code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] , a_ : Optional[Any]=2 , a_ : Tuple=3 , a_ : Any=64 , a_ : str=None ): """simple docstring""" __snake_case = np.random.default_rng(a_ ) __snake_case = length __snake_case = rng.normal(size=(length,) ).astype(np.floataa ) __snake_case = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[Any] ): """simple docstring""" return self.length def __getitem__( self : Optional[Any] , a_ : List[str] ): """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class SCREAMING_SNAKE_CASE__ ( torch.nn.Module ): def __init__( self : Any , a_ : List[str]=0 , a_ : Union[str, Any]=0 , a_ : Tuple=False ): """simple docstring""" super().__init__() __snake_case = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __snake_case = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __snake_case = True def A ( self : List[str] , a_ : int=None ): """simple docstring""" if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) __snake_case = False return x * self.a[0] + self.b[0] class SCREAMING_SNAKE_CASE__ ( torch.nn.Module ): def __init__( self : Dict , a_ : Dict=0 , a_ : Any=0 , a_ : Optional[Any]=False ): """simple docstring""" super().__init__() __snake_case = torch.nn.Parameter(torch.tensor(a_ ).float() ) __snake_case = torch.nn.Parameter(torch.tensor(a_ ).float() ) __snake_case = True def A ( self : Dict , a_ : Any=None ): """simple docstring""" if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) __snake_case = False return x * self.a + self.b def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : int = 16 ) -> str: from datasets import load_dataset from transformers import AutoTokenizer __snake_case = AutoTokenizer.from_pretrained("bert-base-cased" ) __snake_case = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} __snake_case = load_dataset("csv" , data_files=_UpperCAmelCase ) __snake_case = datasets["train"].unique("label" ) __snake_case = {v: i for i, v in enumerate(_UpperCAmelCase )} def tokenize_function(_UpperCAmelCase : List[str] ): # max_length=None => use the model max length (it's actually the default) __snake_case = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , padding="max_length" ) if "label" in examples: __snake_case = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __snake_case = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_UpperCAmelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCAmelCase , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(_UpperCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. __snake_case = DataLoader(tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=2 ) __snake_case = DataLoader(tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
69
from typing import Any def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): _validation( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) # Creates data structures and fill initial step UpperCamelCase__ : dict = {} UpperCamelCase__ : dict = {} for state in states_space: UpperCamelCase__ : Optional[int] = observations_space[0] UpperCamelCase__ : Any = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCamelCase__ : Union[str, Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(UpperCamelCase__ ) ): UpperCamelCase__ : str = observations_space[o] UpperCamelCase__ : Union[str, Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCamelCase__ : int = '''''' UpperCamelCase__ : List[str] = -1 for k_state in states_space: UpperCamelCase__ : Union[str, Any] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCamelCase__ : Tuple = probability UpperCamelCase__ : Union[str, Any] = k_state # Update probabilities and pointers dicts UpperCamelCase__ : Tuple = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCamelCase__ : Optional[Any] = arg_max # The final observation UpperCamelCase__ : List[str] = observations_space[len(UpperCamelCase__ ) - 1] # argmax for given final observation UpperCamelCase__ : Dict = '''''' UpperCamelCase__ : Tuple = -1 for k_state in states_space: UpperCamelCase__ : Any = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCamelCase__ : List[str] = probability UpperCamelCase__ : Tuple = k_state UpperCamelCase__ : Any = arg_max # Process pointers backwards UpperCamelCase__ : List[Any] = last_state UpperCamelCase__ : int = [] for o in range(len(UpperCamelCase__ ) - 1 , -1 , -1 ): result.append(UpperCamelCase__ ) UpperCamelCase__ : int = pointers[previous, observations_space[o]] result.reverse() return result def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): _validate_not_empty( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) _validate_lists(UpperCamelCase__ , UpperCamelCase__ ) _validate_dicts( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): _validate_list(UpperCamelCase__ , '''observations_space''' ) _validate_list(UpperCamelCase__ , '''states_space''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): if not isinstance(_object , UpperCamelCase__ ): UpperCamelCase__ : List[Any] = f'''{var_name} must be a list''' raise ValueError(UpperCamelCase__ ) else: for x in _object: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : List[Any] = f'''{var_name} must be a list of strings''' raise ValueError(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): _validate_dict(UpperCamelCase__ , '''initial_probabilities''' , UpperCamelCase__ ) _validate_nested_dict(UpperCamelCase__ , '''transition_probabilities''' ) _validate_nested_dict(UpperCamelCase__ , '''emission_probabilities''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): _validate_dict(_object , UpperCamelCase__ , UpperCamelCase__ ) for x in _object.values(): _validate_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ): if not isinstance(_object , UpperCamelCase__ ): UpperCamelCase__ : List[str] = f'''{var_name} must be a dict''' raise ValueError(UpperCamelCase__ ) if not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for x in _object ): UpperCamelCase__ : Dict = f'''{var_name} all keys must be strings''' raise ValueError(UpperCamelCase__ ) if not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for x in _object.values() ): UpperCamelCase__ : Optional[Any] = '''nested dictionary ''' if nested else '''''' UpperCamelCase__ : Optional[Any] = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
285
0
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase): """simple docstring""" _A : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _A : List[str] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = AudioClassificationPipeline(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) # test with a raw waveform snake_case_ : Tuple = np.zeros((3_40_00,) ) snake_case_ : List[Any] = np.zeros((1_40_00,) ) return audio_classifier, [audioa, audio] def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ , snake_case_ : Any = examples snake_case_ : Dict = audio_classifier(_lowerCamelCase ) # by default a model is initialized with num_labels=2 self.assertEqual( _lowerCamelCase , [ {"""score""": ANY(_lowerCamelCase ), """label""": ANY(_lowerCamelCase )}, {"""score""": ANY(_lowerCamelCase ), """label""": ANY(_lowerCamelCase )}, ] , ) snake_case_ : Optional[Any] = audio_classifier(_lowerCamelCase , top_k=1 ) self.assertEqual( _lowerCamelCase , [ {"""score""": ANY(_lowerCamelCase ), """label""": ANY(_lowerCamelCase )}, ] , ) self.run_torchaudio(_lowerCamelCase ) @require_torchaudio def __UpperCamelCase (self , lowercase__ ): import datasets # test with a local file snake_case_ : Tuple = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) snake_case_ : str = dataset[0]["""audio"""]["""array"""] snake_case_ : Optional[Any] = audio_classifier(_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {"""score""": ANY(_lowerCamelCase ), """label""": ANY(_lowerCamelCase )}, {"""score""": ANY(_lowerCamelCase ), """label""": ANY(_lowerCamelCase )}, ] , ) @require_torch def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """anton-l/wav2vec2-random-tiny-classifier""" snake_case_ : Optional[Any] = pipeline("""audio-classification""" , model=_lowerCamelCase ) snake_case_ : Dict = np.ones((80_00,) ) snake_case_ : int = audio_classifier(_lowerCamelCase , top_k=4 ) snake_case_ : Tuple = [ {"""score""": 0.0842, """label""": """no"""}, {"""score""": 0.0838, """label""": """up"""}, {"""score""": 0.0837, """label""": """go"""}, {"""score""": 0.0834, """label""": """right"""}, ] snake_case_ : List[Any] = [ {"""score""": 0.0845, """label""": """stop"""}, {"""score""": 0.0844, """label""": """on"""}, {"""score""": 0.0841, """label""": """right"""}, {"""score""": 0.0834, """label""": """left"""}, ] self.assertIn(nested_simplify(_lowerCamelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) snake_case_ : str = {"""array""": np.ones((80_00,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} snake_case_ : Optional[int] = audio_classifier(_lowerCamelCase , top_k=4 ) self.assertIn(nested_simplify(_lowerCamelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __UpperCamelCase (self ): import datasets snake_case_ : Optional[int] = """superb/wav2vec2-base-superb-ks""" snake_case_ : Optional[Any] = pipeline("""audio-classification""" , model=_lowerCamelCase ) snake_case_ : Tuple = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) snake_case_ : Optional[Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) snake_case_ : Tuple = audio_classifier(_lowerCamelCase , top_k=4 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=3 ) , [ {"""score""": 0.981, """label""": """go"""}, {"""score""": 0.007, """label""": """up"""}, {"""score""": 0.006, """label""": """_unknown_"""}, {"""score""": 0.001, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __UpperCamelCase (self ): pass
711
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class A (UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE = 't5' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , lowercase_=3_2128 , lowercase_=512 , lowercase_=64 , lowercase_=2048 , lowercase_=6 , lowercase_=None , lowercase_=8 , lowercase_=32 , lowercase_=128 , lowercase_=0.1 , lowercase_=1E-6 , lowercase_=1.0 , lowercase_="relu" , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=1 , **lowercase_ , ) -> Any: '''simple docstring''' _snake_case : Optional[Any] = vocab_size _snake_case : Optional[int] = d_model _snake_case : int = d_kv _snake_case : Any = d_ff _snake_case : Dict = num_layers _snake_case : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _snake_case : int = num_heads _snake_case : Optional[Any] = relative_attention_num_buckets _snake_case : List[Any] = relative_attention_max_distance _snake_case : List[str] = dropout_rate _snake_case : List[str] = layer_norm_epsilon _snake_case : List[Any] = initializer_factor _snake_case : Tuple = feed_forward_proj _snake_case : Union[str, Any] = use_cache _snake_case : Optional[Any] = self.feed_forward_proj.split('''-''' ) _snake_case : Dict = act_info[-1] _snake_case : Dict = act_info[0] == """gated""" if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _snake_case : int = """gelu_new""" super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ , ) class A (UpperCAmelCase__ ): @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _snake_case : Dict = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: _snake_case : Tuple = """past_encoder_sequence + sequence""" _snake_case : Dict = {0: """batch"""} _snake_case : Optional[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: _snake_case : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} _snake_case : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='''inputs''' ) return common_inputs @property def __a ( self ) -> int: '''simple docstring''' return 13
326
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a ( UpperCAmelCase__ ): UpperCamelCase : Any = 'Speech2TextFeatureExtractor' UpperCamelCase : Optional[Any] = 'Speech2TextTokenizer' def __init__( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =self.feature_extractor SCREAMING_SNAKE_CASE_: List[Any] =False def __call__( self : Dict , *lowerCAmelCase : str , **lowerCAmelCase : str ) -> str: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase , **lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) SCREAMING_SNAKE_CASE_: Tuple =kwargs.pop("""raw_speech""" ) else: SCREAMING_SNAKE_CASE_: int =kwargs.pop("""audio""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =kwargs.pop("""sampling_rate""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =kwargs.pop("""text""" , lowerCAmelCase ) if len(lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE_: List[str] =args[0] SCREAMING_SNAKE_CASE_: List[str] =args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: SCREAMING_SNAKE_CASE_: Optional[int] =self.feature_extractor(lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , **lowerCAmelCase ) if text is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =self.tokenizer(lowerCAmelCase , **lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_: Any =encodings["""input_ids"""] return inputs def lowerCamelCase__ ( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : int ) -> Any: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @contextmanager def lowerCamelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =True SCREAMING_SNAKE_CASE_: Dict =self.tokenizer yield SCREAMING_SNAKE_CASE_: int =self.feature_extractor SCREAMING_SNAKE_CASE_: str =False
409
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase = 16 UpperCamelCase = 32 def __lowerCamelCase ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : int = 16 ) -> Any: __UpperCamelCase : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCamelCase : Optional[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase : int = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCAmelCase : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase : str = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase : Optional[int] = 8 else: __UpperCamelCase : Union[str, Any] = None return tokenizer.pad( __lowerCAmelCase , padding="""longest""" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. __UpperCamelCase : Optional[int] = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowerCAmelCase ) == "1": __UpperCamelCase : str = 2 # Initialize accelerator __UpperCamelCase : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase : List[str] = config["""lr"""] __UpperCamelCase : List[Any] = int(config["""num_epochs"""] ) __UpperCamelCase : List[str] = int(config["""seed"""] ) __UpperCamelCase : Optional[int] = int(config["""batch_size"""] ) __UpperCamelCase : List[Any] = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCAmelCase ) def inner_training_loop(__lowerCAmelCase : Tuple ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase : Dict = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase : Dict = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) __UpperCamelCase , __UpperCamelCase : List[str] = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate scheduler __UpperCamelCase : List[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase : str = model(**__lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = outputs.loss accelerator.backward(__lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase : Dict = model(**__lowerCAmelCase ) __UpperCamelCase : Any = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase : Any = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) __UpperCamelCase : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , __lowerCAmelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __lowerCamelCase ( ) -> Any: __UpperCamelCase : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __UpperCamelCase : Dict = parser.parse_args() __UpperCamelCase : int = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
515
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['MaskFormerFeatureExtractor'] UpperCamelCase = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] UpperCamelCase = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
515
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _a : Dict = logging.get_logger(__name__) def a_ ( __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def a_ ( __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: """simple docstring""" snake_case : List[str] = to_pil_image(__A ) snake_case , snake_case : str = pil_image.size snake_case : Tuple = pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) snake_case , snake_case , snake_case , snake_case , snake_case : Tuple = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates snake_case : List[str] = [idx for idx, word in enumerate(__A ) if not word.strip()] snake_case : Optional[int] = [word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] snake_case : int = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] snake_case : List[Any] = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] snake_case : Any = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] snake_case : Optional[Any] = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format snake_case : Union[str, Any] = [] for x, y, w, h in zip(__A , __A , __A , __A ): snake_case : Union[str, Any] = [x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes snake_case : Union[str, Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a_ ( snake_case__ ): A__ : int = ['pixel_values'] def __init__( self : List[Any] , UpperCAmelCase__ : Tuple = True , UpperCAmelCase__ : Union[str, Any] = None , UpperCAmelCase__ : Optional[int] = PILImageResampling.BILINEAR , UpperCAmelCase__ : Any = True , UpperCAmelCase__ : List[str] = 1 / 255 , UpperCAmelCase__ : Optional[Any] = True , UpperCAmelCase__ : Any = None , UpperCAmelCase__ : Any = None , UpperCAmelCase__ : str = True , UpperCAmelCase__ : int = None , UpperCAmelCase__ : Dict = "" , **UpperCAmelCase__ : List[Any] , ): """simple docstring""" super().__init__(**_UpperCamelCase ) snake_case : Optional[Any] = size if size is not None else {'''height''': 224, '''width''': 224} snake_case : Tuple = get_size_dict(_UpperCamelCase ) snake_case : Union[str, Any] = do_resize snake_case : Any = size snake_case : Dict = resample snake_case : List[str] = do_rescale snake_case : int = rescale_value snake_case : Union[str, Any] = do_normalize snake_case : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD snake_case : Optional[Any] = apply_ocr snake_case : str = ocr_lang snake_case : Union[str, Any] = tesseract_config def lowerCAmelCase( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] = PILImageResampling.BILINEAR , UpperCAmelCase__ : Dict = None , **UpperCAmelCase__ : int , ): """simple docstring""" snake_case : int = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}" ) snake_case : str = (size['''height'''], size['''width''']) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] = None , **UpperCAmelCase__ : Optional[int] , ): """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] = None , **UpperCAmelCase__ : List[str] , ): """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def lowerCAmelCase( self : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] = None , UpperCAmelCase__ : str = None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : List[Any] = None , UpperCAmelCase__ : List[Any] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Union[str, Any] = None , UpperCAmelCase__ : str = None , UpperCAmelCase__ : int = None , UpperCAmelCase__ : Tuple = None , UpperCAmelCase__ : Union[str, Any] = None , UpperCAmelCase__ : Union[str, Any] = ChannelDimension.FIRST , **UpperCAmelCase__ : List[str] , ): """simple docstring""" snake_case : Any = do_resize if do_resize is not None else self.do_resize snake_case : Any = size if size is not None else self.size snake_case : Union[str, Any] = get_size_dict(_UpperCamelCase ) snake_case : List[Any] = resample if resample is not None else self.resample snake_case : Dict = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : int = do_normalize if do_normalize is not None else self.do_normalize snake_case : List[str] = image_mean if image_mean is not None else self.image_mean snake_case : Optional[int] = image_std if image_std is not None else self.image_std snake_case : List[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr snake_case : Optional[Any] = ocr_lang if ocr_lang is not None else self.ocr_lang snake_case : Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config snake_case : Tuple = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. snake_case : int = [to_numpy_array(_UpperCamelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) snake_case : List[str] = [] snake_case : int = [] for image in images: snake_case , snake_case : List[str] = apply_tesseract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) words_batch.append(_UpperCamelCase ) boxes_batch.append(_UpperCamelCase ) if do_resize: snake_case : Optional[int] = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_rescale: snake_case : List[Any] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: snake_case : Union[str, Any] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] snake_case : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] snake_case : int = BatchFeature(data={'''pixel_values''': images} , tensor_type=_UpperCamelCase ) if apply_ocr: snake_case : str = words_batch snake_case : Union[str, Any] = boxes_batch return data
598
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def lowerCamelCase__ ( __A :Any ,__A :tuple ,__A :Path ,__A :int ,__A :Union[str, Any] ,__A :Optional[Any] ,__A :Optional[Any] ,__A :List[Any]=False ,): """simple docstring""" output_path.parent.mkdir(parents=__A ,exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A ,__A ,f=output_path.as_posix() ,input_names=__A ,output_names=__A ,dynamic_axes=__A ,do_constant_folding=__A ,use_external_data_format=__A ,enable_onnx_checker=__A ,opset_version=__A ,) else: export( __A ,__A ,f=output_path.as_posix() ,input_names=__A ,output_names=__A ,dynamic_axes=__A ,do_constant_folding=__A ,opset_version=__A ,) @torch.no_grad() def lowerCamelCase__ ( __A :str ,__A :str ,__A :int ,__A :bool = False ): """simple docstring""" __snake_case = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __snake_case = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: __snake_case = """cpu""" __snake_case = Path(__A ) # VAE DECODER __snake_case = AutoencoderKL.from_pretrained(model_path + """/vae""" ) __snake_case = vae_decoder.config.latent_channels # forward only through the decoder part __snake_case = vae_decoder.decode onnx_export( __A ,model_args=( torch.randn(1 ,__A ,2_5 ,2_5 ).to(device=__A ,dtype=__A ), False, ) ,output_path=output_path / """vae_decoder""" / """model.onnx""" ,ordered_input_names=["""latent_sample""", """return_dict"""] ,output_names=["""sample"""] ,dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } ,opset=__A ,) del vae_decoder if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') UpperCamelCase__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
268
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
701
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int) ->Dict: '''simple docstring''' A__ = jnp.ones((batch_size, length)) / length return scores def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: '''simple docstring''' A__ = None A__ = 20 A__ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase__) # tweak scores to not be uniform anymore A__ = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch A__ = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax A__ = jax.nn.softmax(UpperCAmelCase__ , axis=-1) A__ = FlaxTemperatureLogitsWarper(temperature=0.5) A__ = FlaxTemperatureLogitsWarper(temperature=1.3) A__ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase__ , scores.copy() , cur_len=UpperCAmelCase__) , axis=-1) A__ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase__ , scores.copy() , cur_len=UpperCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' A__ = None A__ = 10 A__ = 2 # create ramp distribution A__ = np.broadcast_to(np.arange(UpperCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() A__ = ramp_logits[1:, : vocab_size // 2] + vocab_size A__ = FlaxTopKLogitsWarper(3) A__ = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case A__ = 5 A__ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) A__ = np.broadcast_to(np.arange(UpperCAmelCase__)[None, :] , (batch_size, length)).copy() A__ = top_k_warp_safety_check(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: '''simple docstring''' A__ = None A__ = 10 A__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) A__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) A__ = FlaxTopPLogitsWarper(0.8) A__ = np.exp(top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 A__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3)) # check edge cases with negative and extreme logits A__ = np.broadcast_to(np.arange(UpperCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme A__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept A__ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) A__ = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = 20 A__ = 4 A__ = 0 A__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase__) # check that min length is applied at length 5 A__ = ids_tensor((batch_size, 20) , vocab_size=20) A__ = 5 A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = min_dist_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''')]) # check that min length is not applied anymore at length 15 A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = 15 A__ = min_dist_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) self.assertFalse(jnp.isinf(UpperCAmelCase__).any()) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ = 20 A__ = 4 A__ = 0 A__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__) # check that all scores are -inf except the bos_token_id score A__ = ids_tensor((batch_size, 1) , vocab_size=20) A__ = 1 A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 A__ = 3 A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) self.assertFalse(jnp.isinf(UpperCAmelCase__).any()) def SCREAMING_SNAKE_CASE ( self : Tuple) ->str: '''simple docstring''' A__ = 20 A__ = 4 A__ = 0 A__ = 5 A__ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached A__ = ids_tensor((batch_size, 4) , vocab_size=20) A__ = 4 A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached A__ = 3 A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) self.assertFalse(jnp.isinf(UpperCAmelCase__).any()) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = 4 A__ = 10 A__ = 15 A__ = 2 A__ = 1 A__ = 15 # dummy input_ids and scores A__ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase__) A__ = input_ids.copy() A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = scores.copy() # instantiate all dist processors A__ = FlaxTemperatureLogitsWarper(temperature=0.5) A__ = FlaxTopKLogitsWarper(3) A__ = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors A__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase__) A__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__) A__ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__) A__ = 10 # no processor list A__ = temp_dist_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = min_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = bos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = eos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) # with processor list A__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) A__ = processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' A__ = 4 A__ = 10 A__ = 15 A__ = 2 A__ = 1 A__ = 15 # dummy input_ids and scores A__ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase__) A__ = input_ids.copy() A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = scores.copy() # instantiate all dist processors A__ = FlaxTemperatureLogitsWarper(temperature=0.5) A__ = FlaxTopKLogitsWarper(3) A__ = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors A__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase__) A__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__) A__ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__) A__ = 10 # no processor list def run_no_processor_list(UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any]): A__ = temp_dist_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = min_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = bos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = eos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) return scores # with processor list def run_processor_list(UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any]): A__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) A__ = processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) return scores A__ = jax.jit(UpperCAmelCase__) A__ = jax.jit(UpperCAmelCase__) A__ = jitted_run_no_processor_list(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) A__ = jitted_run_processor_list(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
177
0
"""simple docstring""" def a ( __UpperCAmelCase : int = 1_0_0_0 ) -> int: __magic_name__: int = 2**power __magic_name__: Any = 0 while n: __magic_name__, __magic_name__: int = r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
96
"""simple docstring""" def a ( __UpperCAmelCase : List[Any] ) -> str: __magic_name__: Optional[int] = [0] * len(__UpperCAmelCase ) __magic_name__: str = [] __magic_name__: Any = [] __magic_name__: Union[str, Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCAmelCase ) ): if indegree[i] == 0: queue.append(__UpperCAmelCase ) while queue: __magic_name__: Optional[Any] = queue.pop(0 ) cnt += 1 topo.append(__UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__UpperCAmelCase ) if cnt != len(__UpperCAmelCase ): print("""Cycle exists""" ) else: print(__UpperCAmelCase ) # Adjacency List of Graph __lowerCamelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
96
1
from __future__ import annotations def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" A : List[str] = set(snake_case__ ), [start] while stack: A : Dict = stack.pop() explored.add(snake_case__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(snake_case__ ) return explored SCREAMING_SNAKE_CASE_:Optional[int] = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
706
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=13, lowerCamelCase__=3, lowerCamelCase__=224, lowerCamelCase__=30, lowerCamelCase__=400, lowerCamelCase__=True, lowerCamelCase__=None, lowerCamelCase__=True, lowerCamelCase__=[0.5, 0.5, 0.5], lowerCamelCase__=[0.5, 0.5, 0.5], ): A : Dict = size if size is not None else {"""height""": 18, """width""": 18} A : Optional[int] = parent A : int = batch_size A : List[Any] = num_channels A : Optional[Any] = image_size A : Union[str, Any] = min_resolution A : List[str] = max_resolution A : List[Any] = do_resize A : List[Any] = size A : Union[str, Any] = do_normalize A : Union[str, Any] = image_mean A : str = image_std def _lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = ViTImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self ): A : List[str] = EfficientFormerImageProcessorTester(self ) @property def _lowerCAmelCase ( self ): return self.image_proc_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self ): A : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__, """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase__, """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase__, """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase__, """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__, """size""" ) ) def _lowerCAmelCase ( self ): pass def _lowerCAmelCase ( self ): # Initialize image_processor A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : List[Any] = prepare_image_inputs(self.image_proc_tester, equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__, Image.Image ) # Test not batched input A : List[str] = image_processor(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ), ) # Test batched A : Dict = image_processor(lowerCamelCase__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ), ) def _lowerCAmelCase ( self ): # Initialize image_processor A : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : str = prepare_image_inputs(self.image_proc_tester, equal_resolution=lowerCamelCase__, numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__, np.ndarray ) # Test not batched input A : Union[str, Any] = image_processor(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ), ) # Test batched A : Any = image_processor(lowerCamelCase__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ), ) def _lowerCAmelCase ( self ): # Initialize image_processor A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : Optional[Any] = prepare_image_inputs(self.image_proc_tester, equal_resolution=lowerCamelCase__, torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__, torch.Tensor ) # Test not batched input A : str = image_processor(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ), ) # Test batched A : Tuple = image_processor(lowerCamelCase__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ), )
520
0
'''simple docstring''' import torch from diffusers import DiffusionPipeline class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int ) -> str: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) def __call__( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) _UpperCamelCase = 1 _UpperCamelCase = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample _UpperCamelCase = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample _UpperCamelCase = scheduler_output - scheduler_output + torch.ones_like(lowerCAmelCase__ ) return result
98
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
0
"""simple docstring""" from timeit import timeit def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> int: """simple docstring""" if number < 0: raise ValueError('the value of input must not be negative' ) lowerCAmelCase_ : Union[str, Any] = 0 while number: number &= number - 1 result += 1 return result def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> int: """simple docstring""" if number < 0: raise ValueError('the value of input must not be negative' ) lowerCAmelCase_ : str = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCamelCase_ ( ) -> None: """simple docstring""" def do_benchmark(lowerCAmelCase__ : int ) -> None: lowerCAmelCase_ : Optional[Any] = 'import __main__ as z' print(f"Benchmark when {number = }:" ) print(f"{get_set_bits_count_using_modulo_operator(lowerCAmelCase__ ) = }" ) lowerCAmelCase_ : Any = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=lowerCAmelCase__ ) print(f"timeit() runs in {timing} seconds" ) print(f"{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase__ ) = }" ) lowerCAmelCase_ : List[str] = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=lowerCAmelCase__ , ) print(f"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
317
"""simple docstring""" from __future__ import annotations from collections.abc import Callable lowercase__ : Union[str, Any] = list[list[float | int]] def UpperCamelCase_ ( lowerCAmelCase__ : Matrix , lowerCAmelCase__ : Matrix ) -> Matrix: """simple docstring""" lowerCAmelCase_ : int = len(lowerCAmelCase__ ) lowerCAmelCase_ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowerCAmelCase__ )] lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float for row in range(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): lowerCAmelCase_ : Dict = matrix[row][col] lowerCAmelCase_ : List[str] = vector[row][0] lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Optional[Any] = 0 while row < size and col < size: # pivoting lowerCAmelCase_ : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowerCAmelCase__ , lowerCAmelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowerCAmelCase_ ,lowerCAmelCase_ : Union[str, Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowerCAmelCase__ ): lowerCAmelCase_ : Union[str, Any] = augmented[rowa][col] / augmented[row][col] lowerCAmelCase_ : List[str] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowerCAmelCase__ ): for row in range(lowerCAmelCase__ ): lowerCAmelCase_ : Optional[Any] = augmented[row][col] / augmented[col][col] for cola in range(lowerCAmelCase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowerCAmelCase__ ) ] def UpperCamelCase_ ( lowerCAmelCase__ : list[int] ) -> Callable[[int], int]: """simple docstring""" lowerCAmelCase_ : int = len(lowerCAmelCase__ ) lowerCAmelCase_ : Matrix = [[0 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] lowerCAmelCase_ : Matrix = [[0] for _ in range(lowerCAmelCase__ )] lowerCAmelCase_ : Matrix lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int for x_val, y_val in enumerate(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = (x_val + 1) ** (size - col - 1) lowerCAmelCase_ : List[Any] = y_val lowerCAmelCase_ : List[str] = solve(lowerCAmelCase__ , lowerCAmelCase__ ) def interpolated_func(lowerCAmelCase__ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowerCAmelCase__ ) ) return interpolated_func def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCamelCase_ ( lowerCAmelCase__ : Callable[[int], int] = question_function , lowerCAmelCase__ : int = 10 ) -> int: """simple docstring""" lowerCAmelCase_ : list[int] = [func(lowerCAmelCase__ ) for x_val in range(1 , order + 1 )] lowerCAmelCase_ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Callable[[int], int] lowerCAmelCase_ : int for poly in polynomials: lowerCAmelCase_ : Union[str, Any] = 1 while func(lowerCAmelCase__ ) == poly(lowerCAmelCase__ ): x_val += 1 ret += poly(lowerCAmelCase__ ) return ret if __name__ == "__main__": print(f'{solution() = }')
317
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''gpt_neo''' UpperCamelCase_ = ['''past_key_values'''] UpperCamelCase_ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Dict , UpperCAmelCase : int=5_0257 , UpperCAmelCase : Optional[Any]=2048 , UpperCAmelCase : str=2048 , UpperCAmelCase : str=24 , UpperCAmelCase : Tuple=[[["global", "local"], 12]] , UpperCAmelCase : int=16 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=256 , UpperCAmelCase : List[str]="gelu_new" , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : int=0.0 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : Dict=0.0_2 , UpperCAmelCase : Dict=True , UpperCAmelCase : int=5_0256 , UpperCAmelCase : List[str]=5_0256 , **UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =vocab_size lowercase : Optional[int] =max_position_embeddings lowercase : Tuple =hidden_size lowercase : str =num_layers lowercase : Optional[Any] =num_heads lowercase : List[Any] =intermediate_size lowercase : Union[str, Any] =window_size lowercase : Optional[Any] =activation_function lowercase : Union[str, Any] =resid_dropout lowercase : List[str] =embed_dropout lowercase : int =attention_dropout lowercase : List[str] =classifier_dropout lowercase : List[Any] =layer_norm_epsilon lowercase : int =initializer_range lowercase : List[Any] =use_cache lowercase : Union[str, Any] =bos_token_id lowercase : Optional[int] =eos_token_id lowercase : Tuple =attention_types lowercase : List[str] =self.expand_attention_types_params(UpperCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' f'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' f'`config.num_layers = {self.num_layers}`. ' '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) @staticmethod def A__ ( UpperCAmelCase : Dict ) -> int: '''simple docstring''' lowercase : int =[] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowercase_ ( __A : Any , __A : Tuple , __A : Tuple , __A : Dict ) -> List[str]: """simple docstring""" import torch lowercase : str =input.size() lowercase : List[str] =len(__A ) lowercase : Optional[Any] =shape[dimension] lowercase : Optional[Any] =torch.arange(0 , __A , __A ) lowercase : List[str] =torch.div(sizedim - size , __A , rounding_mode='''floor''' ) + 1 lowercase : Optional[int] =torch.arange(__A ) + low_indices[:min_length][:, None] lowercase : List[Any] =[slice(__A )] * rank lowercase : Dict =indices lowercase : str =input[s] lowercase : str =list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__A ) def lowercase_ ( __A : Tuple , __A : int ) -> List[str]: """simple docstring""" import torch lowercase : Any =torch.arange(1 , __A ) lowercase : Union[str, Any] =torch.remainder(__A , __A ) lowercase : Any =remainders == 0 lowercase : List[str] =candidates[divisor_indices] lowercase : Optional[int] =torch.max(__A ) return largest_divisor, torch.div(__A , __A , rounding_mode='''floor''' ) class UpperCAmelCase_ ( __A ): """simple docstring""" @property def A__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowercase : Union[str, Any] =OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction='''inputs''' ) lowercase : List[str] ={0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase : Dict ={0: '''batch''', 1: '''sequence'''} return common_inputs @property def A__ ( self : int ) -> int: '''simple docstring''' return self._config.num_heads def A__ ( self : List[str] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' lowercase : Union[str, Any] =super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase : List[Any] =OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase , lowercase : Tuple =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase : Optional[Any] =seqlen + 2 lowercase : List[str] =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase : Optional[Any] =[ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase : Any =common_inputs['''attention_mask'''] if self.use_past: lowercase : List[Any] =ordered_inputs['''attention_mask'''].dtype lowercase : List[str] =torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A__ ( self : str ) -> int: '''simple docstring''' return 13
94
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
549
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] =logging.get_logger(__name__) lowerCamelCase : Any ={ '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __snake_case( A_ ): '''simple docstring''' _UpperCAmelCase = "speech_to_text" _UpperCAmelCase = ["past_key_values"] _UpperCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __lowerCamelCase=10000 , __lowerCamelCase=12 , __lowerCamelCase=2048 , __lowerCamelCase=4 , __lowerCamelCase=6 , __lowerCamelCase=2048 , __lowerCamelCase=4 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase="relu" , __lowerCamelCase=256 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=2 , __lowerCamelCase=True , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase=6000 , __lowerCamelCase=1024 , __lowerCamelCase=2 , __lowerCamelCase=(5, 5) , __lowerCamelCase=1024 , __lowerCamelCase=80 , __lowerCamelCase=1 , **__lowerCamelCase , ): '''simple docstring''' __A : List[Any] = vocab_size __A : str = d_model __A : str = encoder_ffn_dim __A : Any = encoder_layers __A : Dict = encoder_attention_heads __A : Optional[int] = decoder_ffn_dim __A : Optional[int] = decoder_layers __A : int = decoder_attention_heads __A : Union[str, Any] = dropout __A : Union[str, Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : str = activation_function __A : int = init_std __A : List[str] = encoder_layerdrop __A : int = decoder_layerdrop __A : Any = use_cache __A : Optional[Any] = encoder_layers __A : str = scale_embedding # scale factor will be sqrt(d_model) if True __A : List[Any] = max_source_positions __A : Union[str, Any] = max_target_positions __A : Dict = num_conv_layers __A : Dict = list(__lowerCamelCase ) __A : Any = conv_channels __A : Optional[int] = input_feat_per_channel __A : str = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ' F'`config.num_conv_layers = {self.num_conv_layers}`.' ) super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
237
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase : Optional[Any] ='''src/transformers''' lowerCamelCase : Optional[int] ='''docs/source/en''' lowerCamelCase : Dict ='''.''' def _lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str ) -> List[Any]: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __A : Optional[int] = f.readlines() # Find the start prompt. __A : List[str] = 0 while not lines[start_index].startswith(_SCREAMING_SNAKE_CASE ): start_index += 1 start_index += 1 __A : Optional[int] = start_index while not lines[end_index].startswith(_SCREAMING_SNAKE_CASE ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase : List[str] ='''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. lowerCamelCase : Optional[int] =re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') lowerCamelCase : Optional[int] =re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase : Optional[int] =re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : Optional[Any] =direct_transformers_import(TRANSFORMERS_PATH) def _lowercase ( _SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: '''simple docstring''' __A : int = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , _SCREAMING_SNAKE_CASE ) return [m.group(0 ) for m in matches] def _lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: '''simple docstring''' __A : Union[str, Any] = 2 if text == '✅' or text == '❌' else len(_SCREAMING_SNAKE_CASE ) __A : Optional[Any] = (width - text_length) // 2 __A : int = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _lowercase ( ) -> Optional[int]: '''simple docstring''' __A : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __A : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __A : List[str] = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __A : Tuple = collections.defaultdict(_SCREAMING_SNAKE_CASE ) __A : List[str] = collections.defaultdict(_SCREAMING_SNAKE_CASE ) __A : List[Any] = collections.defaultdict(_SCREAMING_SNAKE_CASE ) __A : List[Any] = collections.defaultdict(_SCREAMING_SNAKE_CASE ) __A : Optional[int] = collections.defaultdict(_SCREAMING_SNAKE_CASE ) # Let's lookup through all transformers object (once). for attr_name in dir(_SCREAMING_SNAKE_CASE ): __A : List[Any] = None if attr_name.endswith('Tokenizer' ): __A : List[str] = slow_tokenizers __A : Dict = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): __A : Dict = fast_tokenizers __A : List[Any] = attr_name[:-13] elif _re_tf_models.match(_SCREAMING_SNAKE_CASE ) is not None: __A : int = tf_models __A : Dict = _re_tf_models.match(_SCREAMING_SNAKE_CASE ).groups()[0] elif _re_flax_models.match(_SCREAMING_SNAKE_CASE ) is not None: __A : Tuple = flax_models __A : Union[str, Any] = _re_flax_models.match(_SCREAMING_SNAKE_CASE ).groups()[0] elif _re_pt_models.match(_SCREAMING_SNAKE_CASE ) is not None: __A : Optional[int] = pt_models __A : str = _re_pt_models.match(_SCREAMING_SNAKE_CASE ).groups()[0] if lookup_dict is not None: while len(_SCREAMING_SNAKE_CASE ) > 0: if attr_name in model_name_to_prefix.values(): __A : int = True break # Try again after removing the last word in the name __A : Any = ''.join(camel_case_split(_SCREAMING_SNAKE_CASE )[:-1] ) # Let's build that table! __A : Optional[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __A : Any = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __A : Tuple = [len(_SCREAMING_SNAKE_CASE ) + 2 for c in columns] __A : int = max([len(_SCREAMING_SNAKE_CASE ) for name in model_names] ) + 2 # Build the table per se __A : Any = '|' + '|'.join([_center_text(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for c, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" __A : int = {True: '✅', False: '❌'} for name in model_names: __A : str = model_name_to_prefix[name] __A : List[Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for l, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] ) + "|\n" return table def _lowercase ( _SCREAMING_SNAKE_CASE : List[str]=False ) -> Any: '''simple docstring''' __A , __A , __A , __A : Tuple = _find_text_in_file( filename=os.path.join(_SCREAMING_SNAKE_CASE , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) __A : Union[str, Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_SCREAMING_SNAKE_CASE , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": lowerCamelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCamelCase : Optional[Any] =parser.parse_args() check_model_table(args.fix_and_overwrite)
