def __call__( self ,A__ ,A__ ,A__ ,A__=True ): _A : Optional[int] = self.resnets[0](A__ ,A__ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): _A : Dict = attn(A__ ,A__ ,deterministic=A__ ) _A : Any = resnet(A__ ,A__ ,deterministic=A__ ) return hidden_states
206
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets _snake_case = datasets.logging.get_logger(__name__) _snake_case = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n" _snake_case = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n" _snake_case = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n" _snake_case = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def a__ ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def a__ ( self , _a ) -> Union[str, Any]: # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" ) _A : List[Any] = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: _A : Optional[int] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _A : List[Any] = self.config_name.upper() else: raise KeyError( F'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer _A : str = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) _A : Any = score.BleurtScorer(os.path.join(_a , _a ) ) def a__ ( self , _a , _a ) -> Tuple: _A : Union[str, Any] = self.scorer.score(references=_a , candidates=_a ) return {"scores": scores}
712
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=2048 , _a=128 , _a=1 , _a=512 , _a=30 , _a=4_4100 , ) -> Tuple: _A : Any = parent _A : str = batch_size _A : Union[str, Any] = min_seq_length _A : int = max_seq_length _A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = spectrogram_length _A : int = feature_size _A : str = num_audio_channels _A : Tuple = hop_length _A : List[str] = chunk_length _A : Union[str, Any] = sampling_rate def a__ ( self ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TvltFeatureExtractor def a__ ( self ) -> Any: _A : int = TvltFeatureExtractionTester(self ) def a__ ( self ) -> List[Any]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """spectrogram_length""" ) ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """num_audio_channels""" ) ) self.assertTrue(hasattr(_a , """hop_length""" ) ) self.assertTrue(hasattr(_a , """chunk_length""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) def a__ ( self ) -> Optional[int]: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : int = feat_extract_second.to_dict() _A : int = dict_first.pop("""mel_filters""" ) _A : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : Union[str, Any] = feat_extract_second.to_dict() _A : List[Any] = dict_first.pop("""mel_filters""" ) _A : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: # Initialize feature_extractor _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A : str = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A : Optional[Any] = feature_extractor( _a , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[int] = np.asarray(_a ) _A : Optional[Any] = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self , _a ) -> str: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Dict = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: _A : List[str] = self._load_datasamples(1 ) _A : List[str] = TvltFeatureExtractor() _A : List[Any] = feature_extractor(_a , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
54
0
'''simple docstring''' def __snake_case ( lowercase : int = 1_000 ): snake_case_ = 2**power snake_case_ = str(lowercase ) snake_case_ = list(lowercase ) snake_case_ = 0 for i in list_num: sum_of_num += int(lowercase ) return sum_of_num if __name__ == "__main__": lowercase__ = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowercase__ = solution(power) print('''Sum of the digits is: ''', result)
508
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowercase__ = HfApi() lowercase__ = {} # fmt: off lowercase__ = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) lowercase__ = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) lowercase__ = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) lowercase__ = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) lowercase__ = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) lowercase__ = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) lowercase__ = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) lowercase__ = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) lowercase__ = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) lowercase__ = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) lowercase__ = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) lowercase__ = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) lowercase__ = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) lowercase__ = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) lowercase__ = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on lowercase__ = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowercase__ = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('''CompVis'''): lowercase__ = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: lowercase__ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowercase__ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowercase__ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowercase__ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
508
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Optional[Any]: __UpperCAmelCase =filter(lambda snake_case__ : p.requires_grad , model.parameters() ) __UpperCAmelCase =sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCamelCase_ = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ) -> str: if metric == "rouge2": __UpperCAmelCase ='''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __UpperCAmelCase ='''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __UpperCAmelCase ='''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) __UpperCAmelCase =ModelCheckpoint( dirpath=snake_case__ , filename=snake_case__ , monitor=f"""val_{metric}""" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ) -> Optional[int]: return EarlyStopping( monitor=f"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=snake_case__ , verbose=snake_case__ , ) class _SCREAMING_SNAKE_CASE ( pl.Callback ): def A__ (self , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase ={f"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(UpperCAmelCase) @rank_zero_only def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True): '''simple docstring''' logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""") __UpperCAmelCase =trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']}) # Log results __UpperCAmelCase =Path(pl_module.hparams.output_dir) if type_path == "test": __UpperCAmelCase =od / '''test_results.txt''' __UpperCAmelCase =od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCAmelCase =od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" __UpperCAmelCase =od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=UpperCAmelCase) generations_file.parent.mkdir(exist_ok=UpperCAmelCase) with open(UpperCAmelCase , '''a+''') as writer: for key in sorted(UpperCAmelCase): if key in ["log", "progress_bar", "preds"]: continue __UpperCAmelCase =metrics[key] if isinstance(UpperCAmelCase , torch.Tensor): __UpperCAmelCase =val.item() __UpperCAmelCase =f"""{key}: {val:.6f}\n""" writer.write(UpperCAmelCase) if not save_generations: return if "preds" in metrics: __UpperCAmelCase ='''\n'''.join(metrics['''preds''']) generations_file.open('''w+''').write(UpperCAmelCase) @rank_zero_only def A__ (self , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' try: __UpperCAmelCase =pl_module.model.model.num_parameters() except AttributeError: __UpperCAmelCase =pl_module.model.num_parameters() __UpperCAmelCase =count_trainable_parameters(UpperCAmelCase) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6}) @rank_zero_only def A__ (self , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(UpperCAmelCase , UpperCAmelCase , '''test''') @rank_zero_only def A__ (self , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
712
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCamelCase_ = get_logger() UpperCamelCase_ = None class _SCREAMING_SNAKE_CASE ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase): '''simple docstring''' super().__init__(features=UpperCAmelCase) import jax from jaxlib.xla_client import Device if isinstance(UpperCAmelCase , UpperCAmelCase): raise ValueError( f"""Expected {device} to be a `str` not {type(UpperCAmelCase)}, as `jaxlib.xla_extension.Device` """ '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''') __UpperCAmelCase =device if isinstance(UpperCAmelCase , UpperCAmelCase) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __UpperCAmelCase =self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default """ f"""device: {str(jax.devices()[0])}.""") __UpperCAmelCase =str(jax.devices()[0]) __UpperCAmelCase =jnp_array_kwargs @staticmethod def A__ (): '''simple docstring''' import jax return {str(UpperCAmelCase): device for device in jax.devices()} def A__ (self , UpperCAmelCase): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , UpperCAmelCase) and column: if all( isinstance(UpperCAmelCase , jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return jnp.stack(UpperCAmelCase , axis=0) return column def A__ (self , UpperCAmelCase): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase))): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() __UpperCAmelCase ={} if isinstance(UpperCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: __UpperCAmelCase ={'''dtype''': jnp.intaa} else: __UpperCAmelCase ={'''dtype''': jnp.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): __UpperCAmelCase ={'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image): __UpperCAmelCase =np.asarray(UpperCAmelCase) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __UpperCAmelCase =self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs}) def A__ (self , UpperCAmelCase): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCAmelCase , torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(UpperCAmelCase , '''__array__''') and not isinstance(UpperCAmelCase , jax.Array): __UpperCAmelCase =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase) for substruct in data_struct]) elif isinstance(UpperCAmelCase , (list, tuple)): return self._consolidate([self.recursive_tensorize(UpperCAmelCase) for substruct in data_struct]) return self._tensorize(UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_row(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_row(UpperCAmelCase) return self.recursive_tensorize(UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_column(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0]) __UpperCAmelCase =self.recursive_tensorize(UpperCAmelCase) __UpperCAmelCase =self._consolidate(UpperCAmelCase) return column def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.numpy_arrow_extractor().extract_batch(UpperCAmelCase) __UpperCAmelCase =self.python_features_decoder.decode_batch(UpperCAmelCase) __UpperCAmelCase =self.recursive_tensorize(UpperCAmelCase) for column_name in batch: __UpperCAmelCase =self._consolidate(batch[column_name]) return batch
142
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A__ : """simple docstring""" def __init__( self : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = {} def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=1 ) -> Optional[Any]: """simple docstring""" if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase : List[Any] = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): _UpperCAmelCase : Tuple = [] def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return list(self.graph ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int ) -> List[str]: """simple docstring""" if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Any=-2 , lowerCAmelCase__ : List[str]=-1 ) -> List[str]: """simple docstring""" if s == d: return [] _UpperCAmelCase : Dict = [] _UpperCAmelCase : Optional[int] = [] if s == -2: _UpperCAmelCase : Union[str, Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Union[str, Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : int = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: _UpperCAmelCase : List[str] = stack[len(lowerCAmelCase__ ) - 1] else: _UpperCAmelCase : Tuple = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[int]=-1 ) -> Union[str, Any]: """simple docstring""" if c == -1: _UpperCAmelCase : Tuple = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Union[str, Any]=-2 ) -> int: """simple docstring""" _UpperCAmelCase : Dict = deque() _UpperCAmelCase : Any = [] if s == -2: _UpperCAmelCase : int = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: _UpperCAmelCase : List[str] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" return len(self.graph[u] ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int=-2 ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : str = [] if s == -2: _UpperCAmelCase : Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = s _UpperCAmelCase : str = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: _UpperCAmelCase : Tuple = stack[len(lowerCAmelCase__ ) - 1] else: _UpperCAmelCase : Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _UpperCAmelCase : Tuple = [] _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = -2 _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Any = s _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Union[str, Any] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Optional[int] = True if len(lowerCAmelCase__ ) != 0: _UpperCAmelCase : List[str] = stack[len(lowerCAmelCase__ ) - 1] else: _UpperCAmelCase : List[Any] = False indirect_parents.append(lowerCAmelCase__ ) _UpperCAmelCase : str = s _UpperCAmelCase : Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Any = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = -2 _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Tuple = s _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[int] = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Optional[Any] = True if len(lowerCAmelCase__ ) != 0: _UpperCAmelCase : Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: _UpperCAmelCase : Dict = False indirect_parents.append(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = s _UpperCAmelCase : Tuple = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Union[str, Any]=-2 , lowerCAmelCase__ : Any=-1 ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = time() return end - begin def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : int=-2 ) -> int: """simple docstring""" _UpperCAmelCase : Dict = time() self.bfs(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = time() return end - begin class A__ : """simple docstring""" def __init__( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = {} def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=1 ) -> List[str]: """simple docstring""" if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase : List[str] = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase : Union[str, Any] = [[w, u]] def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict ) -> Optional[int]: """simple docstring""" if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Any=-2 , lowerCAmelCase__ : Dict=-1 ) -> int: """simple docstring""" if s == d: return [] _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[Any] = [] if s == -2: _UpperCAmelCase : Any = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: _UpperCAmelCase : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: _UpperCAmelCase : Any = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : int=-1 ) -> Optional[int]: """simple docstring""" if c == -1: _UpperCAmelCase : Optional[Any] = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : Optional[int] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Any=-2 ) -> Any: """simple docstring""" _UpperCAmelCase : List[str] = deque() _UpperCAmelCase : Dict = [] if s == -2: _UpperCAmelCase : Optional[Any] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: _UpperCAmelCase : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Dict ) -> Optional[Any]: """simple docstring""" return len(self.graph[u] ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = -2 _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Tuple = s _UpperCAmelCase : int = False _UpperCAmelCase : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Any = True if len(lowerCAmelCase__ ) != 0: _UpperCAmelCase : int = stack[len(lowerCAmelCase__ ) - 1] else: _UpperCAmelCase : Optional[int] = False indirect_parents.append(lowerCAmelCase__ ) _UpperCAmelCase : Dict = s _UpperCAmelCase : str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] _UpperCAmelCase : Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = -2 _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Union[str, Any] = s _UpperCAmelCase : str = False _UpperCAmelCase : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : List[str] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : List[Any] = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : int = True if len(lowerCAmelCase__ ) != 0: _UpperCAmelCase : Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: _UpperCAmelCase : int = False indirect_parents.append(lowerCAmelCase__ ) _UpperCAmelCase : str = s _UpperCAmelCase : int = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" return list(self.graph ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str=-2 , lowerCAmelCase__ : Dict=-1 ) -> Tuple: """simple docstring""" _UpperCAmelCase : Dict = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = time() return end - begin def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any]=-2 ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = time() self.bfs(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = time() return end - begin
494
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Optional[Any] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : List[Any] = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
494
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __A ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Dict = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') ,up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') ,) return model def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" lowercase__ : int = self.dummy_uncond_unet lowercase__ : int = PNDMScheduler() lowercase__ : int = PNDMPipeline(unet=_snake_case ,scheduler=_snake_case ) pndm.to(_snake_case ) pndm.set_progress_bar_config(disable=_snake_case ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Dict = pndm(generator=_snake_case ,num_inference_steps=20 ,output_type='''numpy''' ).images lowercase__ : int = torch.manual_seed(0 ) lowercase__ : Optional[Any] = pndm(generator=_snake_case ,num_inference_steps=20 ,output_type='''numpy''' ,return_dict=_snake_case )[0] lowercase__ : int = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : Union[str, Any] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ : Optional[Any] = """google/ddpm-cifar10-32""" lowercase__ : Optional[Any] = UNetaDModel.from_pretrained(_snake_case ) lowercase__ : List[Any] = PNDMScheduler() lowercase__ : List[str] = PNDMPipeline(unet=_snake_case ,scheduler=_snake_case ) pndm.to(_snake_case ) pndm.set_progress_bar_config(disable=_snake_case ) lowercase__ : Tuple = torch.manual_seed(0 ) lowercase__ : Optional[int] = pndm(generator=_snake_case ,output_type='''numpy''' ).images lowercase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : Any = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
708
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Any = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) lowercase__ : Optional[Any] = DetaConfig( backbone_config=__lowerCamelCase , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__lowerCamelCase , with_box_refine=__lowerCamelCase , two_stage=__lowerCamelCase , ) # set labels lowercase__ : Any = '''huggingface/label-files''' if "o365" in model_name: lowercase__ : Optional[Any] = 3_66 lowercase__ : List[Any] = '''object365-id2label.json''' else: lowercase__ : Union[str, Any] = 91 lowercase__ : Optional[int] = '''coco-detection-id2label.json''' lowercase__ : List[Any] = num_labels lowercase__ : str = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Any = idalabel lowercase__ : Any = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Dict = dct.pop(__lowerCamelCase ) lowercase__ : Optional[int] = val def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : Optional[int] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase__ : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase__ : Optional[int] = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) lowercase__ : Optional[Any] = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : List[Any] = in_proj_weight[:dim, :] lowercase__ : List[str] = in_proj_bias[: dim] lowercase__ : Dict = in_proj_weight[ dim : dim * 2, : ] lowercase__ : str = in_proj_bias[ dim : dim * 2 ] lowercase__ : str = in_proj_weight[ -dim :, : ] lowercase__ : List[str] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # transformer decoder self-attention layers lowercase__ : List[str] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention lowercase__ : Any = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowercase__ : Dict = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : Union[str, Any] = in_proj_weight[:hidden_size, :] lowercase__ : str = in_proj_bias[:hidden_size] lowercase__ : int = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowercase__ : List[Any] = in_proj_bias[hidden_size : hidden_size * 2] lowercase__ : Union[str, Any] = in_proj_weight[-hidden_size:, :] lowercase__ : Union[str, Any] = in_proj_bias[-hidden_size:] def __UpperCAmelCase ( ) -> List[Any]: lowercase__ : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : Optional[Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : Dict = get_deta_config(__lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": lowercase__ : List[str] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": lowercase__ : Dict = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f"""Model name {model_name} not supported""" ) lowercase__ : Optional[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__lowerCamelCase , param.shape ) # rename keys lowercase__ : List[Any] = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase , __lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowercase__ : str = state_dict.pop(__lowerCamelCase ) lowercase__ : Dict = val if "input_proj" in key: lowercase__ : Any = state_dict.pop(__lowerCamelCase ) lowercase__ : int = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowercase__ : Tuple = state_dict.pop(__lowerCamelCase ) lowercase__ : int = val # finally, create HuggingFace model and load state dict lowercase__ : Any = DetaForObjectDetection(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() lowercase__ : List[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__lowerCamelCase ) # load image processor lowercase__ : Any = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image lowercase__ : Dict = prepare_img() lowercase__ : Any = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : str = encoding['''pixel_values'''] lowercase__ : Tuple = model(pixel_values.to(__lowerCamelCase ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": lowercase__ : Any = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) lowercase__ : Any = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": lowercase__ : Dict = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) lowercase__ : int = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowerCamelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowerCamelCase ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f"""jozhang97/{model_name}""" ) processor.push_to_hub(f"""jozhang97/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
122
0
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil SCREAMING_SNAKE_CASE_ = 100 SCREAMING_SNAKE_CASE_ = set(range(3, NUM_PRIMES, 2)) primes.add(2) SCREAMING_SNAKE_CASE_ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0) def lowerCamelCase__ ( a__) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _snake_case : set[int] = set() _snake_case : int _snake_case : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime): ret.add(sub * prime) return ret def lowerCamelCase__ ( a__ = 5_0_0_0) -> int | None: """simple docstring""" for number_to_partition in range(1 , a__): if len(partition(a__)) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
517
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( a__) -> bool: """simple docstring""" return len(set(a__)) == len(a__) if __name__ == "__main__": import doctest doctest.testmod()
517
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self: Optional[int] , __A: Optional[int] , __A: Optional[Any]=7 , __A: Any=3 , __A: Dict=18 , __A: List[Any]=30 , __A: Union[str, Any]=4_00 , __A: Tuple=True , __A: Dict=None , __A: Optional[int]=True , ) -> Optional[int]: _A = size if size is not None else {'''height''': 18, '''width''': 18} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = apply_ocr def __A ( self: List[Any] ) -> Optional[Any]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): """simple docstring""" A_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __A ( self: Any ) -> Optional[int]: _A = LayoutLMvaImageProcessingTester(self ) @property def __A ( self: Optional[int] ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self: Optional[Any] ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , '''do_resize''' ) ) self.assertTrue(hasattr(__A , '''size''' ) ) self.assertTrue(hasattr(__A , '''apply_ocr''' ) ) def __A ( self: Optional[int] ) -> Optional[int]: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def __A ( self: List[str] ) -> Union[str, Any]: pass def __A ( self: Optional[Any] ) -> Tuple: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , __A ) self.assertIsInstance(encoding.boxes , __A ) # Test batched _A = image_processing(__A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __A ( self: Optional[int] ) -> str: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _A = image_processing(__A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __A ( self: Optional[Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _A = image_processing(__A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __A ( self: str ) -> Optional[Any]: # with apply_OCR = True _A = LayoutLMvaImageProcessor() from datasets import load_dataset _A = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) _A = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) _A = image_processing(__A , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _A = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 _A = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __A ) self.assertListEqual(encoding.boxes , __A ) # with apply_OCR = False _A = LayoutLMvaImageProcessor(apply_ocr=__A ) _A = image_processing(__A , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
712
def __A ( _lowercase = 1_00_00_00 ): '''simple docstring''' _A = 1 _A = 1 _A = {1: 1} for inputa in range(2 , _lowercase ): _A = 0 _A = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _A = (3 * number) + 1 counter += 1 if inputa not in counters: _A = counter if counter > pre_counter: _A = inputa _A = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
62
0
'''simple docstring''' import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _a ( nn.Module ): '''simple docstring''' def __init__( self ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : int = nn.Linear(3, 4 ) SCREAMING_SNAKE_CASE : Tuple = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(4, 5 ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(A ) ) ) class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(A, model.state_dict() ) SCREAMING_SNAKE_CASE : Tuple = os.path.join(A, 'index.json' ) self.assertTrue(os.path.isfile(A ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(A, F"{key}.dat" ) self.assertTrue(os.path.isfile(A ) ) # TODO: add tests on the fact weights are properly loaded def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: SCREAMING_SNAKE_CASE : int = torch.randn(2, 3, dtype=A ) with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : str = offload_weight(A, 'weight', A, {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(A, 'weight.dat' ) self.assertTrue(os.path.isfile(A ) ) self.assertDictEqual(A, {'weight': {'shape': [2, 3], 'dtype': str(A ).split('.' )[1]}} ) SCREAMING_SNAKE_CASE : Any = load_offloaded_weight(A, index['weight'] ) self.assertTrue(torch.equal(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ModelForTest() SCREAMING_SNAKE_CASE : List[str] = model.state_dict() SCREAMING_SNAKE_CASE : str = {k: v for k, v in state_dict.items() if 'linear2' not in k} SCREAMING_SNAKE_CASE : Optional[Any] = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(A, A ) SCREAMING_SNAKE_CASE : Any = OffloadedWeightsLoader(state_dict=A, save_folder=A ) # Every key is there with the right value self.assertEqual(sorted(A ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A, weight_map[key] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = {k: v for k, v in state_dict.items() if 'weight' in k} SCREAMING_SNAKE_CASE : int = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(A, A ) SCREAMING_SNAKE_CASE : List[str] = OffloadedWeightsLoader(state_dict=A, save_folder=A ) # Every key is there with the right value self.assertEqual(sorted(A ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A, weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(A, A ) # Duplicates are removed SCREAMING_SNAKE_CASE : List[str] = OffloadedWeightsLoader(state_dict=A, save_folder=A ) # Every key is there with the right value self.assertEqual(sorted(A ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A, weight_map[key] ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = {'a.1': 0, 'a.10': 1, 'a.2': 2} SCREAMING_SNAKE_CASE : Dict = extract_submodules_state_dict(A, ['a.1', 'a.2'] ) self.assertDictEqual(A, {'a.1': 0, 'a.2': 2} ) SCREAMING_SNAKE_CASE : Tuple = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} SCREAMING_SNAKE_CASE : str = extract_submodules_state_dict(A, ['a.1', 'a.2'] ) self.assertDictEqual(A, {'a.1.a': 0, 'a.2.a': 2} )
28
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : List[str] = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowercase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple=None , **UpperCamelCase__ : Tuple ): '''simple docstring''' logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Dict = kwargs.get('''model_save_dir''' , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = kwargs.get('''latest_model_name''' , UpperCamelCase__ ) def __call__( self : str , **UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {k: np.array(UpperCamelCase__ ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase__ , UpperCamelCase__ ) @staticmethod def __A ( UpperCamelCase__ : Union[str, Path] , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict=None ): '''simple docstring''' if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''' ) SCREAMING_SNAKE_CASE : List[str] = '''CPUExecutionProvider''' return ort.InferenceSession(UpperCamelCase__ , providers=[provider] , sess_options=UpperCamelCase__ ) def __A ( self : Tuple , UpperCamelCase__ : Union[str, Path] , UpperCamelCase__ : Optional[str] = None , **UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME SCREAMING_SNAKE_CASE : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) SCREAMING_SNAKE_CASE : Dict = Path(UpperCamelCase__ ).joinpath(UpperCamelCase__ ) try: shutil.copyfile(UpperCamelCase__ , UpperCamelCase__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) SCREAMING_SNAKE_CASE : Tuple = self.model_save_dir.joinpath(UpperCamelCase__ ) if src_path.exists(): SCREAMING_SNAKE_CASE : Union[str, Any] = Path(UpperCamelCase__ ).joinpath(UpperCamelCase__ ) try: shutil.copyfile(UpperCamelCase__ , UpperCamelCase__ ) except shutil.SameFileError: pass def __A ( self : Union[str, Any] , UpperCamelCase__ : Union[str, os.PathLike] , **UpperCamelCase__ : Tuple , ): '''simple docstring''' if os.path.isfile(UpperCamelCase__ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # saving model weights/files self._save_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def __A ( cls : Tuple , UpperCamelCase__ : Union[str, Path] , UpperCamelCase__ : Optional[Union[bool, str, None]] = None , UpperCamelCase__ : Optional[Union[str, None]] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional["ort.SessionOptions"] = None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Optional[Any] = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , provider=UpperCamelCase__ , sess_options=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = Path(UpperCamelCase__ ) # load model from hub else: # download model SCREAMING_SNAKE_CASE : int = hf_hub_download( repo_id=UpperCamelCase__ , filename=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , revision=UpperCamelCase__ , cache_dir=UpperCamelCase__ , force_download=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Dict = Path(UpperCamelCase__ ).parent SCREAMING_SNAKE_CASE : List[Any] = Path(UpperCamelCase__ ).name SCREAMING_SNAKE_CASE : str = OnnxRuntimeModel.load_model(UpperCamelCase__ , provider=UpperCamelCase__ , sess_options=UpperCamelCase__ ) return cls(model=UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def __A ( cls : List[Any] , UpperCamelCase__ : Union[str, Path] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = None , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = None if len(str(UpperCamelCase__ ).split('''@''' ) ) == 2: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = model_id.split('''@''' ) return cls._from_pretrained( model_id=UpperCamelCase__ , revision=UpperCamelCase__ , cache_dir=UpperCamelCase__ , force_download=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , **UpperCamelCase__ , )
248
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _snake_case : @property def A__ ( self : str ): return self.get_dummy_input() @property def A__ ( self : str ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def A__ ( self : Optional[int], __lowercase : Dict=True, __lowercase : List[Any]=False, __lowercase : Optional[int]=False, __lowercase : str=False, ): lowercase__ = 4 lowercase__ = 32 lowercase__ = (32, 32) lowercase__ = torch.manual_seed(0 ) lowercase__ = torch.device(lowerCAmelCase__ ) lowercase__ = (batch_size, num_channels) + sizes lowercase__ = randn_tensor(lowerCAmelCase__, generator=lowerCAmelCase__, device=lowerCAmelCase__ ) lowercase__ = {"hidden_states": hidden_states} if include_temb: lowercase__ = 128 lowercase__ = randn_tensor((batch_size, temb_channels), generator=lowerCAmelCase__, device=lowerCAmelCase__ ) if include_res_hidden_states_tuple: lowercase__ = torch.manual_seed(1 ) lowercase__ = (randn_tensor(lowerCAmelCase__, generator=lowerCAmelCase__, device=lowerCAmelCase__ ),) if include_encoder_hidden_states: lowercase__ = floats_tensor((batch_size, 32, 32) ).to(lowerCAmelCase__ ) if include_skip_sample: lowercase__ = randn_tensor(((batch_size, 3) + sizes), generator=lowerCAmelCase__, device=lowerCAmelCase__ ) return dummy_input def A__ ( self : str ): lowercase__ = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": lowercase__ = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) lowercase__ = self.dummy_input return init_dict, inputs_dict def A__ ( self : Any, __lowercase : str ): lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.block_class(**lowerCAmelCase__ ) unet_block.to(lowerCAmelCase__ ) unet_block.eval() with torch.no_grad(): lowercase__ = unet_block(**lowerCAmelCase__ ) if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): lowercase__ = output[0] self.assertEqual(output.shape, self.output_shape ) lowercase__ = output[0, -1, -3:, -3:] lowercase__ = torch.tensor(lowerCAmelCase__ ).to(lowerCAmelCase__ ) assert torch_all_close(output_slice.flatten(), lowerCAmelCase__, atol=5e-3 ) @unittest.skipIf(torch_device == "mps", "Training is not supported in mps" ) def A__ ( self : Union[str, Any] ): lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.block_class(**lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() lowercase__ = model(**lowerCAmelCase__ ) if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): lowercase__ = output[0] lowercase__ = torch.device(lowerCAmelCase__ ) lowercase__ = randn_tensor(output.shape, device=lowerCAmelCase__ ) lowercase__ = torch.nn.functional.mse_loss(lowerCAmelCase__, lowerCAmelCase__ ) loss.backward()
709
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _snake_case ( lowercase__): def __init__( self : Optional[Any], __lowercase : str = "▁", __lowercase : bool = True, __lowercase : Union[str, AddedToken] = "<unk>", __lowercase : Union[str, AddedToken] = "</s>", __lowercase : Union[str, AddedToken] = "<pad>", ): lowercase__ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } lowercase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowercase__ = token_dict["token"] lowercase__ = Tokenizer(Unigram() ) lowercase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ), " " ), normalizers.Lowercase(), ] ) lowercase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__lowercase, add_prefix_space=__lowercase ), pre_tokenizers.Digits(individual_digits=__lowercase ), pre_tokenizers.Punctuation(), ] ) lowercase__ = decoders.Metaspace(replacement=__lowercase, add_prefix_space=__lowercase ) lowercase__ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''', special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])], ) lowercase__ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__lowercase, __lowercase ) def A__ ( self : Union[str, Any], __lowercase : Union[str, List[str]], __lowercase : int = 8000, __lowercase : bool = True, ): lowercase__ = trainers.UnigramTrainer( vocab_size=__lowercase, special_tokens=self.special_tokens_list, show_progress=__lowercase, ) if isinstance(__lowercase, __lowercase ): lowercase__ = [files] self._tokenizer.train(__lowercase, trainer=__lowercase ) self.add_unk_id() def A__ ( self : List[Any], __lowercase : Union[Iterator[str], Iterator[Iterator[str]]], __lowercase : int = 8000, __lowercase : bool = True, ): lowercase__ = trainers.UnigramTrainer( vocab_size=__lowercase, special_tokens=self.special_tokens_list, show_progress=__lowercase, ) self._tokenizer.train_from_iterator(__lowercase, trainer=__lowercase ) self.add_unk_id() def A__ ( self : str ): lowercase__ = json.loads(self._tokenizer.to_str() ) lowercase__ = self.special_tokens["unk"]["id"] lowercase__ = Tokenizer.from_str(json.dumps(__lowercase ) )
37
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __A = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: List[Any] , **__A: Dict ) -> Optional[int]: requires_backends(self , ['''bs4'''] ) super().__init__(**__A ) def __A ( self: Tuple , __A: str ) -> List[Any]: _A = [] _A = [] _A = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _A = parent.find_all(child.name , recursive=__A ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__A ) else next(i for i, s in enumerate(__A , 1 ) if s is child ) ) _A = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __A ( self: Tuple , __A: str ) -> str: _A = BeautifulSoup(__A , '''html.parser''' ) _A = [] _A = [] _A = [] for element in html_code.descendants: if type(__A ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _A = html.unescape(__A ).strip() if not text_in_this_tag: continue all_doc_strings.append(__A ) _A ,_A = self.xpath_soup(__A ) stringaxtag_seq.append(__A ) stringaxsubs_seq.append(__A ) if len(__A ) != len(__A ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(__A ) != len(__A ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __A ( self: str , __A: Any , __A: List[Any] ) -> str: _A = '''''' for tagname, subs in zip(__A , __A ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self: Optional[int] , __A: Dict ) -> BatchFeature: _A = False # Check that strings has a valid type if isinstance(__A , __A ): _A = True elif isinstance(__A , (list, tuple) ): if len(__A ) == 0 or isinstance(html_strings[0] , __A ): _A = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' f"""but is of type {type(__A )}.""" ) _A = bool(isinstance(__A , (list, tuple) ) and (isinstance(html_strings[0] , __A )) ) if not is_batched: _A = [html_strings] # Get nodes + xpaths _A = [] _A = [] for html_string in html_strings: _A ,_A ,_A = self.get_three_from_single(__A ) nodes.append(__A ) _A = [] for node, tag_list, sub_list in zip(__A , __A , __A ): _A = self.construct_xpath(__A , __A ) xpath_strings.append(__A ) xpaths.append(__A ) # return as Dict _A = {'''nodes''': nodes, '''xpaths''': xpaths} _A = BatchFeature(data=__A , tensor_type=__A ) return encoded_inputs
484
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) # TODO Update this __A = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "esm" def __init__( self: Optional[int] , __A: str=None , __A: str=None , __A: Dict=None , __A: List[Any]=7_68 , __A: Union[str, Any]=12 , __A: Any=12 , __A: Optional[int]=30_72 , __A: Optional[Any]=0.1 , __A: str=0.1 , __A: str=10_26 , __A: List[str]=0.02 , __A: Any=1e-12 , __A: List[Any]="absolute" , __A: Optional[Any]=True , __A: int=None , __A: List[str]=False , __A: List[Any]=False , __A: List[Any]=None , __A: Dict=None , **__A: Optional[Any] , ) -> List[Any]: super().__init__(pad_token_id=__A , mask_token_id=__A , **__A ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = emb_layer_norm_before _A = token_dropout _A = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _A = EsmFoldConfig() elif isinstance(__A , __A ): _A = EsmFoldConfig(**__A ) _A = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _A = get_default_vocab_list() else: _A = vocab_list else: _A = None _A = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , __A ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A ( self: Dict ) -> Optional[Any]: _A = super().to_dict() if isinstance(self.esmfold_config , __A ): _A = self.esmfold_config.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = None A_ = True A_ = False A_ = False A_ = False A_ = 0 A_ = True A_ = False A_ = 128 A_ = None def __A ( self: Optional[Any] ) -> List[Any]: if self.trunk is None: _A = TrunkConfig() elif isinstance(self.trunk , __A ): _A = TrunkConfig(**self.trunk ) def __A ( self: Dict ) -> Dict: _A = asdict(self ) _A = self.trunk.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = 48 A_ = 1_024 A_ = 128 A_ = 32 A_ = 32 A_ = 32 A_ = 0 A_ = 0 A_ = False A_ = 4 A_ = 128 A_ = None def __A ( self: Tuple ) -> Any: if self.structure_module is None: _A = StructureModuleConfig() elif isinstance(self.structure_module , __A ): _A = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _A = self.sequence_state_dim // self.sequence_head_width _A = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def __A ( self: List[str] ) -> Optional[int]: _A = asdict(self ) _A = self.structure_module.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = 384 A_ = 128 A_ = 16 A_ = 128 A_ = 12 A_ = 4 A_ = 8 A_ = 0.1 A_ = 8 A_ = 1 A_ = 2 A_ = 7 A_ = 10 A_ = 1e-8 A_ = 1e5 def __A ( self: Optional[Any] ) -> str: return asdict(self ) def __A ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
484
1
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __A : Any = logging.get_logger(__name__) # pylint: disable=invalid-name __A : Optional[int] = 256 class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : Optional[int] = ["""melgan"""] def __init__( self : List[Any] , UpperCamelCase__ : SpectrogramNotesEncoder , UpperCamelCase__ : SpectrogramContEncoder , UpperCamelCase__ : TaFilmDecoder , UpperCamelCase__ : DDPMScheduler , UpperCamelCase__ : OnnxRuntimeModel if is_onnx_available() else Any , ): super().__init__() # From MELGAN A__ : List[Any] =math.log(1E-5 ) # Matches MelGAN training. A__ : Any =4.0 # Largest value for most examples A__ : Union[str, Any] =128 self.register_modules( notes_encoder=UpperCamelCase__ , continuous_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ , scheduler=UpperCamelCase__ , melgan=UpperCamelCase__ , ) def _UpperCAmelCase ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=(-1.0, 1.0) , UpperCamelCase__ : Union[str, Any]=False ): A__ : int =output_range if clip: A__ : int =torch.clip(UpperCamelCase__ , self.min_value , self.max_value ) # Scale to [0, 1]. A__ : Optional[int] =(features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _UpperCAmelCase ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int]=(-1.0, 1.0) , UpperCamelCase__ : int=False ): A__ : Union[str, Any] =input_range A__ : Union[str, Any] =torch.clip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if clip else outputs # Scale to [0, 1]. A__ : Optional[int] =(outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _UpperCAmelCase ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ): A__ : Optional[int] =input_tokens > 0 A__ : int =self.notes_encoder( encoder_input_tokens=UpperCamelCase__ , encoder_inputs_mask=UpperCamelCase__ ) A__ : List[str] =self.continuous_encoder( encoder_inputs=UpperCamelCase__ , encoder_inputs_mask=UpperCamelCase__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _UpperCAmelCase ( self : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): A__ : Any =noise_time if not torch.is_tensor(UpperCamelCase__ ): A__ : Dict =torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(UpperCamelCase__ ) and len(timesteps.shape ) == 0: A__ : str =timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A__ : List[str] =timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) A__ : int =self.decoder( encodings_and_masks=UpperCamelCase__ , decoder_input_tokens=UpperCamelCase__ , decoder_noise_time=UpperCamelCase__ ) return logits @torch.no_grad() def __call__( self : str , UpperCamelCase__ : List[List[int]] , UpperCamelCase__ : Optional[torch.Generator] = None , UpperCamelCase__ : int = 100 , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "numpy" , UpperCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase__ : int = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(UpperCamelCase__ )}.''' ) A__ : Optional[int] =np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) A__ : Union[str, Any] =np.zeros([1, 0, self.n_dims] , np.floataa ) A__ : List[Any] =torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase__ , device=self.device ) for i, encoder_input_tokens in enumerate(UpperCamelCase__ ): if i == 0: A__ : List[Any] =torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. A__ : Union[str, Any] =torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase__ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. A__ : Tuple =ones A__ : Tuple =self.scale_features( UpperCamelCase__ , output_range=[-1.0, 1.0] , clip=UpperCamelCase__ ) A__ : Tuple =self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=UpperCamelCase__ , continuous_mask=UpperCamelCase__ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop A__ : Union[str, Any] =randn_tensor( shape=encoder_continuous_inputs.shape , generator=UpperCamelCase__ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(UpperCamelCase__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): A__ : Optional[int] =self.decode( encodings_and_masks=UpperCamelCase__ , input_tokens=UpperCamelCase__ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 A__ : int =self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample A__ : List[str] =self.scale_to_features(UpperCamelCase__ , input_range=[-1.0, 1.0] ) A__ : List[str] =mel[:1] A__ : Any =mel.cpu().float().numpy() A__ : Optional[Any] =np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase__ , UpperCamelCase__ ) logger.info("Generated segment" , UpperCamelCase__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": A__ : List[str] =self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: A__ : List[Any] =full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=UpperCamelCase__ )
709
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[str] = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
595
0
"""simple docstring""" def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> bool: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(UpperCamelCase__ ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(UpperCamelCase__ ) == 1: return True _SCREAMING_SNAKE_CASE : str = series[1] - series[0] for index in range(len(UpperCamelCase__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> float: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(UpperCamelCase__ ) == 0: raise ValueError("""Input list must be a non empty list""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for val in series: answer += val return answer / len(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
338
class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase ): A__ = size A__ = [0] * size A__ = [0] * size @staticmethod def UpperCamelCase ( __lowerCamelCase ): return index | (index + 1) @staticmethod def UpperCamelCase ( __lowerCamelCase ): return (index & (index + 1)) - 1 def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = value while index < self.size: A__ = self.get_prev(__lowerCamelCase ) + 1 if current_left_border == index: A__ = value else: A__ = max(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) A__ = self.get_next(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): right -= 1 # Because of right is exclusive A__ = 0 while left <= right: A__ = self.get_prev(__lowerCamelCase ) if left <= current_left: A__ = max(__lowerCamelCase,self.tree[right] ) A__ = current_left else: A__ = max(__lowerCamelCase,self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
190
0
'''simple docstring''' _A : List[str] ={ '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } _A : Optional[Any] ={value: key for key, value in encode_dict.items()} def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: lowerCamelCase__ : Union[str, Any] = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: if set(UpperCamelCase ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) lowerCamelCase__ : str = """""" for word in coded.split(): while len(UpperCamelCase ) != 0: decoded += decode_dict[word[:5]] lowerCamelCase__ : List[str] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
700
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _A : Dict ='''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
631
0
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) lowerCAmelCase : Tuple = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def A_( A : List[str]): UpperCamelCase = {} state_dict.pop('pixel_mean' , A) state_dict.pop('pixel_std' , A) UpperCamelCase = r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCamelCase = key.replace(A , A) if re.match(A , A): UpperCamelCase = int(re.match(A , A).group(2)) if layer_nb == 0: UpperCamelCase = key.replace('layers.0' , 'proj_in') elif layer_nb == 1: UpperCamelCase = key.replace('layers.1' , 'layers.0') elif layer_nb == 2: UpperCamelCase = key.replace('layers.2' , 'proj_out') UpperCamelCase = value UpperCamelCase = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def A_( A : Dict , A : List[Any] , A : List[Any] , A : List[str]="ybelkada/segment-anything"): UpperCamelCase = hf_hub_download(A , f'''checkpoints/{model_name}.pth''') if "sam_vit_b" in model_name: UpperCamelCase = SamConfig() elif "sam_vit_l" in model_name: UpperCamelCase = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) UpperCamelCase = SamConfig( vision_config=A , ) elif "sam_vit_h" in model_name: UpperCamelCase = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) UpperCamelCase = SamConfig( vision_config=A , ) UpperCamelCase = torch.load(A , map_location='cpu') UpperCamelCase = replace_keys(A) UpperCamelCase = SamImageProcessor() UpperCamelCase = SamProcessor(image_processor=A) UpperCamelCase = SamModel(A) hf_model.load_state_dict(A) UpperCamelCase = hf_model.to('cuda') UpperCamelCase = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' UpperCamelCase = Image.open(requests.get(A , stream=A).raw).convert('RGB') UpperCamelCase = [[[400, 650]]] UpperCamelCase = [[1]] UpperCamelCase = processor(images=np.array(A) , return_tensors='pt').to('cuda') with torch.no_grad(): UpperCamelCase = hf_model(**A) UpperCamelCase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 UpperCamelCase = processor( images=np.array(A) , input_points=A , input_labels=A , return_tensors='pt').to('cuda') with torch.no_grad(): UpperCamelCase = hf_model(**A) UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 UpperCamelCase = ((75, 275, 1725, 850),) UpperCamelCase = processor(images=np.array(A) , input_boxes=A , return_tensors='pt').to('cuda') with torch.no_grad(): UpperCamelCase = hf_model(**A) UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. UpperCamelCase = [[[400, 650], [800, 650]]] UpperCamelCase = [[1, 1]] UpperCamelCase = processor( images=np.array(A) , input_points=A , input_labels=A , return_tensors='pt').to('cuda') with torch.no_grad(): UpperCamelCase = hf_model(**A) UpperCamelCase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() lowerCAmelCase : List[str] = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) lowerCAmelCase : Dict = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
3
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> Any: A__ = tempfile.mkdtemp() A__ = BlipImageProcessor() A__ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) A__ = BlipaProcessor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).tokenizer def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def snake_case__ ( self ) -> str: shutil.rmtree(self.tmpdirname ) def snake_case__ ( self ) -> List[str]: A__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self ) -> str: A__ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A__ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) A__ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> int: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = self.prepare_image_inputs() A__ = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors="np" ) A__ = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self ) -> Optional[int]: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = "lower newer" A__ = processor(text=SCREAMING_SNAKE_CASE__ ) A__ = tokenizer(SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self ) -> Tuple: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = "lower newer" A__ = self.prepare_image_inputs() A__ = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def snake_case__ ( self ) -> List[Any]: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Tuple: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = "lower newer" A__ = self.prepare_image_inputs() A__ = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
104
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : def __init__( self : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : List[Any]=32 , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : Tuple=10 , lowerCamelCase : Union[str, Any]=[10, 20, 30, 40] , lowerCamelCase : List[Any]=[1, 1, 2, 1] , lowerCamelCase : List[Any]=True , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]="relu" , lowerCamelCase : List[str]=3 , lowerCamelCase : Dict=None , ): """simple docstring""" __A : Optional[Any] = parent __A : Any = batch_size __A : int = image_size __A : Any = num_channels __A : Union[str, Any] = embeddings_size __A : int = hidden_sizes __A : str = depths __A : Dict = is_training __A : Optional[Any] = use_labels __A : Optional[int] = hidden_act __A : Union[str, Any] = num_labels __A : str = scope __A : List[str] = len(_lowerCAmelCase ) def lowercase_( self : Optional[Any] ): """simple docstring""" __A : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : str = None if self.use_labels: __A : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __A : Optional[Any] = self.get_config() return config, pixel_values, labels def lowercase_( self : Optional[Any] ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase_( self : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] ): """simple docstring""" __A : Dict = TFResNetModel(config=_lowerCAmelCase ) __A : Any = model(_lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_( self : Dict , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] ): """simple docstring""" __A : Any = self.num_labels __A : int = TFResNetForImageClassification(_lowerCAmelCase ) __A : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_( self : List[str] ): """simple docstring""" __A : List[str] = self.prepare_config_and_inputs() __A , __A , __A : Optional[int] = config_and_inputs __A : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __A ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCamelCase =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCamelCase =( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase =False lowerCamelCase =False lowerCamelCase =False lowerCamelCase =False lowerCamelCase =False def lowercase_( self : str ): """simple docstring""" __A : str = TFResNetModelTester(self ) __A : List[str] = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def lowercase_( self : int ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_( self : Tuple ): """simple docstring""" return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowercase_( self : Dict ): """simple docstring""" pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowercase_( self : List[str] ): """simple docstring""" pass def lowercase_( self : Dict ): """simple docstring""" __A , __A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_lowerCAmelCase ) __A : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Optional[int] = [*signature.parameters.keys()] __A : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowercase_( self : Tuple ): """simple docstring""" __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowercase_( self : Any ): """simple docstring""" def check_hidden_states_output(lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : Dict ): __A : Tuple = model_class(_lowerCAmelCase ) __A : Optional[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __A : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __A : Dict = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __A , __A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : Union[str, Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __A : str = layer_type __A : Optional[int] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : str = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowercase_( self : List[Any] ): """simple docstring""" __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowercase_( self : Dict ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : Optional[int] = TFResNetModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def A_ ( ) -> Any: """simple docstring""" __A : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __A ( unittest.TestCase ): @cached_property def lowercase_( self : Tuple ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase_( self : Tuple ): """simple docstring""" __A : Any = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __A : List[str] = self.default_image_processor __A : Any = prepare_img() __A : str = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __A : Any = model(**_lowerCAmelCase ) # verify the logits __A : List[str] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __A : Tuple = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCAmelCase , atol=1e-4 ) )