237
1
def UpperCAmelCase ( UpperCAmelCase )-> List[Any]: '''simple docstring''' if num <= 0: raise ValueError('''Input must be a positive integer''' ) SCREAMING_SNAKE_CASE_ = [True] * (num + 1) SCREAMING_SNAKE_CASE_ = 2 while p * p <= num: if primes[p]: for i in range(p * p ,num + 1 ,UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = False p += 1 return [prime for prime in range(2 ,num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() A_ = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
393
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( a_ , unittest.TestCase ): _A : List[str] = XLMRobertaTokenizer _A : List[str] = XLMRobertaTokenizerFast _A : Optional[Any] = True _A : List[str] = True def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XLMRobertaTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase = """<pad>""" UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case__ ) , 10_02 ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" UpperCAmelCase = XLMRobertaTokenizer(snake_case__ , keep_accents=snake_case__ ) UpperCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) UpperCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = tokenizer_r.save_pretrained(snake_case__ ) UpperCAmelCase = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way UpperCAmelCase = tokenizer_r.from_pretrained(snake_case__ ) UpperCAmelCase = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) UpperCAmelCase = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way UpperCAmelCase = tokenizer_r.from_pretrained(snake_case__ ) UpperCAmelCase = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) UpperCAmelCase = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase = tokenizer_r.from_pretrained(snake_case__ ) UpperCAmelCase = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case__ , f.name ) UpperCAmelCase = XLMRobertaTokenizer(f.name , keep_accents=snake_case__ ) UpperCAmelCase = pickle.dumps(snake_case__ ) pickle.loads(snake_case__ ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = """I was born in 92000, and this is falsé.""" UpperCAmelCase = tokenizer.tokenize(snake_case__ ) UpperCAmelCase = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) UpperCAmelCase = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(snake_case__ ) UpperCAmelCase = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @slow def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = """Hello World!""" UpperCAmelCase = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) UpperCAmelCase = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = {"""input_ids""": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
673
0
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = IFImgaImgSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""}) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase_ ( self , A_ , A_=0 )-> Any: '''simple docstring''' if str(A_ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(A_ ) else: UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' self._test_save_load_local() def UpperCAmelCase_ ( self )-> int: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
432
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCAmelCase : List[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = ["""pixel_values"""] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = True , **A_ , )-> None: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = size if size is not None else {'shortest_edge': 224} UpperCamelCase = get_size_dict(A_ , default_to_square=A_ ) UpperCamelCase = crop_size if crop_size is not None else {'height': 256, 'width': 256} UpperCamelCase = get_size_dict(A_ , param_name='crop_size' ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = do_flip_channel_order def UpperCAmelCase_ ( self , A_ , A_ , A_ = PIL.Image.BILINEAR , A_ = None , **A_ , )-> np.ndarray: '''simple docstring''' UpperCamelCase = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase = get_resize_output_image_size(A_ , size=size['shortest_edge'] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ = None , **A_ , )-> np.ndarray: '''simple docstring''' UpperCamelCase = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ = None , **A_ , )-> List[str]: '''simple docstring''' return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ = None )-> np.ndarray: '''simple docstring''' return flip_channel_order(A_ , data_format=A_ ) def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , )-> PIL.Image.Image: '''simple docstring''' UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(A_ , default_to_square=A_ ) UpperCamelCase = crop_size if crop_size is not None else self.crop_size UpperCamelCase = get_size_dict(A_ , param_name='crop_size' ) UpperCamelCase = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(A_ ) for image in images] if do_resize: UpperCamelCase = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: UpperCamelCase = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=A_ , scale=A_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCamelCase = [self.flip_channel_order(image=A_ ) for image in images] UpperCamelCase = [to_channel_dimension_format(A_ , A_ ) for image in images] UpperCamelCase = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ ) def UpperCAmelCase_ ( self , A_ , A_ = None )-> Dict: '''simple docstring''' UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): UpperCamelCase = target_sizes.numpy() UpperCamelCase = [] for idx in range(len(A_ ) ): UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=A_ ) UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: UpperCamelCase = logits.argmax(dim=1 ) UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
432
1
from __future__ import annotations def __A ( _A , _A ): """simple docstring""" __a = 0 __a = len(_lowerCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __a = i + 1 else: __a = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
197
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __snake_case ( _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : List[Any]=None ) -> Optional[Any]: return field(default_factory=lambda: default , metadata=_lowerCAmelCase ) @dataclass class __magic_name__ : """simple docstring""" __UpperCamelCase = field( metadata={'''help''': '''The csv file to plot.'''} , ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) __UpperCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) __UpperCamelCase = list_field( default=lowerCamelCase__ , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def __snake_case ( _lowerCAmelCase : int ) -> Optional[Any]: try: int(_lowerCAmelCase ) return True except ValueError: return False def __snake_case ( _lowerCAmelCase : str ) -> Union[str, Any]: try: float(_lowerCAmelCase ) return True except ValueError: return False class __magic_name__ : """simple docstring""" def __init__( self :Any , snake_case :List[Any] ): '''simple docstring''' A_ : Any = args A_ : Dict = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="" ) as csv_file: A_ : Union[str, Any] = csv.DictReader(snake_case ) for row in reader: A_ : Any = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) ) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) ) if can_convert_to_int(row["result"] ): # value is not None A_ : List[Any] = int(row["result"] ) elif can_convert_to_float(row["result"] ): # value is not None A_ : Optional[Any] = float(row["result"] ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ , A_ : List[str] = plt.subplots() A_ : List[str] = "Time usage" if self.args.is_time else "Memory usage" A_ : Optional[Any] = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log" ) ax.set_yscale("log" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): A_ : int = sorted(set(self.result_dict[model_name]["bsz"] ) ) A_ : List[str] = sorted(set(self.result_dict[model_name]["seq_len"] ) ) A_ : Dict = self.result_dict[model_name]["result"] ((A_) , (A_)) : Optional[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) A_ : List[Any] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: A_ : Dict = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=snake_case , ) else: A_ : Union[str, Any] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((A_) , (A_)) : Optional[Any] = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) A_ : List[Any] = np.asarray(snake_case , snake_case )[: len(snake_case )] plt.scatter( snake_case , snake_case , label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(snake_case , snake_case , "--" ) title_str += f" {label_model_name} vs." A_ : Optional[int] = title_str[:-4] A_ : List[str] = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(snake_case ) plt.xlabel(snake_case ) plt.ylabel(snake_case ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __snake_case ( ) -> Any: A_ : Any = HfArgumentParser(_lowerCAmelCase ) A_ : str = parser.parse_args_into_dataclasses()[0] A_ : Optional[Any] = Plot(args=_lowerCAmelCase ) plot.plot() if __name__ == "__main__": main()
454
0
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __lowerCamelCase : Optional[Any] = logging.getLogger(__name__) __lowerCamelCase : Any = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __lowerCamelCase : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = field( default=UpperCamelCase_ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase_ )} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = field( default=UpperCamelCase_ , metadata={"help": "The input training data file (a text file)."} ) a_ = field( default=UpperCamelCase_ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a_ = field(default=UpperCamelCase_ , metadata={"help": "Whether ot not to use whole word mask."} ) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE ( snake_case_ : DataTrainingArguments , snake_case_ : PreTrainedTokenizer , snake_case_ : bool = False , snake_case_ : Optional[str] = None , ): def _dataset(snake_case_ : str , snake_case_ : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=snake_case_ , file_path=snake_case_ , block_size=args.block_size , ref_path=snake_case_ , ) return LineByLineTextDataset(tokenizer=snake_case_ , file_path=snake_case_ , block_size=args.block_size ) else: return TextDataset( tokenizer=snake_case_ , file_path=snake_case_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=snake_case_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(snake_case_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case__, snake_case__, snake_case__ : List[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: snake_case__ : Union[str, Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: snake_case__ : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: snake_case__ : List[str] = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: snake_case__ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: snake_case__ : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) snake_case__ : Optional[int] = AutoModelWithLMHead.from_config(snake_case_ ) model.resize_token_embeddings(len(snake_case_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: snake_case__ : Dict = tokenizer.max_len # Our input block size will be the max possible for the model else: snake_case__ : Any = min(data_args.block_size , tokenizer.max_len ) # Get datasets snake_case__ : Optional[int] = ( get_dataset(snake_case_ , tokenizer=snake_case_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) snake_case__ : str = ( get_dataset(snake_case_ , tokenizer=snake_case_ , evaluate=snake_case_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": snake_case__ : int = DataCollatorForPermutationLanguageModeling( tokenizer=snake_case_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: snake_case__ : int = DataCollatorForWholeWordMask( tokenizer=snake_case_ , mlm_probability=data_args.mlm_probability ) else: snake_case__ : List[str] = DataCollatorForLanguageModeling( tokenizer=snake_case_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer snake_case__ : Optional[Any] = Trainer( model=snake_case_ , args=snake_case_ , data_collator=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , prediction_loss_only=snake_case_ , ) # Training if training_args.do_train: snake_case__ : Any = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=snake_case_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case__ : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case__ : Union[str, Any] = trainer.evaluate() snake_case__ : str = math.exp(eval_output["eval_loss"] ) snake_case__ : List[str] = {"perplexity": perplexity} snake_case__ : int = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(snake_case_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , snake_case_ , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(snake_case_ ) return results def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
25
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __snake_case : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __snake_case : str = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : int =tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) A__ : List[Any] =self.transformer_dir shutil.copy( os.path.join(lowerCAmelCase_ , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' A__ : Optional[int] ="""src/transformers""" shutil.rmtree(self.transformer_dir ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any=None ) -> Dict: '''simple docstring''' A__ : Optional[Any] =comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: A__ : List[str] =comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result A__ : int =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) A__ : Any =black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ ) A__ : Optional[Any] =os.path.join(self.transformer_dir , """new_code.py""" ) with open(lowerCAmelCase_ , """w""" , newline="""\n""" ) as f: f.write(lowerCAmelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_ ) with open(lowerCAmelCase_ , """r""" ) as f: self.assertTrue(f.read() , lowerCAmelCase_ ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' A__ : Tuple =check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , lowerCAmelCase_ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , lowerCAmelCase_ ) , ) # Copy consistency with a really long name A__ : List[str] ="""TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , f"{long_class_name}LMPredictionHead" , re.sub("""Bert""" , lowerCAmelCase_ , lowerCAmelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , lowerCAmelCase_ , overwrite_result=re.sub("""Bert""" , """TestModel""" , lowerCAmelCase_ ) , ) def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] A__ : int =( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) A__ : Dict =( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) A__ : List[str] =( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) A__ , A__ : int =check_copies.convert_to_localized_md( lowerCAmelCase_ , lowerCAmelCase_ , localized_readme["""format_model_list"""] ) self.assertFalse(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A__ , A__ : List[str] =check_copies.convert_to_localized_md( lowerCAmelCase_ , lowerCAmelCase_ , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCAmelCase_ ) A__ : str =( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) A__ : Optional[int] =( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) A__ : Union[str, Any] =( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) A__ , A__ : Dict =check_copies.convert_to_localized_md( lowerCAmelCase_ , lowerCAmelCase_ , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
215
'''simple docstring''' def __lowerCamelCase ( __snake_case : Dict, __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : int, __snake_case : int, __snake_case : Tuple ) -> Dict: """simple docstring""" if index == r: for j in range(__snake_case ): print(data[j], end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location A__ : Optional[int] =arr[i] combination_util(__snake_case, __snake_case, __snake_case, index + 1, __snake_case, i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case, i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __lowerCamelCase ( __snake_case : Any, __snake_case : Dict, __snake_case : str ) -> str: """simple docstring""" A__ : Union[str, Any] =[0] * r # Print all combination using temporary array 'data[]' combination_util(__snake_case, __snake_case, __snake_case, 0, __snake_case, 0 ) if __name__ == "__main__": # Driver code to check the function above __snake_case : List[Any] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
215
1
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> str: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowercase): __UpperCamelCase :Union[str, Any] = AutoConfig.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) self.assertIsInstance(__lowercase , __lowercase) __UpperCamelCase :int = FlaxAutoModel.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) self.assertIsInstance(__lowercase , __lowercase) @slow def UpperCamelCase__ ( self) -> Any: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowercase): __UpperCamelCase :Union[str, Any] = AutoConfig.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) self.assertIsInstance(__lowercase , __lowercase) __UpperCamelCase :Union[str, Any] = FlaxAutoModel.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) self.assertIsInstance(__lowercase , __lowercase) @slow def UpperCamelCase__ ( self) -> List[Any]: for model_name in ["bert-base-cased", "bert-large-uncased"]: __UpperCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :Optional[int] = FlaxBertModel.from_pretrained(__lowercase) __UpperCamelCase :Optional[int] = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX) @jax.jit def eval(**__lowercase): return model(**__lowercase) eval(**__lowercase).block_until_ready() @slow def UpperCamelCase__ ( self) -> List[str]: for model_name in ["roberta-base", "roberta-large"]: __UpperCamelCase :int = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :int = FlaxRobertaModel.from_pretrained(__lowercase) __UpperCamelCase :Dict = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX) @jax.jit def eval(**__lowercase): return model(**__lowercase) eval(**__lowercase).block_until_ready() def UpperCamelCase__ ( self) -> List[Any]: with self.assertRaisesRegex( __lowercase , '''bert-base is not a local folder and is not a valid model identifier'''): __UpperCamelCase :Optional[int] = FlaxAutoModel.from_pretrained('''bert-base''') def UpperCamelCase__ ( self) -> Dict: with self.assertRaisesRegex( __lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): __UpperCamelCase :Optional[int] = FlaxAutoModel.from_pretrained(__lowercase , revision='''aaaaaa''') def UpperCamelCase__ ( self) -> Dict: with self.assertRaisesRegex( __lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ): __UpperCamelCase :int = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''') def UpperCamelCase__ ( self) -> Union[str, Any]: with self.assertRaisesRegex(__lowercase , '''Use `from_pt=True` to load this model'''): __UpperCamelCase :Optional[int] = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''')
452
import requests from bsa import BeautifulSoup def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE , params=SCREAMING_SNAKE_CASE ).content , '''html.parser''' ) __UpperCamelCase :int = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) __UpperCamelCase :Union[str, Any] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowercase = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 2018, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
452
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case , __snake_case ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ): model.train() __lowerCAmelCase = model(__snake_case ) __lowerCAmelCase = F.mse_loss(__snake_case , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__snake_case ) def __lowerCAmelCase ( __snake_case , __snake_case=False ): set_seed(42 ) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(__snake_case ) __lowerCAmelCase = RegressionDataset(length=80 ) __lowerCAmelCase = DataLoader(__snake_case , batch_size=16 ) model.to(accelerator.device ) if sched: __lowerCAmelCase = AdamW(params=model.parameters() , lr=1E-3 ) __lowerCAmelCase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowerCAmelCase = LambdaLR(__snake_case , lr_lambda=lambda __snake_case : epoch**0.65 ) __lowerCAmelCase = LambdaLR(__snake_case , lr_lambda=lambda __snake_case : epoch**0.65 ) # Make a copy of `model` if sched: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(__snake_case , __snake_case , __snake_case , __snake_case ) else: __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(__snake_case , __snake_case ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __lowerCAmelCase ( __snake_case ): # Test when on a single CPU or GPU that the context manager does nothing __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_training_setup(__snake_case ) # Use a single batch __lowerCAmelCase , __lowerCAmelCase = next(iter(__snake_case ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowerCAmelCase , __lowerCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __lowerCAmelCase , __lowerCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__snake_case ): step_model(__snake_case , __snake_case , __snake_case , __snake_case ) else: # Sync grads step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__snake_case , __snake_case , __snake_case , __snake_case ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __lowerCAmelCase = ddp_input[torch.randperm(len(__snake_case ) )] def __lowerCAmelCase ( __snake_case ): # Test on distributed setup that context manager behaves properly __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_training_setup(__snake_case ) # Use a single batch __lowerCAmelCase , __lowerCAmelCase = next(iter(__snake_case ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowerCAmelCase , __lowerCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __lowerCAmelCase , __lowerCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__snake_case ): step_model(__snake_case , __snake_case , __snake_case , __snake_case ) else: # Sync grads step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __lowerCAmelCase = ddp_input[torch.randperm(len(__snake_case ) )] def __lowerCAmelCase ( __snake_case=False , __snake_case=False ): __lowerCAmelCase = Accelerator( split_batches=__snake_case , dispatch_batches=__snake_case , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_training_setup(__snake_case ) for iteration, batch in enumerate(__snake_case ): __lowerCAmelCase , __lowerCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __lowerCAmelCase , __lowerCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __lowerCAmelCase , __lowerCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__snake_case ): step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__snake_case ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __lowerCAmelCase = ddp_input[torch.randperm(len(__snake_case ) )] GradientState._reset_state() def __lowerCAmelCase ( __snake_case=False , __snake_case=False ): __lowerCAmelCase = Accelerator( split_batches=__snake_case , dispatch_batches=__snake_case , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_training_setup(__snake_case , __snake_case ) for iteration, batch in enumerate(__snake_case ): __lowerCAmelCase , __lowerCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model __lowerCAmelCase , __lowerCAmelCase = accelerator.gather((ddp_input, ddp_target) ) __lowerCAmelCase , __lowerCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__snake_case )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__snake_case ): step_model(__snake_case , __snake_case , __snake_case , __snake_case ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" __lowerCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__snake_case )) if accelerator.num_processes > 1: check_model_parameters(__snake_case , __snake_case , __snake_case , __snake_case ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __lowerCAmelCase ( ): __lowerCAmelCase = Accelerator() __lowerCAmelCase = RegressionDataset(length=80 ) __lowerCAmelCase = DataLoader(__snake_case , batch_size=16 ) __lowerCAmelCase = RegressionDataset(length=96 ) __lowerCAmelCase = DataLoader(__snake_case , batch_size=16 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(__snake_case , __snake_case ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__snake_case ): assert id(accelerator.gradient_state.active_dataloader ) == id(__snake_case ) if iteration < len(__snake_case ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__snake_case ): assert id(accelerator.gradient_state.active_dataloader ) == id(__snake_case ) if batch_num < len(__snake_case ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __lowerCAmelCase ( ): __lowerCAmelCase = Accelerator() __lowerCAmelCase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(__snake_case ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(__snake_case ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(__snake_case , __snake_case ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(__snake_case , __snake_case ) def __lowerCAmelCase ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
367
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __lowerCAmelCase ( __snake_case = "" ): __lowerCAmelCase = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" __lowerCAmelCase = BeautifulSoup(requests.get(__snake_case ).text , "html.parser" ) __lowerCAmelCase = soup.find_all("td" , attrs="titleColumn" ) __lowerCAmelCase = soup.find_all("td" , class_="ratingColumn imdbRating" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__snake_case , __snake_case ) } def __lowerCAmelCase ( __snake_case = "IMDb_Top_250_Movies.csv" ): __lowerCAmelCase = get_imdb_top_aaa_movies() with open(__snake_case , "w" , newline="" ) as out_file: __lowerCAmelCase = csv.writer(__snake_case ) writer.writerow(["Movie title", "IMDb rating"] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
367
1
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __snake_case ( ) -> str: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=UpperCamelCase__ , default='microsoft/unixcoder-base-nine' ) parser.add_argument('--num_epochs' , type=UpperCamelCase__ , default=5 ) parser.add_argument('--batch_size' , type=UpperCamelCase__ , default=6 ) parser.add_argument('--gradient_accumulation_steps' , type=UpperCamelCase__ , default=1 ) parser.add_argument('--freeze' , type=UpperCamelCase__ , default=UpperCamelCase__ ) parser.add_argument('--learning_rate' , type=UpperCamelCase__ , default=5E-4 ) parser.add_argument('--seed' , type=UpperCamelCase__ , default=0 ) parser.add_argument('--lr_scheduler_type' , type=UpperCamelCase__ , default='cosine' ) parser.add_argument('--num_warmup_steps' , type=UpperCamelCase__ , default=10 ) parser.add_argument('--weight_decay' , type=UpperCamelCase__ , default=0.0_1 ) parser.add_argument('--output_dir' , type=UpperCamelCase__ , default='./results' ) return parser.parse_args() UpperCamelCase : Dict = load("accuracy") def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" A , A = eval_pred A = np.argmax(UpperCamelCase__ , axis=1 ) return metric.compute(predictions=UpperCamelCase__ , references=UpperCamelCase__ ) class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : Tuple , _lowercase : Union[str, Any] ): super().__init__() A = trainer def __a ( self : List[Any] , _lowercase : Optional[int] , _lowercase : str , _lowercase : Any , **_lowercase : str ): if control.should_evaluate: A = deepcopy(_lowercase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='train' ) return control_copy def __snake_case ( ) -> int: """simple docstring""" A = get_args() set_seed(args.seed ) A = load_dataset('codeparrot/codecomplex' , split='train' ) A = dataset.train_test_split(test_size=0.2 ) A = train_test['test'].train_test_split(test_size=0.5 ) A = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], } ) print('Loading tokenizer and model' ) A = AutoTokenizer.from_pretrained(args.model_ckpt ) A = tokenizer.eos_token A = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) A = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): A = False A = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) ) def tokenize(UpperCamelCase__ ): A = tokenizer(example['src'] , truncation=UpperCamelCase__ , max_length=1024 ) A = labels.straint(example['complexity'] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } A = train_test_validation.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=train_test_validation['train'].column_names , ) A = DataCollatorWithPadding(tokenizer=UpperCamelCase__ ) A = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) A = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) print('Training...' ) trainer.add_callback(CustomCallback(UpperCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
91
"""simple docstring""" from math import factorial def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> float: """simple docstring""" if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) A = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
91
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): def constraint_to_multiple_of(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=0 , __UpperCamelCase=None ): A_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: A_ = math.floor(val / multiple ) * multiple if x < min_val: A_ = math.ceil(val / multiple ) * multiple return x A_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size A_ = get_image_size(a_ ) A_ = output_size # determine new height and width A_ = output_height / input_height A_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width A_ = scale_width else: # fit height A_ = scale_height A_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ ) A_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ ) return (new_height, new_width) class __lowercase ( _A ): __magic_name__ : int = ['''pixel_values'''] def __init__( self , a__ = True , a__ = None , a__ = PILImageResampling.BILINEAR , a__ = False , a__ = 1 , a__ = True , a__ = 1 / 2_5_5 , a__ = True , a__ = None , a__ = None , **a__ , ) -> List[Any]: '''simple docstring''' super().__init__(**a_ ) A_ = size if size is not None else {"height": 3_8_4, "width": 3_8_4} A_ = get_size_dict(a_ ) A_ = do_resize A_ = size A_ = keep_aspect_ratio A_ = ensure_multiple_of A_ = resample A_ = do_rescale A_ = rescale_factor A_ = do_normalize A_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self , a__ , a__ , a__ = False , a__ = 1 , a__ = PILImageResampling.BICUBIC , a__ = None , **a__ , ) -> Tuple: '''simple docstring''' A_ = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}" ) A_ = get_resize_output_image_size( a_ , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=a_ , multiple=a_ , ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def lowerCAmelCase_ ( self , a__ , a__ , a__ = None , **a__ , ) -> List[Any]: '''simple docstring''' return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def lowerCAmelCase_ ( self , a__ , a__ , a__ , a__ = None , **a__ , ) -> Dict: '''simple docstring''' return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def lowerCAmelCase_ ( self , a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ) -> int: '''simple docstring''' A_ = do_resize if do_resize is not None else self.do_resize A_ = size if size is not None else self.size A_ = get_size_dict(a_ ) A_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio A_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of A_ = resample if resample is not None else self.resample A_ = do_rescale if do_rescale is not None else self.do_rescale A_ = rescale_factor if rescale_factor is not None else self.rescale_factor A_ = do_normalize if do_normalize is not None else self.do_normalize A_ = image_mean if image_mean is not None else self.image_mean A_ = image_std if image_std is not None else self.image_std A_ = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A_ = [to_numpy_array(a_ ) for image in images] if do_resize: A_ = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_rescale: A_ = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: A_ = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] A_ = [to_channel_dimension_format(a_ , a_ ) for image in images] A_ = {"pixel_values": images} return BatchFeature(data=a_ , tensor_type=a_ ) def lowerCAmelCase_ ( self , a__ , a__ = None ) -> Tuple: '''simple docstring''' A_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a_ ) != len(a_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(a_ ): A_ = target_sizes.numpy() A_ = [] for idx in range(len(a_ ) ): A_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=a_ ) A_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a_ ) else: A_ = logits.argmax(dim=1 ) A_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
141
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
525
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: Optional[int] , _lowerCamelCase: Dict ): __SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_json_file(__snake_case ) print(F"Building PyTorch model from configuration: {config}" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_bert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
707
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __get__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any]=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) __SCREAMING_SNAKE_CASE : Any = """__cached_""" + self.fget.__name__ __SCREAMING_SNAKE_CASE : str = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if cached is None: __SCREAMING_SNAKE_CASE : int = self.fget(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return cached def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : List[str] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"invalid truth value {val!r}" ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] ): if is_torch_fx_proxy(_lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(_lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(_lowerCamelCase , np.ndarray ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): return isinstance(_lowerCamelCase , np.ndarray ) def lowerCAmelCase_ ( _lowerCamelCase: Dict ): return _is_numpy(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Any ): import torch return isinstance(_lowerCamelCase , torch.Tensor ) def lowerCAmelCase_ ( _lowerCamelCase: str ): return False if not is_torch_available() else _is_torch(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Dict ): import torch return isinstance(_lowerCamelCase , torch.device ) def lowerCAmelCase_ ( _lowerCamelCase: Any ): return False if not is_torch_available() else _is_torch_device(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Any ): import torch if isinstance(_lowerCamelCase , _lowerCamelCase ): if hasattr(_lowerCamelCase , _lowerCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) else: return False return isinstance(_lowerCamelCase , torch.dtype ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): return False if not is_torch_available() else _is_torch_dtype(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: str ): import tensorflow as tf return isinstance(_lowerCamelCase , tf.Tensor ) def lowerCAmelCase_ ( _lowerCamelCase: int ): return False if not is_tf_available() else _is_tensorflow(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Any ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowerCamelCase , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(_lowerCamelCase ) return type(_lowerCamelCase ) == tf.Tensor def lowerCAmelCase_ ( _lowerCamelCase: Any ): return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Any ): import jax.numpy as jnp # noqa: F811 return isinstance(_lowerCamelCase , jnp.ndarray ) def lowerCAmelCase_ ( _lowerCamelCase: List[str] ): return False if not is_flax_available() else _is_jax(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: int ): if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return [to_py_obj(_lowerCamelCase ) for o in obj] elif is_tf_tensor(_lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ).tolist() elif isinstance(_lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCAmelCase_ ( _lowerCamelCase: Any ): if isinstance(_lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(_lowerCamelCase ) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple) ): return np.array(_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): return obj.numpy() elif is_torch_tensor(_lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowerCamelCase ): return np.asarray(_lowerCamelCase ) else: return obj class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = fields(self ) # Safety and consistency checks if not len(lowerCAmelCase__ ): raise ValueError(F"{self.__class__.__name__} has no fields." ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"{self.__class__.__name__} should not have more than one required field." ) __SCREAMING_SNAKE_CASE : Dict = getattr(self , class_fields[0].name ) __SCREAMING_SNAKE_CASE : Dict = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Any = first_field.items() __SCREAMING_SNAKE_CASE : Dict = True else: try: __SCREAMING_SNAKE_CASE : List[Any] = iter(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = True except TypeError: __SCREAMING_SNAKE_CASE : int = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowerCAmelCase__ ): if ( not isinstance(lowerCAmelCase__ , (list, tuple) ) or not len(lowerCAmelCase__ ) == 2 or not isinstance(element[0] , lowerCAmelCase__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute __SCREAMING_SNAKE_CASE : str = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self , element[0] , element[1] ) if element[1] is not None: __SCREAMING_SNAKE_CASE : Optional[int] = element[1] elif first_field is not None: __SCREAMING_SNAKE_CASE : Optional[int] = first_field else: for field in class_fields: __SCREAMING_SNAKE_CASE : List[Any] = getattr(self , field.name ) if v is not None: __SCREAMING_SNAKE_CASE : Optional[int] = v def __delitem__( self : Optional[Any] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Tuple ): """simple docstring""" raise Exception(F"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." ) def UpperCamelCase__ ( self : str , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Dict ): """simple docstring""" raise Exception(F"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." ) def UpperCamelCase__ ( self : str , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[Any] ): """simple docstring""" raise Exception(F"You cannot use ``pop`` on a {self.__class__.__name__} instance." ) def UpperCamelCase__ ( self : int , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : List[Any] ): """simple docstring""" raise Exception(F"You cannot use ``update`` on a {self.__class__.__name__} instance." ) def __getitem__( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowerCAmelCase__ , lowerCAmelCase__ ) super().__setattr__(lowerCAmelCase__ , lowerCAmelCase__ ) def __setitem__( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" super().__setitem__(lowerCAmelCase__ , lowerCAmelCase__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' @classmethod def UpperCamelCase__ ( cls : List[Any] , lowerCAmelCase__ : Tuple ): """simple docstring""" raise ValueError( F"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Dict = '''longest''' _A : Optional[Any] = '''max_length''' _A : Tuple = '''do_not_pad''' class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Optional[int] = '''pt''' _A : Union[str, Any] = '''tf''' _A : Union[str, Any] = '''np''' _A : Dict = '''jax''' class _UpperCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase__ : List[ContextManager] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = context_managers __SCREAMING_SNAKE_CASE : Dict = ExitStack() def __enter__( self : Union[str, Any] ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(lowerCAmelCase__ ) def __exit__( self : Any , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[str] ): """simple docstring""" self.stack.__exit__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] ): __SCREAMING_SNAKE_CASE : Optional[Any] = infer_framework(_lowerCamelCase ) if framework == "tf": __SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __SCREAMING_SNAKE_CASE : int = inspect.signature(model_class.forward ) # PyTorch models else: __SCREAMING_SNAKE_CASE : List[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : Optional[Any] = model_class.__name__ __SCREAMING_SNAKE_CASE : List[Any] = infer_framework(_lowerCamelCase ) if framework == "tf": __SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __SCREAMING_SNAKE_CASE : Dict = inspect.signature(model_class.forward ) # PyTorch models else: __SCREAMING_SNAKE_CASE : List[Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCAmelCase_ ( _lowerCamelCase: MutableMapping , _lowerCamelCase: str = "" , _lowerCamelCase: str = "." ): def _flatten_dict(_lowerCamelCase: str , _lowerCamelCase: Any="" , _lowerCamelCase: List[Any]="." ): for k, v in d.items(): __SCREAMING_SNAKE_CASE : Tuple = str(_lowerCamelCase ) + delimiter + str(_lowerCamelCase ) if parent_key else k if v and isinstance(_lowerCamelCase , _lowerCamelCase ): yield from flatten_dict(_lowerCamelCase , _lowerCamelCase , delimiter=_lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) @contextmanager def lowerCAmelCase_ ( _lowerCamelCase: Dict , _lowerCamelCase: bool = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Optional[Any]=None ): if is_numpy_array(_lowerCamelCase ): return np.transpose(_lowerCamelCase , axes=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.T if axes is None else array.permute(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.transpose(_lowerCamelCase , perm=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.transpose(_lowerCamelCase , axes=_lowerCamelCase ) else: raise ValueError(F"Type not supported for transpose: {type(_lowerCamelCase )}." ) def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Dict ): if is_numpy_array(_lowerCamelCase ): return np.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.reshape(*_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.reshape(_lowerCamelCase , _lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.reshape(_lowerCamelCase , _lowerCamelCase ) else: raise ValueError(F"Type not supported for reshape: {type(_lowerCamelCase )}." ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: Dict=None ): if is_numpy_array(_lowerCamelCase ): return np.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.squeeze(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for squeeze: {type(_lowerCamelCase )}." ) def lowerCAmelCase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: List[str] ): if is_numpy_array(_lowerCamelCase ): return np.expand_dims(_lowerCamelCase , _lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.unsqueeze(dim=_lowerCamelCase ) elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return jnp.expand_dims(_lowerCamelCase , axis=_lowerCamelCase ) else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def lowerCAmelCase_ ( _lowerCamelCase: int ): if is_numpy_array(_lowerCamelCase ): return np.size(_lowerCamelCase ) elif is_torch_tensor(_lowerCamelCase ): return array.numel() elif is_tf_tensor(_lowerCamelCase ): import tensorflow as tf return tf.size(_lowerCamelCase ) elif is_jax_tensor(_lowerCamelCase ): return array.size else: raise ValueError(F"Type not supported for expand_dims: {type(_lowerCamelCase )}." ) def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: Any ): for key, value in auto_map.items(): if isinstance(_lowerCamelCase , (tuple, list) ): __SCREAMING_SNAKE_CASE : Dict = [F"{repo_id}--{v}" if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: __SCREAMING_SNAKE_CASE : Any = F"{repo_id}--{value}" return auto_map def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] ): for base_class in inspect.getmro(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = base_class.__module__ __SCREAMING_SNAKE_CASE : Any = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"Could not infer framework from class {model_class}." )
178
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' ,type=__UpperCamelCase ,default=1 ,help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' ,type=__UpperCamelCase ,help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) ,) # rest from the training program parser.add_argument('training_script_args' ,nargs=__UpperCamelCase ) return parser.parse_args() def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = parse_args() # Import training_script as a module. lowerCamelCase_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCamelCase_ = script_fpath.stem lowerCamelCase_ = importlib.import_module(__UpperCamelCase ) # Patch sys.argv lowerCamelCase_ = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
42