709
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging A__ : Dict =logging.get_logger(__name__) class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase =['''input_values''', '''padding_mask'''] def __init__( self : Optional[int] , lowerCamelCase : int = 1 , lowerCamelCase : int = 2_40_00 , lowerCamelCase : float = 0.0 , lowerCamelCase : float = None , lowerCamelCase : float = None , **lowerCamelCase : Dict , ): """simple docstring""" super().__init__(feature_size=lowerCamelCase , sampling_rate=lowerCamelCase , padding_value=lowerCamelCase , **lowerCamelCase ) __A : str = chunk_length_s __A : str = overlap @property def lowercase_( self : List[str] ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowercase_( self : List[str] ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : List[str] , lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase : Optional[Union[bool, str, PaddingStrategy]] = None , lowerCamelCase : Optional[bool] = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[int] = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs __A : List[Any] = True __A : List[str] = bool( isinstance(lowerCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: __A : Optional[Any] = [np.asarray(lowerCamelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(lowerCamelCase , np.ndarray ): __A : Union[str, Any] = np.asarray(lowerCamelCase , dtype=np.floataa ) elif isinstance(lowerCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __A : Optional[Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: __A : Tuple = [np.asarray(lowerCamelCase ).T] # verify inputs are valid for idx, example in enumerate(lowerCamelCase ): if example.ndim > 2: raise ValueError(f"Expected input shape (channels, length) but got shape {example.shape}" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"Expected mono audio but example has {example.shape[-1]} channels" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"Expected stereo audio but example has {example.shape[-1]} channels" ) __A : Optional[Any] = None __A : Dict = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __A : Optional[Any] = min(array.shape[0] for array in raw_audio ) __A : Dict = int(np.floor(max_length / self.chunk_stride ) ) __A : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __A : int = max(array.shape[0] for array in raw_audio ) __A : Optional[Any] = int(np.ceil(max_length / self.chunk_stride ) ) __A : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length __A : Optional[int] = """max_length""" else: __A : Optional[Any] = input_values # normal padding on batch if padded_inputs is None: __A : Tuple = self.pad( lowerCamelCase , max_length=lowerCamelCase , truncation=lowerCamelCase , padding=lowerCamelCase , return_attention_mask=lowerCamelCase , ) if padding: __A : List[Any] = padded_inputs.pop("""attention_mask""" ) __A : List[Any] = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: __A : Optional[Any] = example[..., None] input_values.append(example.T ) __A : str = input_values if return_tensors is not None: __A : Any = padded_inputs.convert_to_tensors(lowerCamelCase ) return padded_inputs
499
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowercase_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class __a ( SCREAMING_SNAKE_CASE ): def __init__( self : Any , **snake_case_ : str)-> Union[str, Any]: super().__init__(**snake_case_) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self : Any , snake_case_ : Union[str, List[str], "Image", List["Image"]] , **snake_case_ : Any)-> Optional[int]: return super().__call__(snake_case_ , **snake_case_) def UpperCamelCase ( self : List[Any] , **snake_case_ : str)-> Dict: __lowerCAmelCase ={} if "candidate_labels" in kwargs: __lowerCAmelCase =kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __lowerCAmelCase =kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCamelCase ( self : Dict , snake_case_ : List[Any] , snake_case_ : int=None , snake_case_ : Union[str, Any]="This is a photo of {}.")-> List[str]: __lowerCAmelCase =load_image(snake_case_) __lowerCAmelCase =self.image_processor(images=[image] , return_tensors=self.framework) __lowerCAmelCase =candidate_labels __lowerCAmelCase =[hypothesis_template.format(snake_case_) for x in candidate_labels] __lowerCAmelCase =self.tokenizer(snake_case_ , return_tensors=self.framework , padding=snake_case_) __lowerCAmelCase =[text_inputs] return inputs def UpperCamelCase ( self : List[str] , snake_case_ : str)-> Dict: __lowerCAmelCase =model_inputs.pop("""candidate_labels""") __lowerCAmelCase =model_inputs.pop("""text_inputs""") if isinstance(text_inputs[0] , snake_case_): __lowerCAmelCase =text_inputs[0] else: # Batching case. __lowerCAmelCase =text_inputs[0][0] __lowerCAmelCase =self.model(**snake_case_ , **snake_case_) __lowerCAmelCase ={ """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCamelCase ( self : Union[str, Any] , snake_case_ : List[str])-> Optional[Any]: __lowerCAmelCase =model_outputs.pop("""candidate_labels""") __lowerCAmelCase =model_outputs["""logits"""][0] if self.framework == "pt": __lowerCAmelCase =logits.softmax(dim=-1).squeeze(-1) __lowerCAmelCase =probs.tolist() if not isinstance(snake_case_ , snake_case_): __lowerCAmelCase =[scores] elif self.framework == "tf": __lowerCAmelCase =stable_softmax(snake_case_ , axis=-1) __lowerCAmelCase =probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""") __lowerCAmelCase =[ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(snake_case_ , snake_case_) , key=lambda snake_case_: -x[0]) ] return result
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Tuple = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[Any] = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[Any] = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __snake_case ( datasets.BuilderConfig ): __lowerCamelCase = None __lowerCamelCase = "utf-8" __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = True # deprecated __lowerCamelCase = None # deprecated __lowerCamelCase = 10 << 20 # 10MB __lowerCamelCase = None class __snake_case ( datasets.ArrowBasedBuilder ): __lowerCamelCase = JsonConfig def __a ( self ) -> Optional[Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' ) snake_case__ : str = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' ) if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' ) return datasets.DatasetInfo(features=self.config.features ) def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) snake_case__ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCamelCase , (str, list, tuple) ): snake_case__ : Any = data_files if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : Optional[Any] = [files] snake_case__ : List[str] = [dl_manager.iter_files(__UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] snake_case__ : List[Any] = [] for split_name, files in data_files.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : List[Any] = [files] snake_case__ : Any = [dl_manager.iter_files(__UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__UpperCamelCase , gen_kwargs={'files': files} ) ) return splits def __a ( self , __UpperCamelCase ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): snake_case__ : List[Any] = self.config.features.arrow_schema.field(__UpperCamelCase ).type snake_case__ : List[str] = pa_table.append_column(__UpperCamelCase , pa.array([None] * len(__UpperCamelCase ) , type=__UpperCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example snake_case__ : List[str] = table_cast(__UpperCamelCase , self.config.features.arrow_schema ) return pa_table def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Union[str, Any] = json.load(__UpperCamelCase ) # We keep only the field we are interested in snake_case__ : Tuple = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__UpperCamelCase , (list, tuple) ): snake_case__ : List[Any] = set().union(*[row.keys() for row in dataset] ) snake_case__ : List[Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} else: snake_case__ : List[Any] = dataset snake_case__ : Dict = pa.Table.from_pydict(__UpperCamelCase ) yield file_idx, self._cast_table(__UpperCamelCase ) # If the file has one json object per line else: with open(__UpperCamelCase , 'rb' ) as f: snake_case__ : Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small snake_case__ : Tuple = max(self.config.chunksize // 32 , 16 << 10 ) snake_case__ : Optional[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: snake_case__ : Optional[int] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__UpperCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": snake_case__ : int = batch.decode(self.config.encoding , errors=__UpperCamelCase ).encode('utf-8' ) try: while True: try: snake_case__ : List[str] = paj.read_json( io.BytesIO(__UpperCamelCase ) , read_options=paj.ReadOptions(block_size=__UpperCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__UpperCamelCase , pa.ArrowInvalid ) and "straddling" not in str(__UpperCamelCase ) or block_size > len(__UpperCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__UpperCamelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Tuple = json.load(__UpperCamelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__UpperCamelCase , __UpperCamelCase ): # list is the only sequence type supported in JSON try: snake_case__ : str = set().union(*[row.keys() for row in dataset] ) snake_case__ : Union[str, Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} snake_case__ : List[str] = pa.Table.from_pydict(__UpperCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__UpperCamelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__UpperCamelCase ) batch_idx += 1
699
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __a: List[str] = logging.get_logger(__name__) # General docstring __a: List[Any] = """RegNetConfig""" # Base docstring __a: Any = """facebook/regnet-y-040""" __a: List[str] = [1, 10_88, 7, 7] # Image classification docstring __a: Optional[Any] = """facebook/regnet-y-040""" __a: Dict = """tabby, tabby cat""" __a: List[str] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase = 3 , __lowerCAmelCase = 1 , __lowerCAmelCase = 1 , __lowerCAmelCase = "relu" , **__lowerCAmelCase , ) -> Union[str, Any]: super().__init__(**a_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase__ : Tuple = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase__ : Optional[Any] = tf.keras.layers.ConvaD( filters=a_ , kernel_size=a_ , strides=a_ , padding='''VALID''' , groups=a_ , use_bias=a_ , name='''convolution''' , ) lowercase__ : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) lowercase__ : int = ACTaFN[activation] if activation is not None else tf.identity def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[int]: lowercase__ : Union[str, Any] = self.convolution(self.padding(a_ ) ) lowercase__ : Optional[Any] = self.normalization(a_ ) lowercase__ : Dict = self.activation(a_ ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowerCAmelCase , **__lowerCAmelCase ) -> str: super().__init__(**a_ ) lowercase__ : Optional[int] = config.num_channels lowercase__ : List[Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: lowercase__ : str = shape_list(a_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase__ : int = tf.transpose(a_ , perm=(0, 2, 3, 1) ) lowercase__ : Optional[int] = self.embedder(a_ ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase = 2 , **__lowerCAmelCase ) -> int: super().__init__(**a_ ) lowercase__ : Optional[int] = tf.keras.layers.ConvaD( filters=a_ , kernel_size=1 , strides=a_ , use_bias=a_ , name='''convolution''' ) lowercase__ : Dict = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = False ) -> tf.Tensor: return self.normalization(self.convolution(a_ ) , training=a_ ) class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: super().__init__(**a_ ) lowercase__ : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a_ , name='''pooler''' ) lowercase__ : Dict = [ tf.keras.layers.ConvaD(filters=a_ , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=a_ , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def _lowerCAmelCase( self , __lowerCAmelCase ) -> Tuple: lowercase__ : Union[str, Any] = self.pooler(a_ ) for layer_module in self.attention: lowercase__ : Optional[Any] = layer_module(a_ ) lowercase__ : Dict = hidden_state * pooled return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 , **__lowerCAmelCase ) -> str: super().__init__(**a_ ) lowercase__ : List[str] = in_channels != out_channels or stride != 1 lowercase__ : int = max(1 , out_channels // config.groups_width ) lowercase__ : Optional[int] = ( TFRegNetShortCut(a_ , stride=a_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase__ : List[str] = [ TFRegNetConvLayer(a_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( a_ , stride=a_ , groups=a_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(a_ , kernel_size=1 , activation=a_ , name='''layer.2''' ), ] lowercase__ : Optional[int] = ACTaFN[config.hidden_act] def _lowerCAmelCase( self , __lowerCAmelCase ) -> Any: lowercase__ : Any = hidden_state for layer_module in self.layers: lowercase__ : Dict = layer_module(a_ ) lowercase__ : Dict = self.shortcut(a_ ) hidden_state += residual lowercase__ : List[Any] = self.activation(a_ ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 , **__lowerCAmelCase ) -> int: super().__init__(**a_ ) lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 , out_channels // config.groups_width ) lowercase__ : Any = ( TFRegNetShortCut(a_ , stride=a_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) lowercase__ : Union[str, Any] = [ TFRegNetConvLayer(a_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( a_ , stride=a_ , groups=a_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(a_ , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(a_ , kernel_size=1 , activation=a_ , name='''layer.3''' ), ] lowercase__ : Optional[int] = ACTaFN[config.hidden_act] def _lowerCAmelCase( self , __lowerCAmelCase ) -> Tuple: lowercase__ : Optional[Any] = hidden_state for layer_module in self.layers: lowercase__ : Dict = layer_module(a_ ) lowercase__ : Optional[Any] = self.shortcut(a_ ) hidden_state += residual lowercase__ : str = self.activation(a_ ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 2 , __lowerCAmelCase = 2 , **__lowerCAmelCase ) -> List[str]: super().__init__(**a_ ) lowercase__ : List[str] = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer lowercase__ : List[Any] = [ # downsampling is done in the first layer with stride of 2 layer(a_ , a_ , a_ , stride=a_ , name='''layers.0''' ), *[layer(a_ , a_ , a_ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def _lowerCAmelCase( self , __lowerCAmelCase ) -> Union[str, Any]: for layer_module in self.layers: lowercase__ : List[str] = layer_module(a_ ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: super().__init__(**a_ ) lowercase__ : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( a_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) lowercase__ : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(a_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(a_ , a_ , a_ , depth=a_ , name=F"""stages.{i+1}""" ) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = True ) -> TFBaseModelOutputWithNoAttention: lowercase__ : int = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : Optional[Any] = hidden_states + (hidden_state,) lowercase__ : Optional[Any] = stage_module(a_ ) if output_hidden_states: lowercase__ : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=a_ , hidden_states=a_ ) @keras_serializable class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' SCREAMING_SNAKE_CASE = RegNetConfig def __init__( self , __lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: super().__init__(**a_ ) lowercase__ : List[str] = config lowercase__ : List[str] = TFRegNetEmbeddings(a_ , name='''embedder''' ) lowercase__ : Optional[Any] = TFRegNetEncoder(a_ , name='''encoder''' ) lowercase__ : Tuple = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a_ , name='''pooler''' ) @unpack_inputs def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: lowercase__ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : int = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : str = self.embedder(a_ , training=a_ ) lowercase__ : Dict = self.encoder( a_ , output_hidden_states=a_ , return_dict=a_ , training=a_ ) lowercase__ : Tuple = encoder_outputs[0] lowercase__ : str = self.pooler(a_ ) # Change to NCHW output format have uniformity in the modules lowercase__ : str = tf.transpose(a_ , perm=(0, 3, 1, 2) ) lowercase__ : Optional[int] = tf.transpose(a_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase__ : Optional[int] = tuple([tf.transpose(a_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a_ , pooler_output=a_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = RegNetConfig SCREAMING_SNAKE_CASE = """regnet""" SCREAMING_SNAKE_CASE = """pixel_values""" @property def _lowerCAmelCase( self ) -> Dict: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} __a: Tuple = R"""\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n""" __a: Optional[int] = R"""\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n""" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCamelCase_ , ) class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: super().__init__(a_ , *a_ , **a_ ) lowercase__ : Optional[Any] = TFRegNetMainLayer(a_ , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Tuple = self.regnet( pixel_values=a_ , output_hidden_states=a_ , return_dict=a_ , training=a_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCamelCase_ , ) class UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: super().__init__(a_ , *a_ , **a_ ) lowercase__ : Tuple = config.num_labels lowercase__ : List[str] = TFRegNetMainLayer(a_ , name='''regnet''' ) # classification head lowercase__ : List[str] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCAmelCase( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: lowercase__ : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Dict = self.regnet( a_ , output_hidden_states=a_ , return_dict=a_ , training=a_ ) lowercase__ : List[Any] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier[0](a_ ) lowercase__ : str = self.classifier[1](a_ ) lowercase__ : List[str] = None if labels is None else self.hf_compute_loss(labels=a_ , logits=a_ ) if not return_dict: lowercase__ : Optional[int] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=a_ , logits=a_ , hidden_states=outputs.hidden_states )
152
"""simple docstring""" def A_ ( lowercase ) -> int: """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def A_ ( lowercase ) -> bool: """simple docstring""" UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Union[str, Any] = number while duplicate > 0: UpperCAmelCase_ ,UpperCAmelCase_ : Tuple = divmod(lowercase , 10 ) fact_sum += factorial(lowercase ) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") lowercase_ = int(input("Enter number: ").strip()) print( f"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
470
0
import requests def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE = {"""Content-Type""": """application/json"""} _SCREAMING_SNAKE_CASE = requests.post(SCREAMING_SNAKE_CASE_ , json={"""text""": message_body} , headers=SCREAMING_SNAKE_CASE_ ) if response.status_code != 2_00: _SCREAMING_SNAKE_CASE = ( """Request to slack returned an error """ F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
706
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(SCREAMING_SNAKE_CASE_ ): print(F"{i}\t\t{d}" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[float]: """simple docstring""" _SCREAMING_SNAKE_CASE = [float("""inf""" )] * vertex_count _SCREAMING_SNAKE_CASE = 0.0 for _ in range(vertex_count - 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: _SCREAMING_SNAKE_CASE = distance[u] + w _SCREAMING_SNAKE_CASE = check_negative_cycle(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : int = int(input("Enter number of vertices: ").strip()) UpperCamelCase__ : int = int(input("Enter number of edges: ").strip()) UpperCamelCase__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) UpperCamelCase__ : Optional[Any] = {"src": src, "dst": dest, "weight": weight} UpperCamelCase__ : Optional[Any] = int(input("\nEnter shortest path source:").strip()) UpperCamelCase__ : Any = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
0
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : str ) -> YolosConfig: """simple docstring""" _lowerCAmelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _lowerCAmelCase = 192 _lowerCAmelCase = 768 _lowerCAmelCase = 12 _lowerCAmelCase = 3 _lowerCAmelCase = [800, 1333] _lowerCAmelCase = False elif yolos_name == "yolos_s_dWr": _lowerCAmelCase = 330 _lowerCAmelCase = 14 _lowerCAmelCase = 6 _lowerCAmelCase = 1320 elif "yolos_s" in yolos_name: _lowerCAmelCase = 384 _lowerCAmelCase = 1536 _lowerCAmelCase = 12 _lowerCAmelCase = 6 elif "yolos_b" in yolos_name: _lowerCAmelCase = [800, 1344] _lowerCAmelCase = 91 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """coco-detection-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( snake_case_ : dict , snake_case_ : YolosConfig , snake_case_ : bool = False ) -> List[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[: config.hidden_size, :] _lowerCAmelCase = in_proj_bias[: config.hidden_size] _lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase = in_proj_weight[-config.hidden_size :, :] _lowerCAmelCase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( snake_case_ : str ) -> str: """simple docstring""" if "backbone" in name: _lowerCAmelCase = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: _lowerCAmelCase = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: _lowerCAmelCase = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: _lowerCAmelCase = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: _lowerCAmelCase = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _lowerCAmelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: _lowerCAmelCase = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: _lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: _lowerCAmelCase = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: _lowerCAmelCase = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: _lowerCAmelCase = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def __UpperCAmelCase ( snake_case_ : dict , snake_case_ : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCAmelCase = orig_state_dict.pop(snake_case_ ) if "qkv" in key: _lowerCAmelCase = key.split(""".""" ) _lowerCAmelCase = int(key_split[2] ) _lowerCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[ dim : dim * 2, : ] _lowerCAmelCase = val[-dim:, :] else: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[dim : dim * 2] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = val return orig_state_dict def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str , snake_case_ : str , snake_case_ : bool = False ) -> Any: """simple docstring""" _lowerCAmelCase = get_yolos_config(snake_case_ ) # load original state_dict _lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" )["""model"""] # load 🤗 model _lowerCAmelCase = YolosForObjectDetection(snake_case_ ) model.eval() _lowerCAmelCase = convert_state_dict(snake_case_ , snake_case_ ) model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by YolosImageProcessor _lowerCAmelCase = 800 if yolos_name != """yolos_ti""" else 512 _lowerCAmelCase = YolosImageProcessor(format="""coco_detection""" , size=snake_case_ ) _lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ) _lowerCAmelCase = model(**snake_case_ ) _lowerCAmelCase , _lowerCAmelCase = outputs.logits, outputs.pred_boxes _lowerCAmelCase , _lowerCAmelCase = None, None if yolos_name == "yolos_ti": _lowerCAmelCase = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) _lowerCAmelCase = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": _lowerCAmelCase = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) _lowerCAmelCase = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": _lowerCAmelCase = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) _lowerCAmelCase = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": _lowerCAmelCase = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) _lowerCAmelCase = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": _lowerCAmelCase = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) _lowerCAmelCase = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , snake_case_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , snake_case_ , atol=1e-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: _lowerCAmelCase = { """yolos_ti""": """yolos-tiny""", """yolos_s_200_pre""": """yolos-small""", """yolos_s_300_pre""": """yolos-small-300""", """yolos_s_dWr""": """yolos-small-dwr""", """yolos_base""": """yolos-base""", } print("""Pushing to the hub...""" ) _lowerCAmelCase = model_mapping[yolos_name] image_processor.push_to_hub(snake_case_ , organization="""hustvl""" ) model.push_to_hub(snake_case_ , organization="""hustvl""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
156
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __UpperCAmelCase ( snake_case_ : str = "isbn/0140328726" ) -> dict: """simple docstring""" _lowerCAmelCase = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: _lowerCAmelCase = F"""{olid} is not a valid Open Library olid""" raise ValueError(snake_case_ ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def __UpperCAmelCase ( snake_case_ : dict ) -> dict: """simple docstring""" _lowerCAmelCase = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } _lowerCAmelCase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _lowerCAmelCase = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] _lowerCAmelCase = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(snake_case_ , snake_case_ ): _lowerCAmelCase = """, """.join(snake_case_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE : List[Any] = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(F'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(F'\nSearching Open Library for ISBN: {isbn}...\n') try: SCREAMING_SNAKE_CASE : Tuple = summarize_book(get_openlibrary_data(F'isbn/{isbn}')) print('''\n'''.join(F'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'Sorry, there are no results for ISBN: {isbn}.')
156
1
'''simple docstring''' from collections.abc import Generator def A(): lowerCAmelCase_ , lowerCAmelCase_ = 0, 1 while True: lowerCAmelCase_ , lowerCAmelCase_ = b, a + b yield b def A(__a: int = 1000 ): lowerCAmelCase_ = 1 lowerCAmelCase_ = fibonacci_generator() while len(str(next(__a ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
720
from functools import lru_cache def A(__a: int ): lowerCAmelCase_ = 2 lowerCAmelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__a ) if n > 1: factors.add(__a ) return factors @lru_cache def A(__a: int ): return len(unique_prime_factors(__a ) ) def A(__a: list ): return len(set(__a ) ) in (0, 1) def A(__a: int ): lowerCAmelCase_ = 2 while True: # Increment each value of a generated range lowerCAmelCase_ = [base + i for i in range(__a )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCAmelCase_ = [upf_len(__a ) for x in group] checker.append(__a ) # If all numbers in the list are equal, return the group variable. if equality(__a ): return group # Increment our base variable by 1 base += 1 def A(__a: int = 4 ): lowerCAmelCase_ = run(__a ) return results[0] if len(__a ) else None if __name__ == "__main__": print(solution())
226
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _UpperCamelCase = (720, 1280) # Height, Width _UpperCamelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. _UpperCamelCase = 1 / 100 _UpperCamelCase = "" _UpperCamelCase = "" _UpperCamelCase = "" _UpperCamelCase = 250 def _lowercase ( ): __lowerCAmelCase, __lowerCAmelCase : List[Any] = get_dataset(lowercase__ , lowercase__ ) for index in range(lowercase__ ): __lowerCAmelCase : List[Any] = random.sample(range(len(lowercase__ ) ) , 4 ) __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Union[str, Any] = update_image_and_anno( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , filter_scale=lowercase__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCAmelCase : Dict = random_chars(3_2 ) __lowerCAmelCase : List[Any] = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowerCAmelCase : str = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , lowercase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) __lowerCAmelCase : Union[str, Any] = [] for anno in new_annos: __lowerCAmelCase : List[Any] = anno[3] - anno[1] __lowerCAmelCase : Tuple = anno[4] - anno[2] __lowerCAmelCase : Tuple = anno[1] + width / 2 __lowerCAmelCase : str = anno[2] + height / 2 __lowerCAmelCase : str = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(lowercase__ ) with open(f"""{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : int = [] __lowerCAmelCase : int = [] for label_file in glob.glob(os.path.join(lowercase__ , '''*.txt''' ) ): __lowerCAmelCase : List[str] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(lowercase__ ) as in_file: __lowerCAmelCase : Optional[Any] = in_file.readlines() __lowerCAmelCase : List[str] = os.path.join(lowercase__ , f"""{label_name}.jpg""" ) __lowerCAmelCase : List[str] = [] for obj_list in obj_lists: __lowerCAmelCase : Optional[Any] = obj_list.rstrip('''\n''' ).split(''' ''' ) __lowerCAmelCase : str = float(obj[1] ) - float(obj[3] ) / 2 __lowerCAmelCase : Optional[Any] = float(obj[2] ) - float(obj[4] ) / 2 __lowerCAmelCase : List[Any] = float(obj[1] ) + float(obj[3] ) / 2 __lowerCAmelCase : int = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowercase__ ) labels.append(lowercase__ ) return img_paths, labels def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 0.0 , ): __lowerCAmelCase : int = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __lowerCAmelCase : Dict = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowerCAmelCase : Optional[int] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowerCAmelCase : str = int(scale_x * output_size[1] ) __lowerCAmelCase : int = int(scale_y * output_size[0] ) __lowerCAmelCase : Dict = [] __lowerCAmelCase : Optional[int] = [] for i, index in enumerate(lowercase__ ): __lowerCAmelCase : Optional[Any] = all_img_list[index] path_list.append(lowercase__ ) __lowerCAmelCase : Optional[int] = all_annos[index] __lowerCAmelCase : int = cva.imread(lowercase__ ) if i == 0: # top-left __lowerCAmelCase : Dict = cva.resize(lowercase__ , (divid_point_x, divid_point_y) ) __lowerCAmelCase : Tuple = img for bbox in img_annos: __lowerCAmelCase : Any = bbox[1] * scale_x __lowerCAmelCase : Tuple = bbox[2] * scale_y __lowerCAmelCase : List[Any] = bbox[3] * scale_x __lowerCAmelCase : Any = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __lowerCAmelCase : Tuple = cva.resize(lowercase__ , (output_size[1] - divid_point_x, divid_point_y) ) __lowerCAmelCase : Union[str, Any] = img for bbox in img_annos: __lowerCAmelCase : Optional[Any] = scale_x + bbox[1] * (1 - scale_x) __lowerCAmelCase : Union[str, Any] = bbox[2] * scale_y __lowerCAmelCase : Union[str, Any] = scale_x + bbox[3] * (1 - scale_x) __lowerCAmelCase : Dict = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __lowerCAmelCase : Any = cva.resize(lowercase__ , (divid_point_x, output_size[0] - divid_point_y) ) __lowerCAmelCase : Union[str, Any] = img for bbox in img_annos: __lowerCAmelCase : Union[str, Any] = bbox[1] * scale_x __lowerCAmelCase : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) __lowerCAmelCase : int = bbox[3] * scale_x __lowerCAmelCase : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __lowerCAmelCase : List[Any] = cva.resize( lowercase__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __lowerCAmelCase : Tuple = img for bbox in img_annos: __lowerCAmelCase : List[str] = scale_x + bbox[1] * (1 - scale_x) __lowerCAmelCase : Union[str, Any] = scale_y + bbox[2] * (1 - scale_y) __lowerCAmelCase : Any = scale_x + bbox[3] * (1 - scale_x) __lowerCAmelCase : Optional[Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __lowerCAmelCase : str = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _lowercase ( lowercase__ ): assert number_char > 1, "The number of character should greater than 1" __lowerCAmelCase : str = ascii_lowercase + digits return "".join(random.choice(lowercase__ ) for _ in range(lowercase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
492
from __future__ import annotations import math def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(lowercase__ ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , lowercase__ , lowercase__ , lowercase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowercase__ , lowercase__ , lowercase__ ) , ) return min( minimax(depth + 1 , node_index * 2 , lowercase__ , lowercase__ , lowercase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowercase__ , lowercase__ , lowercase__ ) , ) def _lowercase ( ): __lowerCAmelCase : Any = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] __lowerCAmelCase : int = math.log(len(lowercase__ ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , lowercase__ , lowercase__ , lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
492
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __a ( __lowerCamelCase ): """simple docstring""" _A : List[str] = "microsoft/speecht5_tts" _A : Optional[int] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _A : Dict = "text_reader" _A : Tuple = SpeechTaProcessor _A : str = SpeechTaForTextToSpeech _A : List[Any] = SpeechTaHifiGan _A : Tuple = ["text"] _A : str = ["audio"] def __A ( self : Any ) -> int: '''simple docstring''' if self.post_processor is None: SCREAMING_SNAKE_CASE__ ="""microsoft/speecht5_hifigan""" super().setup() def __A ( self : List[str] ,_UpperCamelCase : List[str] ,_UpperCamelCase : int=None ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.pre_processor(text=_UpperCamelCase ,return_tensors="""pt""" ,truncation=_UpperCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) SCREAMING_SNAKE_CASE__ =load_dataset("""Matthijs/cmu-arctic-xvectors""" ,split="""validation""" ) SCREAMING_SNAKE_CASE__ =torch.tensor(embeddings_dataset[7_3_0_5]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __A ( self : Dict ,_UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**_UpperCamelCase ) def __A ( self : Optional[Any] ,_UpperCamelCase : Dict ) -> str: '''simple docstring''' with torch.no_grad(): return self.post_processor(_UpperCamelCase ).cpu().detach()
588
import warnings from functools import wraps from typing import Callable def UpperCAmelCase_ ( __UpperCamelCase ): @wraps(__UpperCamelCase ) def _inner_fn(*__UpperCamelCase, **__UpperCamelCase ): warnings.warn( (f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future."""), __UpperCamelCase, ) return fn(*__UpperCamelCase, **__UpperCamelCase ) return _inner_fn
588
1
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""", [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""", ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def UpperCamelCase ( _lowerCAmelCase : List[str], _lowerCAmelCase : Tuple, _lowerCAmelCase : List[str] ) -> Union[str, Any]: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config, """IN_MEMORY_MAX_SIZE""", _lowerCAmelCase ) _UpperCAmelCase : Tuple = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: _UpperCAmelCase : Optional[Any] = dataset_size < in_memory_max_size else: _UpperCAmelCase : Tuple = False _UpperCAmelCase : List[str] = is_small_dataset(_lowerCAmelCase ) assert result == expected
238
"""simple docstring""" from __future__ import annotations lowerCamelCase__ : Optional[int] = [True] * 1_00_00_01 lowerCamelCase__ : List[Any] = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): lowerCamelCase__ : Optional[Any] = False i += 1 def UpperCamelCase ( _lowerCAmelCase : int ) -> bool: return seive[n] def UpperCamelCase ( _lowerCAmelCase : int ) -> bool: return any(digit in """02468""" for digit in str(_lowerCAmelCase ) ) def UpperCamelCase ( _lowerCAmelCase : int = 1000000 ) -> list[int]: _UpperCAmelCase : List[Any] = [2] # result already includes the number 2. for num in range(3, limit + 1, 2 ): if is_prime(_lowerCAmelCase ) and not contains_an_even_digit(_lowerCAmelCase ): _UpperCAmelCase : List[Any] = str(_lowerCAmelCase ) _UpperCAmelCase : Optional[int] = [int(str_num[j:] + str_num[:j] ) for j in range(len(_lowerCAmelCase ) )] if all(is_prime(_lowerCAmelCase ) for i in list_nums ): result.append(_lowerCAmelCase ) return result def UpperCamelCase ( ) -> int: return len(find_circular_primes() ) if __name__ == "__main__": print(F'''{len(find_circular_primes()) = }''')
238
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Any = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCamelCase__ ( __lowerCamelCase ): """simple docstring""" __magic_name__ = '''canine''' def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1_6384 , snake_case__=16 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=0 , snake_case__=0xE0_00 , snake_case__=0xE0_01 , snake_case__=4 , snake_case__=4 , snake_case__=8 , snake_case__=1_6384 , snake_case__=128 , **snake_case__ , ): '''simple docstring''' super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Union[str, Any] = type_vocab_size _lowerCAmelCase : List[str] = layer_norm_eps # Character config: _lowerCAmelCase : List[Any] = downsampling_rate _lowerCAmelCase : Union[str, Any] = upsampling_kernel_size _lowerCAmelCase : Optional[Any] = num_hash_functions _lowerCAmelCase : str = num_hash_buckets _lowerCAmelCase : int = local_transformer_stride
707
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCAmelCase : Tuple = False lowerCAmelCase : str = True lowerCAmelCase : List[Any] = False if __name__ == "__main__": lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowerCAmelCase : Optional[int] = parser.parse_args() lowerCAmelCase : int = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } lowerCAmelCase : int = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } lowerCAmelCase : Optional[Any] = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: lowerCAmelCase : int = reader.read() lowerCAmelCase : List[str] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): lowerCAmelCase : str = UNetaDModel(**config) else: lowerCAmelCase : Union[str, Any] = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel lowerCAmelCase : Dict = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCAmelCase : Union[str, Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCAmelCase : str = config[key] del config[key] lowerCAmelCase : Optional[int] = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] lowerCAmelCase : Dict = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: lowerCAmelCase : Tuple = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) lowerCAmelCase : str = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue lowerCAmelCase : str = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: lowerCAmelCase : Dict = param_value lowerCAmelCase : Tuple = True if not has_changed: lowerCAmelCase : Tuple = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
630
0
"""simple docstring""" from bisect import bisect from itertools import accumulate def A_ ( lowercase , lowercase , lowercase , lowercase ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[Any] = sorted(zip(lowercase , lowercase ) , key=lambda lowercase : x[0] / x[1] , reverse=lowercase ) UpperCAmelCase_ ,UpperCAmelCase_ : List[Any] = [i[0] for i in r], [i[1] for i in r] UpperCAmelCase_ : int = list(accumulate(lowercase ) ) UpperCAmelCase_ : Optional[Any] = bisect(lowercase , lowercase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
470
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
470
1
import functools def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_SCREAMING_SNAKE_CASE ) == 0: return 0 if min(_SCREAMING_SNAKE_CASE ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_SCREAMING_SNAKE_CASE ) >= 366: raise ValueError("All days elements should be less than 366" ) snake_case__ = set(_SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __magic_name__ = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''CLIPFeatureExtractor'''] __magic_name__ = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
530
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : int =OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) __lowerCAmelCase : int =OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __lowerCAmelCase : Any =OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __lowerCAmelCase : Union[str, Any] =OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) __lowerCAmelCase : Optional[int] =OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) __lowerCAmelCase : int =OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) __lowerCAmelCase : Optional[Any] =OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) __lowerCAmelCase : str =OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) __lowerCAmelCase : Dict =OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) __lowerCAmelCase : Optional[Any] =OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) __lowerCAmelCase : Optional[int] =OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) __lowerCAmelCase : Union[str, Any] =OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) __lowerCAmelCase : List[Any] =OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) __lowerCAmelCase : Dict =OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) __lowerCAmelCase : Dict =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __lowerCAmelCase : List[Any] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __lowerCAmelCase : str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __lowerCAmelCase : Union[str, Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __lowerCAmelCase : int =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __lowerCAmelCase : int =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __lowerCAmelCase : Optional[Any] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __lowerCAmelCase : List[str] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __lowerCAmelCase : str =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __lowerCAmelCase : List[str] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __lowerCAmelCase : Any =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __lowerCAmelCase : Tuple =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __lowerCAmelCase : Tuple =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __lowerCAmelCase : Union[str, Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCAmelCase ( _BaseAutoModelClass ): __lowercase = FLAX_MODEL_MAPPING __lowerCAmelCase : str =auto_class_update(FlaxAutoModel) class UpperCAmelCase ( _BaseAutoModelClass ): __lowercase = FLAX_MODEL_FOR_PRETRAINING_MAPPING __lowerCAmelCase : Union[str, Any] =auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class UpperCAmelCase ( _BaseAutoModelClass ): __lowercase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __lowerCAmelCase : List[str] =auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class UpperCAmelCase ( _BaseAutoModelClass ): __lowercase = FLAX_MODEL_FOR_MASKED_LM_MAPPING __lowerCAmelCase : str =auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class UpperCAmelCase ( _BaseAutoModelClass ): __lowercase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __lowerCAmelCase : Dict =auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class UpperCAmelCase ( _BaseAutoModelClass ): __lowercase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __lowerCAmelCase : Any =auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class UpperCAmelCase ( _BaseAutoModelClass ): __lowercase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __lowerCAmelCase : Union[str, Any] =auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class UpperCAmelCase ( _BaseAutoModelClass ): __lowercase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __lowerCAmelCase : Optional[Any] =auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class UpperCAmelCase ( _BaseAutoModelClass ): __lowercase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __lowerCAmelCase : Dict =auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class UpperCAmelCase ( _BaseAutoModelClass ): __lowercase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __lowerCAmelCase : Tuple =auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class UpperCAmelCase ( _BaseAutoModelClass ): __lowercase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Optional[int] =auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class UpperCAmelCase ( _BaseAutoModelClass ): __lowercase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __lowerCAmelCase : int =auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class UpperCAmelCase ( _BaseAutoModelClass ): __lowercase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __lowerCAmelCase : Any =auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
440
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = ["""image_processor""", """tokenizer"""] __lowerCAmelCase = """LayoutLMv3ImageProcessor""" __lowerCAmelCase = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self : Dict , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCamelCase_ , ) UpperCamelCase = kwargs.pop("""feature_extractor""" ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowerCamelCase_ : Union[List[List[int]], List[List[List[int]]]] = None , lowerCamelCase_ : Optional[Union[List[int], List[List[int]]]] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 0 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor UpperCamelCase = self.image_processor(images=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase = features["""words"""] UpperCamelCase = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) # add pixel values UpperCamelCase = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: UpperCamelCase = self.get_overflowing_images(lowerCamelCase_ , encoded_inputs["""overflow_to_sample_mapping"""] ) UpperCamelCase = images return encoded_inputs def lowerCamelCase_ ( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict ): """simple docstring""" UpperCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f""" {len(lowerCamelCase_ )} and {len(lowerCamelCase_ )}""" ) return images_with_overflow def lowerCamelCase_ ( self : Union[str, Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : str ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCamelCase_ , ) return self.image_processor_class @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCamelCase_ , ) return self.image_processor
537
0
'''simple docstring''' from __future__ import annotations import pandas as pd def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] , __lowerCamelCase :int ): _lowerCAmelCase = [0] * no_of_processes _lowerCAmelCase = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__lowerCamelCase ): _lowerCAmelCase = burst_time[i] _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 999999999 _lowerCAmelCase = 0 _lowerCAmelCase = False # Process until all processes are completed while complete != no_of_processes: for j in range(__lowerCamelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _lowerCAmelCase = remaining_time[j] _lowerCAmelCase = j _lowerCAmelCase = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _lowerCAmelCase = remaining_time[short] if minm == 0: _lowerCAmelCase = 999999999 if remaining_time[short] == 0: complete += 1 _lowerCAmelCase = False # Find finish time of current process _lowerCAmelCase = increment_time + 1 # Calculate waiting time _lowerCAmelCase = finish_time - arrival_time[short] _lowerCAmelCase = finar - burst_time[short] if waiting_time[short] < 0: _lowerCAmelCase = 0 # Increment time increment_time += 1 return waiting_time def A (__lowerCamelCase :list[int] , __lowerCamelCase :int , __lowerCamelCase :list[int] ): _lowerCAmelCase = [0] * no_of_processes for i in range(__lowerCamelCase ): _lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time def A (__lowerCamelCase :list[int] , __lowerCamelCase :list[int] , __lowerCamelCase :int ): _lowerCAmelCase = 0 _lowerCAmelCase = 0 for i in range(__lowerCamelCase ): _lowerCAmelCase = total_waiting_time + waiting_time[i] _lowerCAmelCase = total_turn_around_time + turn_around_time[i] print(f'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") _lowercase = int(input()) _lowercase = [0] * no_of_processes _lowercase = [0] * no_of_processes _lowercase = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) _lowercase , _lowercase = map(int, input().split()) _lowercase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _lowercase = burst_time _lowercase = no_of_processes _lowercase = waiting_time _lowercase = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) _lowercase = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
717
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def A (__lowerCamelCase :str ): _lowerCAmelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _lowerCAmelCase = 128 elif "12-12" in model_name: _lowerCAmelCase = 12 _lowerCAmelCase = 12 elif "14-14" in model_name: _lowerCAmelCase = 14 _lowerCAmelCase = 14 elif "16-16" in model_name: _lowerCAmelCase = 16 _lowerCAmelCase = 16 else: raise ValueError("""Model not supported""" ) _lowerCAmelCase = """huggingface/label-files""" if "speech-commands" in model_name: _lowerCAmelCase = 35 _lowerCAmelCase = """speech-commands-v2-id2label.json""" else: _lowerCAmelCase = 527 _lowerCAmelCase = """audioset-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def A (__lowerCamelCase :Dict ): if "module.v" in name: _lowerCAmelCase = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: _lowerCAmelCase = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: _lowerCAmelCase = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: _lowerCAmelCase = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _lowerCAmelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: _lowerCAmelCase = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: _lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _lowerCAmelCase = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: _lowerCAmelCase = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: _lowerCAmelCase = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): for key in orig_state_dict.copy().keys(): _lowerCAmelCase = orig_state_dict.pop(__lowerCamelCase ) if "qkv" in key: _lowerCAmelCase = key.split(""".""" ) _lowerCAmelCase = int(key_split[3] ) _lowerCAmelCase = config.hidden_size if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] else: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[dim : dim * 2] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = val return orig_state_dict def A (__lowerCamelCase :str ): _lowerCAmelCase = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) @torch.no_grad() def A (__lowerCamelCase :List[Any] , __lowerCamelCase :Union[str, Any] , __lowerCamelCase :List[Any]=False ): _lowerCAmelCase = get_audio_spectrogram_transformer_config(__lowerCamelCase ) _lowerCAmelCase = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" ) # remove some keys remove_keys(__lowerCamelCase ) # rename some keys _lowerCAmelCase = convert_state_dict(__lowerCamelCase , __lowerCamelCase ) # load 🤗 model _lowerCAmelCase = ASTForAudioClassification(__lowerCamelCase ) model.eval() model.load_state_dict(__lowerCamelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _lowerCAmelCase = -4.2_677_393 if """speech-commands""" not in model_name else -6.845_978 _lowerCAmelCase = 4.5_689_974 if """speech-commands""" not in model_name else 5.5_654_526 _lowerCAmelCase = 1024 if """speech-commands""" not in model_name else 128 _lowerCAmelCase = ASTFeatureExtractor(mean=__lowerCamelCase , std=__lowerCamelCase , max_length=__lowerCamelCase ) if "speech-commands" in model_name: _lowerCAmelCase = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) _lowerCAmelCase = dataset[0]["""audio"""]["""array"""] else: _lowerCAmelCase = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) _lowerCAmelCase , _lowerCAmelCase = torchaudio.load(__lowerCamelCase ) _lowerCAmelCase = waveform.squeeze().numpy() _lowerCAmelCase = feature_extractor(__lowerCamelCase , sampling_rate=16000 , return_tensors="""pt""" ) # forward pass _lowerCAmelCase = model(**__lowerCamelCase ) _lowerCAmelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _lowerCAmelCase = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _lowerCAmelCase = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _lowerCAmelCase = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _lowerCAmelCase = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _lowerCAmelCase = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _lowerCAmelCase = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _lowerCAmelCase = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": _lowerCAmelCase = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f'MIT/{model_name}' ) feature_extractor.push_to_hub(f'MIT/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
162
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=18 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=400 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=True ,) -> Dict: UpperCAmelCase_ : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : List[str] = min_resolution UpperCAmelCase_ : Any = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : Any = size UpperCAmelCase_ : str = do_normalize def a__ ( self ) -> Optional[int]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ImageGPTImageProcessor if is_vision_available() else None def a__ ( self ) -> int: UpperCAmelCase_ : Dict = ImageGPTImageProcessingTester(self ) @property def a__ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''clusters''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_resize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''size''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_normalize''' ) ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 18} ) UpperCAmelCase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) def a__ ( self ) -> int: UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase_ : Tuple = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,obj[key] ) ) else: self.assertEqual(obj[key] ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Any = os.path.join(_SCREAMING_SNAKE_CASE ,'''image_processor.json''' ) image_processor_first.to_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = self.image_processing_class.from_json_file(_SCREAMING_SNAKE_CASE ).to_dict() UpperCAmelCase_ : int = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = self.image_processing_class.from_pretrained(_SCREAMING_SNAKE_CASE ).to_dict() UpperCAmelCase_ : Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,_SCREAMING_SNAKE_CASE ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def a__ ( self ) -> str: pass def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : int = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) UpperCAmelCase_ : Optional[int] = Image.open(dataset[4]['''file'''] ) UpperCAmelCase_ : Any = Image.open(dataset[5]['''file'''] ) UpperCAmelCase_ : Union[str, Any] = [imagea, imagea] return images @require_vision @require_torch class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> List[str]: UpperCAmelCase_ : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) UpperCAmelCase_ : Any = prepare_images() # test non-batched UpperCAmelCase_ : Tuple = image_processing(images[0] ,return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1_024) ) UpperCAmelCase_ : str = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,_SCREAMING_SNAKE_CASE ) # test batched UpperCAmelCase_ : List[str] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1_024) ) UpperCAmelCase_ : List[str] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,_SCREAMING_SNAKE_CASE )
30