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = {} __lowercase = job['''started_at'''] __lowercase = job['''completed_at'''] __lowercase = date_parser.parse(lowercase ) __lowercase = date_parser.parse(lowercase ) __lowercase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __lowercase = start __lowercase = end __lowercase = duration_in_min return job_info def UpperCAmelCase ( lowercase , lowercase=None ): """simple docstring""" __lowercase = None if token is not None: __lowercase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"Bearer {token}"} __lowercase = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" __lowercase = requests.get(lowercase , headers=lowercase ).json() __lowercase = {} try: job_time.update({job['''name''']: extract_time_from_single_job(lowercase ) for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(lowercase ): __lowercase = requests.get(url + F"&page={i + 2}" , headers=lowercase ).json() job_time.update({job['''name''']: extract_time_from_single_job(lowercase ) for job in result['''jobs''']} ) return job_time except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} if __name__ == "__main__": __a : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") __a : Optional[int] = parser.parse_args() __a : Tuple = get_job_time(args.workflow_run_id) __a : Union[str, Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v["duration"]}''')
522
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __a : str = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCAmelCase ( lowercase ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if args.student_type == "roberta": __lowercase = False elif args.student_type == "gpt2": __lowercase = False def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if args.student_type == "roberta": __lowercase = False def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=lowercase , required=lowercase , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=lowercase , required=lowercase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=lowercase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=lowercase , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=lowercase , required=lowercase , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=lowercase , type=lowercase , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=lowercase , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=lowercase , required=lowercase , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=lowercase , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=lowercase , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=lowercase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=lowercase , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=lowercase , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=lowercase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=lowercase , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=lowercase , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=lowercase , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=lowercase , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=lowercase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=lowercase , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=lowercase , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=lowercase , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=lowercase , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=lowercase , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=lowercase , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=lowercase , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowercase , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=lowercase , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=lowercase , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=lowercase , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=lowercase , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=lowercase , default=4000 , help='''Checkpoint interval.''' ) __lowercase = parser.parse_args() sanity_checks(lowercase ) # ARGS # init_gpu_params(lowercase ) set_seed(lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(F"Param: {args}" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(lowercase ) , lowercase , indent=4 ) git_log(args.dump_path ) __lowercase , __lowercase , __lowercase = MODEL_CLASSES[args.student_type] __lowercase , __lowercase , __lowercase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __lowercase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __lowercase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __lowercase = tokenizer.all_special_tokens.index(lowercase ) __lowercase = tokenizer.all_special_ids[idx] logger.info(F"Special tokens {special_tok_ids}" ) __lowercase = special_tok_ids __lowercase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"Loading data from {args.data_file}" ) with open(args.data_file , '''rb''' ) as fp: __lowercase = pickle.load(lowercase ) if args.mlm: logger.info(F"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , '''rb''' ) as fp: __lowercase = pickle.load(lowercase ) __lowercase = np.maximum(lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __lowercase = 0.0 # do not predict special tokens __lowercase = torch.from_numpy(lowercase ) else: __lowercase = None __lowercase = LmSeqsDataset(params=lowercase , data=lowercase ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F"Loading student config from {args.student_config}" ) __lowercase = student_config_class.from_pretrained(args.student_config ) __lowercase = True if args.student_pretrained_weights is not None: logger.info(F"Loading pretrained weights from {args.student_pretrained_weights}" ) __lowercase = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowercase ) else: __lowercase = student_model_class(lowercase ) if args.n_gpu > 0: student.to(F"cuda:{args.local_rank}" ) logger.info('''Student loaded.''' ) # TEACHER # __lowercase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowercase ) if args.n_gpu > 0: teacher.to(F"cuda:{args.local_rank}" ) logger.info(F"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowercase , lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowercase , lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __lowercase = Distiller( params=lowercase , dataset=lowercase , token_probs=lowercase , student=lowercase , teacher=lowercase ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
522
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase :Union[str, Any] = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def __snake_case ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[str]: _a = True while ask_again: _a = input(_UpperCamelCase ) try: if default is not None and len(_UpperCamelCase ) == 0: return default return convert_value(_UpperCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(_UpperCamelCase ) def __snake_case ( _UpperCamelCase , _UpperCamelCase=[] , _UpperCamelCase=None , _UpperCamelCase=0 ) -> List[str]: _a = BulletMenu(_UpperCamelCase , _UpperCamelCase ) _a = menu.run(default_choice=_UpperCamelCase ) return convert_value(_UpperCamelCase ) if convert_value is not None else result def __snake_case ( _UpperCamelCase ) -> Dict: _a = int(_UpperCamelCase ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def __snake_case ( _UpperCamelCase ) -> Union[str, Any]: _a = int(_UpperCamelCase ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def __snake_case ( _UpperCamelCase ) -> Optional[Any]: _a = int(_UpperCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def __snake_case ( _UpperCamelCase ) -> str: _a = int(_UpperCamelCase ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def __snake_case ( _UpperCamelCase ) -> Tuple: _a = int(_UpperCamelCase ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def __snake_case ( _UpperCamelCase ) -> List[Any]: return {"yes": True, "no": False}[value.lower()] class UpperCAmelCase ( argparse.RawDescriptionHelpFormatter ): def _A ( self: Dict , __UpperCamelCase: Dict , __UpperCamelCase: List[str] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: int ): _a = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _a = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
487
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __snake_case ( _UpperCamelCase ) -> Optional[Any]: _a = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def __snake_case ( _UpperCamelCase ) -> List[str]: _a , _a = emb.weight.shape _a = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) _a = emb.weight.data return lin_layer def __snake_case ( _UpperCamelCase , _UpperCamelCase="facebook/mbart-large-en-ro" , _UpperCamelCase=False , _UpperCamelCase=False ) -> Union[str, Any]: _a = torch.load(_UpperCamelCase , map_location='''cpu''' )['''model'''] remove_ignore_keys_(_UpperCamelCase ) _a = state_dict['''encoder.embed_tokens.weight'''].shape[0] _a = MBartConfig.from_pretrained(_UpperCamelCase , vocab_size=_UpperCamelCase ) if mbart_aa and finetuned: _a = '''relu''' _a = state_dict['''decoder.embed_tokens.weight'''] _a = MBartForConditionalGeneration(_UpperCamelCase ) model.model.load_state_dict(_UpperCamelCase ) if finetuned: _a = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase :int = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') lowerCamelCase :Optional[int] = parser.parse_args() lowerCamelCase :Optional[int] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
487
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = 384 if "tiny" in model_name: lowercase__ = [3, 3, 9, 3] lowercase__ = [96, 192, 384, 768] if "small" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [96, 192, 384, 768] if "base" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [128, 256, 512, 1024] lowercase__ = 512 if "large" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [192, 384, 768, 1536] lowercase__ = 768 if "xlarge" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [256, 512, 1024, 2048] lowercase__ = 1024 # set label information lowercase__ = 150 lowercase__ = "huggingface/label-files" lowercase__ = "ade20k-id2label.json" lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = ConvNextConfig( depths=SCREAMING_SNAKE_CASE_ , hidden_sizes=SCREAMING_SNAKE_CASE_ , out_features=["stage1", "stage2", "stage3", "stage4"] ) lowercase__ = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE_ , auxiliary_in_channels=SCREAMING_SNAKE_CASE_ , num_labels=SCREAMING_SNAKE_CASE_ , idalabel=SCREAMING_SNAKE_CASE_ , labelaid=SCREAMING_SNAKE_CASE_ , ) return config def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = dct.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ = val def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } lowercase__ = model_name_to_url[model_name] lowercase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["state_dict"] lowercase__ = get_upernet_config(SCREAMING_SNAKE_CASE_ ) lowercase__ = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "bn" in key: lowercase__ = key.replace("bn" , "batch_norm" ) lowercase__ = val # rename keys lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify on image lowercase__ = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ).convert("RGB" ) lowercase__ = SegformerImageProcessor() lowercase__ = processor(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values with torch.no_grad(): lowercase__ = model(SCREAMING_SNAKE_CASE_ ) if model_name == "upernet-convnext-tiny": lowercase__ = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": lowercase__ = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": lowercase__ = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": lowercase__ = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": lowercase__ = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F'upernet-convnext-{size}' for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
703
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") lowercase__ = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) lowercase__ = model.state_dict() def to_tf_var_name(SCREAMING_SNAKE_CASE_ ): for patt, repl in iter(SCREAMING_SNAKE_CASE_ ): lowercase__ = name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return f'''bert/{name}''' def create_tf_var(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ = tf.get_variable(dtype=SCREAMING_SNAKE_CASE_ , shape=tensor.shape , name=SCREAMING_SNAKE_CASE_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(SCREAMING_SNAKE_CASE_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ = to_tf_var_name(SCREAMING_SNAKE_CASE_ ) lowercase__ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ = torch_tensor.T lowercase__ = create_tf_var(tensor=SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , session=SCREAMING_SNAKE_CASE_ ) tf.keras.backend.set_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ = session.run(SCREAMING_SNAKE_CASE_ ) print(f'''Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}''' ) lowercase__ = tf.train.Saver(tf.trainable_variables() ) saver.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_=None ): lowercase__ = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Directory in which to save tensorflow model" ) lowercase__ = parser.parse_args(SCREAMING_SNAKE_CASE_ ) lowercase__ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
37
0
from torch import nn def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> int: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
67
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowercase : Optional[int] = False @skip_mps class _UpperCamelCase ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase = StableDiffusionAttendAndExcitePipeline lowerCAmelCase = False lowerCAmelCase = TEXT_TO_IMAGE_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _UpperCAmelCase ( cls ) -> List[Any]: super().setUpClass() torch.use_deterministic_algorithms(a__ ) @classmethod def _UpperCAmelCase ( cls ) -> Tuple: super().tearDownClass() torch.use_deterministic_algorithms(a__ ) def _UpperCAmelCase ( self ) -> Dict: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) A = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=a__ , set_alpha_to_one=a__ , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) A = CLIPTextModel(a__ ) A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _UpperCAmelCase ( self , a__ , a__=0 ) -> Optional[Any]: if str(a__ ).startswith("""mps""" ): A = torch.manual_seed(a__ ) else: A = torch.Generator(device=a__ ).manual_seed(a__ ) A = A = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def _UpperCAmelCase ( self ) -> Union[str, Any]: A = """cpu""" A = self.get_dummy_components() A = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) A = self.get_dummy_inputs(a__ ) A = pipe(**a__ ).images A = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) A = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] ) A = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def _UpperCAmelCase ( self ) -> List[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def _UpperCAmelCase ( self ) -> Dict: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _UpperCAmelCase ( self ) -> Any: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def _UpperCAmelCase ( self ) -> Optional[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _UpperCAmelCase ( self ) -> str: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def _UpperCAmelCase ( self ) -> int: super().test_save_load_local(expected_max_difference=5e-4 ) def _UpperCAmelCase ( self ) -> Optional[Any]: super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @classmethod def _UpperCAmelCase ( cls ) -> Tuple: super().setUpClass() torch.use_deterministic_algorithms(a__ ) @classmethod def _UpperCAmelCase ( cls ) -> Dict: super().tearDownClass() torch.use_deterministic_algorithms(a__ ) def _UpperCAmelCase ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> int: A = torch.manual_seed(51 ) A = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=a__ , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) A = """a painting of an elephant with glasses""" A = [5, 7] A = pipe( prompt=a__ , token_indices=a__ , guidance_scale=7.5 , generator=a__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-1
641
0
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _UpperCAmelCase ( self : str ) -> Any: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(snake_case ): __magic_name__ : Optional[int] = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) __magic_name__ : Optional[Any] = FlaxAutoModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def _UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(snake_case ): __magic_name__ : List[str] = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) __magic_name__ : Tuple = FlaxAutoModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case , snake_case ) @slow def _UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: __magic_name__ : List[Any] = AutoTokenizer.from_pretrained(snake_case ) __magic_name__ : int = FlaxBertModel.from_pretrained(snake_case ) __magic_name__ : Dict = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case : Optional[Any] ): return model(**snake_case ) eval(**snake_case ).block_until_ready() @slow def _UpperCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: __magic_name__ : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case ) __magic_name__ : Dict = FlaxRobertaModel.from_pretrained(snake_case ) __magic_name__ : Dict = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case : str ): return model(**snake_case ) eval(**snake_case ).block_until_ready() def _UpperCAmelCase ( self : Any ) -> Any: '''simple docstring''' with self.assertRaisesRegex( snake_case , '''bert-base is not a local folder and is not a valid model identifier''' ): __magic_name__ : str = FlaxAutoModel.from_pretrained('''bert-base''' ) def _UpperCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' with self.assertRaisesRegex( snake_case , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __magic_name__ : Tuple = FlaxAutoModel.from_pretrained(snake_case , revision='''aaaaaa''' ) def _UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( snake_case , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ): __magic_name__ : Optional[Any] = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def _UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex(snake_case , '''Use `from_pt=True` to load this model''' ): __magic_name__ : Optional[Any] = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
147
"""simple docstring""" def UpperCamelCase_ ( lowerCamelCase : float ) -> float: """simple docstring""" return 10 - x * x def UpperCamelCase_ ( lowerCamelCase : float , lowerCamelCase : float ) -> float: """simple docstring""" if equation(lowerCamelCase ) * equation(lowerCamelCase ) >= 0: raise ValueError('''Wrong space!''' ) __magic_name__ : int = a while (b - a) >= 0.0_1: # Find middle point __magic_name__ : str = (a + b) / 2 # Check if middle point is root if equation(lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCamelCase ) * equation(lowerCamelCase ) < 0: __magic_name__ : Union[str, Any] = c else: __magic_name__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
147
1
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( lowerCamelCase ): def __init__( self , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = eval_examples UpperCamelCase = post_process_function def A__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = "eval" ) -> Any: """simple docstring""" UpperCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCamelCase = self.get_eval_dataloader(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase = self.compute_metrics UpperCamelCase = None UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase = time.time() try: UpperCamelCase = eval_loop( _SCREAMING_SNAKE_CASE , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , metric_key_prefix=_SCREAMING_SNAKE_CASE , ) finally: UpperCamelCase = compute_metrics UpperCamelCase = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCamelCase = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions ) UpperCamelCase = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): UpperCamelCase = metrics.pop(_SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) else: UpperCamelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_SCREAMING_SNAKE_CASE ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCamelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , _SCREAMING_SNAKE_CASE ) return metrics def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = "test" ) -> Dict: """simple docstring""" UpperCamelCase = self.get_test_dataloader(_SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase = self.compute_metrics UpperCamelCase = None UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase = time.time() try: UpperCamelCase = eval_loop( _SCREAMING_SNAKE_CASE , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , metric_key_prefix=_SCREAMING_SNAKE_CASE , ) finally: UpperCamelCase = compute_metrics UpperCamelCase = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCamelCase = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions , """predict""" ) UpperCamelCase = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): UpperCamelCase = metrics.pop(_SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_SCREAMING_SNAKE_CASE )
301
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a_ ( lowerCamelCase ): lowercase = ["""image_processor""", """tokenizer"""] lowercase = """LayoutLMv3ImageProcessor""" lowercase = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _SCREAMING_SNAKE_CASE , ) UpperCamelCase = kwargs.pop("""feature_extractor""" ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor UpperCamelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase = features["""words"""] UpperCamelCase = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # add pixel values UpperCamelCase = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: UpperCamelCase = self.get_overflowing_images(_SCREAMING_SNAKE_CASE , encoded_inputs["""overflow_to_sample_mapping"""] ) UpperCamelCase = images return encoded_inputs def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" F" {len(_SCREAMING_SNAKE_CASE )} and {len(_SCREAMING_SNAKE_CASE )}" ) return images_with_overflow def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def A__ ( self ) -> List[str]: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def A__ ( self ) -> Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def A__ ( self ) -> Tuple: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _SCREAMING_SNAKE_CASE , ) return self.image_processor
301
1
def lowerCamelCase_ ( _lowercase , _lowercase = " " ) -> list: __A : str = [] __A : int = 0 for index, char in enumerate(_lowercase ): if char == separator: split_words.append(string[last_index:index] ) __A : str = index + 1 elif index + 1 == len(_lowercase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
387
from collections import Counter from timeit import timeit def lowerCamelCase_ ( _lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def lowerCamelCase_ ( _lowercase = "" ) -> bool: if len(_lowercase ) == 0: return True __A : List[Any] = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __A : dict[str, int] = {} for character in lower_case_input_str: __A : str = character_freq_dict.get(_lowercase , 0 ) + 1 __A : Any = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCamelCase_ ( _lowercase = "" ) -> None: print("\nFor string = " , _lowercase , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(_lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(_lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": UpperCamelCase = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) UpperCamelCase = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
387
1
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCamelCase_ = 1_2_8_0_2_2 UpperCamelCase_ = 1_2_8_0_2_8 @require_sentencepiece class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[str] = MaMaaaTokenizer A : Optional[int] = False A : Tuple = False A : Optional[Any] = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : str = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] SCREAMING_SNAKE_CASE : List[str] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : List[str] = Path(self.tmpdirname ) save_json(A, save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(A, save_dir / VOCAB_FILES_NAMES['spm_file'] ) SCREAMING_SNAKE_CASE : Any = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return ( "This is a test", "This is a test", ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = '</s>' SCREAMING_SNAKE_CASE : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ), A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Tuple = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0], '</s>' ) self.assertEqual(vocab_keys[1], '<unk>' ) self.assertEqual(vocab_keys[-1], '<s>' ) self.assertEqual(len(A ), tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(A, ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ), [2, 3, 4, 5, 6], ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(A, ['▁This', '▁is', '▁a', '▁t', 'est'] ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_tokens_to_string(A ) self.assertEqual(A, 'This is a test' ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'input_ids': [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A, model_name='facebook/m2m100_418M', revision='c168bae485c864188cf9aa0e4108b0b6934dc91e', ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): '''simple docstring''' A : Dict = '''facebook/m2m100_418M''' A : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] A : Optional[int] = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off A : Dict = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name, src_lang='en', tgt_lang='fr' ) SCREAMING_SNAKE_CASE : List[Any] = 1 return cls def UpperCamelCase_ ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id('ar' ), 128_006 ) self.assertEqual(self.tokenizer.get_lang_id('en' ), 128_022 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ), 128_076 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ), 128_063 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.get_vocab() self.assertEqual(len(A ), self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'], 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 'en' SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.assertIn(A, self.tokenizer.all_special_ids ) # fmt: off SCREAMING_SNAKE_CASE : List[Any] = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on SCREAMING_SNAKE_CASE : int = self.tokenizer.decode(A, skip_special_tokens=A ) SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=A ) self.assertEqual(A, A ) self.assertNotIn(self.tokenizer.eos_token, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(A ) SCREAMING_SNAKE_CASE : Optional[int] = MaMaaaTokenizer.from_pretrained(A ) self.assertDictEqual(new_tok.lang_token_to_id, A ) @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 'en' SCREAMING_SNAKE_CASE : Tuple = 'fr' SCREAMING_SNAKE_CASE : Any = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=A, return_tensors='pt' ) SCREAMING_SNAKE_CASE : List[str] = shift_tokens_right( batch['labels'], self.tokenizer.pad_token_id, self.tokenizer.eos_token_id ) for k in batch: SCREAMING_SNAKE_CASE : Any = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) SCREAMING_SNAKE_CASE : str = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) SCREAMING_SNAKE_CASE : int = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.tokenizer._build_translation_inputs('A test', return_tensors='pt', src_lang='en', tgt_lang='ar' ) self.assertEqual( nested_simplify(A ), { # en_XX, A, test, EOS 'input_ids': [[128_022, 58, 4_183, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 128_006, }, )
28
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False , )-> str: """simple docstring""" super().__init__() UpperCamelCase = nn.Embedding(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = nn.Embedding(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = False UpperCamelCase = nn.Dropout(p=UpperCAmelCase_ ) UpperCamelCase = TaConfig( vocab_size=UpperCAmelCase_ , d_model=UpperCAmelCase_ , num_heads=UpperCAmelCase_ , d_kv=UpperCAmelCase_ , d_ff=UpperCAmelCase_ , dropout_rate=UpperCAmelCase_ , feed_forward_proj=UpperCAmelCase_ , is_decoder=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , ) UpperCamelCase = nn.ModuleList() for lyr_num in range(UpperCAmelCase_ ): UpperCamelCase = TaBlock(UpperCAmelCase_ ) self.encoders.append(UpperCAmelCase_ ) UpperCamelCase = TaLayerNorm(UpperCAmelCase_ ) UpperCamelCase = nn.Dropout(p=UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str )-> List[Any]: """simple docstring""" UpperCamelCase = self.token_embedder(UpperCAmelCase_ ) UpperCamelCase = encoder_input_tokens.shape[1] UpperCamelCase = torch.arange(UpperCAmelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCAmelCase_ ) UpperCamelCase = self.dropout_pre(UpperCAmelCase_ ) # inverted the attention mask UpperCamelCase = encoder_input_tokens.size() UpperCamelCase = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ ) for lyr in self.encoders: UpperCamelCase = lyr(UpperCAmelCase_ , UpperCAmelCase_ )[0] UpperCamelCase = self.layer_norm(UpperCAmelCase_ ) return self.dropout_post(UpperCAmelCase_ ), encoder_inputs_mask
554
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = DebertaVaTokenizer a__ = DebertaVaTokenizerFast a__ = True a__ = True def A__ ( self): super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase : List[str] = DebertaVaTokenizer(__snake_case , unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def A__ ( self , __snake_case): _UpperCamelCase : List[Any] = 'this is a test' _UpperCamelCase : int = 'this is a test' return input_text, output_text def A__ ( self): _UpperCamelCase : List[str] = '<pad>' _UpperCamelCase : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Tuple = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<pad>') self.assertEqual(vocab_keys[1] , '<unk>') self.assertEqual(vocab_keys[-1] , '[PAD]') self.assertEqual(len(__snake_case) , 3_00_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00) def A__ ( self): # fmt: off _UpperCamelCase : Union[str, Any] = ' \tHeLLo!how \n Are yoU? ' _UpperCamelCase : Tuple = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on _UpperCamelCase : str = DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case) _UpperCamelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : int = DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case) _UpperCamelCase : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def A__ ( self): pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def A__ ( self): pass def A__ ( self): # fmt: off _UpperCamelCase : List[str] = 'I was born in 92000, and this is falsé.' _UpperCamelCase : str = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _UpperCamelCase : int = DebertaVaTokenizer(__snake_case , split_by_punct=__snake_case) _UpperCamelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Optional[int] = DebertaVaTokenizerFast(__snake_case , split_by_punct=__snake_case) _UpperCamelCase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): # fmt: off _UpperCamelCase : Optional[Any] = 'I was born in 92000, and this is falsé.' _UpperCamelCase : List[Any] = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _UpperCamelCase : Optional[Any] = DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Optional[Any] = DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): # fmt: off _UpperCamelCase : Tuple = 'I was born in 92000, and this is falsé.' _UpperCamelCase : List[Any] = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _UpperCamelCase : Any = DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Optional[Any] = DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): # fmt: off _UpperCamelCase : Tuple = 'I was born in 92000, and this is falsé.' _UpperCamelCase : int = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _UpperCamelCase : List[str] = DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : List[str] = DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): # fmt: off _UpperCamelCase : Optional[Any] = ' \tHeLLo!how \n Are yoU? ' _UpperCamelCase : Dict = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on _UpperCamelCase : List[Any] = DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Union[str, Any] = DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case) _UpperCamelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : Union[str, Any] = self.get_rust_tokenizer() _UpperCamelCase : int = 'I was born in 92000, and this is falsé.' _UpperCamelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) _UpperCamelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case)) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : List[str] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case) _UpperCamelCase : Optional[int] = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : int = self.get_rust_tokenizer() _UpperCamelCase : List[str] = tokenizer.encode(__snake_case) _UpperCamelCase : List[str] = rust_tokenizer.encode(__snake_case) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): _UpperCamelCase : Dict = 'This is a test' _UpperCamelCase : Tuple = [13, 1, 43_98, 25, 21, 12_89] _UpperCamelCase : Any = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] _UpperCamelCase : Any = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] _UpperCamelCase : Optional[Any] = DebertaVaTokenizer(__snake_case , keep_accents=__snake_case) _UpperCamelCase : Union[str, Any] = DebertaVaTokenizerFast(__snake_case , keep_accents=__snake_case) _UpperCamelCase : Union[str, Any] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : List[Any] = tokenizer.tokenize(__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : int = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Dict = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Dict = rust_tokenizer.tokenize(__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual(__snake_case , __snake_case) # fmt: off _UpperCamelCase : Optional[Any] = 'I was born in 92000, and this is falsé.' _UpperCamelCase : List[str] = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] _UpperCamelCase : List[str] = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] _UpperCamelCase : Any = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _UpperCamelCase : Any = tokenizer.encode(__snake_case , add_special_tokens=__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : str = tokenizer.tokenize(__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : Any = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : int = rust_tokenizer.tokenize(__snake_case) self.assertListEqual(__snake_case , __snake_case) _UpperCamelCase : int = rust_tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual(__snake_case , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = DebertaVaTokenizer(__snake_case) _UpperCamelCase : Tuple = tokenizer.encode('sequence builders') _UpperCamelCase : List[Any] = tokenizer.encode('multi-sequence build') _UpperCamelCase : str = tokenizer.build_inputs_with_special_tokens(__snake_case) _UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __snake_case) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __snake_case , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[Any] = {'input_ids': [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
648
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
1
"""simple docstring""" import os def _A ( ): """simple docstring""" lowerCamelCase__ = os.path.join(os.path.dirname(__lowercase ) , """num.txt""" ) with open(__lowercase ) as file_hand: return str(sum(int(__lowercase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
129
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=_SCREAMING_SNAKE_CASE ): snake_case = ["speech"] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(self , ["""speech"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_SCREAMING_SNAKE_CASE ): snake_case = ["speech"] def __init__( self : int , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(self , ["""speech"""] )
129
1
'''simple docstring''' from __future__ import annotations import math def A (__lowerCamelCase :float , __lowerCamelCase :int ): _lowerCAmelCase = u for i in range(1 , __lowerCamelCase ): _lowerCAmelCase = temp * (u - i) return temp def A (): _lowerCAmelCase = int(input("""enter the numbers of values: """ ) ) _lowerCAmelCase = [] for _ in range(__lowerCamelCase ): y.append([] ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): y[i].append(__lowerCamelCase ) _lowerCAmelCase = 0 print("""enter the values of parameters in a list: """ ) _lowerCAmelCase = list(map(__lowerCamelCase , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(__lowerCamelCase ): _lowerCAmelCase = float(input() ) _lowerCAmelCase = int(input("""enter the value to interpolate: """ ) ) _lowerCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __lowerCamelCase ): for j in range(n - i ): _lowerCAmelCase = y[j + 1][i - 1] - y[j][i - 1] _lowerCAmelCase = y[0][0] for i in range(1 , __lowerCamelCase ): summ += (ucal(__lowerCamelCase , __lowerCamelCase ) * y[0][i]) / math.factorial(__lowerCamelCase ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
704
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {"""vocab_file""": """vocab.txt"""} _lowercase = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } _lowercase = { """openbmb/cpm-ant-10b""": 1024, } def A (__lowerCamelCase :str ): _lowerCAmelCase = collections.OrderedDict() with open(__lowerCamelCase , """r""" , encoding="""utf-8""" ) as reader: _lowerCAmelCase = reader.readlines() for index, token in enumerate(__lowerCamelCase ): _lowerCAmelCase = token.rstrip("""\n""" ) _lowerCAmelCase = index return vocab class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase , _lowercase="<unk>" , _lowercase=200 ): """simple docstring""" _lowerCAmelCase = vocab _lowerCAmelCase = unk_token _lowerCAmelCase = max_input_chars_per_word def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = list(_lowercase ) if len(_lowercase ) > self.max_input_chars_per_word: return [self.unk_token] _lowerCAmelCase = 0 _lowerCAmelCase = [] while start < len(_lowercase ): _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = None while start < end: _lowerCAmelCase = """""".join(chars[start:end] ) if substr in self.vocab: _lowerCAmelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_lowercase ) _lowerCAmelCase = end return sub_tokens class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = VOCAB_FILES_NAMES _lowercase : int = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Dict = ['''input_ids''', '''attention_mask'''] _lowercase : Union[str, Any] = False def __init__( self , _lowercase , _lowercase="<d>" , _lowercase="</d>" , _lowercase="<s>" , _lowercase="</s>" , _lowercase="<pad>" , _lowercase="<unk>" , _lowercase="</n>" , _lowercase="</_>" , _lowercase="left" , **_lowercase , ): """simple docstring""" requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=_lowercase , eod_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , pad_token=_lowercase , unk_token=_lowercase , line_token=_lowercase , space_token=_lowercase , padding_side=_lowercase , **_lowercase , ) _lowerCAmelCase = bod_token _lowerCAmelCase = eod_token _lowerCAmelCase = load_vocab(_lowercase ) _lowerCAmelCase = self.encoder[space_token] _lowerCAmelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) _lowerCAmelCase = {v: k for k, v in self.encoder.items()} _lowerCAmelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _lowercase ( self ): """simple docstring""" return self.encoder[self.bod_token] @property def _lowercase ( self ): """simple docstring""" return self.encoder[self.eod_token] @property def _lowercase ( self ): """simple docstring""" return self.encoder["\n"] @property def _lowercase ( self ): """simple docstring""" return len(self.encoder ) def _lowercase ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = [] for x in jieba.cut(_lowercase , cut_all=_lowercase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_lowercase ) ) return output_tokens def _lowercase ( self , _lowercase , **_lowercase ): """simple docstring""" _lowerCAmelCase = [i for i in token_ids if i >= 0] _lowerCAmelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_lowercase , **_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" return token in self.encoder def _lowercase ( self , _lowercase ): """simple docstring""" return "".join(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def _lowercase ( self , _lowercase ): """simple docstring""" return self.decoder.get(_lowercase , self.unk_token ) def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" if os.path.isdir(_lowercase ): _lowerCAmelCase = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: _lowerCAmelCase = (filename_prefix + """-""" if filename_prefix else """""") + save_directory _lowerCAmelCase = 0 if " " in self.encoder: _lowerCAmelCase = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: _lowerCAmelCase = self.encoder["""\n"""] del self.encoder["\n"] _lowerCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) _lowerCAmelCase = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) return [1] + ([0] * len(_lowercase ))
162
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :Tuple ="""switch_transformers""" a_ :Optional[Any] =["""past_key_values"""] a_ :Dict ={"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=3_2_1_2_8 , SCREAMING_SNAKE_CASE__ : List[Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Tuple=6_4 , SCREAMING_SNAKE_CASE__ : List[str]=2_0_4_8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6_4 , SCREAMING_SNAKE_CASE__ : int=1_2 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Any=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0_1 , SCREAMING_SNAKE_CASE__ : str="float32" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=3_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2_8 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=1E-6 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0_0_1 , SCREAMING_SNAKE_CASE__ : str=0.0_0_1 , SCREAMING_SNAKE_CASE__ : int=1.0 , SCREAMING_SNAKE_CASE__ : str="relu" , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : int=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1 , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' __a = vocab_size __a = d_model __a = d_kv __a = d_ff __a = num_sparse_encoder_layers __a = num_layers __a = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __a = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __a = self.num_layers // self.num_sparse_encoder_layers else: __a = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __a = self.num_decoder_layers // self.num_sparse_decoder_layers else: __a = self.num_decoder_layers # HACK: this will create 0 sparse layers __a = num_heads __a = num_experts __a = expert_capacity __a = router_bias __a = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __a = router_dtype __a = router_ignore_padding_tokens __a = relative_attention_num_buckets __a = relative_attention_max_distance __a = dropout_rate __a = layer_norm_epsilon __a = initializer_factor __a = feed_forward_proj __a = use_cache __a = add_router_probs __a = router_z_loss_coef __a = router_aux_loss_coef __a = self.feed_forward_proj.split("""-""" ) __a = act_info[-1] __a = act_info[0] == """gated""" if len(SCREAMING_SNAKE_CASE__ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE__ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __a = """gelu_new""" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
582
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" def get_matched_characters(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__SCREAMING_SNAKE_CASE ) __a = F'''{_stra[0:_stra.index(__SCREAMING_SNAKE_CASE )]} {_stra[_stra.index(__SCREAMING_SNAKE_CASE ) + 1:]}''' return "".join(__SCREAMING_SNAKE_CASE ) # matching characters __a = get_matched_characters(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = get_matched_characters(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = len(__SCREAMING_SNAKE_CASE ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(__SCREAMING_SNAKE_CASE ) + match_count / len(__SCREAMING_SNAKE_CASE ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
582
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge lowercase_ = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] lowercase_ = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Any = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bootstrap_aggregation=__SCREAMING_SNAKE_CASE , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bootstrap_aggregation=__SCREAMING_SNAKE_CASE , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = """rougeLsum""" __snake_case : Dict = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=[k] )[k] __snake_case : Optional[int] = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=[k] )[k] assert score > score_no_sep def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : List[str] = ["""rouge1""", """rouge2""", """rougeL"""] __snake_case : List[Any] = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=__SCREAMING_SNAKE_CASE ) __snake_case : Dict = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE , rouge_keys=__SCREAMING_SNAKE_CASE ) assert score_sep == score_no_sep def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Optional[int] = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] __snake_case : Any = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE ) == calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , newline_sep=__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] __snake_case : List[Any] = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] __snake_case : int = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rouge_keys=["""rougeLsum"""] , newline_sep=__SCREAMING_SNAKE_CASE )["""rougeLsum"""] __snake_case : Any = calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Tuple = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) __snake_case : int = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=__SCREAMING_SNAKE_CASE ) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
390
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Any = "upernet" def __init__( self : Dict , _lowerCAmelCase : str=None , _lowerCAmelCase : Dict=5_12 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : List[str]=[1, 2, 3, 6] , _lowerCAmelCase : Dict=True , _lowerCAmelCase : List[str]=0.4 , _lowerCAmelCase : Any=3_84 , _lowerCAmelCase : str=2_56 , _lowerCAmelCase : int=1 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[int]=2_55 , **_lowerCAmelCase : int , ): super().__init__(**_lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __snake_case : Dict = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : List[Any] = backbone_config.get("""model_type""" ) __snake_case : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] __snake_case : Union[str, Any] = config_class.from_dict(_lowerCAmelCase ) __snake_case : Dict = backbone_config __snake_case : Optional[Any] = hidden_size __snake_case : List[Any] = initializer_range __snake_case : Union[str, Any] = pool_scales __snake_case : Tuple = use_auxiliary_head __snake_case : List[Any] = auxiliary_loss_weight __snake_case : Union[str, Any] = auxiliary_in_channels __snake_case : str = auxiliary_channels __snake_case : Optional[int] = auxiliary_num_convs __snake_case : Optional[int] = auxiliary_concat_input __snake_case : Tuple = loss_ignore_index def snake_case__ ( self : Any ): __snake_case : int = copy.deepcopy(self.__dict__ ) __snake_case : Optional[int] = self.backbone_config.to_dict() __snake_case : int = self.__class__.model_type return output
390
1
_lowerCAmelCase : str = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Any , _snake_case : str ): """simple docstring""" __a =[False] * len(_snake_case ) __a =[s] __a =True while queue: __a =queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_snake_case ) __a =True __a =u return visited[t] def UpperCamelCase_( _snake_case : Dict , _snake_case : Tuple , _snake_case : str ): """simple docstring""" __a =[-1] * (len(_snake_case )) __a =0 __a =[] __a =[i[:] for i in graph] # Record original cut, copy. while bfs(_snake_case , _snake_case , _snake_case , _snake_case ): __a =float('Inf' ) __a =sink while s != source: # Find the minimum value in select path __a =min(_snake_case , graph[parent[s]][s] ) __a =parent[s] max_flow += path_flow __a =sink while v != source: __a =parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __a =parent[v] for i in range(len(_snake_case ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
242
def UpperCamelCase_( ): """simple docstring""" for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def UpperCamelCase_( _snake_case : Optional[int] ): """simple docstring""" __a =1 __a =2 while i * i <= n: __a =0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCamelCase_( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(_snake_case ) > 500 ) if __name__ == "__main__": print(solution())
242
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCamelCase__ ( a ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: __lowerCAmelCase : Union[str, Any] = dataset __lowerCAmelCase : Optional[Any] = process __lowerCAmelCase : Dict = params def __len__( self ) -> str: return len(self.dataset ) def __getitem__( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: __lowerCAmelCase : Union[str, Any] = self.dataset[i] __lowerCAmelCase : Optional[int] = self.process(SCREAMING_SNAKE_CASE , **self.params ) return processed class UpperCamelCase__ ( a ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> int: __lowerCAmelCase : int = loader __lowerCAmelCase : str = infer __lowerCAmelCase : Dict = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : List[str] = loader_batch_size # Internal bookkeeping __lowerCAmelCase : List[str] = None __lowerCAmelCase : str = None def __len__( self ) -> str: return len(self.loader ) def __iter__( self ) -> Any: __lowerCAmelCase : Optional[int] = iter(self.loader ) return self def snake_case ( self ) -> Any: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __lowerCAmelCase : Tuple = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __lowerCAmelCase : int = {} for k, element in self._loader_batch_data.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # Convert ModelOutput to tuple first __lowerCAmelCase : Optional[int] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __lowerCAmelCase : List[Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __lowerCAmelCase : Optional[int] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __lowerCAmelCase : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __lowerCAmelCase : List[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __lowerCAmelCase : List[Any] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __lowerCAmelCase : List[Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __lowerCAmelCase : List[Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __lowerCAmelCase : str = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __lowerCAmelCase : Union[str, Any] = self._loader_batch_data.__class__(SCREAMING_SNAKE_CASE ) self._loader_batch_index += 1 return result def snake_case ( self ) -> List[str]: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __lowerCAmelCase : str = next(self.iterator ) __lowerCAmelCase : Any = self.infer(SCREAMING_SNAKE_CASE , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): __lowerCAmelCase : Dict = processed else: __lowerCAmelCase : List[str] = list(processed.keys() )[0] __lowerCAmelCase : int = processed[key] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : str = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __lowerCAmelCase : Any = observed_batch_size # Setting internal index to unwrap the batch __lowerCAmelCase : Union[str, Any] = processed __lowerCAmelCase : str = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCamelCase__ ( a ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> int: super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __iter__( self ) -> Dict: __lowerCAmelCase : Optional[Any] = iter(self.loader ) __lowerCAmelCase : Tuple = None return self def snake_case ( self ) -> Optional[int]: if self.subiterator is None: __lowerCAmelCase : List[Any] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __lowerCAmelCase : List[Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __lowerCAmelCase : str = self.infer(next(self.iterator ) , **self.params ) __lowerCAmelCase : Dict = next(self.subiterator ) return processed class UpperCamelCase__ ( a ): '''simple docstring''' def __iter__( self ) -> Dict: __lowerCAmelCase : List[Any] = iter(self.loader ) return self def snake_case ( self ) -> List[Any]: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : Union[str, Any] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __lowerCAmelCase : List[Any] = self.loader_batch_item() __lowerCAmelCase : int = item.pop('is_last' ) accumulator.append(SCREAMING_SNAKE_CASE ) if is_last: return accumulator while not is_last: __lowerCAmelCase : Optional[int] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): __lowerCAmelCase : Tuple = processed else: __lowerCAmelCase : Tuple = list(processed.keys() )[0] __lowerCAmelCase : List[str] = processed[key] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = len(SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __lowerCAmelCase : Dict = observed_batch_size __lowerCAmelCase : List[str] = processed __lowerCAmelCase : Union[str, Any] = 0 while self._loader_batch_index < self.loader_batch_size: __lowerCAmelCase : Optional[Any] = self.loader_batch_item() __lowerCAmelCase : str = item.pop('is_last' ) accumulator.append(SCREAMING_SNAKE_CASE ) if is_last: return accumulator else: __lowerCAmelCase : int = processed __lowerCAmelCase : Tuple = item.pop('is_last' ) accumulator.append(SCREAMING_SNAKE_CASE ) return accumulator class UpperCamelCase__ ( a ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: __lowerCAmelCase : Dict = dataset __lowerCAmelCase : Tuple = key def __len__( self ) -> Optional[Any]: return len(self.dataset ) def __getitem__( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: return self.dataset[i][self.key] class UpperCamelCase__ ( a ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: __lowerCAmelCase : List[Any] = dataset __lowerCAmelCase : List[str] = keya __lowerCAmelCase : Optional[Any] = keya def __len__( self ) -> str: return len(self.dataset ) def __getitem__( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
708
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ = logging.get_logger(__name__) A_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) A_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) A_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) A_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) A_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) A_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) A_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) A_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) A_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) A_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) A_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) A_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) A_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) A_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING A_ = auto_class_update(FlaxAutoModel) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class UpperCamelCase__ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
123
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _a ( UpperCAmelCase__ ): """simple docstring""" @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCamelCase_ = bertabert.config.encoder.vocab_size UpperCamelCase_ = tokenizer.sep_token_id UpperCamelCase_ = tokenizer.cls_token_id UpperCamelCase_ = 128 UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCamelCase_ = train_dataset.select(range(32 ) ) UpperCamelCase_ = val_dataset.select(range(16 ) ) UpperCamelCase_ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 ) UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 ) UpperCamelCase_ = inputs.input_ids UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = outputs.input_ids UpperCamelCase_ = outputs.input_ids.copy() UpperCamelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCamelCase_ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): UpperCamelCase_ = pred.label_ids UpperCamelCase_ = pred.predictions # all unnecessary tokens are removed UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCamelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCamelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase_ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
23
"""simple docstring""" from __future__ import annotations import math class lowerCamelCase__ : def __init__( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : str = size # approximate the overall size of segment tree with given value snake_case : Union[str, Any] = [0 for i in range(0 , 4 * size )] # create array to store lazy update snake_case : Optional[Any] = [0 for i in range(0 , 4 * size )] snake_case : int = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" return idx * 2 def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" return idx * 2 + 1 def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if left_element == right_element: snake_case : int = a[left_element - 1] else: snake_case : Union[str, Any] = (left_element + right_element) // 2 self.build(self.left(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.build(self.right(SCREAMING_SNAKE_CASE ) , mid + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = max( self.segment_tree[self.left(SCREAMING_SNAKE_CASE )] , self.segment_tree[self.right(SCREAMING_SNAKE_CASE )] ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if self.flag[idx] is True: snake_case : Tuple = self.lazy[idx] snake_case : Optional[int] = False if left_element != right_element: snake_case : str = self.lazy[idx] snake_case : Optional[int] = self.lazy[idx] snake_case : List[Any] = True snake_case : int = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: snake_case : List[str] = val if left_element != right_element: snake_case : Optional[int] = val snake_case : str = val snake_case : Dict = True snake_case : List[str] = True return True snake_case : Union[str, Any] = (left_element + right_element) // 2 self.update(self.left(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.update(self.right(SCREAMING_SNAKE_CASE ) , mid + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case : Union[str, Any] = max( self.segment_tree[self.left(SCREAMING_SNAKE_CASE )] , self.segment_tree[self.right(SCREAMING_SNAKE_CASE )] ) return True def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if self.flag[idx] is True: snake_case : Union[str, Any] = self.lazy[idx] snake_case : int = False if left_element != right_element: snake_case : List[Any] = self.lazy[idx] snake_case : Union[str, Any] = self.lazy[idx] snake_case : Tuple = True snake_case : List[Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] snake_case : List[str] = (left_element + right_element) // 2 snake_case : Dict = self.query(self.left(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case : Any = self.query(self.right(SCREAMING_SNAKE_CASE ) , mid + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __str__( self ): """simple docstring""" return str([self.query(1 , 1 , self.size , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": __A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] __A = 15 __A = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
134
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __SCREAMING_SNAKE_CASE : Optional[Any] = re.compile('[^A-Za-z_0-9]') # parameters used in DuplicationIndex __SCREAMING_SNAKE_CASE : Dict = 10 __SCREAMING_SNAKE_CASE : List[str] = 256 def _snake_case ( lowercase ) -> Optional[MinHash]: if len(lowercase ) < MIN_NUM_TOKENS: return None __a : str = MinHash(num_perm=lowercase ) for token in set(lowercase ): min_hash.update(token.encode() ) return min_hash def _snake_case ( lowercase ) -> Set[str]: return {t for t in NON_ALPHA.split(lowercase ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE__ : def __init__( self , *, __UpperCamelCase = 0.8_5 , ): '''simple docstring''' __a : List[str] = duplication_jaccard_threshold __a : List[Any] = NUM_PERM __a : str = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __a : str = defaultdict(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : str = self._index.query(__UpperCamelCase ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = [] for base, duplicates in self._duplicate_clusters.items(): __a : str = [base] + list(__UpperCamelCase ) # reformat the cluster to be a list of dict __a : str = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__UpperCamelCase ) return duplicate_clusters def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : str = self.get_duplicate_clusters() with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def _snake_case ( lowercase ) -> int: __a , __a : int = element __a : List[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _snake_case ( lowercase ) -> Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowercase , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def _snake_case ( lowercase , lowercase ) -> Any: __a : Dict = DuplicationIndex(duplication_jaccard_threshold=lowercase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowercase ) ) , max_queue_size=1_0_0 ) ): di.add(lowercase , lowercase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _snake_case ( lowercase , lowercase ) -> float: __a : Any = get_tokens(lowercase ) __a : str = get_tokens(lowercase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None def _snake_case ( lowercase , lowercase ) -> Union[str, Any]: __a : int = [] for elementa in cluster: __a : Optional[int] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __a : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowercase , lowercase ) >= jaccard_threshold: elementa["copies"] += 1 break else: __a : int = 1 extremes.append(lowercase ) return extremes def _snake_case ( lowercase , lowercase , lowercase ) -> str: global _shared_dataset __a : Union[str, Any] = dataset __a : Union[str, Any] = [] __a : List[str] = partial(_find_cluster_extremes_shared , jaccard_threshold=lowercase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowercase , lowercase , ) , total=len(lowercase ) , ): extremes_list.append(lowercase ) return extremes_list def _snake_case ( lowercase , lowercase = 0.8_5 ) -> Tuple[Type[Dataset], List[List[Dict]]]: __a : List[Any] = make_duplicate_clusters(lowercase , lowercase ) __a : Optional[int] = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __a : Tuple = {} __a : int = find_extremes(lowercase , lowercase , lowercase ) for extremes in extremes_clusters: for element in extremes: __a : List[Any] = element __a : List[str] = duplicate_indices - set(extreme_dict.keys() ) __a : List[Any] = dataset.filter(lambda lowercase , lowercase : idx not in remove_indices , with_indices=lowercase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __a : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __a : Optional[int] = extreme_dict[element["""base_index"""]]["""copies"""] print(F"""Original dataset size: {len(lowercase )}""" ) print(F"""Number of duplicate clusters: {len(lowercase )}""" ) print(F"""Files in duplicate cluster: {len(lowercase )}""" ) print(F"""Unique files in duplicate cluster: {len(lowercase )}""" ) print(F"""Filtered dataset size: {len(lowercase )}""" ) return ds_filter, duplicate_clusters
697
'''simple docstring''' import numpy as np from PIL import Image def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : Any = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : Union[str, Any] = 0 __a : Dict = 0 __a : Optional[Any] = 0 __a : Tuple = 0 # compute the shape of the output matrix __a : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __a : int = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __a : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : Optional[Any] = 0 __a : str = 0 return updated_arr def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : int = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : int = 0 __a : Optional[Any] = 0 __a : str = 0 __a : List[Any] = 0 # compute the shape of the output matrix __a : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __a : Optional[int] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __a : Any = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : str = 0 __a : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image __SCREAMING_SNAKE_CASE : str = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
697
1
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def __a ( lowerCAmelCase__ : Callable[[int | float], int | float] , lowerCAmelCase__ : int | float , lowerCAmelCase__ : int | float , lowerCAmelCase__ : int = 100 , ): a__ : Tuple = x_start a__ : str = fnc(lowerCAmelCase__ ) a__ : Tuple = 0.0 for _ in range(lowerCAmelCase__ ): # Approximates curve as a sequence of linear lines and sums their length a__ : str = (x_end - x_start) / steps + xa a__ : Tuple = fnc(lowerCAmelCase__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step a__ : Union[str, Any] = xa a__ : List[str] = fxa return length if __name__ == "__main__": def __a ( lowerCAmelCase__ : List[str] ): return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') __SCREAMING_SNAKE_CASE = 1_0 while i <= 1_0_0_0_0_0: print(f'With {i} steps: {line_length(f, -1_0, 1_0, i)}') i *= 1_0
688
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } __SCREAMING_SNAKE_CASE = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def __a ( lowerCAmelCase__ : Union[str, Any] ): with open(lowerCAmelCase__ , '''r''' ) as f: a__ : Optional[int] = f.read().splitlines() return [l.strip() for l in lines] class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : List[str] , A__ : int , A__ : Union[str, Any]="<unk>" , A__ : Tuple="<cls>" , A__ : List[Any]="<pad>" , A__ : Optional[int]="<mask>" , A__ : List[Any]="<eos>" , **A__ : Optional[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(**A__ ) a__ : Union[str, Any] = load_vocab_file(A__ ) a__ : int = dict(enumerate(self.all_tokens ) ) a__ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} a__ : List[Any] = unk_token a__ : Any = cls_token a__ : Any = pad_token a__ : Any = mask_token a__ : Any = eos_token a__ : int = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __lowerCAmelCase ( self : Any , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , **A__ : str ) -> List[Any]: '''simple docstring''' return text.split() def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int]=False ) -> Tuple: '''simple docstring''' return len(self._id_to_token ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def __lowerCAmelCase ( self : Any , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Tuple = [self.cls_token_id] a__ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __lowerCAmelCase ( self : Tuple , A__ : List , A__ : Optional[List] = None , A__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] a__ : Any = [1] + ([0] * len(A__ )) + [1] if token_ids_a is not None: mask += [0] * len(A__ ) + [1] return mask def __lowerCAmelCase ( self : Any , A__ : Dict , A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = os.path.join(A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Union[List[str], List[AddedToken]] , A__ : bool = False ) -> int: '''simple docstring''' return super()._add_tokens(A__ , special_tokens=A__ )
688
1
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase_ : List[Any] = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } lowerCAmelCase_ : Any = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def __A ( lowerCAmelCase_ , lowerCAmelCase_=False ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = create_model( """HTSAT-tiny""" , """roberta""" , lowerCAmelCase_ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=lowerCAmelCase_ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Any = {} _UpperCAmelCase : List[str] = r""".*sequential.(\d+).*""" _UpperCAmelCase : int = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _UpperCAmelCase : Optional[int] = key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): # replace sequential layers with list _UpperCAmelCase : int = re.match(lowerCAmelCase_ , lowerCAmelCase_ ).group(1 ) _UpperCAmelCase : Any = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(lowerCAmelCase_ )//3}.linear." ) elif re.match(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Tuple = int(re.match(lowerCAmelCase_ , lowerCAmelCase_ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _UpperCAmelCase : str = 1 if projecton_layer == 0 else 2 _UpperCAmelCase : Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value _UpperCAmelCase : Dict = value _UpperCAmelCase : Optional[Any] = mixed_qkv.size(0 ) // 3 _UpperCAmelCase : Dict = mixed_qkv[:qkv_dim] _UpperCAmelCase : Union[str, Any] = mixed_qkv[qkv_dim : qkv_dim * 2] _UpperCAmelCase : Any = mixed_qkv[qkv_dim * 2 :] _UpperCAmelCase : Dict = query_layer _UpperCAmelCase : Optional[Any] = key_layer _UpperCAmelCase : Tuple = value_layer else: _UpperCAmelCase : str = value return model_state_dict def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = init_clap(lowerCAmelCase_ , enable_fusion=lowerCAmelCase_ ) clap_model.eval() _UpperCAmelCase : Union[str, Any] = clap_model.state_dict() _UpperCAmelCase : Optional[Any] = rename_state_dict(lowerCAmelCase_ ) _UpperCAmelCase : Any = ClapConfig() _UpperCAmelCase : Dict = enable_fusion _UpperCAmelCase : List[Any] = ClapModel(lowerCAmelCase_ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) transformers_config.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') lowerCAmelCase_ : Dict = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
156
'''simple docstring''' from collections import defaultdict def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : List[Any] = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase_ ) if ret % 2 == 0: cuts.append(lowerCAmelCase_ ) return ret def __A ( ): dfs(1 ) if __name__ == "__main__": lowerCAmelCase_ , lowerCAmelCase_ : List[str] = 10, 9 lowerCAmelCase_ : Union[str, Any] = defaultdict(list) lowerCAmelCase_ : dict[int, bool] = {} lowerCAmelCase_ : list[int] = [] lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Dict = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
156
1
"""simple docstring""" from math import factorial, pi def _snake_case ( _snake_case : float , _snake_case : int = 30 ) -> float: '''simple docstring''' if not isinstance(_snake_case , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(_snake_case , _snake_case ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) _A = float(_snake_case ) _A = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_snake_case ) ) def _snake_case ( _snake_case : float , _snake_case : int = 30 ) -> float: '''simple docstring''' if not isinstance(_snake_case , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(_snake_case , _snake_case ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) _A = float(_snake_case ) _A = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
7
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ : Optional[int] = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class A__ ( __snake_case , unittest.TestCase ): '''simple docstring''' snake_case__ = DebertaVaTokenizer snake_case__ = DebertaVaTokenizerFast snake_case__ = True snake_case__ = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = DebertaVaTokenizer(_SCREAMING_SNAKE_CASE , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" UpperCamelCase = 'this is a test' UpperCamelCase = 'this is a test' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = '<pad>' UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 3_0001 ) def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" UpperCamelCase = ' \tHeLLo!how \n Are yoU? ' UpperCamelCase = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on UpperCamelCase = DebertaVaTokenizer(_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = DebertaVaTokenizerFast(_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" UpperCamelCase = 'I was born in 92000, and this is falsé.' UpperCamelCase = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on UpperCamelCase = DebertaVaTokenizer(_SCREAMING_SNAKE_CASE , split_by_punct=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = DebertaVaTokenizerFast(_SCREAMING_SNAKE_CASE , split_by_punct=_SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" UpperCamelCase = 'I was born in 92000, and this is falsé.' UpperCamelCase = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on UpperCamelCase = DebertaVaTokenizer(_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , split_by_punct=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = DebertaVaTokenizerFast(_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , split_by_punct=_SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" UpperCamelCase = 'I was born in 92000, and this is falsé.' UpperCamelCase = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on UpperCamelCase = DebertaVaTokenizer(_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , split_by_punct=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = DebertaVaTokenizerFast(_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , split_by_punct=_SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" UpperCamelCase = 'I was born in 92000, and this is falsé.' UpperCamelCase = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on UpperCamelCase = DebertaVaTokenizer(_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , split_by_punct=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = DebertaVaTokenizerFast(_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , split_by_punct=_SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" UpperCamelCase = ' \tHeLLo!how \n Are yoU? ' UpperCamelCase = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on UpperCamelCase = DebertaVaTokenizer(_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , split_by_punct=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = DebertaVaTokenizerFast(_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , split_by_punct=_SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = 'I was born in 92000, and this is falsé.' UpperCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" UpperCamelCase = 'This is a test' UpperCamelCase = [13, 1, 4398, 25, 21, 1289] UpperCamelCase = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] UpperCamelCase = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] UpperCamelCase = DebertaVaTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) UpperCamelCase = DebertaVaTokenizerFast(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # fmt: off UpperCamelCase = 'I was born in 92000, and this is falsé.' UpperCamelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] UpperCamelCase = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] UpperCamelCase = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = rust_tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = DebertaVaTokenizer(_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.encode('sequence builders' ) UpperCamelCase = tokenizer.encode('multi-sequence build' ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _SCREAMING_SNAKE_CASE ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _SCREAMING_SNAKE_CASE , ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" UpperCamelCase = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
280
0
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } __A : Dict = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } __A : Tuple = { 'ctrl': 256, } __A : Any = { 'Pregnancy': 168_629, 'Christianity': 7_675, 'Explain': 106_423, 'Fitness': 63_440, 'Saving': 63_163, 'Ask': 27_171, 'Ass': 95_985, 'Joke': 163_509, 'Questions': 45_622, 'Thoughts': 49_605, 'Retail': 52_342, 'Feminism': 164_338, 'Writing': 11_992, 'Atheism': 192_263, 'Netflix': 48_616, 'Computing': 39_639, 'Opinion': 43_213, 'Alone': 44_967, 'Funny': 58_917, 'Gaming': 40_358, 'Human': 4_088, 'India': 1_331, 'Joker': 77_138, 'Diet': 36_206, 'Legal': 11_859, 'Norman': 4_939, 'Tip': 72_689, 'Weight': 52_343, 'Movies': 46_273, 'Running': 23_425, 'Science': 2_090, 'Horror': 37_793, 'Confession': 60_572, 'Finance': 12_250, 'Politics': 16_360, 'Scary': 191_985, 'Support': 12_654, 'Technologies': 32_516, 'Teenage': 66_160, 'Event': 32_769, 'Learned': 67_460, 'Notion': 182_770, 'Wikipedia': 37_583, 'Books': 6_665, 'Extract': 76_050, 'Confessions': 102_701, 'Conspiracy': 75_932, 'Links': 63_674, 'Narcissus': 150_425, 'Relationship': 54_766, 'Relationships': 134_796, 'Reviews': 41_671, 'News': 4_256, 'Translation': 26_820, 'multilingual': 128_406, } def UpperCAmelCase ( lowerCamelCase_ :Dict ): '''simple docstring''' snake_case_ : int = set() snake_case_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ : Union[str, Any] = char snake_case_ : List[Any] = set(A_ ) return pairs class __UpperCamelCase ( _A ): lowercase : List[Any] = VOCAB_FILES_NAMES lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[int] = CONTROL_CODES def __init__( self :int ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Any="<unk>" ,**_UpperCamelCase :Dict ): super().__init__(unk_token=UpperCamelCase__ ,**UpperCamelCase__ ) with open(UpperCamelCase__ ,encoding="""utf-8""" ) as vocab_handle: snake_case_ : Optional[Any] = json.load(UpperCamelCase__ ) snake_case_ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(UpperCamelCase__ ,encoding="""utf-8""" ) as merges_handle: snake_case_ : Any = merges_handle.read().split("""\n""" )[1:-1] snake_case_ : Optional[Any] = [tuple(merge.split() ) for merge in merges] snake_case_ : Optional[int] = dict(zip(UpperCamelCase__ ,range(len(UpperCamelCase__ ) ) ) ) snake_case_ : Tuple = {} @property def a__ ( self :Optional[int] ): return len(self.encoder ) def a__ ( self :Tuple ): return dict(self.encoder ,**self.added_tokens_encoder ) def a__ ( self :str ,_UpperCamelCase :List[Any] ): if token in self.cache: return self.cache[token] snake_case_ : Dict = tuple(UpperCamelCase__ ) snake_case_ : List[Any] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) snake_case_ : List[Any] = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: snake_case_ : Any = min(UpperCamelCase__ ,key=lambda _UpperCamelCase : self.bpe_ranks.get(UpperCamelCase__ ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ : Dict = bigram snake_case_ : Optional[Any] = [] snake_case_ : int = 0 while i < len(UpperCamelCase__ ): try: snake_case_ : Any = word.index(UpperCamelCase__ ,UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ : List[str] = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ : Optional[int] = tuple(UpperCamelCase__ ) snake_case_ : Optional[Any] = new_word if len(UpperCamelCase__ ) == 1: break else: snake_case_ : Union[str, Any] = get_pairs(UpperCamelCase__ ) snake_case_ : str = """@@ """.join(UpperCamelCase__ ) snake_case_ : Union[str, Any] = word[:-4] snake_case_ : Any = word return word def a__ ( self :Union[str, Any] ,_UpperCamelCase :Tuple ): snake_case_ : List[str] = [] snake_case_ : Optional[Any] = re.findall(R"""\S+\n?""" ,UpperCamelCase__ ) for token in words: split_tokens.extend(list(self.bpe(UpperCamelCase__ ).split(""" """ ) ) ) return split_tokens def a__ ( self :int ,_UpperCamelCase :str ): return self.encoder.get(UpperCamelCase__ ,self.encoder.get(self.unk_token ) ) def a__ ( self :Optional[int] ,_UpperCamelCase :List[Any] ): return self.decoder.get(UpperCamelCase__ ,self.unk_token ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Tuple ): snake_case_ : Optional[Any] = """ """.join(UpperCamelCase__ ).replace("""@@ """ ,"""""" ).strip() return out_string def a__ ( self :Optional[int] ,_UpperCamelCase :str ,_UpperCamelCase :Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : Tuple = os.path.join( UpperCamelCase__ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : Optional[int] = os.path.join( UpperCamelCase__ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(UpperCamelCase__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=UpperCamelCase__ ,ensure_ascii=UpperCamelCase__ ) + """\n""" ) snake_case_ : str = 0 with open(UpperCamelCase__ ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) snake_case_ : Optional[Any] = token_index writer.write(""" """.join(UpperCamelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
710
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A : str = logging.get_logger(__name__) __A : Dict = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class __UpperCamelCase ( lowercase__ ): lowercase : Tuple = 'pix2struct_text_model' lowercase : int = ['past_key_values'] lowercase : int = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self :int ,_UpperCamelCase :List[str]=5_0_2_4_4 ,_UpperCamelCase :Optional[Any]=7_6_8 ,_UpperCamelCase :Dict=6_4 ,_UpperCamelCase :Dict=2_0_4_8 ,_UpperCamelCase :Optional[int]=1_2 ,_UpperCamelCase :Union[str, Any]=1_2 ,_UpperCamelCase :List[str]=3_2 ,_UpperCamelCase :Union[str, Any]=1_2_8 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :List[str]=1E-6 ,_UpperCamelCase :List[Any]=1.0 ,_UpperCamelCase :Optional[int]="gelu_new" ,_UpperCamelCase :Dict=0 ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Optional[int]=0 ,_UpperCamelCase :Dict=1 ,_UpperCamelCase :List[Any]=False ,_UpperCamelCase :Tuple=True ,**_UpperCamelCase :List[Any] ,): snake_case_ : List[str] = vocab_size snake_case_ : Any = hidden_size snake_case_ : Any = d_kv snake_case_ : List[Any] = d_ff snake_case_ : Union[str, Any] = num_layers snake_case_ : Union[str, Any] = num_heads snake_case_ : str = relative_attention_num_buckets snake_case_ : Optional[int] = relative_attention_max_distance snake_case_ : Tuple = dropout_rate snake_case_ : Tuple = layer_norm_epsilon snake_case_ : Any = initializer_factor snake_case_ : List[Any] = use_cache snake_case_ : Optional[int] = eos_token_id snake_case_ : List[Any] = decoder_start_token_id # for backwards compatibility snake_case_ : List[str] = dense_act_fn super().__init__( pad_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,decoder_start_token_id=_UpperCamelCase ,tie_word_embeddings=_UpperCamelCase ,is_decoder=_UpperCamelCase ,**_UpperCamelCase ,) @classmethod def a__ ( cls :Optional[int] ,_UpperCamelCase :Union[str, os.PathLike] ,**_UpperCamelCase :Optional[int] ): cls._set_token_in_kwargs(_UpperCamelCase ) snake_case_ , snake_case_ : Optional[Any] = cls.get_config_dict(_UpperCamelCase ,**_UpperCamelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": snake_case_ : Optional[int] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCamelCase ,**_UpperCamelCase ) class __UpperCamelCase ( lowercase__ ): lowercase : Dict = 'pix2struct_vision_model' def __init__( self :List[str] ,_UpperCamelCase :Any=7_6_8 ,_UpperCamelCase :List[str]=7_6_8 ,_UpperCamelCase :List[Any]=2_0_4_8 ,_UpperCamelCase :Union[str, Any]=6_4 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :Any="gelu_new" ,_UpperCamelCase :Optional[int]=1E-6 ,_UpperCamelCase :List[Any]=0.0 ,_UpperCamelCase :Union[str, Any]=0.0 ,_UpperCamelCase :int=1E-1_0 ,_UpperCamelCase :str=1.0 ,_UpperCamelCase :Optional[int]=4_0_9_6 ,_UpperCamelCase :str=3_2 ,_UpperCamelCase :Union[str, Any]=1_2_8 ,**_UpperCamelCase :Union[str, Any] ,): super().__init__(**_UpperCamelCase ) snake_case_ : str = hidden_size snake_case_ : Tuple = patch_embed_hidden_size snake_case_ : Optional[int] = d_ff snake_case_ : Dict = dropout_rate snake_case_ : Optional[int] = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : Union[str, Any] = initializer_range snake_case_ : Optional[Any] = initializer_factor snake_case_ : List[str] = attention_dropout snake_case_ : List[str] = layer_norm_eps snake_case_ : List[str] = dense_act_fn snake_case_ : int = seq_len snake_case_ : str = relative_attention_num_buckets snake_case_ : Tuple = relative_attention_max_distance snake_case_ : List[str] = d_kv @classmethod def a__ ( cls :Optional[Any] ,_UpperCamelCase :Union[str, os.PathLike] ,**_UpperCamelCase :List[str] ): cls._set_token_in_kwargs(_UpperCamelCase ) snake_case_ , snake_case_ : Tuple = cls.get_config_dict(_UpperCamelCase ,**_UpperCamelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": snake_case_ : Dict = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCamelCase ,**_UpperCamelCase ) class __UpperCamelCase ( lowercase__ ): lowercase : Union[str, Any] = 'pix2struct' lowercase : int = True def __init__( self :int ,_UpperCamelCase :Tuple=None ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Dict=1.0 ,_UpperCamelCase :Optional[int]=0.02 ,_UpperCamelCase :Tuple=False ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Dict=True ,**_UpperCamelCase :Union[str, Any] ,): super().__init__(tie_word_embeddings=_UpperCamelCase ,is_encoder_decoder=_UpperCamelCase ,**_UpperCamelCase ) if text_config is None: snake_case_ : Optional[int] = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: snake_case_ : List[str] = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) snake_case_ : Optional[int] = PixaStructTextConfig(**_UpperCamelCase ) snake_case_ : List[str] = PixaStructVisionConfig(**_UpperCamelCase ) snake_case_ : Any = self.text_config.decoder_start_token_id snake_case_ : List[Any] = self.text_config.pad_token_id snake_case_ : Optional[int] = self.text_config.eos_token_id snake_case_ : Optional[int] = initializer_factor snake_case_ : List[str] = initializer_range snake_case_ : Union[str, Any] = self.initializer_range snake_case_ : str = self.initializer_range snake_case_ : Dict = is_vqa @classmethod def a__ ( cls :Any ,_UpperCamelCase :PixaStructTextConfig ,_UpperCamelCase :PixaStructVisionConfig ,**_UpperCamelCase :Any ): return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**_UpperCamelCase ) def a__ ( self :Optional[int] ): snake_case_ : int = copy.deepcopy(self.__dict__ ) snake_case_ : str = self.text_config.to_dict() snake_case_ : Tuple = self.vision_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
267
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=32 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=[10, 20, 30, 40] ,__UpperCamelCase=[2, 2, 3, 2] ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=10 ,__UpperCamelCase=0.02 ,__UpperCamelCase=["stage2", "stage3", "stage4"] ,__UpperCamelCase=3 ,__UpperCamelCase=None ,) -> Tuple: '''simple docstring''' lowercase_ : List[str] = parent lowercase_ : List[str] = batch_size lowercase_ : Optional[Any] = image_size lowercase_ : Any = num_channels lowercase_ : Optional[int] = num_stages lowercase_ : Dict = hidden_sizes lowercase_ : int = depths lowercase_ : Optional[Any] = is_training lowercase_ : Tuple = use_labels lowercase_ : int = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Any = type_sequence_label_size lowercase_ : Any = initializer_range lowercase_ : List[Any] = out_features lowercase_ : List[str] = num_labels lowercase_ : Optional[int] = scope lowercase_ : Optional[int] = num_stages def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[Any] = None if self.use_labels: lowercase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels ,num_stages=self.num_stages ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,is_training=self.is_training ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,out_features=self.out_features ,) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() ,hidden_size=512 ,pool_scales=[1, 2, 3, 6] ,use_auxiliary_head=__UpperCamelCase ,auxiliary_loss_weight=0.4 ,auxiliary_in_channels=40 ,auxiliary_channels=256 ,auxiliary_num_convs=1 ,auxiliary_concat_input=__UpperCamelCase ,loss_ignore_index=255 ,num_labels=self.num_labels ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Tuple = UperNetForSemanticSegmentation(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : List[str] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Union[str, Any] = config_and_inputs lowercase_ : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Union[str, Any] = UperNetModelTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,has_text_modality=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Tuple = model_class(__UpperCamelCase ) lowercase_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Union[str, Any] = [*signature.parameters.keys()] lowercase_ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' def check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): lowercase_ : Tuple = model(**self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) ) lowercase_ : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) ,expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[str] = True check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Union[str, Any] = True check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Union[str, Any] = _config_zero_init(__UpperCamelCase ) lowercase_ : Union[str, Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowercase_ : Tuple = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @unittest.skip(reason='UperNet does not have tied weights' ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' pass @slow def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[Any] = UperNetForSemanticSegmentation.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowercase__( ): lowercase_ : str = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) lowercase_ : Union[str, Any] = Image.open(__SCREAMING_SNAKE_CASE ).convert('RGB' ) return image @require_torch @require_vision @slow class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Union[str, Any] = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) lowercase_ : Any = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(__UpperCamelCase ) lowercase_ : Optional[Any] = prepare_img() lowercase_ : Optional[Any] = processor(images=__UpperCamelCase ,return_tensors='pt' ).to(__UpperCamelCase ) with torch.no_grad(): lowercase_ : str = model(**__UpperCamelCase ) lowercase_ : int = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[str] = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) lowercase_ : List[str] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(__UpperCamelCase ) lowercase_ : Optional[int] = prepare_img() lowercase_ : Optional[Any] = processor(images=__UpperCamelCase ,return_tensors='pt' ).to(__UpperCamelCase ) with torch.no_grad(): lowercase_ : Optional[int] = model(**__UpperCamelCase ) lowercase_ : int = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape ,__UpperCamelCase ) lowercase_ : int = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
425
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE ={ "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
425
1
UpperCamelCase__ = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) UpperCamelCase__ = frozenset(["prompt", "negative_prompt"]) UpperCamelCase__ = frozenset([]) UpperCamelCase__ = frozenset(["image"]) UpperCamelCase__ = frozenset( [ "image", "height", "width", "guidance_scale", ] ) UpperCamelCase__ = frozenset(["image"]) UpperCamelCase__ = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) UpperCamelCase__ = frozenset(["prompt", "image", "negative_prompt"]) UpperCamelCase__ = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) UpperCamelCase__ = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) UpperCamelCase__ = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) UpperCamelCase__ = frozenset(["image", "mask_image"]) UpperCamelCase__ = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) UpperCamelCase__ = frozenset(["example_image", "image", "mask_image"]) UpperCamelCase__ = frozenset(["class_labels"]) UpperCamelCase__ = frozenset(["class_labels"]) UpperCamelCase__ = frozenset(["batch_size"]) UpperCamelCase__ = frozenset([]) UpperCamelCase__ = frozenset(["batch_size"]) UpperCamelCase__ = frozenset([]) UpperCamelCase__ = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) UpperCamelCase__ = frozenset(["prompt", "negative_prompt"]) UpperCamelCase__ = frozenset(["input_tokens"]) UpperCamelCase__ = frozenset(["input_tokens"])
634
import unittest import numpy as np def UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ) -> np.ndarray: __lowercase = np.shape(lowercase__ ) __lowercase = np.shape(lowercase__ ) __lowercase = np.shape(lowercase__ ) if shape_a[0] != shape_b[0]: __lowercase = ( """Expected the same number of rows for A and B. """ F"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(lowercase__ ) if shape_b[1] != shape_c[1]: __lowercase = ( """Expected the same number of columns for B and C. """ F"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(lowercase__ ) __lowercase = pseudo_inv if a_inv is None: try: __lowercase = np.linalg.inv(lowercase__ ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Dict ) -> None: """simple docstring""" __lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase = np.array([[2, 1], [6, 3]] ) __lowercase = schur_complement(lowercase , lowercase , lowercase ) __lowercase = np.block([[a, b], [b.T, c]] ) __lowercase = np.linalg.det(lowercase ) __lowercase = np.linalg.det(lowercase ) __lowercase = np.linalg.det(lowercase ) self.assertAlmostEqual(lowercase , det_a * det_s ) def snake_case__ ( self : Tuple ) -> None: """simple docstring""" __lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowercase ): schur_complement(lowercase , lowercase , lowercase ) def snake_case__ ( self : Tuple ) -> None: """simple docstring""" __lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowercase ): schur_complement(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
634
1
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('''Enter image url: ''').strip() print(F"Downloading image from {url} ...") SCREAMING_SNAKE_CASE_ = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image SCREAMING_SNAKE_CASE_ = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] SCREAMING_SNAKE_CASE_ = requests.get(image_url).content SCREAMING_SNAKE_CASE_ = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, '''wb''') as fp: fp.write(image_data) print(F"Done. Image saved to disk as {file_name}.")