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } UpperCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = LEDTokenizer _lowercase = ['input_ids', 'attention_mask'] def __init__( self : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : int="replace" , lowerCamelCase__ : Union[str, Any]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Tuple="</s>" , lowerCamelCase__ : Optional[int]="<s>" , lowerCamelCase__ : str="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Any="<mask>" , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : int=True , **lowerCamelCase__ : Union[str, Any] , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : List[str] = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : Optional[Any] = add_prefix_space a__ : List[str] = pre_tok_class(**lowerCamelCase__ ) a__ : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ : Any = "post_processor" a__ : str = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: a__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Optional[Any] = tuple(state["sep"] ) if "cls" in state: a__ : Optional[Any] = tuple(state["cls"] ) a__ : Optional[int] = False if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Dict = add_prefix_space a__ : int = True if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets: a__ : List[Any] = trim_offsets a__ : List[str] = True if changes_to_apply: a__ : int = getattr(lowerCamelCase__ , state.pop("type" ) ) a__ : int = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCamelCase( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Union[str, Any] ): a__ : Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value a__ : Union[str, Any] = value def _UpperCamelCase( self : Any , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : List[str] = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Any , *lowerCamelCase__ : Dict , **lowerCamelCase__ : Optional[Any] ): a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : List[str] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any]=None ): a__ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : List[str] = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase( self : Dict , lowerCamelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): a__ : str = super()._pad( encoded_inputs=lowerCamelCase__ , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) # Load from model defaults if return_attention_mask is None: a__ : Optional[int] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a__ : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a__ : Dict = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase__ ) if needs_to_be_padded: a__ : Union[str, Any] = len(lowerCamelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a__ : List[Any] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": a__ : Any = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
37
0
"""simple docstring""" def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) A = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" A = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" A = max(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase__ ) , b_binary.zfill(UpperCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not nums: return 0 A = nums[0] A = 0 for num in nums[1:]: A , A = ( max_excluding + num, max(UpperCamelCase__ , UpperCamelCase__ ), ) return max(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
91
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Tuple = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
275
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __A ( a_ : Callable[[int | float], int | float] , a_ : int | float , a_ : int | float , a_ : int = 1_00 , )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x_start SCREAMING_SNAKE_CASE : Union[str, Any] = fnc(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Optional[int] = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : str = xa SCREAMING_SNAKE_CASE : Any = fxa return length if __name__ == "__main__": def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowerCamelCase__ : str = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
698
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__( self : Union[str, Any] , a : Dict , a : Optional[int]=7 , a : Tuple=3 , a : Tuple=18 , a : Tuple=30 , a : List[Any]=400 , a : str=True , a : Optional[Any]=None , a : Union[str, Any]=True , a : List[str]=None , a : Dict=True , ) -> Dict: """simple docstring""" lowercase = size if size is not None else {'''shortest_edge''': 20} lowercase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_center_crop lowercase = crop_size lowercase = do_flip_channel_order def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _lowerCAmelCase ( __snake_case , unittest.TestCase ): __lowerCAmelCase : str = MobileViTImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" lowercase = MobileViTImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , '''do_resize''' ) ) self.assertTrue(hasattr(a , '''size''' ) ) self.assertTrue(hasattr(a , '''do_center_crop''' ) ) self.assertTrue(hasattr(a , '''center_crop''' ) ) self.assertTrue(hasattr(a , '''do_flip_channel_order''' ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase = image_processing(a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase = image_processing(a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase = image_processing(a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
396
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
396
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = KandinskyVaaControlnetImgaImgPipeline A__ : Tuple = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] A__ : Dict = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] A__ : str = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] A__ : Union[str, Any] = False @property def snake_case_ ( self : Optional[int] ): return 32 @property def snake_case_ ( self : int ): return 32 @property def snake_case_ ( self : Tuple ): return self.time_input_dim @property def snake_case_ ( self : Tuple ): return self.time_input_dim * 4 @property def snake_case_ ( self : Dict ): return 100 @property def snake_case_ ( self : List[Any] ): torch.manual_seed(0 ) __lowercase : Optional[Any] = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __lowercase : List[str] = UNetaDConditionModel(**_snake_case ) return model @property def snake_case_ ( self : Any ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case_ ( self : Tuple ): torch.manual_seed(0 ) __lowercase : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self : Dict ): __lowercase : Union[str, Any] = self.dummy_unet __lowercase : Dict = self.dummy_movq __lowercase : Optional[int] = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } __lowercase : str = DDIMScheduler(**_snake_case ) __lowercase : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case_ ( self : Optional[int] , _snake_case : str , _snake_case : Any=0 ): __lowercase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_snake_case ) ).to(_snake_case ) __lowercase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _snake_case ) # create init_image __lowercase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) __lowercase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase : List[Any] = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((256, 256) ) # create hint __lowercase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) if str(_snake_case ).startswith('''mps''' ): __lowercase : Any = torch.manual_seed(_snake_case ) else: __lowercase : Optional[int] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __lowercase : Optional[int] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def snake_case_ ( self : List[Any] ): __lowercase : int = "cpu" __lowercase : int = self.get_dummy_components() __lowercase : Optional[int] = self.pipeline_class(**_snake_case ) __lowercase : Tuple = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowercase : Union[str, Any] = pipe(**self.get_dummy_inputs(_snake_case ) ) __lowercase : Dict = output.images __lowercase : str = pipe( **self.get_dummy_inputs(_snake_case ) , return_dict=_snake_case , )[0] __lowercase : str = image[0, -3:, -3:, -1] __lowercase : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase : List[Any] = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self : List[str] ): __lowercase : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) __lowercase : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __lowercase : Optional[Any] = init_image.resize((512, 512) ) __lowercase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) __lowercase : List[str] = torch.from_numpy(np.array(_snake_case ) ).float() / 2_55.0 __lowercase : List[str] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __lowercase : Tuple = "A robot, 4k photo" __lowercase : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) __lowercase : Tuple = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) __lowercase : Optional[int] = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) __lowercase : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase : Tuple = pipe_prior( _snake_case , image=_snake_case , strength=0.85 , generator=_snake_case , negative_prompt='''''' , ).to_tuple() __lowercase : List[Any] = pipeline( image=_snake_case , image_embeds=_snake_case , negative_image_embeds=_snake_case , hint=_snake_case , generator=_snake_case , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) __lowercase : str = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_snake_case , _snake_case )
509
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE__ = Lock() def lowercase ( a , a , a , a , a , a , a ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(a ) process_lock.release() # receive your right neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ :str = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left SCREAMING_SNAKE_CASE_ :int = min(a , a ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(a ) process_lock.release() # receive your left neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ :int = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right SCREAMING_SNAKE_CASE_ :Dict = max(a , a ) # after all swaps are performed, send the values back to main result_pipe[1].send(a ) def lowercase ( a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Tuple = [] SCREAMING_SNAKE_CASE_ :Union[str, Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop SCREAMING_SNAKE_CASE_ :str = Pipe() SCREAMING_SNAKE_CASE_ :Optional[Any] = Pipe() process_array_.append( Process( target=a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) SCREAMING_SNAKE_CASE_ :Optional[Any] = temp_rs SCREAMING_SNAKE_CASE_ :Any = temp_rr for i in range(1 , len(a ) - 1 ): SCREAMING_SNAKE_CASE_ :int = Pipe() SCREAMING_SNAKE_CASE_ :Dict = Pipe() process_array_.append( Process( target=a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = temp_rs SCREAMING_SNAKE_CASE_ :int = temp_rr process_array_.append( Process( target=a , args=( len(a ) - 1, arr[len(a ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(a ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(a ) ): SCREAMING_SNAKE_CASE_ :Tuple = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :List[str] = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*a ) SCREAMING_SNAKE_CASE_ :int = odd_even_transposition(a ) print("Sorted List\n" ) print(*a ) if __name__ == "__main__": main()
631
0
import math def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Union[str, Any] = len(a ) SCREAMING_SNAKE_CASE_ :Any = int(math.floor(math.sqrt(a ) ) ) SCREAMING_SNAKE_CASE_ :Optional[int] = 0 while arr[min(a , a ) - 1] < x: SCREAMING_SNAKE_CASE_ :int = step step += int(math.floor(math.sqrt(a ) ) ) if prev >= n: return -1 while arr[prev] < x: SCREAMING_SNAKE_CASE_ :Any = prev + 1 if prev == min(a , a ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input("Enter numbers separated by a comma:\n").strip() SCREAMING_SNAKE_CASE__ = [int(item) for item in user_input.split(",")] SCREAMING_SNAKE_CASE__ = int(input("Enter the number to be searched:\n")) SCREAMING_SNAKE_CASE__ = jump_search(arr, x) if res == -1: print("Number not found!") else: print(F'''Number {x} is at index {res}''')
717
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCAmelCase : def __init__( self : Tuple , UpperCAmelCase : Collection[float] | None = None): if components is None: SCREAMING_SNAKE_CASE_ :List[str] = [] SCREAMING_SNAKE_CASE_ :Optional[int] = list(UpperCAmelCase) def __len__( self : Optional[Any]): return len(self.__components) def __str__( self : List[Any]): return "(" + ",".join(map(UpperCAmelCase , self.__components)) + ")" def __add__( self : Optional[int] , UpperCAmelCase : Vector): SCREAMING_SNAKE_CASE_ :List[str] = len(self) if size == len(UpperCAmelCase): SCREAMING_SNAKE_CASE_ :Union[str, Any] = [self.__components[i] + other.component(UpperCAmelCase) for i in range(UpperCAmelCase)] return Vector(UpperCAmelCase) else: raise Exception("must have the same size") def __sub__( self : List[str] , UpperCAmelCase : Vector): SCREAMING_SNAKE_CASE_ :Union[str, Any] = len(self) if size == len(UpperCAmelCase): SCREAMING_SNAKE_CASE_ :Dict = [self.__components[i] - other.component(UpperCAmelCase) for i in range(UpperCAmelCase)] return Vector(UpperCAmelCase) else: # error case raise Exception("must have the same size") @overload def __mul__( self : List[Any] , UpperCAmelCase : float): ... @overload def __mul__( self : int , UpperCAmelCase : Vector): ... def __mul__( self : int , UpperCAmelCase : float | Vector): if isinstance(UpperCAmelCase , (float, int)): SCREAMING_SNAKE_CASE_ :Tuple = [c * other for c in self.__components] return Vector(UpperCAmelCase) elif isinstance(UpperCAmelCase , UpperCAmelCase) and len(self) == len(UpperCAmelCase): SCREAMING_SNAKE_CASE_ :Optional[int] = len(self) SCREAMING_SNAKE_CASE_ :str = [self.__components[i] * other.component(UpperCAmelCase) for i in range(UpperCAmelCase)] return sum(UpperCAmelCase) else: # error case raise Exception("invalid operand!") def _snake_case ( self : Any): return Vector(self.__components) def _snake_case ( self : str , UpperCAmelCase : int): if isinstance(UpperCAmelCase , UpperCAmelCase) and -len(self.__components) <= i < len(self.__components): return self.__components[i] else: raise Exception("index out of range") def _snake_case ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : float): assert -len(self.__components) <= pos < len(self.__components) SCREAMING_SNAKE_CASE_ :List[str] = value def _snake_case ( self : str): if len(self.__components) == 0: raise Exception("Vector is empty") SCREAMING_SNAKE_CASE_ :Optional[int] = [c**2 for c in self.__components] return math.sqrt(sum(UpperCAmelCase)) def _snake_case ( self : str , UpperCAmelCase : Vector , UpperCAmelCase : bool = False): SCREAMING_SNAKE_CASE_ :Optional[Any] = self * other SCREAMING_SNAKE_CASE_ :Dict = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den)) else: return math.acos(num / den) def lowercase ( a ): '''simple docstring''' assert isinstance(a , a ) return Vector([0] * dimension ) def lowercase ( a , a ): '''simple docstring''' assert isinstance(a , a ) and (isinstance(a , a )) SCREAMING_SNAKE_CASE_ :str = [0] * dimension SCREAMING_SNAKE_CASE_ :Union[str, Any] = 1 return Vector(a ) def lowercase ( a , a , a ): '''simple docstring''' assert ( isinstance(a , a ) and isinstance(a , a ) and (isinstance(a , (int, float) )) ) return x * scalar + y def lowercase ( a , a , a ): '''simple docstring''' random.seed(a ) SCREAMING_SNAKE_CASE_ :int = [random.randint(a , a ) for _ in range(a )] return Vector(a ) class _UpperCAmelCase : def __init__( self : Optional[int] , UpperCAmelCase : list[list[float]] , UpperCAmelCase : int , UpperCAmelCase : int): SCREAMING_SNAKE_CASE_ :str = matrix SCREAMING_SNAKE_CASE_ :List[Any] = w SCREAMING_SNAKE_CASE_ :List[Any] = h def __str__( self : List[str]): SCREAMING_SNAKE_CASE_ :Optional[Any] = "" for i in range(self.__height): ans += "|" for j in range(self.__width): if j < self.__width - 1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans def __add__( self : Union[str, Any] , UpperCAmelCase : Matrix): if self.__width == other.width() and self.__height == other.height(): SCREAMING_SNAKE_CASE_ :Any = [] for i in range(self.__height): SCREAMING_SNAKE_CASE_ :str = [ self.__matrix[i][j] + other.component(UpperCAmelCase , UpperCAmelCase) for j in range(self.__width) ] matrix.append(UpperCAmelCase) return Matrix(UpperCAmelCase , self.__width , self.__height) else: raise Exception("matrix must have the same dimension!") def __sub__( self : Union[str, Any] , UpperCAmelCase : Matrix): if self.__width == other.width() and self.__height == other.height(): SCREAMING_SNAKE_CASE_ :List[Any] = [] for i in range(self.__height): SCREAMING_SNAKE_CASE_ :Union[str, Any] = [ self.__matrix[i][j] - other.component(UpperCAmelCase , UpperCAmelCase) for j in range(self.__width) ] matrix.append(UpperCAmelCase) return Matrix(UpperCAmelCase , self.__width , self.__height) else: raise Exception("matrices must have the same dimension!") @overload def __mul__( self : Tuple , UpperCAmelCase : float): ... @overload def __mul__( self : Optional[Any] , UpperCAmelCase : Vector): ... def __mul__( self : List[str] , UpperCAmelCase : float | Vector): if isinstance(UpperCAmelCase , UpperCAmelCase): # matrix-vector if len(UpperCAmelCase) == self.__width: SCREAMING_SNAKE_CASE_ :Union[str, Any] = zero_vector(self.__height) for i in range(self.__height): SCREAMING_SNAKE_CASE_ :Optional[Any] = [ self.__matrix[i][j] * other.component(UpperCAmelCase) for j in range(self.__width) ] ans.change_component(UpperCAmelCase , sum(UpperCAmelCase)) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!") elif isinstance(UpperCAmelCase , (int, float)): # matrix-scalar SCREAMING_SNAKE_CASE_ :Tuple = [ [self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height) ] return Matrix(UpperCAmelCase , self.__width , self.__height) return None def _snake_case ( self : Optional[int]): return self.__height def _snake_case ( self : Optional[int]): return self.__width def _snake_case ( self : str , UpperCAmelCase : int , UpperCAmelCase : int): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds") def _snake_case ( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : float): if 0 <= x < self.__height and 0 <= y < self.__width: SCREAMING_SNAKE_CASE_ :Dict = value else: raise Exception("change_component: indices out of bounds") def _snake_case ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : int): if self.__height != self.__width: raise Exception("Matrix is not square") SCREAMING_SNAKE_CASE_ :Dict = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCAmelCase)): SCREAMING_SNAKE_CASE_ :Dict = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCAmelCase , self.__width - 1 , self.__height - 1).determinant() def _snake_case ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : int): if self.__height != self.__width: raise Exception("Matrix is not square") if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCAmelCase , UpperCAmelCase) else: raise Exception("Indices out of bounds") def _snake_case ( self : Union[str, Any]): if self.__height != self.__width: raise Exception("Matrix is not square") if self.__height < 1: raise Exception("Matrix has no element") elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: SCREAMING_SNAKE_CASE_ :str = [ self.__matrix[0][y] * self.cofactor(0 , UpperCAmelCase) for y in range(self.__width) ] return sum(UpperCAmelCase) def lowercase ( a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :list[list[float]] = [[0] * n for _ in range(a )] return Matrix(a , a , a ) def lowercase ( a , a , a , a ): '''simple docstring''' random.seed(a ) SCREAMING_SNAKE_CASE_ :list[list[float]] = [ [random.randint(a , a ) for _ in range(a )] for _ in range(a ) ] return Matrix(a , a , a )
140
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : int ,_snake_case : int ,_snake_case : float ,**_snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[int] = feature_size lowercase__ : List[str] = sampling_rate lowercase__ : List[Any] = padding_value lowercase__ : List[str] = kwargs.pop('''padding_side''' ,'''right''' ) lowercase__ : Dict = kwargs.pop('''return_attention_mask''' ,_snake_case ) super().__init__(**_snake_case ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] ,_snake_case : Union[bool, str, PaddingStrategy] = True ,_snake_case : Optional[int] = None ,_snake_case : bool = False ,_snake_case : Optional[int] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,) -> BatchFeature: """simple docstring""" if isinstance(_snake_case ,(list, tuple) ) and isinstance(processed_features[0] ,(dict, BatchFeature) ): lowercase__ : Optional[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f""" to this method that includes {self.model_input_names[0]}, but you provided""" f""" {list(processed_features.keys() )}""" ) lowercase__ : Tuple = processed_features[self.model_input_names[0]] lowercase__ : Tuple = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_snake_case ) == 0: if return_attention_mask: lowercase__ : Optional[Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowercase__ : List[str] = required_input[0] if isinstance(_snake_case ,(list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowercase__ : int = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_snake_case ): lowercase__ : List[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(_snake_case ): lowercase__ : Optional[int] = '''tf''' elif is_torch_tensor(_snake_case ): lowercase__ : List[str] = '''pt''' elif isinstance(_snake_case ,(int, float, list, tuple, np.ndarray) ): lowercase__ : Optional[int] = '''np''' else: raise ValueError( f"""type of {first_element} unknown: {type(_snake_case )}. """ '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] ,(int, float) ): lowercase__ : Optional[Any] = to_numpy(_snake_case ) else: lowercase__ : Tuple = [to_numpy(_snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy lowercase__ : List[str] = self._get_padding_strategies(padding=_snake_case ,max_length=_snake_case ) lowercase__ : Dict = processed_features[self.model_input_names[0]] lowercase__ : Dict = len(_snake_case ) if not all(len(_snake_case ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) lowercase__ : str = [] for i in range(_snake_case ): lowercase__ : Union[str, Any] = {k: v[i] for k, v in processed_features.items()} # truncation lowercase__ : Tuple = self._truncate( _snake_case ,max_length=_snake_case ,pad_to_multiple_of=_snake_case ,truncation=_snake_case ,) truncated_inputs.append(_snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowercase__ : Dict = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowercase__ : Tuple = PaddingStrategy.MAX_LENGTH lowercase__ : Tuple = {} for i in range(_snake_case ): # padding lowercase__ : Tuple = self._pad( truncated_inputs[i] ,max_length=_snake_case ,padding_strategy=_snake_case ,pad_to_multiple_of=_snake_case ,return_attention_mask=_snake_case ,) for key, value in outputs.items(): if key not in batch_outputs: lowercase__ : List[str] = [] if value.dtype is np.dtype(np.floataa ): lowercase__ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(_snake_case ) return BatchFeature(_snake_case ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : Union[Dict[str, np.ndarray], BatchFeature] ,_snake_case : Optional[int] = None ,_snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,_snake_case : Optional[int] = None ,_snake_case : Optional[bool] = None ,) -> dict: """simple docstring""" lowercase__ : str = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowercase__ : Optional[Any] = len(_snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase__ : List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase__ : List[str] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowercase__ : Optional[int] = np.ones(len(_snake_case ) ,dtype=np.intaa ) if needs_to_be_padded: lowercase__ : Optional[Any] = max_length - len(_snake_case ) if self.padding_side == "right": if return_attention_mask: lowercase__ : Tuple = np.pad( processed_features['''attention_mask'''] ,(0, difference) ) lowercase__ : int = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowercase__ : Any = np.pad( _snake_case ,_snake_case ,'''constant''' ,constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowercase__ : List[Any] = np.pad( processed_features['''attention_mask'''] ,(difference, 0) ) lowercase__ : int = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowercase__ : Optional[int] = np.pad( _snake_case ,_snake_case ,'''constant''' ,constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def UpperCAmelCase ( self : List[str] ,_snake_case : Union[Dict[str, np.ndarray], BatchFeature] ,_snake_case : Optional[int] = None ,_snake_case : Optional[int] = None ,_snake_case : Optional[bool] = None ,) -> Union[str, Any]: """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) lowercase__ : Optional[Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase__ : str = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase__ : Any = len(_snake_case ) > max_length if needs_to_be_truncated: lowercase__ : Optional[Any] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowercase__ : Union[str, Any] = processed_features['''attention_mask'''][:max_length] return processed_features def UpperCAmelCase ( self : Optional[Any] ,_snake_case : str=False ,_snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" if padding is not False: if padding is True: lowercase__ : Optional[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_snake_case ,_snake_case ): lowercase__ : str = PaddingStrategy(_snake_case ) elif isinstance(_snake_case ,_snake_case ): lowercase__ : Tuple = padding else: lowercase__ : int = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
560
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __A : '''simple docstring''' @staticmethod def UpperCAmelCase ( *_snake_case : Any ,**_snake_case : List[str] ) -> List[str]: """simple docstring""" pass def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCAmelCase ( self : str ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : List[str] = DepthEstimationPipeline(model=_snake_case ,image_processor=_snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase ( self : str ,_snake_case : Optional[Any] ,_snake_case : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : int = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} ,_snake_case ) import datasets lowercase__ : str = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' ,'''image''' ,split='''test''' ) lowercase__ : Union[str, Any] = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] ,_snake_case ,) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @slow @require_torch def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" lowercase__ : int = '''Intel/dpt-large''' lowercase__ : Tuple = pipeline('''depth-estimation''' ,model=_snake_case ) lowercase__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) lowercase__ : Dict = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) ,29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) ,2.662 ) @require_torch def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
560
1
import unittest import numpy as np def _lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str = None , ): lowercase__ : Tuple = np.shape(__snake_case ) lowercase__ : List[str] = np.shape(__snake_case ) lowercase__ : List[str] = np.shape(__snake_case ) if shape_a[0] != shape_b[0]: lowercase__ : Tuple = ( """Expected the same number of rows for A and B. """ f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(__snake_case ) if shape_b[1] != shape_c[1]: lowercase__ : List[str] = ( """Expected the same number of columns for B and C. """ f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(__snake_case ) lowercase__ : Optional[int] = pseudo_inv if a_inv is None: try: lowercase__ : Optional[Any] = np.linalg.inv(__snake_case ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__( self ) -> None: lowercase__ : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase__ : Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase__ : int = np.array([[2, 1], [6, 3]] ) lowercase__ : Optional[int] = schur_complement(__a , __a , __a ) lowercase__ : Union[str, Any] = np.block([[a, b], [b.T, c]] ) lowercase__ : Optional[Any] = np.linalg.det(__a ) lowercase__ : Optional[int] = np.linalg.det(__a ) lowercase__ : Any = np.linalg.det(__a ) self.assertAlmostEqual(__a , det_a * det_s ) def UpperCAmelCase__( self ) -> None: lowercase__ : Union[str, Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase__ : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase__ : Any = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__a ): schur_complement(__a , __a , __a ) def UpperCAmelCase__( self ) -> None: lowercase__ : Union[str, Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase__ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase__ : Dict = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__a ): schur_complement(__a , __a , __a ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
712
"""simple docstring""" from scipy.stats import spearmanr import datasets __snake_case = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __snake_case = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __snake_case = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Optional[int]: lowercase__ : List[Any] = spearmanr(lowerCamelCase__ , lowerCamelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
128
0
import flax.linen as nn import jax import jax.numpy as jnp class UpperCamelCase_ ( nn.Module ): _a : int _a : jnp.dtype = jnp.floataa def __a ( self : int ): lowerCamelCase_ : Dict = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[int] , lowerCamelCase : str ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : str = hidden_states.shape lowerCamelCase_ : str = jax.image.resize( lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase_ : Optional[Any] = self.conv(lowerCamelCase ) return hidden_states class UpperCamelCase_ ( nn.Module ): _a : int _a : jnp.dtype = jnp.floataa def __a ( self : int ): lowerCamelCase_ : Union[str, Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Union[str, Any] , lowerCamelCase : Any ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase_ : Optional[int] = self.conv(lowerCamelCase ) return hidden_states class UpperCamelCase_ ( nn.Module ): _a : int _a : int = None _a : float = 0.0 _a : bool = None _a : jnp.dtype = jnp.floataa def __a ( self : List[str] ): lowerCamelCase_ : Tuple = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase_ : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowerCamelCase_ : Union[str, Any] = nn.Conv( lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase_ : Tuple = nn.Dense(lowerCamelCase , dtype=self.dtype ) lowerCamelCase_ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowerCamelCase_ : List[Any] = nn.Dropout(self.dropout_prob ) lowerCamelCase_ : Dict = nn.Conv( lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase_ : Any = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase_ : Any = None if use_nin_shortcut: lowerCamelCase_ : List[Any] = nn.Conv( lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : str , lowerCamelCase : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : int=True ): lowerCamelCase_ : List[str] = hidden_states lowerCamelCase_ : Any = self.norma(lowerCamelCase ) lowerCamelCase_ : Tuple = nn.swish(lowerCamelCase ) lowerCamelCase_ : Union[str, Any] = self.conva(lowerCamelCase ) lowerCamelCase_ : Optional[Any] = self.time_emb_proj(nn.swish(lowerCamelCase ) ) lowerCamelCase_ : Optional[int] = jnp.expand_dims(jnp.expand_dims(lowerCamelCase , 1 ) , 1 ) lowerCamelCase_ : Optional[Any] = hidden_states + temb lowerCamelCase_ : Union[str, Any] = self.norma(lowerCamelCase ) lowerCamelCase_ : List[Any] = nn.swish(lowerCamelCase ) lowerCamelCase_ : Optional[int] = self.dropout(lowerCamelCase , lowerCamelCase ) lowerCamelCase_ : Tuple = self.conva(lowerCamelCase ) if self.conv_shortcut is not None: lowerCamelCase_ : Any = self.conv_shortcut(lowerCamelCase ) return hidden_states + residual