465
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
465
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES a : Optional[Any] = logging.get_logger(__name__) a : Any = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) a : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) a : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) a : Union[str, Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) a : List[str] = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) a : Optional[int] = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) a : str = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) a : Any = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) a : int = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) a : List[str] = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) a : Any = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) a : Optional[int] = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) a : List[Any] = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) a : List[Any] = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) a : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) a : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) a : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) a : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) a : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) a : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) a : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) a : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) a : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) a : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) a : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) a : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) a : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) a : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_MAPPING a : Union[str, Any] = auto_class_update(FlaxAutoModel) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_PRETRAINING_MAPPING a : Dict = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING a : List[str] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MASKED_LM_MAPPING a : Union[str, Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a : Optional[int] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a : str = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING a : Optional[int] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a : str = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING a : List[str] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING a : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a : Dict = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING a : Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING a : Optional[Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
705
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
0
'''simple docstring''' import operator def SCREAMING_SNAKE_CASE ( lowercase_ : list , lowercase_ : bool = False , lowercase_ : list | None = None ): lowercase = operator.lt if reverse else operator.gt lowercase = solution or [] if not arr: return solution lowercase = [arr.pop(0 )] for i, item in enumerate(lowercase_ ): if _operator(lowercase_ , sublist[-1] ): sublist.append(lowercase_ ) arr.pop(lowercase_ ) # merging sublist into solution list if not solution: solution.extend(lowercase_ ) else: while sublist: lowercase = sublist.pop(0 ) for i, xx in enumerate(lowercase_ ): if not _operator(lowercase_ , lowercase_ ): solution.insert(lowercase_ , lowercase_ ) break else: solution.append(lowercase_ ) strand_sort(lowercase_ , lowercase_ , lowercase_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
588
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = XLMProphetNetTokenizer __A = False __A = True def _a ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase = XLMProphetNetTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self ) -> Any: '''simple docstring''' lowercase = """[PAD]""" lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(_lowerCAmelCase ) , 1012 ) def _a ( self ) -> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def _a ( self ) -> Tuple: '''simple docstring''' lowercase = XLMProphetNetTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) lowercase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowercase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def _a ( self ) -> Any: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def _a ( self ) -> List[str]: '''simple docstring''' lowercase = """Hello World!""" lowercase = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @slow def _a ( self ) -> Tuple: '''simple docstring''' lowercase = {"""input_ids""": [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
588
1
"""simple docstring""" import functools def __a ( A , A ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or not all(isinstance(lowercase_ , lowercase_ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowercase_ ) != 3 or not all(isinstance(lowercase_ , lowercase_ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowercase_ ) == 0: return 0 if min(lowercase_ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowercase_ ) >= 3_66: raise ValueError("All days elements should be less than 366" ) lowercase__ = set(lowercase_ ) @functools.cache def dynamic_programming(A ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __lowerCAmelCase ( UpperCamelCase__ ): _UpperCamelCase : List[Any] = """yolos""" def __init__( self , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3_072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=[512, 864] , snake_case=16 , snake_case=3 , snake_case=True , snake_case=100 , snake_case=True , snake_case=False , snake_case=1 , snake_case=5 , snake_case=2 , snake_case=5 , snake_case=2 , snake_case=0.1 , **snake_case , ) -> int: """simple docstring""" super().__init__(**_a ) a__ : Any = hidden_size a__ : Optional[Any] = num_hidden_layers a__ : str = num_attention_heads a__ : List[Any] = intermediate_size a__ : str = hidden_act a__ : Optional[Any] = hidden_dropout_prob a__ : Optional[Any] = attention_probs_dropout_prob a__ : Tuple = initializer_range a__ : Any = layer_norm_eps a__ : Dict = image_size a__ : Union[str, Any] = patch_size a__ : Union[str, Any] = num_channels a__ : Optional[int] = qkv_bias a__ : List[str] = num_detection_tokens a__ : Optional[int] = use_mid_position_embeddings a__ : Optional[int] = auxiliary_loss # Hungarian matcher a__ : int = class_cost a__ : Tuple = bbox_cost a__ : Union[str, Any] = giou_cost # Loss coefficients a__ : int = bbox_loss_coefficient a__ : int = giou_loss_coefficient a__ : Any = eos_coefficient class __lowerCAmelCase ( UpperCamelCase__ ): _UpperCamelCase : Tuple = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ) -> float: """simple docstring""" return 1E-4 @property def _snake_case ( self ) -> int: """simple docstring""" return 12
112
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Union[str, Any] = len(snake_case_ ) _A : str = [[0] * n for i in range(snake_case_ )] for i in range(snake_case_ ): _A : Optional[Any] = y_points[i] for i in range(2,snake_case_ ): for j in range(snake_case_,snake_case_ ): _A : List[Any] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
307
0
'''simple docstring''' from math import factorial lowercase_ : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def SCREAMING_SNAKE_CASE ( lowercase_ : int ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE ( lowercase_ : int = 60 , lowercase_ : int = 100_0000 ): if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowercase = 0 # the cached sizes of the previous chains lowercase = {} for start_chain_element in range(1 , _lowerCamelCase ): # The temporary set will contain the elements of the chain lowercase = set() lowercase = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowercase = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_lowerCamelCase ) chain_set_length += 1 lowercase = digit_factorial_sum(_lowerCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowercase = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
700
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class __UpperCamelCase : __A = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __A = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) __A = field( default=1024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) __A = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) __A = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(lowercase_ , os.path.join(lowercase_ , F"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() check_output_dir(lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): assert hasattr(lowercase_ , lowercase_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowercase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowercase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowercase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowercase_ , lowercase_ ): lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowercase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase = SeqaSeqDataset # Get datasets lowercase = ( dataset_class( lowercase_ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowercase = ( dataset_class( lowercase_ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase = ( dataset_class( lowercase_ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase = ( build_compute_metrics_fn(data_args.task , lowercase_ ) if training_args.predict_with_generate else None ) lowercase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , data_args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , data_collator=SeqaSeqDataCollator( lowercase_ , lowercase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) lowercase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase = train_result.metrics lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate(metric_key_prefix="""val""" ) lowercase = data_args.n_val lowercase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowercase = trainer.predict(test_dataset=lowercase_ , metric_key_prefix="""test""" ) lowercase = test_output.metrics lowercase = data_args.n_test if trainer.is_world_process_zero(): lowercase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowercase_ , training_args.output_dir ) all_metrics.update(lowercase_ ) if training_args.predict_with_generate: lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) lowercase = lmap(str.strip , lowercase_ ) write_txt_file(lowercase_ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowercase_ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
653
0
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
367
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase : List[Any] = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ['''OwlViTFeatureExtractor'''] lowerCamelCase : str = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
342
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''encodec''' def __init__( self : str , __UpperCamelCase : List[str]=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , __UpperCamelCase : str=2_4000 , __UpperCamelCase : Optional[Any]=1 , __UpperCamelCase : List[Any]=False , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=None , __UpperCamelCase : Union[str, Any]=128 , __UpperCamelCase : Dict=32 , __UpperCamelCase : Dict=1 , __UpperCamelCase : Optional[int]=[8, 5, 4, 2] , __UpperCamelCase : List[Any]="weight_norm" , __UpperCamelCase : Any=7 , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Optional[Any]=3 , __UpperCamelCase : str=2 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Dict="reflect" , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : int=1.0 , __UpperCamelCase : Union[str, Any]=1024 , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=True , **__UpperCamelCase : List[str] , ) -> List[str]: _UpperCamelCase = target_bandwidths _UpperCamelCase = sampling_rate _UpperCamelCase = audio_channels _UpperCamelCase = normalize _UpperCamelCase = chunk_length_s _UpperCamelCase = overlap _UpperCamelCase = hidden_size _UpperCamelCase = num_filters _UpperCamelCase = num_residual_layers _UpperCamelCase = upsampling_ratios _UpperCamelCase = norm_type _UpperCamelCase = kernel_size _UpperCamelCase = last_kernel_size _UpperCamelCase = residual_kernel_size _UpperCamelCase = dilation_growth_rate _UpperCamelCase = use_causal_conv _UpperCamelCase = pad_mode _UpperCamelCase = compress _UpperCamelCase = num_lstm_layers _UpperCamelCase = trim_right_ratio _UpperCamelCase = codebook_size _UpperCamelCase = codebook_dim if codebook_dim is not None else hidden_size _UpperCamelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**__UpperCamelCase ) @property def _UpperCamelCase ( self : List[str] ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCamelCase ( self : List[str] ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _UpperCamelCase ( self : Union[str, Any] ) -> int: _UpperCamelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _UpperCamelCase ( self : Dict ) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
342
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _lowerCamelCase : str = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : Path , _UpperCAmelCase : Union[str, None] = None , _UpperCAmelCase : Union[List[str], None] = None , _UpperCAmelCase : Union[str, List[str], None] = None , _UpperCAmelCase : bool = True , ) -> str: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )] if identifier is not None: _lowerCAmelCase : Tuple = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for n_ in n_identifier: _lowerCAmelCase : List[Any] = [file for file in files if n_ not in file] else: _lowerCAmelCase : str = [file for file in files if n_identifier not in file] _lowerCAmelCase : int = ignore_files or [] ignore_files.append("""__init__.py""" ) _lowerCAmelCase : Tuple = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , _UpperCAmelCase ) if only_modules: _lowerCAmelCase : Tuple = file.split(""".""" )[0] try: _lowerCAmelCase : Optional[Any] = getattr(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : List[Any] = doctest.DocTestSuite(_UpperCAmelCase ) _lowerCAmelCase : Dict = unittest.TextTestRunner().run(_UpperCAmelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"{module_identifier} is not a module." ) else: _lowerCAmelCase : int = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: '''simple docstring''' _lowerCAmelCase : Dict = Path("""src/transformers""" ) _lowerCAmelCase : List[str] = """modeling""" _lowerCAmelCase : List[Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase , ignore_files=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: '''simple docstring''' _lowerCAmelCase : List[str] = Path("""src/transformers""" ) _lowerCAmelCase : Any = """tokenization""" self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : str = Path("""src/transformers""" ) _lowerCAmelCase : Dict = """configuration""" self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: '''simple docstring''' _lowerCAmelCase : Any = Path("""src/transformers""" ) _lowerCAmelCase : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(_UpperCAmelCase , n_identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Path("""docs/source""" ) _lowerCAmelCase : Tuple = ["""favicon.ico"""] self.analyze_directory(_UpperCAmelCase , ignore_files=_UpperCAmelCase , only_modules=_UpperCAmelCase )
429
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __snake_case (_a ): lowerCAmelCase__ = "funnel" lowerCAmelCase__ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : Tuple , _UpperCAmelCase : Dict=3_0522 , _UpperCAmelCase : List[str]=[4, 4, 4] , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=768 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[str]=3072 , _UpperCAmelCase : List[str]="gelu_new" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=1E-9 , _UpperCAmelCase : Dict="mean" , _UpperCAmelCase : Any="relative_shift" , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , **_UpperCAmelCase : Optional[int] , ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : Dict = block_sizes _lowerCAmelCase : Optional[int] = [1] * len(_UpperCAmelCase ) if block_repeats is None else block_repeats assert len(_UpperCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _lowerCAmelCase : Any = num_decoder_layers _lowerCAmelCase : List[Any] = d_model _lowerCAmelCase : Optional[int] = n_head _lowerCAmelCase : Optional[int] = d_head _lowerCAmelCase : int = d_inner _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Dict = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : Optional[Any] = activation_dropout _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Optional[Any] = initializer_std _lowerCAmelCase : Dict = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." _lowerCAmelCase : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." _lowerCAmelCase : List[Any] = attention_type _lowerCAmelCase : Any = separate_cls _lowerCAmelCase : int = truncate_seq _lowerCAmelCase : List[Any] = pool_q_only super().__init__(**_UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
429
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> None: '''simple docstring''' warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__)
150
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' __magic_name__ : str = '''altclip_text_model''' def __init__( self , lowerCamelCase__=250_002 , lowerCamelCase__=1_024 , lowerCamelCase__=24 , lowerCamelCase__=16 , lowerCamelCase__=4_096 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=514 , lowerCamelCase__=1 , lowerCamelCase__=0.02 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-05 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=768 , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__) snake_case__ : str = vocab_size snake_case__ : int = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : List[str] = hidden_act snake_case__ : List[Any] = intermediate_size snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Tuple = max_position_embeddings snake_case__ : Any = type_vocab_size snake_case__ : int = initializer_range snake_case__ : Dict = initializer_factor snake_case__ : Optional[Any] = layer_norm_eps snake_case__ : List[str] = position_embedding_type snake_case__ : Union[str, Any] = use_cache snake_case__ : Dict = project_dim class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' __magic_name__ : int = '''altclip_vision_model''' def __init__( self , lowerCamelCase__=768 , lowerCamelCase__=3_072 , lowerCamelCase__=512 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3 , lowerCamelCase__=224 , lowerCamelCase__=32 , lowerCamelCase__="quick_gelu" , lowerCamelCase__=1E-5 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1.0 , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__) snake_case__ : str = hidden_size snake_case__ : List[Any] = intermediate_size snake_case__ : Union[str, Any] = projection_dim snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Optional[Any] = num_channels snake_case__ : Tuple = patch_size snake_case__ : List[Any] = image_size snake_case__ : Optional[Any] = initializer_range snake_case__ : Union[str, Any] = initializer_factor snake_case__ : int = attention_dropout snake_case__ : List[str] = layer_norm_eps snake_case__ : List[str] = hidden_act @classmethod def UpperCAmelCase ( cls , lowerCamelCase__ , **lowerCamelCase__) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase__) snake_case__, snake_case__ : str = cls.get_config_dict(lowerCamelCase__ , **lowerCamelCase__) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type") == "altclip": snake_case__ : List[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(lowerCamelCase__ , **lowerCamelCase__) class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' __magic_name__ : Dict = '''altclip''' __magic_name__ : Union[str, Any] = True def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=768 , lowerCamelCase__=2.65_92 , **lowerCamelCase__) -> Any: '''simple docstring''' snake_case__ : List[Any] = kwargs.pop("text_config_dict" , lowerCamelCase__) snake_case__ : str = kwargs.pop("vision_config_dict" , lowerCamelCase__) super().__init__(**lowerCamelCase__) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: snake_case__ : str = {} # This is the complete result when using `text_config_dict`. snake_case__ : str = AltCLIPTextConfig(**lowerCamelCase__).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: snake_case__ : List[Any] = ( f"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ f"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: snake_case__ : Dict = ( f"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ f"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(lowerCamelCase__) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if vision_config_dict is not None: if vision_config is None: snake_case__ : List[Any] = {} # This is the complete result when using `vision_config_dict`. snake_case__ : Union[str, Any] = AltCLIPVisionConfig(**lowerCamelCase__).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: snake_case__ : List[Any] = { str(lowerCamelCase__): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: snake_case__ : Any = ( f"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ f"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: snake_case__ : int = ( f"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ f"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(lowerCamelCase__) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict) if text_config is None: snake_case__ : Tuple = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.") if vision_config is None: snake_case__ : List[Any] = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.") snake_case__ : Any = AltCLIPTextConfig(**lowerCamelCase__) snake_case__ : Dict = AltCLIPVisionConfig(**lowerCamelCase__) snake_case__ : List[str] = projection_dim snake_case__ : Tuple = logit_scale_init_value snake_case__ : List[Any] = 1.0 @classmethod def UpperCAmelCase ( cls , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCamelCase__) def UpperCAmelCase ( self) -> int: '''simple docstring''' snake_case__ : Any = copy.deepcopy(self.__dict__) snake_case__ : Optional[Any] = self.text_config.to_dict() snake_case__ : List[str] = self.vision_config.to_dict() snake_case__ : str = self.__class__.model_type return output
150
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCAmelCase__ : str ='''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def __lowercase ( a__=None ) -> Tuple: if subparsers is not None: __SCREAMING_SNAKE_CASE = subparsers.add_parser('tpu-config' , description=_description ) else: __SCREAMING_SNAKE_CASE = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments __SCREAMING_SNAKE_CASE = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=a__ , default=a__ , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=a__ , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=a__ , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) __SCREAMING_SNAKE_CASE = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=a__ , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=a__ ) return parser def __lowercase ( a__ ) -> Dict: __SCREAMING_SNAKE_CASE = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(a__ ): __SCREAMING_SNAKE_CASE = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __SCREAMING_SNAKE_CASE = defaults.command_file if not args.command and defaults.commands is not None: __SCREAMING_SNAKE_CASE = defaults.commands if not args.tpu_name: __SCREAMING_SNAKE_CASE = defaults.tpu_name if not args.tpu_zone: __SCREAMING_SNAKE_CASE = defaults.tpu_zone if args.accelerate_version == "dev": __SCREAMING_SNAKE_CASE = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": __SCREAMING_SNAKE_CASE = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , a__ ): __SCREAMING_SNAKE_CASE = f"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: __SCREAMING_SNAKE_CASE = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , a__ ): __SCREAMING_SNAKE_CASE = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __SCREAMING_SNAKE_CASE = ['cd /usr/share'] if args.install_accelerate: new_cmd += [f"""pip install {args.accelerate_version}"""] new_cmd += args.command __SCREAMING_SNAKE_CASE = '; '.join(a__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __SCREAMING_SNAKE_CASE = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"""Running {" ".join(a__ )}""" ) return subprocess.run(a__ ) print('Successfully setup pod.' ) def __lowercase ( ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = tpu_command_parser() __SCREAMING_SNAKE_CASE = parser.parse_args() tpu_command_launcher(a__ )
148
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ : List[str] ={ '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] =['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : int =['''CLIPFeatureExtractor'''] lowerCAmelCase__ : Optional[Any] =['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict =[ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Any =[ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict =[ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCAmelCase__ : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
148
1
'''simple docstring''' from statistics import mean, stdev def lowercase_ ( lowercase__ , lowercase__ = 3 ) ->list: _snake_case: Union[str, Any] = min(lowercase__ ) _snake_case: str = max(lowercase__ ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowercase__ ) for x in data] def lowercase_ ( lowercase__ , lowercase__ = 3 ) ->list: _snake_case: Union[str, Any] = mean(lowercase__ ) _snake_case: Optional[Any] = stdev(lowercase__ ) # standardize data return [round((x - mu) / (sigma) , lowercase__ ) for x in data]
708
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') A : Optional[int] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) A : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) A : List[Any] = BeautifulSoup(res.text, 'html.parser') A : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F'https://google.com{link.get("href")}')
273
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ = logging.get_logger(__name__) a_ = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='bart' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str , a : Optional[int]=5_0265 , a : Any=1024 , a : Tuple=12 , a : Optional[Any]=4096 , a : Any=16 , a : Optional[int]=12 , a : Any=4096 , a : List[Any]=16 , a : Union[str, Any]=0.0 , a : List[str]=0.0 , a : List[Any]="gelu" , a : Dict=1024 , a : Union[str, Any]=0.1 , a : Any=0.0 , a : Union[str, Any]=0.0 , a : Union[str, Any]=0.02 , a : Optional[int]=0.0 , a : Tuple=False , a : Dict=True , a : Optional[int]=3 , a : Union[str, Any]=1 , a : str=0 , a : Dict=2 , a : Any=True , a : str=2 , a : Optional[Any]=2 , **a : List[str] , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : List[str] = decoder_layers SCREAMING_SNAKE_CASE : Dict = decoder_attention_heads SCREAMING_SNAKE_CASE : Tuple = dropout SCREAMING_SNAKE_CASE : int = attention_dropout SCREAMING_SNAKE_CASE : Dict = activation_dropout SCREAMING_SNAKE_CASE : List[str] = activation_function SCREAMING_SNAKE_CASE : Optional[Any] = init_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Dict = decoder_layerdrop SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=a , pad_token_id=a , bos_token_id=a , eos_token_id=a , is_encoder_decoder=a , decoder_start_token_id=a , forced_eos_token_id=a , **a , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , a ): SCREAMING_SNAKE_CASE : List[str] = self.bos_token_id warnings.warn( F"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " "The config can simply be saved and uploaded again to be fixed." ) class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : str = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE : Any = {0: "batch"} SCREAMING_SNAKE_CASE : Any = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE : Tuple = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE : Tuple = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE : str = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = self.num_layers for i in range(a ): SCREAMING_SNAKE_CASE : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE : int = {0: "batch", 2: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __UpperCamelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Union[str, Any] = super().outputs else: SCREAMING_SNAKE_CASE : str = super(a , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.num_layers for i in range(a ): SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE : Any = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __UpperCamelCase ( self : Optional[Any] , a : PreTrainedTokenizer , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a , a , a , a , a ) # Generate decoder inputs SCREAMING_SNAKE_CASE : str = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a , a , a , a , a ) SCREAMING_SNAKE_CASE : Dict = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE : Optional[Any] = dict(**a , **a ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = common_inputs["input_ids"].shape SCREAMING_SNAKE_CASE : Tuple = common_inputs["decoder_input_ids"].shape[1] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.num_attention_heads SCREAMING_SNAKE_CASE : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : List[Any] = decoder_seq_length + 3 SCREAMING_SNAKE_CASE : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE : Optional[int] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(a , a )] , dim=1 ) SCREAMING_SNAKE_CASE : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = self.num_layers SCREAMING_SNAKE_CASE : Any = min(a , a ) SCREAMING_SNAKE_CASE : Any = max(a , a ) - min_num_layers SCREAMING_SNAKE_CASE : int = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(a ): common_inputs["past_key_values"].append( ( torch.zeros(a ), torch.zeros(a ), torch.zeros(a ), torch.zeros(a ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE : Optional[Any] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(a , a ): common_inputs["past_key_values"].append((torch.zeros(a ), torch.zeros(a )) ) return common_inputs def __UpperCamelCase ( self : Any , a : PreTrainedTokenizer , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a , a , a , a , a ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE : Any = seqlen + 2 SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.num_layers SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Union[str, Any] = common_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE : Optional[int] = torch.cat( [common_inputs["attention_mask"], torch.ones(a , a , dtype=a )] , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = [ (torch.zeros(a ), torch.zeros(a )) for _ in range(a ) ] return common_inputs def __UpperCamelCase ( self : Tuple , a : PreTrainedTokenizer , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : int = tokenizer.num_special_tokens_to_add(a ) SCREAMING_SNAKE_CASE : List[str] = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : str = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE : Tuple = dict(tokenizer(a , return_tensors=a ) ) return common_inputs def __UpperCamelCase ( self : Optional[int] , a : PreTrainedTokenizer , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Optional[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE : Optional[int] = self._generate_dummy_inputs_for_causal_lm( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) else: SCREAMING_SNAKE_CASE : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) return common_inputs def __UpperCamelCase ( self : Optional[Any] , a : Tuple , a : Tuple , a : int , a : Tuple ) -> Tuple: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Optional[int] = super()._flatten_past_key_values_(a , a , a , a ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = super(a , self )._flatten_past_key_values_( a , a , a , a )
25
class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Tuple , __a : int ) ->Optional[int]: lowerCamelCase_ : Optional[Any] = n lowerCamelCase_ : Dict = [None] * self.n lowerCamelCase_ : int = 0 # index of the first element lowerCamelCase_ : str = 0 lowerCamelCase_ : Optional[Any] = 0 def __len__( self : List[str] ) ->int: return self.size def _lowerCAmelCase ( self : str ) ->bool: return self.size == 0 def _lowerCAmelCase ( self : str ) ->Any: return False if self.is_empty() else self.array[self.front] def _lowerCAmelCase ( self : Union[str, Any] , __a : int ) ->List[Any]: if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) lowerCamelCase_ : Tuple = data lowerCamelCase_ : Tuple = (self.rear + 1) % self.n self.size += 1 return self def _lowerCAmelCase ( self : Tuple ) ->int: if self.size == 0: raise Exception("""UNDERFLOW""" ) lowerCamelCase_ : str = self.array[self.front] lowerCamelCase_ : str = None lowerCamelCase_ : Optional[Any] = (self.front + 1) % self.n self.size -= 1 return temp
278
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCamelCase :Tuple = logging.get_logger(__name__) class A__ ( __lowercase): """simple docstring""" snake_case__ : List[str] =['''input_features''', '''is_longer'''] def __init__( self: Optional[Any] , __a: str=64 , __a: List[str]=48_000 , __a: List[Any]=480 , __a: Dict=10 , __a: List[Any]=1_024 , __a: str=0.0 , __a: int=False , __a: float = 0 , __a: float = 14_000 , __a: int = None , __a: str = "fusion" , __a: str = "repeatpad" , **__a: Union[str, Any] , )-> Dict: super().__init__( feature_size=__a , sampling_rate=__a , padding_value=__a , return_attention_mask=__a , **__a , ) lowerCamelCase : List[Any] = top_db lowerCamelCase : Optional[int] = truncation lowerCamelCase : Any = padding lowerCamelCase : Dict = fft_window_size lowerCamelCase : Tuple = (fft_window_size >> 1) + 1 lowerCamelCase : Dict = hop_length lowerCamelCase : Tuple = max_length_s lowerCamelCase : Any = max_length_s * sampling_rate lowerCamelCase : Optional[int] = sampling_rate lowerCamelCase : str = frequency_min lowerCamelCase : Optional[int] = frequency_max lowerCamelCase : str = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__a , min_frequency=__a , max_frequency=__a , sampling_rate=__a , norm=__a , mel_scale="""htk""" , ) lowerCamelCase : Optional[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__a , min_frequency=__a , max_frequency=__a , sampling_rate=__a , norm="""slaney""" , mel_scale="""slaney""" , ) def a__ ( self: Any )-> Dict[str, Any]: lowerCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowerCamelCase : Optional[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def a__ ( self: Any , __a: np.array , __a: Optional[np.array] = None )-> np.ndarray: lowerCamelCase : Optional[Any] = spectrogram( __a , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__a , log_mel="""dB""" , ) return log_mel_spectrogram.T def a__ ( self: Union[str, Any] , __a: Union[str, Any] , __a: Optional[Any] , __a: Any )-> Optional[int]: lowerCamelCase : List[str] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCamelCase : Any = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCamelCase : List[Any] = [0] # randomly choose index for each part lowerCamelCase : int = np.random.choice(ranges[0] ) lowerCamelCase : List[str] = np.random.choice(ranges[1] ) lowerCamelCase : str = np.random.choice(ranges[2] ) lowerCamelCase : Tuple = mel[idx_front : idx_front + chunk_frames, :] lowerCamelCase : str = mel[idx_middle : idx_middle + chunk_frames, :] lowerCamelCase : str = mel[idx_back : idx_back + chunk_frames, :] lowerCamelCase : Union[str, Any] = torch.tensor(mel[None, None, :] ) lowerCamelCase : Dict = torch.nn.functional.interpolate( __a , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=__a ) lowerCamelCase : str = mel_shrink[0][0].numpy() lowerCamelCase : Optional[int] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def a__ ( self: Union[str, Any] , __a: np.array , __a: List[Any] , __a: str , __a: List[Any] )-> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCamelCase : int = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCamelCase : str = len(__a ) - max_length lowerCamelCase : Optional[Any] = np.random.randint(0 , overflow + 1 ) lowerCamelCase : Union[str, Any] = waveform[idx : idx + max_length] lowerCamelCase : List[Any] = self._np_extract_fbank_features(__a , self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCamelCase : Optional[Any] = self._np_extract_fbank_features(__a , self.mel_filters ) lowerCamelCase : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCamelCase : str = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCamelCase : Any = np.stack([mel, mel, mel, mel] , axis=0 ) lowerCamelCase : List[str] = False else: lowerCamelCase : Any = self._random_mel_fusion(__a , __a , __a ) lowerCamelCase : Optional[Any] = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: lowerCamelCase : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCamelCase : Tuple = int(max_length / len(__a ) ) lowerCamelCase : Dict = np.stack(np.tile(__a , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCamelCase : Optional[Any] = int(max_length / len(__a ) ) lowerCamelCase : Optional[Any] = np.stack(np.tile(__a , __a ) ) lowerCamelCase : Optional[Any] = np.pad(__a , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": lowerCamelCase : str = self._np_extract_fbank_features(__a , self.mel_filters ) lowerCamelCase : Optional[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: lowerCamelCase : Dict = self._np_extract_fbank_features(__a , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self: List[Any] , __a: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __a: str = None , __a: Optional[str] = None , __a: Optional[int] = None , __a: Optional[int] = None , __a: Optional[Union[str, TensorType]] = None , **__a: str , )-> BatchFeature: lowerCamelCase : Optional[Any] = truncation if truncation is not None else self.truncation lowerCamelCase : str = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase : int = isinstance(__a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase : str = is_batched_numpy or ( isinstance(__a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase : Tuple = [np.asarray(__a , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__a , np.ndarray ): lowerCamelCase : Optional[Any] = np.asarray(__a , dtype=np.floataa ) elif isinstance(__a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase : List[Any] = [np.asarray(__a )] # convert to mel spectrogram, truncate and pad if needed. lowerCamelCase : Optional[Any] = [ self._get_input_mel(__a , max_length if max_length else self.nb_max_samples , __a , __a ) for waveform in raw_speech ] lowerCamelCase : Optional[int] = [] lowerCamelCase : Union[str, Any] = [] for mel, longer in padded_inputs: input_mel.append(__a ) is_longer.append(__a ) if truncation == "fusion" and sum(__a ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCamelCase : Optional[Any] = np.random.randint(0 , len(__a ) ) lowerCamelCase : Union[str, Any] = True if isinstance(input_mel[0] , __a ): lowerCamelCase : List[str] = [np.asarray(__a , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCamelCase : Tuple = [[longer] for longer in is_longer] lowerCamelCase : Union[str, Any] = {"""input_features""": input_mel, """is_longer""": is_longer} lowerCamelCase : Any = BatchFeature(__a ) if return_tensors is not None: lowerCamelCase : str = input_features.convert_to_tensors(__a ) return input_features
42
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCamelCase :List[str] = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase :Optional[int] = ['OwlViTFeatureExtractor'] __lowerCamelCase :List[str] = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase :Optional[Any] = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __lowerCamelCase :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
42
1
'''simple docstring''' import random def a_ ( __UpperCAmelCase ) -> bool: """simple docstring""" snake_case: Dict =num - 1 snake_case: Any =0 while s % 2 == 0: snake_case: Any =s // 2 t += 1 for _ in range(5 ): snake_case: Any =random.randrange(2 , num - 1 ) snake_case: Dict =pow(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if v != 1: snake_case: Dict =0 while v != (num - 1): if i == t - 1: return False else: snake_case: Any =i + 1 snake_case: Union[str, Any] =(v**2) % num return True def a_ ( __UpperCAmelCase ) -> bool: """simple docstring""" if num < 2: return False snake_case: Union[str, Any] =[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__UpperCAmelCase ) def a_ ( __UpperCAmelCase = 10_24 ) -> int: """simple docstring""" while True: snake_case: Union[str, Any] =random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__UpperCAmelCase ): return num if __name__ == "__main__": a = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
350
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a = random.Random() def a_ ( __UpperCAmelCase , __UpperCAmelCase=1.0 , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> List[str]: """simple docstring""" if rng is None: snake_case: Dict =global_rng snake_case: Tuple =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class a_ ( unittest.TestCase ): def __init__( self : int , a_ : Any , a_ : str=7 , a_ : Tuple=4_0_0 , a_ : List[Any]=2_0_0_0 , a_ : str=2_0_4_8 , a_ : List[str]=1_2_8 , a_ : int=1 , a_ : Tuple=5_1_2 , a_ : Dict=3_0 , a_ : Optional[int]=4_4_1_0_0 , ) -> Union[str, Any]: snake_case: Union[str, Any] =parent snake_case: Optional[Any] =batch_size snake_case: Union[str, Any] =min_seq_length snake_case: List[str] =max_seq_length snake_case: str =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case: int =spectrogram_length snake_case: List[str] =feature_size snake_case: Dict =num_audio_channels snake_case: int =hop_length snake_case: List[Any] =chunk_length snake_case: Optional[Any] =sampling_rate def UpperCamelCase ( self : Any ) -> Dict: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCamelCase ( self : Tuple , a_ : Optional[Any]=False , a_ : Tuple=False ) -> Optional[int]: def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: snake_case: Union[str, Any] =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case: Union[str, Any] =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case: Any =[np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a_ ( snake_case , unittest.TestCase ): UpperCAmelCase : Optional[Any] = TvltFeatureExtractor def UpperCamelCase ( self : int ) -> int: snake_case: Union[str, Any] =TvltFeatureExtractionTester(self ) def UpperCamelCase ( self : Optional[Any] ) -> str: snake_case: int =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(a_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(a_ , 'feature_size' ) ) self.assertTrue(hasattr(a_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(a_ , 'hop_length' ) ) self.assertTrue(hasattr(a_ , 'chunk_length' ) ) self.assertTrue(hasattr(a_ , 'sampling_rate' ) ) def UpperCamelCase ( self : Tuple ) -> Optional[int]: snake_case: Tuple =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case: Optional[Any] =feat_extract_first.save_pretrained(a_ )[0] check_json_file_has_correct_format(a_ ) snake_case: str =self.feature_extraction_class.from_pretrained(a_ ) snake_case: Optional[int] =feat_extract_first.to_dict() snake_case: List[str] =feat_extract_second.to_dict() snake_case: Optional[int] =dict_first.pop('mel_filters' ) snake_case: List[Any] =dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(a_ , a_ ) ) self.assertEqual(a_ , a_ ) def UpperCamelCase ( self : str ) -> str: snake_case: Any =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case: int =os.path.join(a_ , 'feat_extract.json' ) feat_extract_first.to_json_file(a_ ) snake_case: Union[str, Any] =self.feature_extraction_class.from_json_file(a_ ) snake_case: Optional[Any] =feat_extract_first.to_dict() snake_case: Optional[Any] =feat_extract_second.to_dict() snake_case: Union[str, Any] =dict_first.pop('mel_filters' ) snake_case: Union[str, Any] =dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(a_ , a_ ) ) self.assertEqual(a_ , a_ ) def UpperCamelCase ( self : Union[str, Any] ) -> List[str]: # Initialize feature_extractor snake_case: Tuple =self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 snake_case: Any =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case: Optional[Any] =[np.asarray(a_ ) for speech_input in speech_inputs] # Test not batched input snake_case: List[Any] =feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched snake_case: Any =feature_extractor(a_ , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking snake_case: Optional[Any] =feature_extractor( a_ , return_tensors='np' , sampling_rate=4_4_1_0_0 , mask_audio=a_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. snake_case: List[Any] =[floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case: List[str] =np.asarray(a_ ) snake_case: str =feature_extractor(a_ , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCamelCase ( self : Any , a_ : str ) -> Union[str, Any]: snake_case: Dict =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech snake_case: Optional[int] =ds.sort('id' ).select(range(a_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: snake_case: Tuple =self._load_datasamples(1 ) snake_case: Any =TvltFeatureExtractor() snake_case: Any =feature_extractor(a_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) snake_case: int =torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , a_ , atol=1E-4 ) )
350
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowerCAmelCase_ = logging.get_logger(__name__) class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = '''AutoTokenizer''' __SCREAMING_SNAKE_CASE = ['''tokenizer'''] __SCREAMING_SNAKE_CASE = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self , lowerCamelCase , lowerCamelCase=None ) -> Dict: '''simple docstring''' super().__init__(lowerCamelCase ) UpperCamelCase : List[Any] = speaker_embeddings @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCamelCase , lowerCamelCase="speaker_embeddings_path.json" , **lowerCamelCase ) -> List[str]: '''simple docstring''' if speaker_embeddings_dict_path is not None: UpperCamelCase : Any = get_file_from_repo( lowerCamelCase , lowerCamelCase , subfolder=kwargs.pop("subfolder" , lowerCamelCase ) , cache_dir=kwargs.pop("cache_dir" , lowerCamelCase ) , force_download=kwargs.pop("force_download" , lowerCamelCase ) , proxies=kwargs.pop("proxies" , lowerCamelCase ) , resume_download=kwargs.pop("resume_download" , lowerCamelCase ) , local_files_only=kwargs.pop("local_files_only" , lowerCamelCase ) , use_auth_token=kwargs.pop("use_auth_token" , lowerCamelCase ) , revision=kwargs.pop("revision" , lowerCamelCase ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(lowerCamelCase , lowerCamelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) UpperCamelCase : Tuple = None else: with open(lowerCamelCase ) as speaker_embeddings_json: UpperCamelCase : List[str] = json.load(lowerCamelCase ) else: UpperCamelCase : str = None UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase , **lowerCamelCase ) return cls(tokenizer=lowerCamelCase , speaker_embeddings=lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase="speaker_embeddings_path.json" , lowerCamelCase="speaker_embeddings" , lowerCamelCase = False , **lowerCamelCase , ) -> Any: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCamelCase , lowerCamelCase , "v2" ) , exist_ok=lowerCamelCase ) UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[int] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": UpperCamelCase : List[Any] = self._load_voice_preset(lowerCamelCase ) UpperCamelCase : Optional[Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , lowerCamelCase , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowerCamelCase , ) UpperCamelCase : Any = os.path.join(lowerCamelCase , f'''{prompt_key}_{key}.npy''' ) UpperCamelCase : Union[str, Any] = tmp_dict with open(os.path.join(lowerCamelCase , lowerCamelCase ) , "w" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) super().save_pretrained(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase = None , **lowerCamelCase ) -> Any: '''simple docstring''' UpperCamelCase : List[str] = self.speaker_embeddings[voice_preset] UpperCamelCase : int = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) UpperCamelCase : Optional[Any] = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , lowerCamelCase ) , cache_dir=kwargs.pop("cache_dir" , lowerCamelCase ) , force_download=kwargs.pop("force_download" , lowerCamelCase ) , proxies=kwargs.pop("proxies" , lowerCamelCase ) , resume_download=kwargs.pop("resume_download" , lowerCamelCase ) , local_files_only=kwargs.pop("local_files_only" , lowerCamelCase ) , use_auth_token=kwargs.pop("use_auth_token" , lowerCamelCase ) , revision=kwargs.pop("revision" , lowerCamelCase ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) UpperCamelCase : List[str] = np.load(lowerCamelCase ) return voice_preset_dict def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase = None ) -> Any: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="pt" , lowerCamelCase=2_56 , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=False , **lowerCamelCase , ) -> Optional[Any]: '''simple docstring''' if voice_preset is not None and not isinstance(lowerCamelCase , lowerCamelCase ): if ( isinstance(lowerCamelCase , lowerCamelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): UpperCamelCase : Optional[Any] = self._load_voice_preset(lowerCamelCase ) else: if isinstance(lowerCamelCase , lowerCamelCase ) and not voice_preset.endswith(".npz" ): UpperCamelCase : List[Any] = voice_preset + ".npz" UpperCamelCase : Optional[Any] = np.load(lowerCamelCase ) if voice_preset is not None: self._validate_voice_preset_dict(lowerCamelCase , **lowerCamelCase ) UpperCamelCase : List[str] = BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase ) UpperCamelCase : List[Any] = self.tokenizer( lowerCamelCase , return_tensors=lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , return_attention_mask=lowerCamelCase , return_token_type_ids=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) if voice_preset is not None: UpperCamelCase : Optional[Any] = voice_preset return encoded_text
707
'''simple docstring''' from __future__ import annotations import math def A__ ( A : int): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_ = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def A__ ( A : int): '''simple docstring''' if not isinstance(A , A): raise ValueError("n must be an integer") if n <= 0: raise ValueError("n must be >= 0") UpperCamelCase : Union[str, Any] = [] for num in range(len(A)): UpperCamelCase : Any = 0 while 2 * i * i <= odd_composites[num]: UpperCamelCase : str = odd_composites[num] - 2 * i * i if is_prime(A): break i += 1 else: list_nums.append(odd_composites[num]) if len(A) == n: return list_nums return [] def A__ ( ): '''simple docstring''' return compute_nums(1)[0] if __name__ == "__main__": print(f"""{solution() = }""")
435
0
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __UpperCAmelCase = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def snake_case_ (__A : Union[str, Any] , __A : str ) -> Any: return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def snake_case_ (__A : Tuple ) -> Optional[Any]: __lowerCAmelCase : int = _TestCommandArgs(dataset=__A , all_configs=__A , save_infos=__A ) __lowerCAmelCase : Optional[int] = TestCommand(*__A ) test_command.run() __lowerCAmelCase : List[str] = os.path.join(__A , """README.md""" ) assert os.path.exists(__A ) __lowerCAmelCase : Any = DatasetInfosDict.from_directory(__A ) __lowerCAmelCase : int = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_3_5_1_5_6_3, """num_examples""": 1_0_0_0_0, }, { """name""": """validation""", """num_bytes""": 2_3_8_4_1_8, """num_examples""": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: __lowerCAmelCase : List[str] = getattr(dataset_infos["""default"""] , __A ), getattr(expected_dataset_infos["""default"""] , __A ) if key == "num_bytes": assert is_apercent_close(__A , __A ) elif key == "splits": assert list(__A ) == list(__A ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
651
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __lowerCAmelCase : '''simple docstring''' a_ = 42 a_ = 42 class __lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ,_a : int ): '''simple docstring''' A_ : list[list[Edge]] = [[] for _ in range(_a )] A_ : List[Any] = size def __getitem__( self : int ,_a : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def _a ( self : str ): '''simple docstring''' return self._size def _a ( self : str ,_a : int ,_a : int ,_a : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(_a ,_a ) ) def _a ( self : Dict ,_a : int ,_a : int ): '''simple docstring''' A_ : Tuple = deque([start_vertex] ) A_ : list[int | None] = [None] * self.size A_ : Union[str, Any] = 0 while queue: A_ : List[Any] = queue.popleft() A_ : Tuple = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: A_ : Union[str, Any] = current_distance + edge.weight A_ : Optional[Any] = distances[edge.destination_vertex] if ( isinstance(_a ,_a ) and new_distance >= dest_vertex_distance ): continue A_ : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
665
0
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests _A : int ='''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user _A : int =BASE_URL + '''/user''' # https://github.com/settings/tokens _A : List[Any] =os.environ.get('''USER_TOKEN''', '''''') def __UpperCamelCase ( _lowercase ) -> dict[Any, Any]: _lowercase : int = { 'Authorization': f'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(_lowercase, headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
4
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : int = torch.exp(_lowercase ) _lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i) _lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowercase ) - B / A class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__() _lowercase : int = config.output_attentions _lowercase : int = config.output_hidden_states _lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )] def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int: '''simple docstring''' if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowercase : Optional[Any] = x else: _lowercase : Optional[int] = x def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]: '''simple docstring''' _lowercase : int = () _lowercase : List[Any] = () _lowercase : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowercase : Optional[int] = all_hidden_states + (hidden_states,) _lowercase : str = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = layer_outputs[0] if self.output_attentions: _lowercase : Tuple = all_attentions + (layer_outputs[1],) _lowercase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowercase : str = current_outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[int] = current_outputs + (all_attentions,) _lowercase : List[Any] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: _lowercase : Dict = highway_exit[0] _lowercase : Tuple = entropy(UpperCamelCase_ ) _lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowercase : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: _lowercase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowercase : str = all_hidden_states + (hidden_states,) _lowercase : Optional[Any] = (hidden_states,) if self.output_hidden_states: _lowercase : Dict = outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[Any] = outputs + (all_attentions,) _lowercase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : int = config _lowercase : int = BertEmbeddings(UpperCamelCase_ ) _lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ ) _lowercase : Any = BertPooler(UpperCamelCase_ ) self.init_weights() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = value def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Any = input_ids.size() elif inputs_embeds is not None: _lowercase : Any = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: _lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: _lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowercase : int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] _lowercase : str = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) _lowercase : Dict = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) _lowercase : List[Any] = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) _lowercase : int = encoder_outputs[0] _lowercase : str = self.pooler(UpperCamelCase_ ) _lowercase : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = message _lowercase : Dict = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' super().__init__() _lowercase : Optional[Any] = BertPooler(UpperCamelCase_ ) _lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : int = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' _lowercase : str = encoder_outputs[0] _lowercase : int = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel _lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowercase : Dict = bmodel_output[1] _lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ ) _lowercase : str = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : Dict = config.num_labels _lowercase : Any = config.num_hidden_layers _lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ ) _lowercase : Any = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.num_layers try: _lowercase : Tuple = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowercase : List[Any] = outputs[1] _lowercase : int = self.dropout(UpperCamelCase_ ) _lowercase : Optional[int] = self.classifier(UpperCamelCase_ ) _lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowercase : Union[str, Any] = e.message _lowercase : Any = e.exit_layer _lowercase : Optional[int] = outputs[0] if not self.training: _lowercase : Union[str, Any] = entropy(UpperCamelCase_ ) _lowercase : Tuple = [] _lowercase : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowercase : Tuple = MSELoss() _lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Union[str, Any] = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowercase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowercase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowercase : Union[str, Any] = MSELoss() _lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Dict = CrossEntropyLoss() _lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: _lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowercase : Optional[Any] = (loss,) + outputs if not self.training: _lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowercase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
4
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a_ ) class lowercase ( a_ ): lowerCamelCase : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) lowerCamelCase : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) lowerCamelCase : str = "text" lowerCamelCase : str = "summary" @property def lowercase__ ( self : List[Any] ): return {self.text_column: "text", self.summary_column: "summary"}
35
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() def snake_case_ () -> Optional[Any]: __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""-f""" ) __lowerCAmelCase : Dict = parser.parse_args() return args.f def snake_case_ (__A : Dict , __A : List[str]="eval" ) -> int: __lowerCAmelCase : int = os.path.join(__A , f'''{split}_results.json''' ) if os.path.exists(__A ): with open(__A , """r""" ) as f: return json.load(__A ) raise ValueError(f'''can\'t find {path}''' ) __UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() __lowerCAmelCase : Optional[Any] = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_flax_glue.main() __lowerCAmelCase : Dict = get_results(lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() __lowerCAmelCase : Any = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_clm_flax.main() __lowerCAmelCase : int = get_results(lowerCAmelCase ) self.assertLess(result["""eval_perplexity"""] , 1_00 ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() __lowerCAmelCase : int = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_summarization_flax.main() __lowerCAmelCase : Union[str, Any] = get_results(lowerCAmelCase , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 10 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() __lowerCAmelCase : List[str] = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_mlm_flax.main() __lowerCAmelCase : List[Any] = get_results(lowerCAmelCase ) self.assertLess(result["""eval_perplexity"""] , 42 ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() __lowerCAmelCase : List[str] = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_ta_mlm_flax.main() __lowerCAmelCase : Union[str, Any] = get_results(lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.42 ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = 7 if get_gpu_count() > 1 else 2 __lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() __lowerCAmelCase : List[Any] = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_flax_ner.main() __lowerCAmelCase : Dict = get_results(lowerCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() __lowerCAmelCase : List[str] = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_qa.main() __lowerCAmelCase : Union[str, Any] = get_results(lowerCAmelCase ) self.assertGreaterEqual(result["""eval_f1"""] , 30 ) self.assertGreaterEqual(result["""eval_exact"""] , 30 )
651
0
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : List[str] = "AutoTokenizer" A__ : Union[str, Any] = ["tokenizer"] A__ : Optional[Any] = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Tuple: super().__init__(SCREAMING_SNAKE_CASE__ ) A__ = speaker_embeddings @classmethod def snake_case__ ( cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="speaker_embeddings_path.json" , **SCREAMING_SNAKE_CASE__ ) -> int: if speaker_embeddings_dict_path is not None: A__ = get_file_from_repo( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , subfolder=kwargs.pop("subfolder" , SCREAMING_SNAKE_CASE__ ) , cache_dir=kwargs.pop("cache_dir" , SCREAMING_SNAKE_CASE__ ) , force_download=kwargs.pop("force_download" , SCREAMING_SNAKE_CASE__ ) , proxies=kwargs.pop("proxies" , SCREAMING_SNAKE_CASE__ ) , resume_download=kwargs.pop("resume_download" , SCREAMING_SNAKE_CASE__ ) , local_files_only=kwargs.pop("local_files_only" , SCREAMING_SNAKE_CASE__ ) , use_auth_token=kwargs.pop("use_auth_token" , SCREAMING_SNAKE_CASE__ ) , revision=kwargs.pop("revision" , SCREAMING_SNAKE_CASE__ ) , ) if speaker_embeddings_path is None: logger.warning( f"""`{os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) A__ = None else: with open(SCREAMING_SNAKE_CASE__ ) as speaker_embeddings_json: A__ = json.load(SCREAMING_SNAKE_CASE__ ) else: A__ = None A__ = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return cls(tokenizer=SCREAMING_SNAKE_CASE__ , speaker_embeddings=SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="speaker_embeddings_path.json" , SCREAMING_SNAKE_CASE__="speaker_embeddings" , SCREAMING_SNAKE_CASE__ = False , **SCREAMING_SNAKE_CASE__ , ) -> List[str]: if self.speaker_embeddings is not None: os.makedirs(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "v2" ) , exist_ok=SCREAMING_SNAKE_CASE__ ) A__ = {} A__ = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": A__ = self._load_voice_preset(SCREAMING_SNAKE_CASE__ ) A__ = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , SCREAMING_SNAKE_CASE__ , f"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=SCREAMING_SNAKE_CASE__ , ) A__ = os.path.join(SCREAMING_SNAKE_CASE__ , f"""{prompt_key}_{key}.npy""" ) A__ = tmp_dict with open(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , "w" ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) super().save_pretrained(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: A__ = self.speaker_embeddings[voice_preset] A__ = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) A__ = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , SCREAMING_SNAKE_CASE__ ) , cache_dir=kwargs.pop("cache_dir" , SCREAMING_SNAKE_CASE__ ) , force_download=kwargs.pop("force_download" , SCREAMING_SNAKE_CASE__ ) , proxies=kwargs.pop("proxies" , SCREAMING_SNAKE_CASE__ ) , resume_download=kwargs.pop("resume_download" , SCREAMING_SNAKE_CASE__ ) , local_files_only=kwargs.pop("local_files_only" , SCREAMING_SNAKE_CASE__ ) , use_auth_token=kwargs.pop("use_auth_token" , SCREAMING_SNAKE_CASE__ ) , revision=kwargs.pop("revision" , SCREAMING_SNAKE_CASE__ ) , ) if path is None: raise ValueError( f"""`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) A__ = np.load(SCREAMING_SNAKE_CASE__ ) return voice_preset_dict def snake_case__ ( self , SCREAMING_SNAKE_CASE__ = None ) -> Any: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="pt" , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> str: if voice_preset is not None and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): A__ = self._load_voice_preset(SCREAMING_SNAKE_CASE__ ) else: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not voice_preset.endswith(".npz" ): A__ = voice_preset + ".npz" A__ = np.load(SCREAMING_SNAKE_CASE__ ) if voice_preset is not None: self._validate_voice_preset_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A__ = BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ ) A__ = self.tokenizer( SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding="max_length" , max_length=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if voice_preset is not None: A__ = voice_preset return encoded_text
562
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Tuple = ["image_processor", "tokenizer"] A__ : Optional[int] = "FlavaImageProcessor" A__ : Optional[int] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: A__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , SCREAMING_SNAKE_CASE__ , ) A__ = kwargs.pop("feature_extractor" ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> str: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: A__ = self.tokenizer( text=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_overflowing_tokens=SCREAMING_SNAKE_CASE__ , return_special_tokens_mask=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , return_length=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if images is not None: A__ = self.image_processor( SCREAMING_SNAKE_CASE__ , return_image_mask=SCREAMING_SNAKE_CASE__ , return_codebook_pixels=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if text is not None and images is not None: encoding.update(SCREAMING_SNAKE_CASE__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def snake_case__ ( self ) -> Union[str, Any]: A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case__ ( self ) -> Any: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , SCREAMING_SNAKE_CASE__ , ) return self.image_processor_class @property def snake_case__ ( self ) -> List[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , SCREAMING_SNAKE_CASE__ , ) return self.image_processor
562
1
from collections.abc import Generator from math import sin def _A ( SCREAMING_SNAKE_CASE : bytes ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) != 32: raise ValueError("Input must be of length 32" ) a__ : Any =b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) a__ : List[str] =format(SCREAMING_SNAKE_CASE , "08x" )[-8:] a__ : Optional[Any] =b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def _A ( SCREAMING_SNAKE_CASE : bytes ): """simple docstring""" a__ : Optional[int] =b"" for char in message: bit_string += format(SCREAMING_SNAKE_CASE , "08b" ).encode("utf-8" ) a__ : Optional[Any] =format(len(SCREAMING_SNAKE_CASE ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(SCREAMING_SNAKE_CASE ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _A ( SCREAMING_SNAKE_CASE : bytes ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(SCREAMING_SNAKE_CASE ) , 512 ): a__ : Optional[Any] =bit_string[pos : pos + 512] a__ : str =[] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) a__ : Dict =format(SCREAMING_SNAKE_CASE , "032b" ) a__ : int ="" for c in i_str: new_str += "1" if c == "0" else "0" return int(SCREAMING_SNAKE_CASE , 2 ) def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" return (a + b) % 2**32 def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _A ( SCREAMING_SNAKE_CASE : bytes ): """simple docstring""" a__ : Dict =preprocess(SCREAMING_SNAKE_CASE ) a__ : Optional[int] =[int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states a__ : Tuple =0x67_452_301 a__ : Dict =0xEF_CDA_B89 a__ : Optional[Any] =0x98_BAD_CFE a__ : Dict =0x10_325_476 a__ : Optional[Any] =[ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(SCREAMING_SNAKE_CASE ): a__ : Optional[int] =aa a__ : List[str] =ba a__ : List[str] =ca a__ : Any =da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f a__ : Tuple =d ^ (b & (c ^ d)) a__ : str =i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f a__ : int =c ^ (d & (b ^ c)) a__ : List[str] =(5 * i + 1) % 16 elif i <= 47: a__ : int =b ^ c ^ d a__ : Union[str, Any] =(3 * i + 5) % 16 else: a__ : Tuple =c ^ (b | not_aa(SCREAMING_SNAKE_CASE )) a__ : Union[str, Any] =(7 * i) % 16 a__ : List[Any] =(f + a + added_consts[i] + block_words[g]) % 2**32 a__ : Optional[int] =d a__ : str =c a__ : int =b a__ : List[str] =sum_aa(SCREAMING_SNAKE_CASE , left_rotate_aa(SCREAMING_SNAKE_CASE , shift_amounts[i] ) ) # Add hashed chunk to running total a__ : List[Any] =sum_aa(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : Any =sum_aa(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : Any =sum_aa(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : Tuple =sum_aa(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : List[Any] =reformat_hex(SCREAMING_SNAKE_CASE ) + reformat_hex(SCREAMING_SNAKE_CASE ) + reformat_hex(SCREAMING_SNAKE_CASE ) + reformat_hex(SCREAMING_SNAKE_CASE ) return digest if __name__ == "__main__": import doctest doctest.testmod()
563
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Any = logging.get_logger(__name__) def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any]=False ): """simple docstring""" a__ : str =[] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a__ : str =[(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: a__ : Optional[int] ="" else: a__ : Optional[Any] ="vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ : Tuple =state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) a__ : Tuple =state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a__ : Any =in_proj_weight[ : config.hidden_size, : ] a__ : Optional[int] =in_proj_bias[: config.hidden_size] a__ : int =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ : Dict =in_proj_weight[ -config.hidden_size :, : ] a__ : str =in_proj_bias[-config.hidden_size :] def _A ( SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" a__ : str =["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" a__ : Union[str, Any] =dct.pop(SCREAMING_SNAKE_CASE ) a__ : int =val def _A ( ): """simple docstring""" a__ : List[Any] ="http://images.cocodataset.org/val2017/000000039769.jpg" a__ : int =Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _A ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=False ): """simple docstring""" a__ : Optional[Any] =BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=SCREAMING_SNAKE_CASE , ) a__ : List[str] =ViTHybridConfig(backbone_config=SCREAMING_SNAKE_CASE , image_size=384 , num_labels=1_000 ) a__ : int =False # load original model from timm a__ : Tuple =timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys a__ : Optional[int] =timm_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =create_rename_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : Optional[int] ="huggingface/label-files" a__ : Dict ="imagenet-1k-id2label.json" a__ : Tuple =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) a__ : Tuple ={int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} a__ : Optional[Any] =idalabel a__ : Dict ={v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": a__ : Optional[Any] =ViTHybridModel(SCREAMING_SNAKE_CASE ).eval() else: a__ : Tuple =ViTHybridForImageClassification(SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # create image processor a__ : Any =create_transform(**resolve_data_config({} , model=SCREAMING_SNAKE_CASE ) ) a__ : Any =transform.transforms a__ : Tuple ={ "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } a__ : Any =ViTHybridImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=SCREAMING_SNAKE_CASE , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=SCREAMING_SNAKE_CASE , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) a__ : Optional[int] =prepare_img() a__ : List[Any] =transform(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) a__ : List[Any] =processor(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # verify logits with torch.no_grad(): a__ : Optional[Any] =model(SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: a__ : Any =timm_model.forward_features(SCREAMING_SNAKE_CASE ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.pooler_output , atol=1e-3 ) else: a__ : Tuple =timm_model(SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) UpperCAmelCase : int = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
563
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCamelCase_( __magic_name__ : Tuple="" ): """simple docstring""" _lowerCAmelCase :Optional[int] = tempfile.mkdtemp() return os.path.join(lowerCAmelCase__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Union[str, Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 _lowerCAmelCase :Optional[int] = AgentAudio(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(_UpperCAmelCase ) ) # Ensure that the file contains the same value as the original tensor _lowerCAmelCase , _lowerCAmelCase :List[Any] = sf.read(_UpperCAmelCase ) self.assertTrue(torch.allclose(_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , atol=1e-4 ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Dict = torch.rand(12 , dtype=torch.floataa ) - 0.5 _lowerCAmelCase :Tuple = get_new_path(suffix='.wav' ) sf.write(_UpperCAmelCase , _UpperCAmelCase , 1_6000 ) _lowerCAmelCase :Optional[int] = AgentAudio(_UpperCAmelCase ) self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , _UpperCAmelCase ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Any = torch.randint(0 , 256 , (64, 64, 3) ) _lowerCAmelCase :Union[str, Any] = AgentImage(_UpperCAmelCase ) _lowerCAmelCase :Tuple = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :int = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' _lowerCAmelCase :Optional[int] = Image.open(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = AgentImage(_UpperCAmelCase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :int = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' _lowerCAmelCase :Optional[Any] = Image.open(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = AgentImage(_UpperCAmelCase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_UpperCAmelCase ) ) class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[Any] = 'Hey!' _lowerCAmelCase :str = AgentText(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , agent_type.to_string() ) self.assertEqual(_UpperCAmelCase , agent_type.to_raw() ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
714
import math import sys def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" if number != int(__magic_name__ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 _lowerCAmelCase :Optional[Any] = [-1] * (number + 1) _lowerCAmelCase :Optional[Any] = 0 for i in range(1 , number + 1 ): _lowerCAmelCase :Tuple = sys.maxsize _lowerCAmelCase :int = int(math.sqrt(__magic_name__ ) ) for j in range(1 , root + 1 ): _lowerCAmelCase :str = 1 + answers[i - (j**2)] _lowerCAmelCase :List[str] = min(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
382
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowercase__ (__snake_case ): """simple docstring""" def __lt__( self : List[str] , __a : Tuple ): return self[-1] < other[-1] def __eq__( self : Tuple , __a : Any ): return self[-1] == other[-1] def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : list[Stack] = [] # sort into stacks for element in collection: snake_case__ : List[Any] = Stack([element]) snake_case__ : List[str] = bisect_left(UpperCAmelCase_ , UpperCAmelCase_) if i != len(UpperCAmelCase_): stacks[i].append(UpperCAmelCase_) else: stacks.append(UpperCAmelCase_) # use a heap-based merge to merge stack efficiently snake_case__ : Any = merge(*(reversed(UpperCAmelCase_) for stack in stacks)) return collection if __name__ == "__main__": lowercase_: Tuple = input('Enter numbers separated by a comma:\n').strip() lowercase_: List[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
648
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_: Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp lowercase_: str = 5 lowercase_: int = 10 @require_sentencepiece @require_tokenizers class lowercase__ (__snake_case , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[int] = SpeechaTextTokenizer __UpperCamelCase : Dict = False __UpperCamelCase : Tuple = True def lowercase ( self : Tuple ): super().setUp() snake_case__ : str = sp.SentencePieceProcessor() spm_model.Load(__a ) snake_case__ : List[str] = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__a ) )] snake_case__ : Dict = dict(zip(__a , range(len(__a ) ) ) ) snake_case__ : Optional[Any] = Path(self.tmpdirname ) save_json(__a , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__a , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) snake_case__ : str = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self : int ): snake_case__ : Any = """<pad>""" snake_case__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def lowercase ( self : Any ): snake_case__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__a ) , 1_0_0_1 ) def lowercase ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_1 ) def lowercase ( self : Dict ): snake_case__ : List[Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) snake_case__ : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [2_8_9, 5_0, 1_4, 1_7_4, 3_8_6] , ) snake_case__ : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) snake_case__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , [1_2, 2_5, 8_8, 5_9, 2_8, 2_3, 1_1, 4, 6_0_6, 3_5_1, 3_5_1, 3_5_1, 7, 1_6, 7_0, 5_0, 7_6, 8_4, 1_0, 4, 8] ) snake_case__ : int = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def lowercase ( self : List[str] ): # fmt: off snake_case__ : Union[str, Any] = {"""input_ids""": [[3_7_9_1, 7_9_7, 3_1, 1_1, 6_4, 7_9_7, 3_1, 2_4_2_9, 4_3_3, 1_2, 1_1_7_6, 1_2, 2_0, 7_8_6, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 3_2_3_8, 7_9_7, 3_1, 1_1, 3_5, 9_3, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_7, 6_1_0, 4_0, 6_2, 4_5_5, 6_5_7, 1_0_4_2, 1_2_3, 7_8_0, 1_7_7, 3_7, 3_0_9, 2_4_1, 1_2_9_8, 5_1_4, 2_0, 2_9_2, 2_7_3_7, 1_1_4, 2_4_6_9, 2_4_1, 8_5, 6_4, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 4, 5_0_9, 4_0_6, 4_2_3, 3_7, 6_0_1, 4, 7_7_7, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 2_8_4, 4, 3_3_8_8, 5_1_1, 4_5_9, 4, 3_5_5_5, 4_0, 3_2_1, 3_0_2, 7_0_5, 4, 3_3_8_8, 5_1_1, 5_8_3, 3_2_6, 5, 5, 5, 6_2, 3_3_1_0, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 3_2, 3_1, 8_5_3, 4_1_8, 6_4, 5_8_3, 5_1_1, 1_6_0_5, 6_2, 3_5, 9_3, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 1_5_2_1, 6_4, 5_8_3, 5_1_1, 5_1_9, 6_2, 2_0, 1_5_1_5, 7_6_4, 2_0, 1_4_9, 2_6_1, 5_6_2_5, 7_9_7_2, 2_0, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_9_2_5, 1_6_7_5, 1_1, 1_5, 8_0_2, 7_9_7_2, 5_7_6, 2_1_7, 1_5_0_8, 1_1, 3_5, 9_3, 1_2_5_3, 2_4_4_1, 1_5, 2_8_9, 6_5_2, 3_1, 4_1_6, 3_2_1, 3_8_4_2, 1_1_5, 4_0, 9_1_1, 8, 4_7_6, 6_1_9, 4, 3_8_0, 1_4_2, 4_2_3, 3_3_5, 2_4_0, 3_5, 9_3, 2_6_4, 8, 1_1, 3_3_5, 5_6_9, 4_2_0, 1_6_3, 5, 2], [2_6_0, 5_4_8, 5_2_8, 4_2_3, 2_0, 4_5_1, 2_0, 2_6_8_1, 1_1_5_3, 3_4_3_4, 2_0, 5_5_4_0, 3_7, 5_6_7, 1_2_6, 1_2_5_3, 2_4_4_1, 3_3_7_6, 4_4_9, 2_1_0, 4_3_1, 1_5_6_3, 1_7_7, 7_6_7, 5_5_4_0, 1_1, 1_2_0_3, 4_7_2, 1_1, 2_9_5_3, 6_8_5, 2_8_5, 3_6_4, 7_0_6, 1_1_5_3, 2_0, 6_7_9_9, 2_0, 2_8_6_9, 2_0, 4_4_6_4, 1_2_6, 4_0, 2_4_2_9, 2_0, 1_0_4_0, 8_6_6, 2_6_6_4, 4_1_8, 2_0, 3_1_8, 2_0, 1_7_2_6, 1_8_6, 2_0, 2_6_5, 5_2_2, 3_5, 9_3, 2_1_9_1, 4_6_3_4, 2_0, 1_0_4_0, 1_2, 6_7_9_9, 1_5, 2_2_8, 2_3_5_6, 1_4_2, 3_1, 1_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_7_5, 2_6_6_6, 6_8_4, 1_5_8_2, 1_1_7_6, 1_2, 6_2_7, 1_4_9, 6_1_9, 2_0, 4_9_0_2, 5_6_3, 1_1, 2_0, 1_4_9, 2_6_1, 3_4_2_0, 2_3_5_6, 1_7_4, 1_4_2, 4_7_1_4, 1_3_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class lowercase__ (unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = 'valhalla/s2t_mustc_multilinguial_medium' __UpperCamelCase : Union[str, Any] = 'C\'est trop cool' __UpperCamelCase : List[str] = 'Esto es genial' @classmethod def lowercase ( cls : str ): snake_case__ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowercase ( self : List[str] ): self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 1_1 ) def lowercase ( self : List[str] ): self.assertEqual(self.tokenizer.vocab_size , 1_0_0_0_0 ) def lowercase ( self : List[Any] ): self.assertIn(__a , self.tokenizer.all_special_ids ) snake_case__ : Union[str, Any] = [ES_CODE, 4, 1_6_0_1, 4_7, 7_6_4_7, 2] snake_case__ : Optional[int] = self.tokenizer.decode(__a , skip_special_tokens=__a ) snake_case__ : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def lowercase ( self : str ): snake_case__ : Optional[int] = """fr""" snake_case__ : List[Any] = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __a ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def lowercase ( self : int ): snake_case__ : Any = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) snake_case__ : Dict = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
648
1