364
_lowercase : Optional[Any] =""" # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase : Union[str, Any] =[{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase : List[Any] ={ """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
364
1
"""simple docstring""" import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Tuple , _lowercase : Tuple , _lowercase : str ): return f'gaussian_noise_s={seed}_shape={"_".join([str(_lowercase ) for s in shape] )}.npy' def __a ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() def __a ( self : Dict , _lowercase : Any=0 , _lowercase : int=(4, 4, 64, 64) , _lowercase : Dict=False ): A = jnp.bfloataa if fpaa else jnp.floataa A = jnp.array(load_hf_numpy(self.get_file_format(_lowercase , _lowercase ) ) , dtype=_lowercase ) return image def __a ( self : str , _lowercase : List[str]=False , _lowercase : Optional[int]="CompVis/stable-diffusion-v1-4" ): A = jnp.bfloataa if fpaa else jnp.floataa A = 'bf16' if fpaa else None A , A = FlaxUNetaDConditionModel.from_pretrained( _lowercase , subfolder='unet' , dtype=_lowercase , revision=_lowercase ) return model, params def __a ( self : Tuple , _lowercase : Any=0 , _lowercase : Dict=(4, 77, 768) , _lowercase : List[str]=False ): A = jnp.bfloataa if fpaa else jnp.floataa A = jnp.array(load_hf_numpy(self.get_file_format(_lowercase , _lowercase ) ) , dtype=_lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def __a ( self : List[Any] , _lowercase : str , _lowercase : Tuple , _lowercase : Optional[Any] ): A , A = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=_lowercase ) A = self.get_latents(_lowercase , fpaa=_lowercase ) A = self.get_encoder_hidden_states(_lowercase , fpaa=_lowercase ) A = model.apply( {'params': params} , _lowercase , jnp.array(_lowercase , dtype=jnp.intaa ) , encoder_hidden_states=_lowercase , ).sample assert sample.shape == latents.shape A = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) A = jnp.array(_lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_lowercase , _lowercase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def __a ( self : int , _lowercase : Optional[Any] , _lowercase : str , _lowercase : List[Any] ): A , A = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=_lowercase ) A = self.get_latents(_lowercase , shape=(4, 4, 96, 96) , fpaa=_lowercase ) A = self.get_encoder_hidden_states(_lowercase , shape=(4, 77, 1_024) , fpaa=_lowercase ) A = model.apply( {'params': params} , _lowercase , jnp.array(_lowercase , dtype=jnp.intaa ) , encoder_hidden_states=_lowercase , ).sample assert sample.shape == latents.shape A = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) A = jnp.array(_lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_lowercase , _lowercase , atol=1e-2 )
91
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : @staticmethod def __a ( *_lowercase : int , **_lowercase : Optional[int] ): pass @is_pipeline_test @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): lowerCAmelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __a ( self : int , _lowercase : Optional[Any] , _lowercase : int , _lowercase : Union[str, Any] ): A = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def __a ( self : Tuple , _lowercase : int , _lowercase : Tuple ): A = object_detector(examples[0] , threshold=0.0 ) A = len(_lowercase ) self.assertGreater(_lowercase , 0 ) self.assertEqual( _lowercase , [ { 'score': ANY(_lowercase ), 'label': ANY(_lowercase ), 'box': {'xmin': ANY(_lowercase ), 'ymin': ANY(_lowercase ), 'xmax': ANY(_lowercase ), 'ymax': ANY(_lowercase )}, } for i in range(_lowercase ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def __a ( self : Optional[int] ): pass @require_torch def __a ( self : Optional[Any] ): A = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] , ) A = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] ] , ) @require_torch @slow def __a ( self : List[str] ): A = pipeline('zero-shot-object-detection' ) A = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ] , ) A = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def __a ( self : Optional[int] ): pass @require_torch @slow def __a ( self : Optional[Any] ): A = 0.2 A = pipeline('zero-shot-object-detection' ) A = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=_lowercase , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, ] , ) @require_torch @slow def __a ( self : Optional[int] ): A = 2 A = pipeline('zero-shot-object-detection' ) A = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=_lowercase , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, ] , )
91
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__lowercase ) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) SCREAMING_SNAKE_CASE : Optional[int] = Features({'''audio''': Audio()} ) SCREAMING_SNAKE_CASE : str = Features({'''labels''': ClassLabel} ) SCREAMING_SNAKE_CASE : Optional[int] = '''audio''' SCREAMING_SNAKE_CASE : Dict = '''labels''' def UpperCamelCase ( self : Any , UpperCamelCase__ : str ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) A = copy.deepcopy(self ) A = self.label_schema.copy() A = features[self.label_column] A = label_schema return task_template @property def UpperCamelCase ( self : str ): return { self.audio_column: "audio", self.label_column: "labels", }
699
from __future__ import annotations def __lowercase ( snake_case, snake_case ): """simple docstring""" print(f'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(snake_case ): print(f'''{i}\t\t{d}''' ) def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" for j in range(snake_case ): __magic_name__ , __magic_name__ , __magic_name__ :Tuple = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def __lowercase ( snake_case, snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :List[Any] = [float('''inf''' )] * vertex_count __magic_name__ :Tuple = 0.0 for _ in range(vertex_count - 1 ): for j in range(snake_case ): __magic_name__ , __magic_name__ , __magic_name__ :Dict = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __magic_name__ :Tuple = distance[u] + w __magic_name__ :Tuple = check_negative_cycle(snake_case, snake_case, snake_case ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ : Tuple = int(input("""Enter number of vertices: """).strip()) SCREAMING_SNAKE_CASE__ : Any = int(input("""Enter number of edges: """).strip()) SCREAMING_SNAKE_CASE__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) SCREAMING_SNAKE_CASE__ : Dict = {"""src""": src, """dst""": dest, """weight""": weight} SCREAMING_SNAKE_CASE__ : List[Any] = int(input("""\nEnter shortest path source:""").strip()) SCREAMING_SNAKE_CASE__ : List[str] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
0
0
'''simple docstring''' import argparse import datetime def snake_case_ ( a__ : str ): """simple docstring""" __lowercase = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __lowercase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(snake_case_ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month __lowercase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) __lowercase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day __lowercase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator __lowercase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year __lowercase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 85_00: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation __lowercase = datetime.date(int(snake_case_ ) ,int(snake_case_ ) ,int(snake_case_ ) ) # Start math if m <= 2: __lowercase = y - 1 __lowercase = m + 12 # maths var __lowercase = int(str(snake_case_ )[:2] ) __lowercase = int(str(snake_case_ )[2:] ) __lowercase = int(2.6 * m - 5.3_9 ) __lowercase = int(c / 4 ) __lowercase = int(k / 4 ) __lowercase = int(d + k ) __lowercase = int(t + u + v + x ) __lowercase = int(z - (2 * c) ) __lowercase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response __lowercase = f'Your date {date_input}, is a {days[str(snake_case_ )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() A = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) A = parser.parse_args() zeller(args.date_input)
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A : Dict = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
163
0
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self :Tuple , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any]=2 , lowerCAmelCase__ :Any=3 , lowerCAmelCase__ :Optional[Any]=4 , lowerCAmelCase__ :int=2 , lowerCAmelCase__ :str=7 , lowerCAmelCase__ :Any=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Any=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :int=99 , lowerCAmelCase__ :Union[str, Any]=36 , lowerCAmelCase__ :List[Any]=2 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Union[str, Any]=37 , lowerCAmelCase__ :List[Any]="gelu" , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :Optional[int]=512 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Optional[Any]=2 , lowerCAmelCase__ :Optional[int]=0.02 , lowerCAmelCase__ :Tuple=6 , lowerCAmelCase__ :Union[str, Any]=6 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :str=1000 , ) ->List[str]: lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = patch_size lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = coordinate_size lowercase = shape_size lowercase = num_labels lowercase = num_choices lowercase = scope lowercase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase = text_seq_length lowercase = (image_size // patch_size) ** 2 + 1 lowercase = self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE( self :Tuple ) ->Any: lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowercase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) lowercase = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase = bbox[i, j, 3] lowercase = bbox[i, j, 1] lowercase = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: lowercase = bbox[i, j, 2] lowercase = bbox[i, j, 0] lowercase = tmp_coordinate lowercase = tf.constant(SCREAMING_SNAKE_CASE__ ) lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.text_seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowercase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE( self :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) ->int: lowercase = TFLayoutLMvaModel(config=SCREAMING_SNAKE_CASE__ ) # text + image lowercase = model(SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) lowercase = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ , ) lowercase = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowercase = model(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowercase = model({"pixel_values": pixel_values} , training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE( self :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Any ) ->str: lowercase = self.num_labels lowercase = TFLayoutLMvaForSequenceClassification(config=SCREAMING_SNAKE_CASE__ ) lowercase = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE( self :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any] ) ->Optional[int]: lowercase = self.num_labels lowercase = TFLayoutLMvaForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) lowercase = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] ) ->List[str]: lowercase = 2 lowercase = TFLayoutLMvaForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) lowercase = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE( self :Tuple ) ->str: lowercase = self.prepare_config_and_inputs() (lowercase) = config_and_inputs lowercase = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class UpperCamelCase_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase : Dict = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase : Optional[int] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) UpperCamelCase : int = False UpperCamelCase : List[str] = False UpperCamelCase : Tuple = False def SCREAMING_SNAKE_CASE( self :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int ) ->Optional[int]: return True def SCREAMING_SNAKE_CASE( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict=False ) ->List[str]: lowercase = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) if model_class in get_values(SCREAMING_SNAKE_CASE__ ): lowercase = { k: tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(SCREAMING_SNAKE_CASE__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE__ ): lowercase = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(SCREAMING_SNAKE_CASE__ ): lowercase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) lowercase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(SCREAMING_SNAKE_CASE__ ): lowercase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(SCREAMING_SNAKE_CASE__ ): lowercase = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def SCREAMING_SNAKE_CASE( self :int ) ->Optional[int]: lowercase = TFLayoutLMvaModelTester(self ) lowercase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->Optional[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->int: lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(SCREAMING_SNAKE_CASE__ ) if getattr(SCREAMING_SNAKE_CASE__ , "hf_compute_loss" , SCREAMING_SNAKE_CASE__ ): # The number of elements in the loss should be the same as the number of elements in the label lowercase = self._prepare_for_class(inputs_dict.copy() , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) lowercase = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=SCREAMING_SNAKE_CASE__ )[0] ] lowercase = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs lowercase = self._prepare_for_class(inputs_dict.copy() , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) lowercase = prepared_for_class.pop("input_ids" ) lowercase = model(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions lowercase = self._prepare_for_class(inputs_dict.copy() , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) lowercase = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: lowercase = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: lowercase = -100 lowercase = tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) lowercase = model(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict lowercase = self._prepare_for_class(inputs_dict.copy() , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) lowercase = model(SCREAMING_SNAKE_CASE__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple lowercase = self._prepare_for_class(inputs_dict.copy() , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) # Get keys that were added with the _prepare_for_class function lowercase = prepared_for_class.keys() - inputs_dict.keys() lowercase = inspect.signature(model.call ).parameters lowercase = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple lowercase = {0: '''input_ids'''} for label_key in label_keys: lowercase = signature_names.index(SCREAMING_SNAKE_CASE__ ) lowercase = label_key lowercase = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple lowercase = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: lowercase = prepared_for_class[value] lowercase = tuple(SCREAMING_SNAKE_CASE__ ) # Send to model lowercase = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def SCREAMING_SNAKE_CASE( self :str ) ->Dict: ( lowercase ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE( self :str ) ->Tuple: ( lowercase ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->List[Any]: ( lowercase ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->int: ( lowercase ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE( self :Dict ) ->List[str]: ( lowercase ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE( self :str ) ->Any: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = TFLayoutLMvaModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def __snake_case ( ): '''simple docstring''' lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->List[Any]: return LayoutLMvaImageProcessor(apply_ocr=SCREAMING_SNAKE_CASE__ ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->Dict: lowercase = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="tf" ).pixel_values lowercase = tf.constant([[1, 2]] ) lowercase = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass lowercase = model(input_ids=SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) # verify the logits lowercase = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE__ ) lowercase = tf.constant( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
441
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record A__ : List[Any] = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ A__ : Optional[Any] = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ A__ : List[Any] = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _a ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ): return float((preds == labels).mean() ) def _a ( __UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Tuple="binary" ): lowerCAmelCase__ : Dict = simple_accuracy(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase__ : List[Any] = float(fa_score(y_true=__UpperCamelCase ,y_pred=__UpperCamelCase ,average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _a ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any ): lowerCAmelCase__ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase ,__UpperCamelCase ): lowerCAmelCase__ : Optional[Any] = f'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' lowerCAmelCase__ : List[str] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ : Union[str, Any] = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = zip(*__UpperCamelCase ) lowerCAmelCase__ : Optional[int] = fa_score(y_true=__UpperCamelCase ,y_pred=__UpperCamelCase ,average='''macro''' ) fas.append(__UpperCamelCase ) lowerCAmelCase__ : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) lowerCAmelCase__ : Dict = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) lowerCAmelCase__ : Optional[Any] = sum(__UpperCamelCase ) / len(__UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = float(fa_score(y_true=__UpperCamelCase ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase_ ( self ): """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def lowercase_ ( self ): """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif self.config_name == "cb": return acc_and_fa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , fa_avg='''macro''' ) elif self.config_name == "record": lowerCAmelCase__ : Union[str, Any] = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] lowerCAmelCase__ : Optional[Any] = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] elif self.config_name == "multirc": return evaluate_multirc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
233
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
546
import math def _lowerCAmelCase ( UpperCamelCase__: int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( UpperCamelCase__: float = 0.1 ) -> int: """simple docstring""" A = 3 A = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(UpperCamelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
546
1
import numpy as np _snake_case : str = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class a : """simple docstring""" def __init__( self : Optional[int] ) -> None: __snake_case : Optional[int] = np.array(lowerCamelCase ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : str ) -> np.ndarray: __snake_case , __snake_case : Optional[int] = np.where(letter == self.SQUARE ) __snake_case : Union[str, Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : int ) -> str: __snake_case : Optional[int] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self : Union[str, Any] , lowerCamelCase : str ) -> str: __snake_case : Dict = message.lower() __snake_case : List[Any] = message.replace(" " , "" ) __snake_case : List[Any] = message.replace("j" , "i" ) __snake_case : Optional[Any] = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __snake_case : List[Any] = self.letter_to_numbers(message[letter_index] ) __snake_case : Any = numbers[0] __snake_case : Dict = numbers[1] __snake_case : Optional[Any] = first_step.reshape(2 * len(lowerCamelCase ) ) __snake_case : str = "" for numbers_index in range(len(lowerCamelCase ) ): __snake_case : str = int(second_step[numbers_index * 2] ) __snake_case : List[Any] = int(second_step[(numbers_index * 2) + 1] ) __snake_case : Optional[Any] = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __snake_case : Union[str, Any] = encoded_message + letter return encoded_message def __snake_case ( self : Any , lowerCamelCase : str ) -> str: __snake_case : Tuple = message.lower() message.replace(" " , "" ) __snake_case : Dict = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __snake_case : str = self.letter_to_numbers(message[letter_index] ) __snake_case : Dict = numbers[0] __snake_case : Union[str, Any] = numbers[1] __snake_case : int = first_step.reshape((2, len(lowerCamelCase )) ) __snake_case : List[Any] = "" for numbers_index in range(len(lowerCamelCase ) ): __snake_case : List[Any] = int(second_step[0, numbers_index] ) __snake_case : Optional[Any] = int(second_step[1, numbers_index] ) __snake_case : str = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __snake_case : List[Any] = decoded_message + letter return decoded_message
81
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
0
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class A : """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) UpperCamelCase_ : Optional[int] = img UpperCamelCase_ : Optional[Any] = img.shape[1] UpperCamelCase_ : Tuple = img.shape[0] UpperCamelCase_ : Dict = dst_width UpperCamelCase_ : Tuple = dst_height UpperCamelCase_ : Union[str, Any] = self.src_w / self.dst_w UpperCamelCase_ : str = self.src_h / self.dst_h UpperCamelCase_ : Optional[Any] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def _UpperCAmelCase ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): UpperCamelCase_ : Union[str, Any] = self.img[self.get_y(__lowerCAmelCase )][self.get_x(__lowerCAmelCase )] def _UpperCAmelCase ( self , __lowerCAmelCase ): return int(self.ratio_x * x ) def _UpperCAmelCase ( self , __lowerCAmelCase ): return int(self.ratio_y * y ) if __name__ == "__main__": UpperCamelCase , UpperCamelCase =800, 600 UpperCamelCase =imread("image_data/lena.jpg", 1) UpperCamelCase =NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f"Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}", n.output ) waitKey(0) destroyAllWindows()
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase ={ "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase =[ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] UpperCamelCase =[ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] UpperCamelCase =[ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): UpperCamelCase =[ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
543
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """spm_char.model"""} __lowerCAmelCase = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } __lowerCAmelCase = { """microsoft/speecht5_asr""": 1_0_2_4, """microsoft/speecht5_tts""": 1_0_2_4, """microsoft/speecht5_vc""": 1_0_2_4, } class UpperCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[Any] = ['input_ids', 'attention_mask'] def __init__( self : List[Any] ,_a : Union[str, Any] ,_a : List[str]="<s>" ,_a : Tuple="</s>" ,_a : Tuple="<unk>" ,_a : int="<pad>" ,_a : Optional[Dict[str, Any]] = None ,**_a : List[str] ,): '''simple docstring''' _a : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase ,eos_token=__lowerCAmelCase ,unk_token=__lowerCAmelCase ,pad_token=__lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__lowerCAmelCase ,) _a : Optional[Any] = vocab_file _a : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) @property def __lowercase ( self : List[str] ): '''simple docstring''' return self.sp_model.get_piece_size() def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Dict = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): '''simple docstring''' _a : Union[str, Any] = self.__dict__.copy() _a : Union[str, Any] = None return state def __setstate__( self : Any ,_a : List[str] ): '''simple docstring''' _a : int = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _a : Optional[int] = {} _a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self : int ,_a : str ): '''simple docstring''' return self.sp_model.encode(__lowerCAmelCase ,out_type=__lowerCAmelCase ) def __lowercase ( self : List[Any] ,_a : Tuple ): '''simple docstring''' return self.sp_model.piece_to_id(__lowerCAmelCase ) def __lowercase ( self : Optional[int] ,_a : str ): '''simple docstring''' _a : Any = self.sp_model.IdToPiece(__lowerCAmelCase ) return token def __lowercase ( self : Dict ,_a : Optional[Any] ): '''simple docstring''' _a : List[Any] = [] _a : int = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCAmelCase ) + token _a : List[Any] = [] else: current_sub_tokens.append(__lowerCAmelCase ) out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def __lowercase ( self : Union[str, Any] ,_a : str ,_a : int=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowercase ( self : Union[str, Any] ,_a : List[int] ,_a : Optional[List[int]] = None ,_a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase ,token_ids_a=__lowerCAmelCase ,already_has_special_tokens=__lowerCAmelCase ) _a : Union[str, Any] = [1] if token_ids_a is None: return ([0] * len(__lowerCAmelCase )) + suffix_ones return ([0] * len(__lowerCAmelCase )) + ([0] * len(__lowerCAmelCase )) + suffix_ones def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Union[str, Any] = os.path.join( __lowerCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase ,'wb' ) as fi: _a : int = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
229
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class a ( lowerCAmelCase_ ): _snake_case : int = 'dpt' def __init__( self : Any , __lowerCAmelCase : Optional[Any]=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : Optional[int]=12 , __lowerCAmelCase : Dict=3072 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : str=0.0 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : Optional[Any]=1e-1_2 , __lowerCAmelCase : List[str]=384 , __lowerCAmelCase : Tuple=16 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[Any]=[2, 5, 8, 11] , __lowerCAmelCase : Any="project" , __lowerCAmelCase : Dict=[4, 2, 1, 0.5] , __lowerCAmelCase : int=[96, 192, 384, 768] , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Optional[Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : List[Any]=0.4 , __lowerCAmelCase : List[str]=255 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[int]=[1, 1024, 24, 24] , __lowerCAmelCase : List[Any]=[0, 1] , __lowerCAmelCase : Dict=None , **__lowerCAmelCase : str , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) _UpperCAmelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } _UpperCAmelCase = BitConfig(**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): logger.info("""Initializing the config with a `BiT` backbone.""" ) _UpperCAmelCase = BitConfig(**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _UpperCAmelCase = backbone_featmap_shape _UpperCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = [] _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = qkv_bias _UpperCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) _UpperCAmelCase = readout_type _UpperCAmelCase = reassemble_factors _UpperCAmelCase = neck_hidden_sizes _UpperCAmelCase = fusion_hidden_size _UpperCAmelCase = head_in_index _UpperCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = semantic_loss_ignore_index _UpperCAmelCase = semantic_classifier_dropout def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
277
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" _a : str = BigBirdConfig.from_json_file(UpperCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: _a : Optional[int] = BigBirdForQuestionAnswering(UpperCAmelCase ) else: _a : Any = BigBirdForPreTraining(UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCAmelCase , UpperCAmelCase , is_trivia_qa=UpperCAmelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
307