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.17.0.dev0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') _lowerCAmelCase : int = logging.getLogger(__name__) @dataclass class A_ : lowerCAmelCase__ = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) lowerCAmelCase__ = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) lowerCAmelCase__ = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'A csv or a json file containing the training data.'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'A csv or a json file containing the validation data.'} ) lowerCAmelCase__ = field(default=__a , metadata={'help': 'A csv or a json file containing the test data.'} ) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: _lowerCamelCase : Tuple = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _lowerCamelCase : str = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class A_ : lowerCAmelCase__ = field( default=__a , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowerCamelCase_( ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCamelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _lowerCamelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowerCamelCase : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _lowerCamelCase : Tuple = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _lowerCamelCase : List[Any] = data_args.train_file.split("." )[-1] _lowerCamelCase : List[str] = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _lowerCamelCase : List[Any] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files _lowerCamelCase : List[str] = load_dataset("csv" , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _lowerCamelCase : int = load_dataset("json" , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _lowerCamelCase : Any = raw_datasets["train"].features["label"].names _lowerCamelCase : Any = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _lowerCamelCase : Any = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase__ , ) _lowerCamelCase : str = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _lowerCamelCase : List[str] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _lowerCamelCase : List[str] = False # Some models have set the order of the labels to use, so let's make sure we do use it. _lowerCamelCase : Optional[Any] = {"Refused": 0, "Entailed": 1} _lowerCamelCase : Union[str, Any] = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _lowerCamelCase : List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_lowerCamelCase ): # Tokenize the texts def _convert_table_text_to_pandas(_lowerCamelCase ): _lowerCamelCase : Union[str, Any] = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] _lowerCamelCase : Tuple = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _lowerCamelCase : str = examples["statement"] _lowerCamelCase : Any = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) _lowerCamelCase : Dict = tokenizer(lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) _lowerCamelCase : int = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): _lowerCamelCase : int = raw_datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _lowerCamelCase : Optional[int] = raw_datasets["train"] if data_args.max_train_samples is not None: _lowerCamelCase : Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _lowerCamelCase : int = raw_datasets["validation"] if data_args.max_eval_samples is not None: _lowerCamelCase : Any = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) _lowerCamelCase : Optional[Any] = raw_datasets["test"] if data_args.max_predict_samples is not None: _lowerCamelCase : Tuple = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase ): _lowerCamelCase : Tuple = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase__ ) else p.predictions _lowerCamelCase : Tuple = np.argmax(lowerCAmelCase__ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _lowerCamelCase : Any = default_data_collator elif training_args.fpaa: _lowerCamelCase : str = DataCollatorWithPadding(lowerCAmelCase__ , pad_to_multiple_of=8 ) else: _lowerCamelCase : List[Any] = None # Initialize our Trainer _lowerCamelCase : Any = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: _lowerCamelCase : Optional[int] = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase : Any = last_checkpoint _lowerCamelCase : List[str] = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) _lowerCamelCase : int = train_result.metrics _lowerCamelCase : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) _lowerCamelCase : List[str] = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowerCAmelCase__ ) trainer.save_metrics("train" , lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : List[Any] = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) _lowerCamelCase : Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) _lowerCamelCase : List[str] = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics("eval" , lowerCAmelCase__ ) trainer.save_metrics("eval" , lowerCAmelCase__ ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _lowerCamelCase : List[Any] = predict_dataset.remove_columns("label" ) _lowerCamelCase : Tuple = trainer.predict(lowerCAmelCase__ , metric_key_prefix="predict" ).predictions _lowerCamelCase : Union[str, Any] = np.argmax(lowerCAmelCase__ , axis=1 ) _lowerCamelCase : Any = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(lowerCAmelCase__ ): _lowerCamelCase : str = label_list[item] writer.write(F"""{index}\t{item}\n""" ) _lowerCamelCase : List[str] = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' main() if __name__ == "__main__": main()
706
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ ( _a ): lowerCAmelCase__ = 'detr' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self: Optional[Any] ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Tuple=3 ,__lowerCAmelCase: Any=100 ,__lowerCAmelCase: Dict=6 ,__lowerCAmelCase: str=2_048 ,__lowerCAmelCase: List[Any]=8 ,__lowerCAmelCase: Union[str, Any]=6 ,__lowerCAmelCase: Optional[int]=2_048 ,__lowerCAmelCase: Dict=8 ,__lowerCAmelCase: Optional[int]=0.0 ,__lowerCAmelCase: int=0.0 ,__lowerCAmelCase: int=True ,__lowerCAmelCase: int="relu" ,__lowerCAmelCase: Optional[int]=256 ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: List[Any]=0.0 ,__lowerCAmelCase: Union[str, Any]=0.02 ,__lowerCAmelCase: Tuple=1.0 ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]="sine" ,__lowerCAmelCase: List[Any]="resnet50" ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: int=1 ,__lowerCAmelCase: Union[str, Any]=5 ,__lowerCAmelCase: Tuple=2 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: List[Any]=1 ,__lowerCAmelCase: int=5 ,__lowerCAmelCase: List[Any]=2 ,__lowerCAmelCase: List[str]=0.1 ,**__lowerCAmelCase: Union[str, Any] ,): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _lowerCamelCase : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = backbone_config.get("model_type" ) _lowerCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : Optional[Any] = config_class.from_dict(__lowerCAmelCase ) # set timm attributes to None _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = None, None, None _lowerCamelCase : Optional[int] = use_timm_backbone _lowerCamelCase : List[Any] = backbone_config _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : Any = num_queries _lowerCamelCase : List[str] = d_model _lowerCamelCase : Any = encoder_ffn_dim _lowerCamelCase : List[str] = encoder_layers _lowerCamelCase : List[Any] = encoder_attention_heads _lowerCamelCase : List[Any] = decoder_ffn_dim _lowerCamelCase : Optional[Any] = decoder_layers _lowerCamelCase : str = decoder_attention_heads _lowerCamelCase : List[str] = dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : Union[str, Any] = activation_dropout _lowerCamelCase : int = activation_function _lowerCamelCase : List[Any] = init_std _lowerCamelCase : int = init_xavier_std _lowerCamelCase : Union[str, Any] = encoder_layerdrop _lowerCamelCase : List[str] = decoder_layerdrop _lowerCamelCase : int = encoder_layers _lowerCamelCase : Any = auxiliary_loss _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : int = backbone _lowerCamelCase : int = use_pretrained_backbone _lowerCamelCase : Dict = dilation # Hungarian matcher _lowerCamelCase : Tuple = class_cost _lowerCamelCase : List[str] = bbox_cost _lowerCamelCase : int = giou_cost # Loss coefficients _lowerCamelCase : List[Any] = mask_loss_coefficient _lowerCamelCase : Optional[Any] = dice_loss_coefficient _lowerCamelCase : Dict = bbox_loss_coefficient _lowerCamelCase : Tuple = giou_loss_coefficient _lowerCamelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=__lowerCAmelCase ,**__lowerCAmelCase ) @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return self.encoder_attention_heads @property def _lowercase ( self: List[Any] ): '''simple docstring''' return self.d_model @classmethod def _lowercase ( cls: Dict ,__lowerCAmelCase: PretrainedConfig ,**__lowerCAmelCase: int ): '''simple docstring''' return cls(backbone_config=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowerCamelCase : Union[str, Any] = self.backbone_config.to_dict() _lowerCamelCase : List[str] = self.__class__.model_type return output class A_ ( _a ): lowerCAmelCase__ = version.parse('1.11' ) @property def _lowercase ( self: List[str] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowercase ( self: List[Any] ): '''simple docstring''' return 1e-5 @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return 12
386
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase = 16 __UpperCAmelCase = 32 def _snake_case ( A , A , A , A , A = 16 ) -> Optional[Any]: lowerCAmelCase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCAmelCase__ = DatasetDict( { '''train''': dataset['''train'''].select(A ), '''validation''': dataset['''train'''].select(A ), '''test''': dataset['''validation'''], } ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) lowerCAmelCase__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) lowerCAmelCase__ = DataLoader( tokenized_datasets['''test'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader, test_dataloader def _snake_case ( A , A ) -> int: # New Code # lowerCAmelCase__ = [] # Download the dataset lowerCAmelCase__ = load_dataset('''glue''' , '''mrpc''' ) # Create our splits lowerCAmelCase__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config['''lr'''] lowerCAmelCase__ = int(config['''num_epochs'''] ) lowerCAmelCase__ = int(config['''seed'''] ) lowerCAmelCase__ = int(config['''batch_size'''] ) lowerCAmelCase__ = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ = MAX_GPU_BATCH_SIZE set_seed(A ) # New Code # # Create our folds: lowerCAmelCase__ = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) lowerCAmelCase__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_fold_dataloaders( A , A , A , A , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=100 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( A , A , A , A , A ) # Now we train the model for epoch in range(A ): model.train() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ = model(**A ) lowerCAmelCase__ = outputs.loss lowerCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**A ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , A ) # New Code # # We also run predictions on the test set at the very end lowerCAmelCase__ = [] for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**A ) lowerCAmelCase__ = outputs.logits lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCAmelCase__ = torch.cat(A , dim=0 ) lowerCAmelCase__ = torch.stack(A , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCAmelCase__ = metric.compute(predictions=A , references=A ) accelerator.print('''Average test metrics from all folds:''' , A ) def _snake_case ( ) -> List[str]: lowerCAmelCase__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=A , default=3 , help='''The number of splits to perform across the dataset''' ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
90
"""simple docstring""" _A = 256 # Modulus to hash a string _A = 1_000_003 def lowercase (_snake_case ,_snake_case ) -> bool: '''simple docstring''' __UpperCamelCase = len(_snake_case ) __UpperCamelCase = len(_snake_case ) if p_len > t_len: return False __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): __UpperCamelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCamelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCamelCase = (modulus_power * alphabet_size) % modulus for i in range(0 ,t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCamelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowercase () -> None: '''simple docstring''' __UpperCamelCase = "abc1abc12" __UpperCamelCase = "alskfjaldsabc1abc1abc12k23adsfabcabc" __UpperCamelCase = "alskfjaldsk23adsfabcabc" assert rabin_karp(_snake_case ,_snake_case ) and not rabin_karp(_snake_case ,_snake_case ) # Test 2) __UpperCamelCase = "ABABX" __UpperCamelCase = "ABABZABABYABABX" assert rabin_karp(_snake_case ,_snake_case ) # Test 3) __UpperCamelCase = "AAAB" __UpperCamelCase = "ABAAAAAB" assert rabin_karp(_snake_case ,_snake_case ) # Test 4) __UpperCamelCase = "abcdabcy" __UpperCamelCase = "abcxabcdabxabcdabcdabcy" assert rabin_karp(_snake_case ,_snake_case ) # Test 5) __UpperCamelCase = "Lü" __UpperCamelCase = "Lüsai" assert rabin_karp(_snake_case ,_snake_case ) __UpperCamelCase = "Lue" assert not rabin_karp(_snake_case ,_snake_case ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
505
0
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="shi-labs/oneformer_demo" ): with open(hf_hub_download(lowerCamelCase_, lowerCamelCase_, repo_type='dataset' ), 'r' ) as f: SCREAMING_SNAKE_CASE = json.load(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for key, info in class_info.items(): SCREAMING_SNAKE_CASE = info["""name"""] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE = thing_ids SCREAMING_SNAKE_CASE = class_names return metadata class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=30 , lowercase__=400 , lowercase__=None , lowercase__=True , lowercase__=True , lowercase__=[0.5, 0.5, 0.5] , lowercase__=[0.5, 0.5, 0.5] , lowercase__=10 , lowercase__=False , lowercase__=255 , lowercase__="shi-labs/oneformer_demo" , lowercase__="ade20k_panoptic.json" , lowercase__=10 , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = {"""shortest_edge""": 32, """longest_edge""": 1333} if size is None else size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = class_info_file SCREAMING_SNAKE_CASE = prepare_metadata(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE = num_text SCREAMING_SNAKE_CASE = repo_path # for the post_process_functions SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = do_reduce_labels SCREAMING_SNAKE_CASE = ignore_index def A ( self ) -> List[str]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self , lowercase__ , lowercase__=False ) -> Optional[int]: """simple docstring""" if not batched: SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(lowerCamelCase_ , Image.Image ): SCREAMING_SNAKE_CASE = image.size else: SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] elif w > h: SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] SCREAMING_SNAKE_CASE = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] else: SCREAMING_SNAKE_CASE = [] for image in image_inputs: SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE = max(lowerCamelCase_ , key=lambda lowercase__ : item[0] )[0] SCREAMING_SNAKE_CASE = max(lowerCamelCase_ , key=lambda lowercase__ : item[1] )[1] return expected_height, expected_width def A ( self ) -> int: """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class UpperCamelCase ( lowercase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Tuple = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string UpperCAmelCase_ : Optional[Any] = image_processing_class def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = OneFormerImageProcessorTester(self ) @property def A ( self ) -> str: """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'image_std' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'size' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'ignore_index' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'class_info_file' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'num_text' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'repo_path' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'metadata' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'do_reduce_labels' ) ) def A ( self ) -> List[Any]: """simple docstring""" pass def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_ ) SCREAMING_SNAKE_CASE = image_processor( lowerCamelCase_ , ['semantic'] * len(lowerCamelCase_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_ ) SCREAMING_SNAKE_CASE = image_processor( lowerCamelCase_ , ['semantic'] * len(lowerCamelCase_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_ ) SCREAMING_SNAKE_CASE = image_processor( lowerCamelCase_ , ['semantic'] * len(lowerCamelCase_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self , lowercase__=False , lowercase__=False , lowercase__="np" ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # prepare image and target SCREAMING_SNAKE_CASE = self.image_processing_tester.num_labels SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase_ ) if with_segmentation_maps: SCREAMING_SNAKE_CASE = num_labels if is_instance_map: SCREAMING_SNAKE_CASE = list(range(lowerCamelCase_ ) ) * 2 SCREAMING_SNAKE_CASE = dict(enumerate(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": SCREAMING_SNAKE_CASE = [Image.fromarray(lowerCamelCase_ ) for annotation in annotations] SCREAMING_SNAKE_CASE = image_processor( lowerCamelCase_ , ['semantic'] * len(lowerCamelCase_ ) , lowerCamelCase_ , return_tensors='pt' , instance_id_to_semantic_id=lowerCamelCase_ , pad_and_return_pixel_mask=lowerCamelCase_ , ) return inputs def A ( self ) -> Any: """simple docstring""" pass def A ( self ) -> Optional[int]: """simple docstring""" def common(lowercase__=False , lowercase__=None ): SCREAMING_SNAKE_CASE = self.comm_get_image_processor_inputs( with_segmentation_maps=lowerCamelCase_ , is_instance_map=lowerCamelCase_ , segmentation_type=lowerCamelCase_ ) SCREAMING_SNAKE_CASE = inputs["""mask_labels"""] SCREAMING_SNAKE_CASE = inputs["""class_labels"""] SCREAMING_SNAKE_CASE = inputs["""pixel_values"""] SCREAMING_SNAKE_CASE = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(lowerCamelCase_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=lowerCamelCase_ ) common(is_instance_map=lowerCamelCase_ , segmentation_type='pil' ) common(is_instance_map=lowerCamelCase_ , segmentation_type='pil' ) def A ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = np.zeros((20, 50) ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = binary_mask_to_rle(lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() SCREAMING_SNAKE_CASE = fature_extractor.post_process_semantic_segmentation(lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) SCREAMING_SNAKE_CASE = [(1, 4) for i in range(self.image_processing_tester.batch_size )] SCREAMING_SNAKE_CASE = fature_extractor.post_process_semantic_segmentation(lowerCamelCase_ , target_sizes=lowerCamelCase_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() SCREAMING_SNAKE_CASE = image_processor.post_process_instance_segmentation(lowerCamelCase_ , threshold=0 ) self.assertTrue(len(lowerCamelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , lowerCamelCase_ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() SCREAMING_SNAKE_CASE = image_processor.post_process_panoptic_segmentation(lowerCamelCase_ , threshold=0 ) self.assertTrue(len(lowerCamelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , lowerCamelCase_ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
713
"""simple docstring""" import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging snake_case = logging.get_logger(__name__) snake_case = R'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class UpperCamelCase ( __magic_name__ ): """simple docstring""" @add_start_docstrings(lowercase__ ) def __call__( self , lowercase__ , lowercase__ , **lowercase__ ) -> bool: """simple docstring""" raise NotImplementedError('StoppingCriteria needs to be subclassed' ) class UpperCamelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowercase__ , lowercase__ = None ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = max_position_embeddings @add_start_docstrings(lowercase__ ) def __call__( self , lowercase__ , lowercase__ , **lowercase__ ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE = input_ids.shape[-1] SCREAMING_SNAKE_CASE = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( 'This is a friendly reminder - the current text generation call will exceed the model\'s predefined ' f'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' 'exceptions, performance degradation, or nothing at all.' ) return is_done class UpperCamelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" warnings.warn( 'The class `MaxNewTokensCriteria` is deprecated. ' f'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' 'with `max_length = start_length + max_new_tokens` instead.' , lowercase__ , ) SCREAMING_SNAKE_CASE = start_length SCREAMING_SNAKE_CASE = max_new_tokens SCREAMING_SNAKE_CASE = start_length + max_new_tokens @add_start_docstrings(lowercase__ ) def __call__( self , lowercase__ , lowercase__ , **lowercase__ ) -> bool: """simple docstring""" return input_ids.shape[-1] >= self.max_length class UpperCamelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowercase__ , lowercase__ = None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = max_time SCREAMING_SNAKE_CASE = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(lowercase__ ) def __call__( self , lowercase__ , lowercase__ , **lowercase__ ) -> bool: """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class UpperCamelCase ( __magic_name__ ): """simple docstring""" @add_start_docstrings(lowercase__ ) def __call__( self , lowercase__ , lowercase__ , **lowercase__ ) -> bool: """simple docstring""" return any(criteria(lowercase__ , lowercase__ ) for criteria in self ) @property def A ( self ) -> Optional[int]: """simple docstring""" for stopping_criterium in self: if isinstance(lowercase__ , lowercase__ ): return stopping_criterium.max_length elif isinstance(lowercase__ , lowercase__ ): return stopping_criterium.max_length return None def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = stopping_criteria.max_length SCREAMING_SNAKE_CASE = deepcopy(SCREAMING_SNAKE_CASE_ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter', SCREAMING_SNAKE_CASE_ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=SCREAMING_SNAKE_CASE_ ) ) return new_stopping_criteria
406
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
618
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ :List[Any] = { '''sample_size''': 3_2, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_0_0_0, '''block_out_channels''': [3_2, 6_4], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowerCAmelCase__ :List[str] = { '''sample_size''': 6_4, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_0_0_0, '''block_out_channels''': [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], '''attention_head_dim''': 6_4, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowerCAmelCase__ :Any = { '''sample_size''': 2_5_6, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], '''attention_head_dim''': 6_4, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowerCAmelCase__ :Optional[int] = { '''num_train_timesteps''': 4_0, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } lowerCAmelCase__ :Optional[int] = { '''num_train_timesteps''': 2_0_1, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } lowerCAmelCase__ :Any = { '''num_train_timesteps''': 1_5_1, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def lowerCAmelCase__ ( a__: Optional[int] ) -> int: '''simple docstring''' if isinstance(a__ , a__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCAmelCase__ ( a__: Dict , a__: int , a__: Union[str, Any] , a__: Dict , a__: Optional[int]=False ) -> Dict: '''simple docstring''' _UpperCAmelCase = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCAmelCase = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCAmelCase = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCAmelCase = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCAmelCase = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCAmelCase = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCAmelCase = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCAmelCase = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCAmelCase = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCAmelCase = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCAmelCase = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCAmelCase = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCAmelCase__ ( a__: Any , a__: Any , a__: List[str] , a__: List[Any] , a__: List[str]=None ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCAmelCase = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCAmelCase = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCAmelCase = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCAmelCase = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCAmelCase = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCAmelCase = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCAmelCase = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCAmelCase = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCAmelCase = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCAmelCase = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCAmelCase__ ( a__: str , a__: Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = torch.load(a__ , map_location='cpu' ) _UpperCAmelCase = {} _UpperCAmelCase = checkpoint['time_embed.0.weight'] _UpperCAmelCase = checkpoint['time_embed.0.bias'] _UpperCAmelCase = checkpoint['time_embed.2.weight'] _UpperCAmelCase = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCAmelCase = checkpoint['label_emb.weight'] _UpperCAmelCase = checkpoint['input_blocks.0.0.weight'] _UpperCAmelCase = checkpoint['input_blocks.0.0.bias'] _UpperCAmelCase = unet_config['down_block_types'] _UpperCAmelCase = unet_config['layers_per_block'] _UpperCAmelCase = unet_config['attention_head_dim'] _UpperCAmelCase = unet_config['block_out_channels'] _UpperCAmelCase = 1 _UpperCAmelCase = channels_list[0] for i, layer_type in enumerate(a__ ): _UpperCAmelCase = channels_list[i] _UpperCAmelCase = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(a__ ): _UpperCAmelCase = F'''down_blocks.{i}.resnets.{j}''' _UpperCAmelCase = F'''input_blocks.{current_layer}.0''' _UpperCAmelCase = True if j == 0 and downsample_block_has_skip else False _UpperCAmelCase = convert_resnet(a__ , a__ , a__ , a__ , has_skip=a__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(a__ ): _UpperCAmelCase = F'''down_blocks.{i}.resnets.{j}''' _UpperCAmelCase = F'''input_blocks.{current_layer}.0''' _UpperCAmelCase = True if j == 0 and downsample_block_has_skip else False _UpperCAmelCase = convert_resnet(a__ , a__ , a__ , a__ , has_skip=a__ ) _UpperCAmelCase = F'''down_blocks.{i}.attentions.{j}''' _UpperCAmelCase = F'''input_blocks.{current_layer}.1''' _UpperCAmelCase = convert_attention( a__ , a__ , a__ , a__ , a__ ) current_layer += 1 if i != len(a__ ) - 1: _UpperCAmelCase = F'''down_blocks.{i}.downsamplers.0''' _UpperCAmelCase = F'''input_blocks.{current_layer}.0''' _UpperCAmelCase = convert_resnet(a__ , a__ , a__ , a__ ) current_layer += 1 _UpperCAmelCase = current_channels # hardcoded the mid-block for now _UpperCAmelCase = 'mid_block.resnets.0' _UpperCAmelCase = 'middle_block.0' _UpperCAmelCase = convert_resnet(a__ , a__ , a__ , a__ ) _UpperCAmelCase = 'mid_block.attentions.0' _UpperCAmelCase = 'middle_block.1' _UpperCAmelCase = convert_attention(a__ , a__ , a__ , a__ , a__ ) _UpperCAmelCase = 'mid_block.resnets.1' _UpperCAmelCase = 'middle_block.2' _UpperCAmelCase = convert_resnet(a__ , a__ , a__ , a__ ) _UpperCAmelCase = 0 _UpperCAmelCase = unet_config['up_block_types'] for i, layer_type in enumerate(a__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCAmelCase = F'''up_blocks.{i}.resnets.{j}''' _UpperCAmelCase = F'''output_blocks.{current_layer}.0''' _UpperCAmelCase = convert_resnet(a__ , a__ , a__ , a__ , has_skip=a__ ) current_layer += 1 if i != len(a__ ) - 1: _UpperCAmelCase = F'''up_blocks.{i}.upsamplers.0''' _UpperCAmelCase = F'''output_blocks.{current_layer-1}.1''' _UpperCAmelCase = convert_resnet(a__ , a__ , a__ , a__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCAmelCase = F'''up_blocks.{i}.resnets.{j}''' _UpperCAmelCase = F'''output_blocks.{current_layer}.0''' _UpperCAmelCase = convert_resnet(a__ , a__ , a__ , a__ , has_skip=a__ ) _UpperCAmelCase = F'''up_blocks.{i}.attentions.{j}''' _UpperCAmelCase = F'''output_blocks.{current_layer}.1''' _UpperCAmelCase = convert_attention( a__ , a__ , a__ , a__ , a__ ) current_layer += 1 if i != len(a__ ) - 1: _UpperCAmelCase = F'''up_blocks.{i}.upsamplers.0''' _UpperCAmelCase = F'''output_blocks.{current_layer-1}.2''' _UpperCAmelCase = convert_resnet(a__ , a__ , a__ , a__ ) _UpperCAmelCase = checkpoint['out.0.weight'] _UpperCAmelCase = checkpoint['out.0.bias'] _UpperCAmelCase = checkpoint['out.2.weight'] _UpperCAmelCase = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ :Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') lowerCAmelCase__ :Dict = parser.parse_args() lowerCAmelCase__ :List[str] = strabool(args.class_cond) lowerCAmelCase__ :Any = os.path.basename(args.unet_path) print(f'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ :Union[str, Any] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ :Tuple = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ :Any = TEST_UNET_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: lowerCAmelCase__ :str = None lowerCAmelCase__ :Tuple = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ :Optional[int] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ :int = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ :Union[str, Any] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ :Tuple = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') lowerCAmelCase__ :Any = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ :Union[str, Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
618
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE_ ( lowercase__ ): '''simple docstring''' lowercase : List[Any] = "Speech2TextFeatureExtractor" lowercase : str = "Speech2TextTokenizer" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: super().__init__(__lowerCamelCase , __lowerCamelCase ) A : str =self.feature_extractor A : Optional[int] =False def __call__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase , **__lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) A : Tuple =kwargs.pop('raw_speech' ) else: A : Optional[int] =kwargs.pop('audio' , __lowerCamelCase ) A : Any =kwargs.pop('sampling_rate' , __lowerCamelCase ) A : Optional[int] =kwargs.pop('text' , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: A : List[str] =args[0] A : int =args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: A : List[str] =self.feature_extractor(__lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , **__lowerCamelCase ) if text is not None: A : str =self.tokenizer(__lowerCamelCase , **__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: A : List[str] =encodings["input_ids"] return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @contextmanager def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) A : int =True A : Dict =self.tokenizer yield A : Tuple =self.feature_extractor A : Any =False
705
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowercase : Optional[int] =logging.get_logger(__name__) _lowercase : List[str] ={ '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : int = "deberta-v2" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE__ ) A : Dict =hidden_size A : Optional[Any] =num_hidden_layers A : Optional[int] =num_attention_heads A : Optional[int] =intermediate_size A : Any =hidden_act A : Any =hidden_dropout_prob A : Union[str, Any] =attention_probs_dropout_prob A : Optional[Any] =max_position_embeddings A : Tuple =type_vocab_size A : Tuple =initializer_range A : int =relative_attention A : int =max_relative_positions A : Optional[Any] =pad_token_id A : Union[str, Any] =position_biased_input # Backwards compatibility if type(SCREAMING_SNAKE_CASE__ ) == str: A : Any =[x.strip() for x in pos_att_type.lower().split('|' )] A : Any =pos_att_type A : Tuple =vocab_size A : Any =layer_norm_eps A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ ) A : str =pooler_dropout A : Any =pooler_hidden_act class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'} else: A : int ={0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE_ ( self : int ) -> int: return 12 def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
661
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : List[Any] = IFInpaintingSuperResolutionPipeline lowerCamelCase_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} lowerCamelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) lowerCamelCase_ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def _lowercase ( self ) -> Tuple: return self._get_superresolution_dummy_components() def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[Any]: if str(UpperCamelCase__ ).startswith("mps" ): lowerCamelCase : int = torch.manual_seed(UpperCamelCase__ ) else: lowerCamelCase : Optional[int] = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowerCamelCase : int = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCamelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCamelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCamelCase : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowercase ( self ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _lowercase ( self ) -> Any: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowercase ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowercase ( self ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowercase ( self ) -> Dict: self._test_save_load_local() def _lowercase ( self ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
311
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' def __init__( self , *UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> List[Any]: super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = eval_examples lowerCamelCase : Optional[int] = post_process_function def _lowercase ( self , UpperCamelCase__ = None , UpperCamelCase__=None , UpperCamelCase__ = None , UpperCamelCase__ = "eval" , **UpperCamelCase__ , ) -> Dict[str, float]: lowerCamelCase : Dict = gen_kwargs.copy() lowerCamelCase : List[str] = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) lowerCamelCase : List[str] = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) lowerCamelCase : Optional[Any] = gen_kwargs lowerCamelCase : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase : List[str] = self.get_eval_dataloader(UpperCamelCase__ ) lowerCamelCase : Optional[int] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase : Dict = self.compute_metrics lowerCamelCase : Any = None lowerCamelCase : Optional[int] = time.time() lowerCamelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase : Dict = eval_loop( UpperCamelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , metric_key_prefix=UpperCamelCase__ , ) finally: lowerCamelCase : Union[str, Any] = compute_metrics lowerCamelCase : Optional[Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( UpperCamelCase__ , UpperCamelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase : List[str] = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : int = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): lowerCamelCase : Any = metrics.pop(UpperCamelCase__ ) metrics.update(output.metrics ) else: lowerCamelCase : Tuple = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase : Optional[int] = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase__ ) return metrics def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__ = "test" , **UpperCamelCase__ ) -> int: lowerCamelCase : str = gen_kwargs.copy() lowerCamelCase : str = self.get_test_dataloader(UpperCamelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase : Union[str, Any] = self.compute_metrics lowerCamelCase : int = None lowerCamelCase : Optional[int] = time.time() lowerCamelCase : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase : Any = eval_loop( UpperCamelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , metric_key_prefix=UpperCamelCase__ , ) finally: lowerCamelCase : Tuple = compute_metrics lowerCamelCase : Optional[Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( UpperCamelCase__ , UpperCamelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase : str = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , "predict" ) lowerCamelCase : Dict = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): lowerCamelCase : int = metrics.pop(UpperCamelCase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase__ )
311
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'unispeech' def __init__( self :Optional[Any] , _lowercase :str=32 , _lowercase :Optional[Any]=7_68 , _lowercase :List[Any]=12 , _lowercase :List[str]=12 , _lowercase :List[Any]=30_72 , _lowercase :Optional[Any]="gelu" , _lowercase :str=0.1 , _lowercase :Union[str, Any]=0.1 , _lowercase :Optional[int]=0.1 , _lowercase :List[Any]=0.0 , _lowercase :int=0.0 , _lowercase :Union[str, Any]=0.1 , _lowercase :Dict=0.1 , _lowercase :int=0.02 , _lowercase :int=1e-5 , _lowercase :List[Any]="group" , _lowercase :int="gelu" , _lowercase :Any=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _lowercase :Any=(5, 2, 2, 2, 2, 2, 2) , _lowercase :str=(10, 3, 3, 3, 3, 2, 2) , _lowercase :str=False , _lowercase :Optional[int]=1_28 , _lowercase :int=16 , _lowercase :Dict=False , _lowercase :List[Any]=True , _lowercase :int=0.05 , _lowercase :Dict=10 , _lowercase :Optional[int]=2 , _lowercase :str=0.0 , _lowercase :Tuple=10 , _lowercase :Optional[int]=0 , _lowercase :List[Any]=3_20 , _lowercase :Tuple=2 , _lowercase :Optional[int]=0.1 , _lowercase :List[Any]=1_00 , _lowercase :Optional[Any]=2_56 , _lowercase :Any=2_56 , _lowercase :List[Any]=0.1 , _lowercase :Optional[Any]="mean" , _lowercase :int=False , _lowercase :Tuple=False , _lowercase :Tuple=2_56 , _lowercase :Optional[int]=80 , _lowercase :Union[str, Any]=0 , _lowercase :Tuple=1 , _lowercase :Optional[int]=2 , _lowercase :str=0.5 , **_lowercase :Tuple , ): '''simple docstring''' super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) lowercase__ = hidden_size lowercase__ = feat_extract_norm lowercase__ = feat_extract_activation lowercase__ = list(_lowercase ) lowercase__ = list(_lowercase ) lowercase__ = list(_lowercase ) lowercase__ = conv_bias lowercase__ = num_conv_pos_embeddings lowercase__ = num_conv_pos_embedding_groups lowercase__ = len(self.conv_dim ) lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_attention_heads lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = feat_proj_dropout lowercase__ = final_dropout lowercase__ = layerdrop lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = num_ctc_classes lowercase__ = vocab_size lowercase__ = do_stable_layer_norm lowercase__ = use_weighted_layer_sum lowercase__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = apply_spec_augment lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ = num_codevectors_per_group lowercase__ = num_codevector_groups lowercase__ = contrastive_logits_temperature lowercase__ = feat_quantizer_dropout lowercase__ = num_negatives lowercase__ = codevector_dim lowercase__ = proj_codevector_dim lowercase__ = diversity_loss_weight # ctc loss lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # pretraining loss lowercase__ = replace_prob @property def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
611
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowerCAmelCase : @staticmethod def UpperCAmelCase ( *_lowercase :List[Any] , **_lowercase :Tuple ): '''simple docstring''' pass def _A ( __magic_name__ ): lowercase__ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowerCAmelCase ( unittest.TestCase ): __lowerCamelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCAmelCase ( self :Dict , _lowercase :str , _lowercase :Union[str, Any] , _lowercase :Tuple ): '''simple docstring''' lowercase__ = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase ( self :List[Any] , _lowercase :Optional[int] , _lowercase :str ): '''simple docstring''' lowercase__ = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , _lowercase ) import datasets lowercase__ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) lowercase__ = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def UpperCAmelCase ( self :str ): '''simple docstring''' pass @slow @require_torch def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = "Intel/dpt-large" lowercase__ = pipeline("depth-estimation" , model=_lowercase ) lowercase__ = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) lowercase__ = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
611