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __lowerCamelCase = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __lowerCamelCase = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def UpperCamelCase__ ( UpperCAmelCase ) -> str: """simple docstring""" _a : Optional[int] = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=UpperCAmelCase )[0] @deprecated(UpperCAmelCase , '''Please use tf.data to implement this functionality.''' ) def UpperCamelCase__ ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=UpperCAmelCase ) as bytestream: _a : List[Any] = _readaa(UpperCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) _a : Any = _readaa(UpperCAmelCase ) _a : Optional[int] = _readaa(UpperCAmelCase ) _a : Optional[int] = _readaa(UpperCAmelCase ) _a : Tuple = bytestream.read(rows * cols * num_images ) _a : int = numpy.frombuffer(UpperCAmelCase , dtype=numpy.uinta ) _a : List[Any] = data.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , 1 ) return data @deprecated(UpperCAmelCase , '''Please use tf.one_hot on tensors.''' ) def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" _a : List[Any] = labels_dense.shape[0] _a : List[str] = numpy.arange(UpperCAmelCase ) * num_classes _a : List[str] = numpy.zeros((num_labels, num_classes) ) _a : Dict = 1 return labels_one_hot @deprecated(UpperCAmelCase , '''Please use tf.data to implement this functionality.''' ) def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=10 ) -> str: """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=UpperCAmelCase ) as bytestream: _a : List[Any] = _readaa(UpperCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) _a : str = _readaa(UpperCAmelCase ) _a : Dict = bytestream.read(UpperCAmelCase ) _a : List[str] = numpy.frombuffer(UpperCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(UpperCAmelCase , UpperCAmelCase ) return labels class UpperCamelCase_ : @deprecated( lowercase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self , lowercase , lowercase , lowercase=False , lowercase=False , lowercase=dtypes.floataa , lowercase=True , lowercase=None , ) -> Dict: _a , _a : int = random_seed.get_seed(lowercase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _a : str = dtypes.as_dtype(lowercase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: _a : int = 10_000 _a : List[str] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' _a : Dict = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _a : Union[str, Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _a : List[str] = images.astype(numpy.floataa ) _a : Any = numpy.multiply(lowercase , 1.0 / 255.0 ) _a : Any = images _a : Tuple = labels _a : str = 0 _a : Dict = 0 @property def snake_case__( self ) -> Tuple: return self._images @property def snake_case__( self ) -> Optional[Any]: return self._labels @property def snake_case__( self ) -> Tuple: return self._num_examples @property def snake_case__( self ) -> Optional[Any]: return self._epochs_completed def snake_case__( self , lowercase , lowercase=False , lowercase=True ) -> int: if fake_data: _a : Optional[Any] = [1] * 784 _a : Optional[int] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowercase )], [fake_label for _ in range(lowercase )], ) _a : Union[str, Any] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _a : Tuple = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase ) _a : Any = self.images[perma] _a : Union[str, Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _a : Any = self._num_examples - start _a : Any = self._images[start : self._num_examples] _a : Optional[Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: _a : Tuple = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase ) _a : Union[str, Any] = self.images[perm] _a : str = self.labels[perm] # Start next epoch _a : List[Any] = 0 _a : Optional[int] = batch_size - rest_num_examples _a : int = self._index_in_epoch _a : str = self._images[start:end] _a : Union[str, Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _a : Optional[int] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(UpperCAmelCase , '''Please write your own downloading logic.''' ) def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" if not gfile.Exists(UpperCAmelCase ): gfile.MakeDirs(UpperCAmelCase ) _a : Tuple = os.path.join(UpperCAmelCase , UpperCAmelCase ) if not gfile.Exists(UpperCAmelCase ): urllib.request.urlretrieve(UpperCAmelCase , UpperCAmelCase ) # noqa: S310 with gfile.GFile(UpperCAmelCase ) as f: _a : Union[str, Any] = f.size() print('''Successfully downloaded''' , UpperCAmelCase , UpperCAmelCase , '''bytes.''' ) return filepath @deprecated( UpperCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=dtypes.floataa , UpperCAmelCase=True , UpperCAmelCase=5000 , UpperCAmelCase=None , UpperCAmelCase=DEFAULT_SOURCE_URL , ) -> Any: """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=UpperCAmelCase , one_hot=UpperCAmelCase , dtype=UpperCAmelCase , seed=UpperCAmelCase ) _a : Dict = fake() _a : Union[str, Any] = fake() _a : Any = fake() return _Datasets(train=UpperCAmelCase , validation=UpperCAmelCase , test=UpperCAmelCase ) if not source_url: # empty string check _a : List[str] = DEFAULT_SOURCE_URL _a : int = '''train-images-idx3-ubyte.gz''' _a : Optional[int] = '''train-labels-idx1-ubyte.gz''' _a : Union[str, Any] = '''t10k-images-idx3-ubyte.gz''' _a : int = '''t10k-labels-idx1-ubyte.gz''' _a : Tuple = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + train_images_file ) with gfile.Open(UpperCAmelCase , '''rb''' ) as f: _a : Union[str, Any] = _extract_images(UpperCAmelCase ) _a : Dict = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + train_labels_file ) with gfile.Open(UpperCAmelCase , '''rb''' ) as f: _a : Optional[int] = _extract_labels(UpperCAmelCase , one_hot=UpperCAmelCase ) _a : str = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + test_images_file ) with gfile.Open(UpperCAmelCase , '''rb''' ) as f: _a : Any = _extract_images(UpperCAmelCase ) _a : Optional[Any] = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + test_labels_file ) with gfile.Open(UpperCAmelCase , '''rb''' ) as f: _a : Tuple = _extract_labels(UpperCAmelCase , one_hot=UpperCAmelCase ) if not 0 <= validation_size <= len(UpperCAmelCase ): _a : Union[str, Any] = ( '''Validation size should be between 0 and ''' F'{len(UpperCAmelCase )}. Received: {validation_size}.' ) raise ValueError(UpperCAmelCase ) _a : str = train_images[:validation_size] _a : List[Any] = train_labels[:validation_size] _a : Union[str, Any] = train_images[validation_size:] _a : List[str] = train_labels[validation_size:] _a : Tuple = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} _a : Optional[Any] = _DataSet(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) _a : Union[str, Any] = _DataSet(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) _a : Union[str, Any] = _DataSet(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) return _Datasets(train=UpperCAmelCase , validation=UpperCAmelCase , test=UpperCAmelCase )
307
1
import re def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> bool: '''simple docstring''' A = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(lowerCAmelCase__ , lowerCAmelCase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
106
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase ) -> int: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("only integers accepted as input" ) else: lowerCamelCase__ =str(abs(__lowerCAmelCase ) ) lowerCamelCase__ =[list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int("".join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
530
0
"""simple docstring""" import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch A_ : str ="""sshleifer/bart-tiny-random""" A_ : Dict ="""patrickvonplaten/t5-tiny-random""" @require_torch class __a ( unittest.TestCase ): @cached_property def snake_case_ ( self ): return AutoConfig.from_pretrained(a__ ) def snake_case_ ( self ): _lowerCamelCase , *_lowerCamelCase = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def snake_case_ ( self ): _lowerCamelCase , *_lowerCamelCase = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=a__ ) def snake_case_ ( self ): _lowerCamelCase , *_lowerCamelCase = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=a__ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def snake_case_ ( self ): _lowerCamelCase , *_lowerCamelCase = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def snake_case_ ( self ): with self.assertRaises(a__ ): create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=a__ , d=a__ )
710
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging A_ : Any =logging.get_logger(__name__) A_ : Dict ={"""vocab_file""": """vocab.txt"""} A_ : Optional[int] ={ """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } A_ : Any ={ """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] )-> Tuple: with open(snake_case , 'r' ) as f: _lowerCamelCase = f.read().splitlines() return [l.strip() for l in lines] class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , a__ , a__="<unk>" , a__="<cls>" , a__="<pad>" , a__="<mask>" , a__="<eos>" , **a__ , ): super().__init__(**a__ ) _lowerCamelCase = load_vocab_file(a__ ) _lowerCamelCase = dict(enumerate(self.all_tokens ) ) _lowerCamelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )} _lowerCamelCase = unk_token _lowerCamelCase = cls_token _lowerCamelCase = pad_token _lowerCamelCase = mask_token _lowerCamelCase = eos_token _lowerCamelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def snake_case_ ( self , a__ ): return self._id_to_token.get(a__ , self.unk_token ) def snake_case_ ( self , a__ ): return self._token_to_id.get(a__ , self._token_to_id.get(self.unk_token ) ) def snake_case_ ( self , a__ , **a__ ): return text.split() def snake_case_ ( self , a__=False ): return len(self._id_to_token ) def snake_case_ ( self ): return {token: i for i, token in enumerate(self.all_tokens )} def snake_case_ ( self , a__ ): return self._token_to_id.get(a__ , self._token_to_id.get(self.unk_token ) ) def snake_case_ ( self , a__ ): return self._id_to_token.get(a__ , self.unk_token ) def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def snake_case_ ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _lowerCamelCase = [1] + ([0] * len(a__ )) + [1] if token_ids_a is not None: mask += [0] * len(a__ ) + [1] return mask def snake_case_ ( self , a__ , a__ ): _lowerCamelCase = os.path.join(a__ , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(a__ , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def snake_case_ ( self ): return self.get_vocab_size(with_added_tokens=a__ ) def snake_case_ ( self , a__ , a__ = False ): return super()._add_tokens(a__ , special_tokens=a__ )
222
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCamelCase : Optional[int] = ["gpt2"] lowerCamelCase : Any = "gpt2" if is_tf_available(): class A( tf.Module ): '''simple docstring''' def __init__( self : Optional[int] , A_ : List[Any] ) -> Tuple: """simple docstring""" super().__init__() lowerCamelCase_ = tokenizer lowerCamelCase_ = AutoConfig.from_pretrained(A_ ) lowerCamelCase_ = TFGPTaLMHeadModel.from_config(A_ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def a__ ( self : Tuple , A_ : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = self.tokenizer(A_ ) lowerCamelCase_ = tokenized['input_ids'].to_tensor() lowerCamelCase_ = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowerCamelCase_ = self.model(input_ids=A_ , attention_mask=A_ )['logits'] return outputs @require_tf @require_keras_nlp class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" super().setUp() lowerCamelCase_ = [GPTaTokenizer.from_pretrained(A_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowerCamelCase_ = [TFGPTaTokenizer.from_pretrained(A_ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCamelCase_ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] lowerCamelCase_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: lowerCamelCase_ = tokenizer([test_inputs] , return_tensors='tf' ) lowerCamelCase_ = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowerCamelCase_ = python_outputs[key].numpy() lowerCamelCase_ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(A_ , tf.intaa ) == tf_outputs_values ) ) @slow def a__ ( self : Any ) -> Dict: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = tf.function(A_ ) for test_inputs in self.test_sentences: lowerCamelCase_ = tf.constant(A_ ) lowerCamelCase_ = compiled_tokenizer(A_ ) lowerCamelCase_ = tf_tokenizer(A_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = ModelToSave(tokenizer=A_ ) lowerCamelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCamelCase_ = model.serving(A_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCamelCase_ = Path(A_ ) / 'saved.model' tf.saved_model.save(A_ , A_ , signatures={'serving_default': model.serving} ) lowerCamelCase_ = tf.saved_model.load(A_ ) lowerCamelCase_ = loaded_model.signatures['serving_default'](A_ )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: lowerCamelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCamelCase_ = tf_tokenizer(A_ ) # Build model with some sample inputs lowerCamelCase_ = tf_tokenizer.get_config() lowerCamelCase_ = TFGPTaTokenizer.from_config(A_ ) lowerCamelCase_ = model_from_config(A_ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def a__ ( self : List[Any] ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run lowerCamelCase_ = 123123 for max_length in [3, 5, 1024]: lowerCamelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCamelCase_ = tf_tokenizer(A_ , max_length=A_ ) lowerCamelCase_ = out['input_ids'].numpy().shape[1] assert out_length == max_length
70
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : int )->Union[str, Any]: # Initialise PyTorch model A__ = BigBirdConfig.from_json_file(UpperCamelCase__ ) print(f"Building PyTorch model from configuration: {config}" ) if is_trivia_qa: A__ = BigBirdForQuestionAnswering(UpperCamelCase__ ) else: A__ = BigBirdForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCamelCase__ , UpperCamelCase__ , is_trivia_qa=UpperCamelCase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": a__: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) a__: Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
190
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''CLIPFeatureExtractor'''] UpperCamelCase = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
569
def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = ( first_str_length if first_str_length > second_str_length else second_str_length ) _SCREAMING_SNAKE_CASE = [] for char_count in range(snake_case__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(snake_case__ ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
569
1
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __A ( a_ : Optional[int] ): lowerCAmelCase : List[str] = VideoMAEConfig() set_architecture_configs(a_ ,a_ ) if "finetuned" not in model_name: lowerCAmelCase : List[str] = False if "finetuned" in model_name: lowerCAmelCase : Optional[int] = "huggingface/label-files" if "kinetics" in model_name: lowerCAmelCase : List[str] = 4_0_0 lowerCAmelCase : int = "kinetics400-id2label.json" elif "ssv2" in model_name: lowerCAmelCase : int = 1_7_4 lowerCAmelCase : List[str] = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) lowerCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(a_ ,a_ ,repo_type="dataset" ) ,"r" ) ) lowerCAmelCase : List[Any] = {int(a_ ): v for k, v in idalabel.items()} lowerCAmelCase : Any = idalabel lowerCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def __A ( a_ : List[Any] ,a_ : List[str] ): if "small" in model_name: lowerCAmelCase : Tuple = 3_8_4 lowerCAmelCase : Any = 1_5_3_6 lowerCAmelCase : Optional[int] = 1_2 lowerCAmelCase : str = 1_6 lowerCAmelCase : List[Any] = 1_2 lowerCAmelCase : Dict = 3 lowerCAmelCase : List[Any] = 1_9_2 lowerCAmelCase : Dict = 7_6_8 elif "large" in model_name: lowerCAmelCase : List[Any] = 1_0_2_4 lowerCAmelCase : Dict = 4_0_9_6 lowerCAmelCase : Tuple = 2_4 lowerCAmelCase : List[str] = 1_6 lowerCAmelCase : List[Any] = 1_2 lowerCAmelCase : str = 8 lowerCAmelCase : Tuple = 5_1_2 lowerCAmelCase : Optional[Any] = 2_0_4_8 elif "huge" in model_name: lowerCAmelCase : List[str] = 1_2_8_0 lowerCAmelCase : Optional[int] = 5_1_2_0 lowerCAmelCase : Optional[Any] = 3_2 lowerCAmelCase : List[str] = 1_6 lowerCAmelCase : str = 1_2 lowerCAmelCase : Tuple = 8 lowerCAmelCase : Optional[Any] = 6_4_0 lowerCAmelCase : str = 2_5_6_0 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def __A ( a_ : List[Any] ): if "encoder." in name: lowerCAmelCase : Union[str, Any] = name.replace("encoder." ,"" ) if "cls_token" in name: lowerCAmelCase : Optional[Any] = name.replace("cls_token" ,"videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: lowerCAmelCase : int = name.replace("decoder_pos_embed" ,"decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase : Optional[int] = name.replace("pos_embed" ,"videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCAmelCase : List[str] = name.replace("patch_embed.proj" ,"videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace("patch_embed.norm" ,"videomae.embeddings.norm" ) if "decoder.blocks" in name: lowerCAmelCase : Optional[Any] = name.replace("decoder.blocks" ,"decoder.decoder_layers" ) if "blocks" in name: lowerCAmelCase : Tuple = name.replace("blocks" ,"videomae.encoder.layer" ) if "attn.proj" in name: lowerCAmelCase : Any = name.replace("attn.proj" ,"attention.output.dense" ) if "attn" in name and "bias" not in name: lowerCAmelCase : Union[str, Any] = name.replace("attn" ,"attention.self" ) if "attn" in name: lowerCAmelCase : Dict = name.replace("attn" ,"attention.attention" ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace("norm1" ,"layernorm_before" ) if "norm2" in name: lowerCAmelCase : List[Any] = name.replace("norm2" ,"layernorm_after" ) if "mlp.fc1" in name: lowerCAmelCase : Tuple = name.replace("mlp.fc1" ,"intermediate.dense" ) if "mlp.fc2" in name: lowerCAmelCase : int = name.replace("mlp.fc2" ,"output.dense" ) if "decoder_embed" in name: lowerCAmelCase : Union[str, Any] = name.replace("decoder_embed" ,"decoder.decoder_embed" ) if "decoder_norm" in name: lowerCAmelCase : int = name.replace("decoder_norm" ,"decoder.decoder_norm" ) if "decoder_pred" in name: lowerCAmelCase : Union[str, Any] = name.replace("decoder_pred" ,"decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase : Any = name.replace("norm.weight" ,"videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase : Union[str, Any] = name.replace("norm.bias" ,"videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: lowerCAmelCase : int = name.replace("head" ,"classifier" ) return name def __A ( a_ : Dict ,a_ : Tuple ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : int = orig_state_dict.pop(a_ ) if key.startswith("encoder." ): lowerCAmelCase : Any = key.replace("encoder." ,"" ) if "qkv" in key: lowerCAmelCase : str = key.split("." ) if key.startswith("decoder.blocks" ): lowerCAmelCase : Any = config.decoder_hidden_size lowerCAmelCase : str = int(key_split[2] ) lowerCAmelCase : Any = "decoder.decoder_layers." if "weight" in key: lowerCAmelCase : Optional[Any] = val[:dim, :] lowerCAmelCase : List[Any] = val[dim : dim * 2, :] lowerCAmelCase : Union[str, Any] = val[-dim:, :] else: lowerCAmelCase : int = config.hidden_size lowerCAmelCase : Union[str, Any] = int(key_split[1] ) lowerCAmelCase : Dict = "videomae.encoder.layer." if "weight" in key: lowerCAmelCase : List[Any] = val[:dim, :] lowerCAmelCase : Union[str, Any] = val[dim : dim * 2, :] lowerCAmelCase : Tuple = val[-dim:, :] else: lowerCAmelCase : Dict = val return orig_state_dict def __A ( ): lowerCAmelCase : Optional[Any] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" ,filename="eating_spaghetti.npy" ,repo_type="dataset" ) lowerCAmelCase : int = np.load(a_ ) return list(a_ ) def __A ( a_ : List[Any] ,a_ : Union[str, Any] ,a_ : Any ,a_ : Tuple ): lowerCAmelCase : str = get_videomae_config(a_ ) if "finetuned" in model_name: lowerCAmelCase : Union[str, Any] = VideoMAEForVideoClassification(a_ ) else: lowerCAmelCase : Optional[int] = VideoMAEForPreTraining(a_ ) # download original checkpoint, hosted on Google Drive lowerCAmelCase : Optional[int] = "pytorch_model.bin" gdown.cached_download(a_ ,a_ ,quiet=a_ ) lowerCAmelCase : int = torch.load(a_ ,map_location="cpu" ) if "model" in files: lowerCAmelCase : Dict = files["model"] else: lowerCAmelCase : int = files["module"] lowerCAmelCase : Dict = convert_state_dict(a_ ,a_ ) model.load_state_dict(a_ ) model.eval() # verify model on basic input lowerCAmelCase : int = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) lowerCAmelCase : Union[str, Any] = prepare_video() lowerCAmelCase : Tuple = image_processor(a_ ,return_tensors="pt" ) if "finetuned" not in model_name: lowerCAmelCase : List[Any] = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" ,filename="bool_masked_pos.pt" ) lowerCAmelCase : List[str] = torch.load(a_ ) lowerCAmelCase : str = model(**a_ ) lowerCAmelCase : Dict = outputs.logits lowerCAmelCase : str = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowerCAmelCase : List[str] = torch.Size([1, 4_0_0] ) lowerCAmelCase : List[Any] = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": lowerCAmelCase : Tuple = torch.Size([1, 1_7_4] ) lowerCAmelCase : int = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": lowerCAmelCase : str = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : Union[str, Any] = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": lowerCAmelCase : Dict = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : Tuple = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one lowerCAmelCase : Optional[Any] = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": lowerCAmelCase : Any = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : List[Any] = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": lowerCAmelCase : int = torch.Size([1, 4_0_0] ) lowerCAmelCase : str = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": lowerCAmelCase : Optional[int] = torch.Size([1, 4_0_0] ) lowerCAmelCase : Optional[int] = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowerCAmelCase : Optional[int] = torch.Size([1, 4_0_0] ) lowerCAmelCase : Tuple = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": lowerCAmelCase : Union[str, Any] = torch.Size([1, 4_0_0] ) lowerCAmelCase : List[Any] = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": lowerCAmelCase : Union[str, Any] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : str = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowerCAmelCase : Optional[Any] = torch.Size([1, 1_7_4] ) lowerCAmelCase : List[str] = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": lowerCAmelCase : List[str] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCAmelCase : Any = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": lowerCAmelCase : int = torch.Size([1, 1_7_4] ) lowerCAmelCase : List[str] = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] ,a_ ,atol=1e-4 ) else: print("Logits:" ,logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] ,a_ ,atol=1e-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": lowerCAmelCase : Any = outputs.loss assert torch.allclose(a_ ,a_ ,atol=1e-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a_ ) model.save_pretrained(a_ ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(a_ ,organization="nielsr" ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
525
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __A ( ): lowerCAmelCase , lowerCAmelCase : List[Any] = 9, 1_4 # noqa: F841 lowerCAmelCase : int = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] lowerCAmelCase : Optional[Any] = defaultdict(a_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCAmelCase : int = mst(a_ ) lowerCAmelCase : Tuple = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCAmelCase : List[str] = tuple(answer[:2] ) lowerCAmelCase : int = tuple(edge[::-1] ) assert edge in result or reverse in result
525
1
from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: _a = 0 if start < end: _a = randint(_UpperCamelCase , _UpperCamelCase ) _a = a[end] _a = a[pivot] _a = temp _a , _a = _in_place_partition(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) count += _in_place_quick_sort(_UpperCamelCase , _UpperCamelCase , p - 1 ) count += _in_place_quick_sort(_UpperCamelCase , p + 1 , _UpperCamelCase ) return count def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: _a = 0 _a = randint(_UpperCamelCase , _UpperCamelCase ) _a = a[end] _a = a[pivot] _a = temp _a = start - 1 for index in range(_UpperCamelCase , _UpperCamelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _a = new_pivot_index + 1 _a = a[new_pivot_index] _a = a[index] _a = temp _a = a[new_pivot_index + 1] _a = a[end] _a = temp return new_pivot_index + 1, count lowerCamelCase :Dict = TemporaryFile() lowerCamelCase :Optional[int] = 100 # 1000 elements are to be sorted lowerCamelCase , lowerCamelCase :int = 0, 1 # mean and standard deviation lowerCamelCase :Any = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array lowerCamelCase :List[str] = np.load(outfile) lowerCamelCase :str = len(M) - 1 lowerCamelCase :Union[str, Any] = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
346
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase :List[Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :str = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCamelCase :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
346
1
import math import sys import cva import numpy as np def _lowerCamelCase ( __A : np.ndarray , __A : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. _UpperCAmelCase : List[str] = math.sqrt(__A ) _UpperCAmelCase : Any = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def _lowerCamelCase ( __A : np.ndarray , __A : int , __A : int , __A : int ) -> np.ndarray: _UpperCAmelCase : Tuple = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def _lowerCamelCase ( __A : int , __A : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. _UpperCAmelCase : Tuple = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __A ): for j in range(0 , __A ): _UpperCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__A , __A ) def _lowerCamelCase ( __A : np.ndarray , __A : float , __A : float , __A : int , ) -> np.ndarray: _UpperCAmelCase : Dict = np.zeros(img.shape ) _UpperCAmelCase : Any = get_gauss_kernel(__A , __A ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _UpperCAmelCase : List[str] = get_slice(__A , __A , __A , __A ) _UpperCAmelCase : Union[str, Any] = img_s - img_s[kernel_size // 2, kernel_size // 2] _UpperCAmelCase : Optional[Any] = vec_gaussian(__A , __A ) _UpperCAmelCase : Union[str, Any] = np.multiply(__A , __A ) _UpperCAmelCase : List[str] = np.multiply(__A , __A ) _UpperCAmelCase : Tuple = np.sum(__A ) / np.sum(__A ) _UpperCAmelCase : Tuple = val return imga def _lowerCamelCase ( __A : list ) -> tuple: _UpperCAmelCase : Optional[int] = args[1] if args[1:] else '''../image_data/lena.jpg''' _UpperCAmelCase : Optional[int] = float(args[2] ) if args[2:] else 1.0 _UpperCAmelCase : List[str] = float(args[3] ) if args[3:] else 1.0 if args[4:]: _UpperCAmelCase : str = int(args[4] ) _UpperCAmelCase : Dict = kernel_size + abs(kernel_size % 2 - 1 ) else: _UpperCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parse_args(sys.argv) SCREAMING_SNAKE_CASE = cva.imread(filename, 0) cva.imshow('input image', img) SCREAMING_SNAKE_CASE = img / 255 SCREAMING_SNAKE_CASE = out.astype('float32') SCREAMING_SNAKE_CASE = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE = out * 255 SCREAMING_SNAKE_CASE = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
485
from __future__ import annotations from math import ceil, floor, sqrt def _lowerCamelCase ( __A : int = 2_000_000 ) -> int: _UpperCAmelCase : list[int] = [0] _UpperCAmelCase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _UpperCAmelCase : int = 0 # the area corresponding to the grid that gives the product closest to target _UpperCAmelCase : int = 0 # an estimate of b, using the quadratic formula _UpperCAmelCase : float # the largest integer less than b_estimate _UpperCAmelCase : int # the largest integer less than b_estimate _UpperCAmelCase : int # the triangle number corresponding to b_floor _UpperCAmelCase : int # the triangle number corresponding to b_ceil _UpperCAmelCase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _UpperCAmelCase : str = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _UpperCAmelCase : Dict = floor(__A ) _UpperCAmelCase : List[Any] = ceil(__A ) _UpperCAmelCase : Union[str, Any] = triangle_numbers[b_floor] _UpperCAmelCase : List[Any] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _UpperCAmelCase : Union[str, Any] = triangle_b_first_guess * triangle_a _UpperCAmelCase : Optional[int] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _UpperCAmelCase : Any = triangle_b_second_guess * triangle_a _UpperCAmelCase : int = idx_a * b_ceil return area if __name__ == "__main__": print(F'{solution() = }')
485
1
import json import sys def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(_A , encoding='''utf-8''' ) as f: A_ = json.load(_A ) A_ = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(_A ): A_ = results[benchmark_name] A_ = benchmark_name.split('''/''' )[-1] output_md.append(f"### Benchmark: {benchmark_file_name}" ) A_ = '''| metric |''' A_ = '''|--------|''' A_ = '''| new / old (diff) |''' for metric_name in sorted(_A ): A_ = benchmark_res[metric_name] A_ = metric_vals['''new'''] A_ = metric_vals.get('''old''' , _A ) A_ = metric_vals.get('''diff''' , _A ) A_ = f" {new_val:f}" if isinstance(_A , (int, float) ) else '''None''' if old_val is not None: val_str += f" / {old_val:f}" if isinstance(_A , (int, float) ) else "None" if dif_val is not None: val_str += f" ({dif_val:f})" if isinstance(_A , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(_A ) ) if __name__ == "__main__": __lowercase = sys.argv[1] __lowercase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
709
from __future__ import annotations import pandas as pd def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = [0] * no_of_processes A_ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(SCREAMING_SNAKE_CASE ): A_ = burst_time[i] A_ = 0 A_ = 0 A_ = 999999999 A_ = 0 A_ = False # Process until all processes are completed while complete != no_of_processes: for j in range(SCREAMING_SNAKE_CASE ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: A_ = remaining_time[j] A_ = j A_ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 A_ = remaining_time[short] if minm == 0: A_ = 999999999 if remaining_time[short] == 0: complete += 1 A_ = False # Find finish time of current process A_ = increment_time + 1 # Calculate waiting time A_ = finish_time - arrival_time[short] A_ = finar - burst_time[short] if waiting_time[short] < 0: A_ = 0 # Increment time increment_time += 1 return waiting_time def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = [0] * no_of_processes for i in range(SCREAMING_SNAKE_CASE ): A_ = burst_time[i] + waiting_time[i] return turn_around_time def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = 0 A_ = 0 for i in range(SCREAMING_SNAKE_CASE ): A_ = total_waiting_time + waiting_time[i] A_ = total_turn_around_time + turn_around_time[i] print(f"Average waiting time = {total_waiting_time / no_of_processes:.5f}" ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") __lowercase = int(input()) __lowercase = [0] * no_of_processes __lowercase = [0] * no_of_processes __lowercase = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) __lowercase , __lowercase = map(int, input().split()) __lowercase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowercase = burst_time __lowercase = no_of_processes __lowercase = waiting_time __lowercase = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __lowercase = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
563
0
"""simple docstring""" import os from distutils.util import strtobool def lowercase__ ( lowerCamelCase : str , lowerCamelCase : Optional[int] ) -> Dict: for e in env_keys: lowerCAmelCase__ : Any = int(os.environ.get(lowerCamelCase , -1 ) ) if val >= 0: return val return default def lowercase__ ( lowerCamelCase : Tuple , lowerCamelCase : str=False ) -> Union[str, Any]: lowerCAmelCase__ : Optional[Any] = os.environ.get(lowerCamelCase , str(lowerCamelCase ) ) return strtobool(lowerCamelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase__ ( lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any]="no" ) -> int: lowerCAmelCase__ : str = os.environ.get(lowerCamelCase , str(lowerCamelCase ) ) return value
308
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def lowercase__ ( lowerCamelCase : int , lowerCamelCase : Dict=False , lowerCamelCase : Tuple=False , lowerCamelCase : Tuple=False ) -> str: lowerCAmelCase__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"transformer.blocks.{i}.norm1.weight", F"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"transformer.blocks.{i}.norm1.bias", F"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"transformer.blocks.{i}.attn.proj.weight", F"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"transformer.blocks.{i}.attn.proj.bias", F"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"transformer.blocks.{i}.norm2.weight", F"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"transformer.blocks.{i}.norm2.bias", F"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (F"transformer.blocks.{i}.mlp.fc1.weight", F"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"transformer.blocks.{i}.mlp.fc1.bias", F"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"transformer.blocks.{i}.mlp.fc2.weight", F"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"transformer.blocks.{i}.mlp.fc2.bias", F"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowercase__ ( lowerCamelCase : Tuple , lowerCamelCase : List[str] ) -> Tuple: for i in range(config.num_hidden_layers ): lowerCAmelCase__ : List[Any] = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : Any = state_dict.pop(F"transformer.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ : Tuple = state_dict.pop(F"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : str = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : Any = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowercase__ ( lowerCamelCase : Tuple ) -> Any: lowerCAmelCase__ : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def lowercase__ ( lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : List[str] ) -> List[Any]: lowerCAmelCase__ : List[Any] = dct.pop(lowerCamelCase ) lowerCAmelCase__ : List[Any] = val @torch.no_grad() def lowercase__ ( lowerCamelCase : Dict , lowerCamelCase : Dict ) -> List[str]: lowerCAmelCase__ : str = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=lowerCamelCase ) lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : str = False lowerCAmelCase__ : Any = False lowerCAmelCase__ : List[Any] = False if "vqa" in checkpoint_url: lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : Union[str, Any] = 3_1_2_9 lowerCAmelCase__ : Any = "huggingface/label-files" lowerCAmelCase__ : Optional[int] = "vqa2-id2label.json" lowerCAmelCase__ : Dict = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ : Union[str, Any] = {int(lowerCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase__ : Dict = idalabel lowerCAmelCase__ : Dict = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : List[Any] = ViltForQuestionAnswering(lowerCamelCase ) elif "nlvr" in checkpoint_url: lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Optional[int] = 2 lowerCAmelCase__ : int = {0: "False", 1: "True"} lowerCAmelCase__ : Dict = {v: k for k, v in config.idalabel.items()} lowerCAmelCase__ : int = 3 lowerCAmelCase__ : Optional[int] = ViltForImagesAndTextClassification(lowerCamelCase ) elif "irtr" in checkpoint_url: lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : Optional[Any] = ViltForImageAndTextRetrieval(lowerCamelCase ) elif "mlm_itm" in checkpoint_url: lowerCAmelCase__ : Any = True lowerCAmelCase__ : List[Any] = ViltForMaskedLM(lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : Optional[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="cpu" )["state_dict"] lowerCAmelCase__ : Optional[int] = create_rename_keys(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_q_k_v(lowerCamelCase , lowerCamelCase ) if mlm_model or irtr_model: lowerCAmelCase__ : List[Any] = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: lowerCAmelCase__ , lowerCAmelCase__ : Any = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowerCamelCase ) # Define processor lowerCAmelCase__ : List[str] = ViltImageProcessor(size=3_8_4 ) lowerCAmelCase__ : Optional[Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) lowerCAmelCase__ : Union[str, Any] = ViltProcessor(lowerCamelCase , lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: lowerCAmelCase__ : List[Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=lowerCamelCase ).raw ) lowerCAmelCase__ : Dict = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=lowerCamelCase ).raw ) lowerCAmelCase__ : Tuple = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) lowerCAmelCase__ : Optional[int] = processor(lowerCamelCase , lowerCamelCase , return_tensors="pt" ) lowerCAmelCase__ : Union[str, Any] = processor(lowerCamelCase , lowerCamelCase , return_tensors="pt" ) lowerCAmelCase__ : Any = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowerCAmelCase__ : Any = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=lowerCamelCase ).raw ) if mlm_model: lowerCAmelCase__ : Tuple = "a bunch of [MASK] laying on a [MASK]." else: lowerCAmelCase__ : List[Any] = "How many cats are there?" lowerCAmelCase__ : int = processor(lowerCamelCase , lowerCamelCase , return_tensors="pt" ) lowerCAmelCase__ : List[str] = model(**lowerCamelCase ) # Verify outputs if mlm_model: lowerCAmelCase__ : Union[str, Any] = torch.Size([1, 1_1, 3_0_5_2_2] ) lowerCAmelCase__ : Optional[int] = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" lowerCAmelCase__ : List[str] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowerCAmelCase__ : List[Any] = torch.Size([1, 3_1_2_9] ) lowerCAmelCase__ : Optional[int] = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" lowerCAmelCase__ : Tuple = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowerCAmelCase__ : str = torch.Size([1, 2] ) lowerCAmelCase__ : List[Any] = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __UpperCAmelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : str = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } lowercase__ : List[str] = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase__ ( _A , _A , _A , _A , _A , _A ): '''simple docstring''' for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models snake_case_ = "lm_head" snake_case_ = getattr(_A , _A ) if weight_type is not None: snake_case_ = getattr(_A , _A ).shape else: snake_case_ = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value else: snake_case_ = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == "group" , ) snake_case_ = True else: for key, mapped_key in MAPPING.items(): snake_case_ = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(_A )[0].split("." )[-2] snake_case_ = mapped_key.replace("*" , _A ) if "weight_g" in name: snake_case_ = "weight_g" elif "weight_v" in name: snake_case_ = "weight_v" elif "bias" in name: snake_case_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ = "weight" else: snake_case_ = None set_recursively(_A , _A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(f"Unused weights: {unused_weights}" ) def lowerCamelCase__ ( _A , _A , _A , _A , _A ): '''simple docstring''' snake_case_ = full_name.split("conv_layers." )[-1] snake_case_ = name.split("." ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case_ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case_ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) snake_case_ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case_ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_A ) @torch.no_grad() def lowerCamelCase__ ( _A , _A , _A=None , _A=None , _A=True ): '''simple docstring''' if config_path is not None: snake_case_ = UniSpeechConfig.from_pretrained(_A ) else: snake_case_ = UniSpeechConfig() if is_finetuned: if dict_path: snake_case_ = Dictionary.load_from_json(_A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case_ = target_dict.pad_index snake_case_ = target_dict.bos_index snake_case_ = target_dict.eos_index snake_case_ = len(target_dict.symbols ) snake_case_ = os.path.join(_A , "vocab.json" ) if not os.path.isdir(_A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_A ) ) return os.makedirs(_A , exist_ok=_A ) snake_case_ = target_dict.indices # fairseq has the <pad> and <s> switched snake_case_ = 42 snake_case_ = 43 with open(_A , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_A , _A ) snake_case_ = WavaVecaPhonemeCTCTokenizer( _A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_A , ) snake_case_ = True if config.feat_extract_norm == "layer" else False snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) snake_case_ = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A ) processor.save_pretrained(_A ) snake_case_ = UniSpeechForCTC(_A ) else: snake_case_ = UniSpeechForPreTraining(_A ) if is_finetuned: snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case_ = model[0].eval() recursively_load_weights(_A , _A , _A ) hf_unispeech.save_pretrained(_A ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowercase__ : Union[str, Any] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
700
def lowerCamelCase__ ( _A = 600851475143 ): '''simple docstring''' try: snake_case_ = int(_A ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) snake_case_ = 2 snake_case_ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case_ = i while n % i == 0: snake_case_ = n // i i += 1 return int(_A ) if __name__ == "__main__": print(f'''{solution() = }''')
139
0
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _UpperCamelCase ( lowerCAmelCase__: int=None ,lowerCAmelCase__: Union[str, Any]=None ) -> List[str]: return field(default_factory=lambda: default ,metadata=__lowerCAmelCase ) @dataclass class snake_case : """simple docstring""" _a = field( metadata={"""help""": """The csv file to plot."""}, ) _a = field( default=UpperCAmelCase_, metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""}, ) _a = field( default=UpperCAmelCase_, metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""}, ) _a = field( default=UpperCAmelCase_, metadata={"""help""": """Disable logarithmic scale when plotting"""}, ) _a = field( default=UpperCAmelCase_, metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" }, ) _a = field( default=UpperCAmelCase_, metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""}, ) _a = list_field( default=UpperCAmelCase_, metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def _UpperCamelCase ( lowerCAmelCase__: List[str] ) -> Union[str, Any]: try: int(__lowerCAmelCase ) return True except ValueError: return False def _UpperCamelCase ( lowerCAmelCase__: Any ) -> Any: try: float(__lowerCAmelCase ) return True except ValueError: return False class snake_case : """simple docstring""" def __init__( self, _lowercase ) -> List[Any]: SCREAMING_SNAKE_CASE_ = args SCREAMING_SNAKE_CASE_ = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file, newline='' ) as csv_file: SCREAMING_SNAKE_CASE_ = csv.DictReader(lowerCamelCase__ ) for row in reader: SCREAMING_SNAKE_CASE_ = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None SCREAMING_SNAKE_CASE_ = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None SCREAMING_SNAKE_CASE_ = float(row['result'] ) def a__ ( self ) -> int: SCREAMING_SNAKE_CASE_ = plt.subplots() SCREAMING_SNAKE_CASE_ = """Time usage""" if self.args.is_time else """Memory usage""" SCREAMING_SNAKE_CASE_ = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): SCREAMING_SNAKE_CASE_ = sorted(set(self.result_dict[model_name]['bsz'] ) ) SCREAMING_SNAKE_CASE_ = sorted(set(self.result_dict[model_name]['seq_len'] ) ) SCREAMING_SNAKE_CASE_ = self.result_dict[model_name]["""result"""] (SCREAMING_SNAKE_CASE_) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) SCREAMING_SNAKE_CASE_ = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: SCREAMING_SNAKE_CASE_ = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results], dtype=lowerCamelCase__, ) else: SCREAMING_SNAKE_CASE_ = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results], dtype=np.floataa, ) (SCREAMING_SNAKE_CASE_) = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) SCREAMING_SNAKE_CASE_ = np.asarray(lowerCamelCase__, lowerCamelCase__ )[: len(lowerCamelCase__ )] plt.scatter( lowerCamelCase__, lowerCamelCase__, label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(lowerCamelCase__, lowerCamelCase__, '--' ) title_str += f""" {label_model_name} vs.""" SCREAMING_SNAKE_CASE_ = title_str[:-4] SCREAMING_SNAKE_CASE_ = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(lowerCamelCase__ ) plt.xlabel(lowerCamelCase__ ) plt.ylabel(lowerCamelCase__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _UpperCamelCase ( ) -> str: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] SCREAMING_SNAKE_CASE_ = Plot(args=__lowerCAmelCase ) plot.plot() if __name__ == "__main__": main()
294
def __lowerCamelCase ( __lowerCAmelCase : str ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __UpperCamelCase : List[str] = sorted(string.lower() ) return len(__lowerCAmelCase ) == len(set(__lowerCAmelCase ) ) if __name__ == "__main__": UpperCamelCase = input('Enter a string ').strip() UpperCamelCase = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
269
0
"""simple docstring""" from collections.abc import Sequence def lowercase (SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]: return sum(c * (x**i) for i, c in enumerate(UpperCamelCase__ ) ) def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> List[str]: SCREAMING_SNAKE_CASE = 0.0 for coeff in reversed(UpperCamelCase__ ): SCREAMING_SNAKE_CASE = result * x + coeff return result if __name__ == "__main__": __UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) __UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
720
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) SCREAMING_SNAKE_CASE = BlipProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **lowerCAmelCase__ ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).tokenizer def __A ( self , **lowerCAmelCase__ ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).image_processor def __A ( self ) -> str: shutil.rmtree(self.tmpdirname ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(lowerCAmelCase__ , return_tensors='np' ) SCREAMING_SNAKE_CASE = processor(images=lowerCAmelCase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = processor(text=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> str: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
327
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=18, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, ) -> Optional[int]: UpperCamelCase : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18} UpperCamelCase : Dict = parent UpperCamelCase : Tuple = batch_size UpperCamelCase : str = num_channels UpperCamelCase : int = image_size UpperCamelCase : Tuple = min_resolution UpperCamelCase : Optional[Any] = max_resolution UpperCamelCase : Union[str, Any] = do_resize UpperCamelCase : Union[str, Any] = size UpperCamelCase : Union[str, Any] = apply_ocr def snake_case_ ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Tuple = LayoutLMvaImageProcessingTester(self ) @property def snake_case_ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> Tuple: UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'apply_ocr' ) ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'height': 18, 'width': 18} ) UpperCamelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'height': 42, 'width': 42} ) def snake_case_ ( self ) -> int: pass def snake_case_ ( self ) -> int: # Initialize image_processing UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, Image.Image ) # Test not batched input UpperCamelCase : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) self.assertIsInstance(encoding.words, SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(encoding.boxes, SCREAMING_SNAKE_CASE_ ) # Test batched UpperCamelCase : List[str] = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def snake_case_ ( self ) -> Union[str, Any]: # Initialize image_processing UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester, equal_resolution=SCREAMING_SNAKE_CASE_, numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, np.ndarray ) # Test not batched input UpperCamelCase : str = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) # Test batched UpperCamelCase : Tuple = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def snake_case_ ( self ) -> Tuple: # Initialize image_processing UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=SCREAMING_SNAKE_CASE_, torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) # Test not batched input UpperCamelCase : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) # Test batched UpperCamelCase : List[str] = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def snake_case_ ( self ) -> Union[str, Any]: # with apply_OCR = True UpperCamelCase : Union[str, Any] = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase : Dict = load_dataset('hf-internal-testing/fixtures_docvqa', split='test' ) UpperCamelCase : Dict = Image.open(ds[0]['file'] ).convert('RGB' ) UpperCamelCase : Union[str, Any] = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ), len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase : str = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 UpperCamelCase : int = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words, SCREAMING_SNAKE_CASE_ ) self.assertListEqual(encoding.boxes, SCREAMING_SNAKE_CASE_ ) # with apply_OCR = False UpperCamelCase : Any = LayoutLMvaImageProcessor(apply_ocr=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224) )
40
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: str = "M-CLIP" def __init__( self : Union[str, Any] , A : Optional[Any]=1024 , A : List[str]=768 , **A : Union[str, Any] ): _UpperCAmelCase : str = transformerDimSize _UpperCAmelCase : int = imageDimSize super().__init__(**A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = MCLIPConfig def __init__( self : Optional[int] , A : Union[str, Any] , *A : Any , **A : Optional[int] ): super().__init__(A , *A , **A ) _UpperCAmelCase : Optional[int] = XLMRobertaModel(A ) _UpperCAmelCase : int = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _A ( self : int , A : int , A : int ): _UpperCAmelCase : Optional[int] = self.transformer(input_ids=A , attention_mask=A )[0] _UpperCAmelCase : Optional[int] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A ), embs
244
0
from heapq import heappop, heappush import numpy as np def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=__UpperCAmelCase ) UpperCAmelCase_ = None while queue: (UpperCAmelCase_) = heappop(__UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ = predecessors[x, y] path.append(__UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__UpperCAmelCase ) ): UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__UpperCAmelCase , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
719
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__UpperCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = _distribute_shards(**__UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = _split_gen_kwargs(__UpperCAmelCase , __UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' if expected is RuntimeError: with pytest.raises(__UpperCAmelCase ): _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) else: UpperCAmelCase_ = _number_of_shards_in_gen_kwargs(__UpperCAmelCase ) assert out == expected
561
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : Union[str, Any] = logging.get_logger(__name__) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False ): '''simple docstring''' __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for i in range(config.num_hidden_layers ): __lowerCAmelCase = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) __lowerCAmelCase = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = dct.pop(_UpperCamelCase ) __lowerCAmelCase = val @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_UpperCamelCase ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False if "vqa" in checkpoint_url: __lowerCAmelCase = True __lowerCAmelCase = 3129 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = "vqa2-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = ViltForQuestionAnswering(_UpperCamelCase ) elif "nlvr" in checkpoint_url: __lowerCAmelCase = True __lowerCAmelCase = 2 __lowerCAmelCase = {0: "False", 1: "True"} __lowerCAmelCase = {v: k for k, v in config.idalabel.items()} __lowerCAmelCase = 3 __lowerCAmelCase = ViltForImagesAndTextClassification(_UpperCamelCase ) elif "irtr" in checkpoint_url: __lowerCAmelCase = True __lowerCAmelCase = ViltForImageAndTextRetrieval(_UpperCamelCase ) elif "mlm_itm" in checkpoint_url: __lowerCAmelCase = True __lowerCAmelCase = ViltForMaskedLM(_UpperCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys __lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="cpu" )["state_dict"] __lowerCAmelCase = create_rename_keys(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , _UpperCamelCase ) if mlm_model or irtr_model: __lowerCAmelCase = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_UpperCamelCase ) # Define processor __lowerCAmelCase = ViltImageProcessor(size=384 ) __lowerCAmelCase = BertTokenizer.from_pretrained("bert-base-uncased" ) __lowerCAmelCase = ViltProcessor(_UpperCamelCase , _UpperCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: __lowerCAmelCase = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_UpperCamelCase ).raw ) __lowerCAmelCase = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_UpperCamelCase ).raw ) __lowerCAmelCase = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) __lowerCAmelCase = processor(_UpperCamelCase , _UpperCamelCase , return_tensors="pt" ) __lowerCAmelCase = processor(_UpperCamelCase , _UpperCamelCase , return_tensors="pt" ) __lowerCAmelCase = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: __lowerCAmelCase = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_UpperCamelCase ).raw ) if mlm_model: __lowerCAmelCase = "a bunch of [MASK] laying on a [MASK]." else: __lowerCAmelCase = "How many cats are there?" __lowerCAmelCase = processor(_UpperCamelCase , _UpperCamelCase , return_tensors="pt" ) __lowerCAmelCase = model(**_UpperCamelCase ) # Verify outputs if mlm_model: __lowerCAmelCase = torch.Size([1, 11, 3_0522] ) __lowerCAmelCase = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _UpperCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" __lowerCAmelCase = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: __lowerCAmelCase = torch.Size([1, 3129] ) __lowerCAmelCase = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _UpperCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" __lowerCAmelCase = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: __lowerCAmelCase = torch.Size([1, 2] ) __lowerCAmelCase = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A : Tuple = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
636
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): A : List[Any] = True from torch.cuda.amp import autocast A : Any = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : str =field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCAmelCase : Optional[str] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) __UpperCAmelCase : Optional[bool] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) __UpperCAmelCase : Optional[bool] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Whether to log verbose messages or not."""} ,) __UpperCAmelCase : Optional[float] =field( default=2.0 ,metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) __UpperCAmelCase : Optional[float] =field( default=0.5 ,metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) __UpperCAmelCase : Optional[float] =field( default=0.999_995 ,metadata={"""help""": """Decay of gumbel temperature during training."""} ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = logging.WARNING if model_args.verbose_logging: __lowerCAmelCase = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __lowerCAmelCase = logging.INFO logger.setLevel(_UpperCamelCase ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : str =field( default=lowerCAmelCase__ ,metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) __UpperCAmelCase : Optional[str] =field( default=lowerCAmelCase__ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __UpperCAmelCase : Optional[str] =field( default="""train""" ,metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } ,) __UpperCAmelCase : Optional[str] =field( default="""validation""" ,metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } ,) __UpperCAmelCase : Optional[str] =field( default="""file""" ,metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} ,) __UpperCAmelCase : bool =field( default=lowerCAmelCase__ ,metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) __UpperCAmelCase : Optional[int] =field( default=1 ,metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } ,) __UpperCAmelCase : Optional[int] =field( default=lowerCAmelCase__ ,metadata={"""help""": """The number of processes to use for the preprocessing."""} ,) __UpperCAmelCase : Optional[float] =field( default=20.0 ,metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : WavaVecaForPreTraining __UpperCAmelCase : WavaVecaFeatureExtractor __UpperCAmelCase : Union[bool, str] ="longest" __UpperCAmelCase : Optional[int] =None __UpperCAmelCase : Optional[int] =None def __call__( self , __a ): # reformat list to dict and set to pytorch format __lowerCAmelCase = self.feature_extractor.pad( __a , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) __lowerCAmelCase = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) __lowerCAmelCase = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __lowerCAmelCase = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) __lowerCAmelCase = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __lowerCAmelCase = 1 __lowerCAmelCase = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __lowerCAmelCase = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=__a , min_masks=2 , ) return batch class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , *__a , __a=1 , __a=0 , __a=1.0 , **__a ): super().__init__(*__a , **__a ) __lowerCAmelCase = 0 __lowerCAmelCase = max_gumbel_temp __lowerCAmelCase = min_gumbel_temp __lowerCAmelCase = gumbel_temp_decay def snake_case ( self , __a , __a ): model.train() __lowerCAmelCase = self._prepare_inputs(__a ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(__a , __a ) else: __lowerCAmelCase = self.compute_loss(__a , __a ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a ).backward() elif self.use_apex: with amp.scale_loss(__a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() configure_logger(_UpperCamelCase , _UpperCamelCase ) # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __lowerCAmelCase = DatasetDict() __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __lowerCAmelCase = DatasetDict() __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_UpperCamelCase ) def prepare_dataset(_UpperCamelCase ): # check that all files have the correct sampling rate __lowerCAmelCase , __lowerCAmelCase = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __lowerCAmelCase = datasets.map( _UpperCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long __lowerCAmelCase = vectorized_datasets.filter( lambda _UpperCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_UpperCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __lowerCAmelCase = vectorized_datasets.map( _UpperCamelCase , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __lowerCAmelCase = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) __lowerCAmelCase = WavaVecaForPreTraining(_UpperCamelCase ) __lowerCAmelCase = DataCollatorForWavaVecaPretraining(model=_UpperCamelCase , feature_extractor=_UpperCamelCase ) __lowerCAmelCase = WavaVecaPreTrainer( model=_UpperCamelCase , data_collator=_UpperCamelCase , args=_UpperCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_UpperCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
636
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _a : Union[str, Any] = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
111
def snake_case__ ( UpperCAmelCase : Tuple ): lowerCAmelCase__ :List[Any] = len(UpperCAmelCase ) for i in range(length - 1 ): lowerCAmelCase__ :Union[str, Any] = i for k in range(i + 1 , UpperCAmelCase ): if collection[k] < collection[least]: lowerCAmelCase__ :Any = k if least != i: lowerCAmelCase__ ,lowerCAmelCase__ :int = (collection[i], collection[least]) return collection if __name__ == "__main__": _a : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() _a : Any = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
111
1