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _lowercase = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _lowercase = get_tests_dir("""fixtures/vocab.json""") _lowercase = get_tests_dir("""fixtures""") class lowercase_ ( unittest.TestCase ): __lowerCamelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Any =0 def _snake_case ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Optional[Any] =AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(_a , _a ) def _snake_case ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : Dict =WavaVecaConfig() SCREAMING_SNAKE_CASE_ : Optional[Any] =AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(_a ) processor.save_pretrained(_a ) SCREAMING_SNAKE_CASE_ : str =AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _snake_case ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_a , os.path.join(_a , _a ) ) copyfile(_a , os.path.join(_a , '''vocab.json''' ) ) SCREAMING_SNAKE_CASE_ : List[Any] =AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _snake_case ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : int =WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE_ : List[str] =AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) SCREAMING_SNAKE_CASE_ : List[str] =WavaVecaProcessor(_a , _a ) # save in new folder processor.save_pretrained(_a ) # drop `processor_class` in tokenizer with open(os.path.join(_a , _a ) , '''r''' ) as f: SCREAMING_SNAKE_CASE_ : Dict =json.load(_a ) config_dict.pop('''processor_class''' ) with open(os.path.join(_a , _a ) , '''w''' ) as f: f.write(json.dumps(_a ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _snake_case ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : str =WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE_ : List[Any] =AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) SCREAMING_SNAKE_CASE_ : int =WavaVecaProcessor(_a , _a ) # save in new folder processor.save_pretrained(_a ) # drop `processor_class` in feature extractor with open(os.path.join(_a , _a ) , '''r''' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] =json.load(_a ) config_dict.pop('''processor_class''' ) with open(os.path.join(_a , _a ) , '''w''' ) as f: f.write(json.dumps(_a ) ) SCREAMING_SNAKE_CASE_ : Any =AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _snake_case ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : Optional[Any] =WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(_a ) # copy relevant files copyfile(_a , os.path.join(_a , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(_a , _a ) , '''w''' ) as f: f.write('''{}''' ) SCREAMING_SNAKE_CASE_ : Any =AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _snake_case ( self ) -> Any: with self.assertRaises(_a ): SCREAMING_SNAKE_CASE_ : List[Any] =AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): SCREAMING_SNAKE_CASE_ : Any =AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a ) SCREAMING_SNAKE_CASE_ : List[str] =AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] =processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) SCREAMING_SNAKE_CASE_ : int =processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE_ : Any =AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a , use_fast=_a ) SCREAMING_SNAKE_CASE_ : Tuple =new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def _snake_case ( self ) -> List[str]: try: AutoConfig.register('''custom''' , _a ) AutoFeatureExtractor.register(_a , _a ) AutoTokenizer.register(_a , slow_tokenizer_class=_a ) AutoProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoProcessor.register(_a , _a ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ : Any =CustomFeatureExtractor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : str =os.path.join(_a , '''vocab.txt''' ) with open(_a , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : str =CustomTokenizer(_a ) SCREAMING_SNAKE_CASE_ : List[Any] =CustomProcessor(_a , _a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_a ) SCREAMING_SNAKE_CASE_ : Any =AutoProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> Optional[Any]: class lowercase_ ( __SCREAMING_SNAKE_CASE ): __lowerCamelCase = False class lowercase_ ( __SCREAMING_SNAKE_CASE ): __lowerCamelCase = False class lowercase_ ( __SCREAMING_SNAKE_CASE ): __lowerCamelCase = "AutoFeatureExtractor" __lowerCamelCase = "AutoTokenizer" __lowerCamelCase = False try: AutoConfig.register('''custom''' , _a ) AutoFeatureExtractor.register(_a , _a ) AutoTokenizer.register(_a , slow_tokenizer_class=_a ) AutoProcessor.register(_a , _a ) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE_ : List[Any] =AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE_ : int =AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE_ : List[str] =AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_a ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> Dict: SCREAMING_SNAKE_CASE_ : List[Any] =AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : List[Any] =AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class lowercase_ ( unittest.TestCase ): __lowerCamelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _snake_case ( cls ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Tuple =TOKEN HfFolder.save_token(_a ) @classmethod def _snake_case ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def _snake_case ( self ) -> str: SCREAMING_SNAKE_CASE_ : Union[str, Any] =WavaVecaProcessor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_a , '''test-processor''' ) , push_to_hub=_a , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(new_processor.feature_extractor , _a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Dict =WavaVecaProcessor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_a , '''test-processor-org''' ) , push_to_hub=_a , use_auth_token=self._token , organization='''valid_org''' , ) SCREAMING_SNAKE_CASE_ : Any =WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(new_processor.feature_extractor , _a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _snake_case ( self ) -> str: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE_ : Tuple =CustomFeatureExtractor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Tuple =os.path.join(_a , '''vocab.txt''' ) with open(_a , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : int =CustomTokenizer(_a ) SCREAMING_SNAKE_CASE_ : str =CustomProcessor(_a , _a ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'{USER}/test-dynamic-processor' , token=self._token ) SCREAMING_SNAKE_CASE_ : List[Any] =Repository(_a , clone_from=F'{USER}/test-dynamic-processor' , token=self._token ) processor.save_pretrained(_a ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_a , '''tokenizer_config.json''' ) ) as f: SCREAMING_SNAKE_CASE_ : List[str] =json.load(_a ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_a , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_a , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_a , '''custom_processing.py''' ) ) ) repo.push_to_hub() SCREAMING_SNAKE_CASE_ : Any =AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' , trust_remote_code=_a ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
443
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[str]=7 ,_a : Dict=True ,_a : List[Any]=True ,_a : Dict=False ,_a : Optional[int]=True ,_a : List[Any]=99 ,_a : Any=32 ,_a : Optional[int]=5 ,_a : List[Any]=4 ,_a : int=37 ,_a : List[Any]="gelu" ,_a : List[str]=0.1 ,_a : Union[str, Any]=0.1 ,_a : Any=512 ,_a : int=16 ,_a : Optional[int]=2 ,_a : Any=0.02 ,_a : Any=3 ,_a : Any=4 ,_a : List[str]=None ,): '''simple docstring''' A_ : List[str] = parent A_ : Any = batch_size A_ : Tuple = seq_length A_ : List[str] = is_training A_ : Tuple = use_input_mask A_ : Dict = use_token_type_ids A_ : List[Any] = use_labels A_ : Union[str, Any] = vocab_size A_ : Any = hidden_size A_ : str = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : str = intermediate_size A_ : Tuple = hidden_act A_ : Any = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : List[str] = max_position_embeddings A_ : int = type_vocab_size A_ : Union[str, Any] = type_sequence_label_size A_ : Any = initializer_range A_ : List[Any] = num_labels A_ : Optional[Any] = num_choices A_ : List[Any] = scope def _a ( self : Optional[int] ): '''simple docstring''' A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : int = None if self.use_input_mask: A_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Dict = None if self.use_token_type_ids: A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : str = None A_ : Any = None A_ : str = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Optional[int] = ids_tensor([self.batch_size] ,self.num_choices ) A_ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : Optional[Any] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_a ,initializer_range=self.initializer_range ,) def _a ( self : Union[str, Any] ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Any ,_a : Any ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Tuple ): '''simple docstring''' A_ : Any = LlamaModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[Any] = model(_a ,attention_mask=_a ) A_ : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Optional[int] ,_a : int ,_a : List[str] ,_a : Any ,_a : Any ,_a : Dict ,_a : List[str] ,_a : Optional[int] ,_a : Any ,_a : List[str] ,): '''simple docstring''' A_ : List[str] = True A_ : Union[str, Any] = LlamaModel(_a ) model.to(_a ) model.eval() A_ : Tuple = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,) A_ : List[Any] = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,) A_ : int = model(_a ,attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Any ,_a : Any ,_a : Optional[int] ,_a : List[Any] ,_a : List[Any] ,_a : Dict ,_a : Tuple ,_a : Optional[int] ,_a : List[Any] ,_a : Union[str, Any] ,): '''simple docstring''' A_ : List[Any] = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() A_ : Dict = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : str ,_a : List[Any] ,_a : Dict ,_a : str ,_a : Tuple ,_a : Tuple ,_a : Tuple ,_a : Optional[Any] ,_a : Dict ,_a : Union[str, Any] ,): '''simple docstring''' A_ : Optional[Any] = True A_ : Any = True A_ : Tuple = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass A_ : Optional[int] = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,use_cache=_a ,) A_ : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A_ : int = ids_tensor((self.batch_size, 3) ,config.vocab_size ) A_ : List[Any] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and A_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) A_ : int = torch.cat([input_mask, next_mask] ,dim=-1 ) A_ : List[str] = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,output_hidden_states=_a ,)["""hidden_states"""][0] A_ : Any = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,past_key_values=_a ,output_hidden_states=_a ,)["""hidden_states"""][0] # select random slice A_ : List[str] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() A_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() A_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a ,_a ,atol=1e-3 ) ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Any = config_and_inputs A_ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () a_ = (LlamaForCausalLM,) if is_torch_available() else () a_ = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) a_ = False a_ = False def _a ( self : List[Any] ): '''simple docstring''' A_ : Union[str, Any] = LlamaModelTester(self ) A_ : List[str] = ConfigTester(self ,config_class=_a ,hidden_size=37 ) def _a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : Dict = type self.model_tester.create_and_check_model(*_a ) def _a ( self : List[Any] ): '''simple docstring''' A_ , A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = 3 A_ : Any = input_dict["""input_ids"""] A_ : Union[str, Any] = input_ids.ne(1 ).to(_a ) A_ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) A_ : List[Any] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : int = model(_a ,attention_mask=_a ,labels=_a ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Dict ): '''simple docstring''' A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : str = 3 A_ : Union[str, Any] = """single_label_classification""" A_ : Union[str, Any] = input_dict["""input_ids"""] A_ : List[Any] = input_ids.ne(1 ).to(_a ) A_ : Dict = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) A_ : List[Any] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : List[str] = model(_a ,attention_mask=_a ,labels=_a ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Dict = 3 A_ : Dict = """multi_label_classification""" A_ : Any = input_dict["""input_ids"""] A_ : Optional[Any] = input_ids.ne(1 ).to(_a ) A_ : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) A_ : Optional[int] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,attention_mask=_a ,labels=_a ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def _a ( self : Any ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _a ( self : Optional[Any] ,_a : List[Any] ): '''simple docstring''' A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = ids_tensor([1, 10] ,config.vocab_size ) A_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A_ : int = LlamaModel(_a ) original_model.to(_a ) original_model.eval() A_ : Tuple = original_model(_a ).last_hidden_state A_ : Union[str, Any] = original_model(_a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A_ : Tuple = {"""type""": scaling_type, """factor""": 10.0} A_ : int = LlamaModel(_a ) scaled_model.to(_a ) scaled_model.eval() A_ : List[Any] = scaled_model(_a ).last_hidden_state A_ : Any = scaled_model(_a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_a ,_a ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_a ,_a ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_a ,_a ,atol=1e-5 ) ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _a ( self : Tuple ): '''simple docstring''' A_ : Any = [1, 306, 4658, 278, 6593, 310, 2834, 338] A_ : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" ,device_map="""auto""" ) A_ : str = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 A_ : Union[str, Any] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off A_ : str = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_a ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _a ( self : str ): '''simple docstring''' A_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] A_ : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" ,device_map="""auto""" ) A_ : Tuple = model(torch.tensor(_a ) ) # Expected mean on dim = -1 A_ : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off A_ : str = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_a ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] A_ : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ,device_map="""auto""" ) A_ : int = model(torch.tensor(_a ) ) # Expected mean on dim = -1 A_ : Union[str, Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off A_ : Optional[int] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def _a ( self : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = [1, 306, 4658, 278, 6593, 310, 2834, 338] A_ : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" ,device_map="""auto""" ) A_ : Tuple = model(torch.tensor(_a ) ) A_ : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) # fmt: off A_ : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_a ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def _a ( self : Tuple ): '''simple docstring''' A_ : Union[str, Any] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" A_ : List[str] = """Simply put, the theory of relativity states that """ A_ : Any = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) A_ : Union[str, Any] = tokenizer.encode(_a ,return_tensors="""pt""" ) A_ : List[str] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" ,device_map="""sequential""" ,use_safetensors=_a ) # greedy generation outputs A_ : str = model.generate(_a ,max_new_tokens=64 ,top_p=_a ,temperature=1 ,do_sample=_a ) A_ : Optional[Any] = tokenizer.decode(generated_ids[0] ,skip_special_tokens=_a ) self.assertEqual(_a ,_a )
665
0
import colorsys from PIL import Image # type: ignore def __magic_name__ ( __a : float , __a : float , __a : int ): '''simple docstring''' UpperCamelCase__ = x UpperCamelCase__ = y for step in range(UpperCAmelCase__ ): # noqa: B007 UpperCamelCase__ = a * a - b * b + x UpperCamelCase__ = 2 * a * b + y UpperCamelCase__ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __magic_name__ ( __a : float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def __magic_name__ ( __a : float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) ) def __magic_name__ ( __a : int = 800 , __a : int = 600 , __a : float = -0.6 , __a : float = 0 , __a : float = 3.2 , __a : int = 50 , __a : bool = True , ): '''simple docstring''' UpperCamelCase__ = Image.new("""RGB""" , (image_width, image_height) ) UpperCamelCase__ = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase__ ): for image_y in range(UpperCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCamelCase__ = figure_width / image_width * image_height UpperCamelCase__ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase__ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase__ = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase__ = get_color_coded_rgb(UpperCAmelCase__ ) else: UpperCamelCase__ = get_black_and_white_rgb(UpperCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
708
from timeit import timeit def __magic_name__ ( __a : int ): '''simple docstring''' if number < 0: raise ValueError("""the value of input must not be negative""" ) UpperCamelCase__ = 0 while number: number &= number - 1 result += 1 return result def __magic_name__ ( __a : int ): '''simple docstring''' if number < 0: raise ValueError("""the value of input must not be negative""" ) UpperCamelCase__ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __magic_name__ ( ): '''simple docstring''' def do_benchmark(__a : int ) -> None: UpperCamelCase__ = """import __main__ as z""" print(f"Benchmark when {number = }:" ) print(f"{get_set_bits_count_using_modulo_operator(__a ) = }" ) UpperCamelCase__ = timeit("""z.get_set_bits_count_using_modulo_operator(25)""" , setup=__a ) print(f"timeit() runs in {timing} seconds" ) print(f"{get_set_bits_count_using_brian_kernighans_algorithm(__a ) = }" ) UpperCamelCase__ = timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" , setup=__a , ) print(f"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(__a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
86
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Any: a_ : Optional[int] = b.T a_ : Dict = np.sum(np.square(SCREAMING_SNAKE_CASE__ ), axis=1 ) a_ : int = np.sum(np.square(SCREAMING_SNAKE_CASE__ ), axis=0 ) a_ : Tuple = np.matmul(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) a_ : int = aa[:, None] - 2 * ab + ba[None, :] return d def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[int]: a_ : int = x.reshape(-1, 3 ) a_ : Union[str, Any] = squared_euclidean_distance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) return np.argmin(SCREAMING_SNAKE_CASE__, axis=1 ) class snake_case_ ( a_ ): __lowerCAmelCase = ["pixel_values"] def __init__( self , a_ = None , a_ = True , a_ = None , a_ = PILImageResampling.BILINEAR , a_ = True , a_ = True , **a_ , ): super().__init__(**a_ ) a_ : Optional[int] = size if size is not None else {"height": 2_5_6, "width": 2_5_6} a_ : Optional[Any] = get_size_dict(a_ ) a_ : Tuple = np.array(a_ ) if clusters is not None else None a_ : str = do_resize a_ : str = size a_ : Optional[Any] = resample a_ : Any = do_normalize a_ : Tuple = do_color_quantize def snake_case_ ( self , a_ , a_ , a_ = PILImageResampling.BILINEAR , a_ = None , **a_ , ): a_ : str = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( a_ , size=(size["height"], size["width"]) , resample=a_ , data_format=a_ , **a_ ) def snake_case_ ( self , a_ , a_ = None , ): a_ : List[str] = rescale(image=a_ , scale=1 / 127.5 , data_format=a_ ) a_ : Any = image - 1 return image def snake_case_ ( self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , **a_ , ): a_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize a_ : Tuple = size if size is not None else self.size a_ : List[str] = get_size_dict(a_ ) a_ : Tuple = resample if resample is not None else self.resample a_ : Any = do_normalize if do_normalize is not None else self.do_normalize a_ : Optional[int] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize a_ : Union[str, Any] = clusters if clusters is not None else self.clusters a_ : Dict = np.array(a_ ) a_ : Tuple = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. a_ : Union[str, Any] = [to_numpy_array(a_ ) for image in images] if do_resize: a_ : int = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_normalize: a_ : Optional[int] = [self.normalize(image=a_ ) for image in images] if do_color_quantize: a_ : Optional[Any] = [to_channel_dimension_format(a_ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) a_ : int = np.array(a_ ) a_ : str = color_quantize(a_ , a_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) a_ : Tuple = images.shape[0] a_ : Dict = images.reshape(a_ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. a_ : Dict = list(a_ ) else: a_ : Dict = [to_channel_dimension_format(a_ , a_ ) for image in images] a_ : int = {"input_ids": images} return BatchFeature(data=a_ , tensor_type=a_ )
237
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> list[int]: a_ : List[str] = int(SCREAMING_SNAKE_CASE__ ) # Initialize Result a_ : Optional[int] = [] # Traverse through all denomination for denomination in reversed(SCREAMING_SNAKE_CASE__ ): # Find denominations while int(SCREAMING_SNAKE_CASE__ ) >= int(SCREAMING_SNAKE_CASE__ ): total_value -= int(SCREAMING_SNAKE_CASE__ ) answer.append(SCREAMING_SNAKE_CASE__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): SCREAMING_SNAKE_CASE_ = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) SCREAMING_SNAKE_CASE_ = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter SCREAMING_SNAKE_CASE_ = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] SCREAMING_SNAKE_CASE_ = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F"""Following is minimal change for {value}: """) SCREAMING_SNAKE_CASE_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
237
1
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __UpperCamelCase ( lowercase__ ): @staticmethod def a__ ( _UpperCamelCase :ArgumentParser ): snake_case_ : int = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" ,type=_UpperCamelCase ,default=_UpperCamelCase ,help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" ,action="""store_true""" ,help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" ,action="""store_true""" ,help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" ,) download_parser.add_argument("""model""" ,type=_UpperCamelCase ,help="""Name of the model to download""" ) download_parser.set_defaults(func=_UpperCamelCase ) def __init__( self :List[Any] ,_UpperCamelCase :str ,_UpperCamelCase :str ,_UpperCamelCase :bool ,_UpperCamelCase :bool ): snake_case_ : Tuple = model snake_case_ : List[str] = cache snake_case_ : List[str] = force snake_case_ : List[str] = trust_remote_code def a__ ( self :Dict ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
267
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[Any]=0 ): '''simple docstring''' # Format the message. if name is None: snake_case_ : Tuple = None else: snake_case_ : Optional[Any] = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" snake_case_ : Optional[Any] = fmt.format(lowerCamelCase_ ) # Print and recurse (if needed). if isinstance(lowerCamelCase_ , lowerCamelCase_ ): if msg is not None: print(lowerCamelCase_ ) for k in val.keys(): recursive_print(lowerCamelCase_ , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase_ , torch.Tensor ): print(lowerCamelCase_ , """:""" , val.size() ) else: print(lowerCamelCase_ , """:""" , lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int ): '''simple docstring''' # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : List[Any] = param.view(*lowerCamelCase_ ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : List[str] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Tuple = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : int = param.view(*lowerCamelCase_ ) snake_case_ : str = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*lowerCamelCase_ ) return param def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Tuple ): '''simple docstring''' # The converted output model. snake_case_ : Tuple = {} # old versions did not store training args snake_case_ : Optional[Any] = input_state_dict.get("""args""" , lowerCamelCase_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Optional[int] = ds_args.padded_vocab_size snake_case_ : str = ds_args.max_position_embeddings snake_case_ : Tuple = ds_args.hidden_size snake_case_ : List[str] = ds_args.num_layers snake_case_ : Union[str, Any] = ds_args.num_attention_heads snake_case_ : Tuple = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : int = config.n_head # The hidden_size per head. snake_case_ : Any = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Tuple = input_state_dict["""checkpoint_version"""] else: snake_case_ : Dict = 0.0 # The model. snake_case_ : Optional[Any] = input_state_dict["""model"""] # The language model. snake_case_ : Optional[Any] = model["""language_model"""] # The embeddings. snake_case_ : int = lm["""embedding"""] # The word embeddings. snake_case_ : Any = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Any = word_embeddings[: config.vocab_size, :] snake_case_ : Union[str, Any] = word_embeddings # The position embeddings. snake_case_ : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : List[str] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. snake_case_ : List[str] = pos_embeddings # The transformer. snake_case_ : str = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Union[str, Any] = re.compile(R"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : Tuple = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : List[Any] = layer_re.match(lowerCamelCase_ ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Any = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : List[str] = m.group(3 ) # The name of the layer. snake_case_ : List[Any] = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : str = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : int = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase_ , lowerCamelCase_ ) snake_case_ : Any = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : List[str] = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : Optional[Any] = masked_bias snake_case_ : Optional[Any] = fix_query_key_value_ordering(lowerCamelCase_ , lowerCamelCase_ , 3 , lowerCamelCase_ , lowerCamelCase_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : Any = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : int = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Dict = fix_query_key_value_ordering(lowerCamelCase_ , lowerCamelCase_ , 3 , lowerCamelCase_ , lowerCamelCase_ ) # Store. No change of shape. snake_case_ : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : str = megatron_to_transformers[op_name] snake_case_ : Union[str, Any] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : str = megatron_to_transformers[op_name] snake_case_ : List[str] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : str = transformer["""final_layernorm.weight"""] snake_case_ : int = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def UpperCAmelCase ( ): '''simple docstring''' # Create the argument parser. snake_case_ : str = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=lowerCamelCase_ , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=lowerCamelCase_ , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : Tuple = parser.parse_args() # Extract the basename. snake_case_ : List[str] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Dict = torch.load(lowerCamelCase_ , map_location="""cpu""" ) else: snake_case_ : Optional[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Optional[int] = input_state_dict.get("""args""" , lowerCamelCase_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Tuple = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : int = """gelu_new""" else: snake_case_ : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : int = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : int = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=lowerCamelCase_ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=lowerCamelCase_ , summary_activation=lowerCamelCase_ , summary_proj_to_labels=lowerCamelCase_ , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: snake_case_ : int = GPTaConfig.from_json_file(args.config_file ) snake_case_ : Optional[int] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Optional[Any] = convert_megatron_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase_ , lowerCamelCase_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : List[str] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) snake_case_ : int = type(lowerCamelCase_ ).__name__ snake_case_ : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(lowerCamelCase_ ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase_ ) # Store the state_dict to file. snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """pytorch_model.bin""" ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
267
1
from math import isqrt, loga def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [True] * max_number for i in range(2 , isqrt(max_number - 1) + 1): if is_prime[i]: for j in range(i**2 , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = False return [i for i in range(2 , _UpperCAmelCase) if is_prime[i]] def lowerCamelCase__ (_UpperCAmelCase = 80_0800 , _UpperCAmelCase = 80_0800): SCREAMING_SNAKE_CASE = degree * loga(_UpperCAmelCase) SCREAMING_SNAKE_CASE = int(_UpperCAmelCase) SCREAMING_SNAKE_CASE = calculate_prime_numbers(_UpperCAmelCase) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left]) + prime_numbers[left] * loga(prime_numbers[right]) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
73
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class _snake_case ( __snake_case ): """simple docstring""" a = "Wav2Vec2FeatureExtractor" a = "AutoTokenizer" def __init__( self : Union[str, Any] , _A : Union[str, Any] , _A : int): """simple docstring""" super().__init__(_A , _A) _SCREAMING_SNAKE_CASE : Dict = self.feature_extractor _SCREAMING_SNAKE_CASE : Any = False @classmethod def _lowerCAmelCase ( cls : Tuple , _A : Optional[Any] , **_A : Any): """simple docstring""" try: return super().from_pretrained(_A , **_A) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , _A , ) _SCREAMING_SNAKE_CASE : List[str] = WavaVecaFeatureExtractor.from_pretrained(_A , **_A) _SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaCTCTokenizer.from_pretrained(_A , **_A) return cls(feature_extractor=_A , tokenizer=_A) def __call__( self : str , *_A : Union[str, Any] , **_A : Optional[int]): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_A , **_A) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""") _SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("""raw_speech""") else: _SCREAMING_SNAKE_CASE : Any = kwargs.pop("""audio""" , _A) _SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop("""sampling_rate""" , _A) _SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop("""text""" , _A) if len(_A) > 0: _SCREAMING_SNAKE_CASE : Any = args[0] _SCREAMING_SNAKE_CASE : int = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""") if audio is not None: _SCREAMING_SNAKE_CASE : Any = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A) if text is not None: _SCREAMING_SNAKE_CASE : int = self.tokenizer(_A , **_A) if text is None: return inputs elif audio is None: return encodings else: _SCREAMING_SNAKE_CASE : Tuple = encodings["""input_ids"""] return inputs def _lowerCAmelCase ( self : int , *_A : Optional[int] , **_A : List[Any]): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A) _SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("""input_features""" , _A) _SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("""labels""" , _A) if len(_A) > 0: _SCREAMING_SNAKE_CASE : List[str] = args[0] _SCREAMING_SNAKE_CASE : Optional[Any] = args[1:] if input_features is not None: _SCREAMING_SNAKE_CASE : int = self.feature_extractor.pad(_A , *_A , **_A) if labels is not None: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.pad(_A , **_A) if labels is None: return input_features elif input_features is None: return labels else: _SCREAMING_SNAKE_CASE : Any = labels["""input_ids"""] return input_features def _lowerCAmelCase ( self : str , *_A : Dict , **_A : Tuple): """simple docstring""" return self.tokenizer.batch_decode(*_A , **_A) def _lowerCAmelCase ( self : Dict , *_A : Optional[Any] , **_A : Optional[int]): """simple docstring""" return self.tokenizer.decode(*_A , **_A) @contextmanager def _lowerCAmelCase ( self : List[Any]): """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""") _SCREAMING_SNAKE_CASE : Optional[Any] = True _SCREAMING_SNAKE_CASE : str = self.tokenizer yield _SCREAMING_SNAKE_CASE : str = self.feature_extractor _SCREAMING_SNAKE_CASE : Union[str, Any] = False
338
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __snake_case :Union[str, Any] =logging.get_logger(__name__) enable_full_determinism() class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : Dict = UNetaDModel A_ : str = 'sample' @property def __UpperCamelCase ( self : Tuple ) -> Any: A = 4 A = 3 A = (32, 32) A = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) A = torch.tensor([10] ).to(__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def __UpperCamelCase ( self : List[str] ) -> List[str]: return (3, 32, 32) @property def __UpperCamelCase ( self : List[Any] ) -> Any: return (3, 32, 32) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: A = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } A = self.dummy_input return init_dict, inputs_dict class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : List[str] = UNetaDModel A_ : List[str] = 'sample' @property def __UpperCamelCase ( self : Tuple ) -> List[Any]: A = 4 A = 4 A = (32, 32) A = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) A = torch.tensor([10] ).to(__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def __UpperCamelCase ( self : List[str] ) -> Tuple: return (4, 32, 32) @property def __UpperCamelCase ( self : List[str] ) -> Any: return (4, 32, 32) def __UpperCamelCase ( self : str ) -> List[str]: A = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } A = self.dummy_input return init_dict, inputs_dict def __UpperCamelCase ( self : Dict ) -> Any: A , A = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCamelCase ) A = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def __UpperCamelCase ( self : str ) -> Optional[int]: A , A = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase ) model.to(__UpperCamelCase ) A = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def __UpperCamelCase ( self : List[str] ) -> Dict: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` A , A = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase ) model_accelerate.to(__UpperCamelCase ) model_accelerate.eval() A = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) A = noise.to(__UpperCamelCase ) A = torch.tensor([10] * noise.shape[0] ).to(__UpperCamelCase ) A = model_accelerate(__UpperCamelCase , __UpperCamelCase )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() A , A = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase , low_cpu_mem_usage=__UpperCamelCase ) model_normal_load.to(__UpperCamelCase ) model_normal_load.eval() A = model_normal_load(__UpperCamelCase , __UpperCamelCase )['sample'] assert torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1e-3 ) def __UpperCamelCase ( self : List[str] ) -> int: A = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(__UpperCamelCase ) A = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) A = noise.to(__UpperCamelCase ) A = torch.tensor([10] * noise.shape[0] ).to(__UpperCamelCase ) with torch.no_grad(): A = model(__UpperCamelCase , __UpperCamelCase ).sample A = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off A = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1e-3 ) ) class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : Optional[int] = UNetaDModel A_ : Optional[int] = 'sample' @property def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : int=(32, 32) ) -> Optional[int]: A = 4 A = 3 A = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) A = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def __UpperCamelCase ( self : str ) -> Any: return (3, 32, 32) @property def __UpperCamelCase ( self : int ) -> str: return (3, 32, 32) def __UpperCamelCase ( self : Any ) -> str: A = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1e-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } A = self.dummy_input return init_dict, inputs_dict @slow def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: A , A = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCamelCase ) A = self.dummy_input A = floats_tensor((4, 3) + (256, 256) ).to(__UpperCamelCase ) A = noise A = model(**__UpperCamelCase ) assert image is not None, "Make sure output is not None" @slow def __UpperCamelCase ( self : Tuple ) -> int: A = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(__UpperCamelCase ) A = 4 A = 3 A = (256, 256) A = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) A = torch.tensor(batch_size * [1e-4] ).to(__UpperCamelCase ) with torch.no_grad(): A = model(__UpperCamelCase , __UpperCamelCase ).sample A = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1e-2 ) ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: A = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(__UpperCamelCase ) A = 4 A = 3 A = (32, 32) A = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) A = torch.tensor(batch_size * [1e-4] ).to(__UpperCamelCase ) with torch.no_grad(): A = model(__UpperCamelCase , __UpperCamelCase ).sample A = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1e-2 ) ) def __UpperCamelCase ( self : str ) -> Optional[int]: # not required for this model pass
224
class lowerCAmelCase__ : def __init__( self : str , __UpperCamelCase : str = "" , __UpperCamelCase : bool = False ) -> None: # Mapping from the first character of the prefix of the node A = {} # A node will be a leaf if the tree contains its word A = is_leaf A = prefix def __UpperCamelCase ( self : int , __UpperCamelCase : str ) -> tuple[str, str, str]: A = 0 for q, w in zip(self.prefix , __UpperCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : int , __UpperCamelCase : list[str] ) -> None: for word in words: self.insert(__UpperCamelCase ) def __UpperCamelCase ( self : Tuple , __UpperCamelCase : str ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: A = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: A = RadixNode(prefix=__UpperCamelCase , is_leaf=__UpperCamelCase ) else: A = self.nodes[word[0]] A , A , A = incoming_node.match( __UpperCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__UpperCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: A = remaining_prefix A = self.nodes[matching_string[0]] A = RadixNode(__UpperCamelCase , __UpperCamelCase ) A = aux_node if remaining_word == "": A = True else: self.nodes[matching_string[0]].insert(__UpperCamelCase ) def __UpperCamelCase ( self : int , __UpperCamelCase : str ) -> bool: A = self.nodes.get(word[0] , __UpperCamelCase ) if not incoming_node: return False else: A , A , A = incoming_node.match( __UpperCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : str ) -> bool: A = self.nodes.get(word[0] , __UpperCamelCase ) if not incoming_node: return False else: A , A , A = incoming_node.match( __UpperCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__UpperCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: A = list(self.nodes.values() )[0] A = merging_node.is_leaf self.prefix += merging_node.prefix A = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: A = False # If there is 1 edge, we merge it with its child else: A = list(incoming_node.nodes.values() )[0] A = merging_node.is_leaf incoming_node.prefix += merging_node.prefix A = merging_node.nodes return True def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : int = 0 ) -> None: if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCamelCase_ ( ) -> bool: '''simple docstring''' A = 'banana bananas bandana band apple all beast'.split() A = RadixNode() root.insert_many(lowerCAmelCase__ ) assert all(root.find(lowerCAmelCase__ ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowerCamelCase_ ( ) -> None: '''simple docstring''' assert test_trie() def lowerCamelCase_ ( ) -> None: '''simple docstring''' A = RadixNode() A = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCAmelCase__ ) print('Words:' , lowerCAmelCase__ ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
224
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> int: super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) SCREAMING_SNAKE_CASE__: str= field SCREAMING_SNAKE_CASE__: Optional[int]= path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE__: Optional[Any]= Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self ) -> Dict: # Build iterable dataset if self.streaming: SCREAMING_SNAKE_CASE__: Dict= self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE__: str= None SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: Optional[Any]= None SCREAMING_SNAKE_CASE__: Any= None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE__: Optional[int]= self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class _lowerCamelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> Tuple: if num_proc is not None and num_proc <= 0: raise ValueError(f'num_proc {num_proc} must be an integer > 0.' ) SCREAMING_SNAKE_CASE__: List[str]= dataset SCREAMING_SNAKE_CASE__: int= path_or_buf SCREAMING_SNAKE_CASE__: Dict= batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE__: List[Any]= num_proc SCREAMING_SNAKE_CASE__: int= '''utf-8''' SCREAMING_SNAKE_CASE__: Union[str, Any]= to_json_kwargs def UpperCamelCase_ ( self ) -> int: SCREAMING_SNAKE_CASE__: str= self.to_json_kwargs.pop('''path_or_buf''' , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= self.to_json_kwargs.pop('''orient''' , '''records''' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) SCREAMING_SNAKE_CASE__: int= self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) SCREAMING_SNAKE_CASE__: Dict= self.to_json_kwargs.pop('''compression''' , lowerCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=lowerCAmelCase ) as buffer: SCREAMING_SNAKE_CASE__: Optional[Any]= self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'The compression parameter is not supported when writing to a buffer, but compression={compression}' ''' was passed. Please provide a local path instead.''' ) SCREAMING_SNAKE_CASE__: str= self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs ) return written def UpperCamelCase_ ( self , lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Union[str, Any]= args SCREAMING_SNAKE_CASE__: Union[str, Any]= query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) SCREAMING_SNAKE_CASE__: List[str]= batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase , ) -> int: SCREAMING_SNAKE_CASE__: Union[str, Any]= 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): SCREAMING_SNAKE_CASE__: List[str]= self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Dict= len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(lowerCAmelCase ) return written
64
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
0
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=50 , A=0.0_2 , A=True , A=None , ) -> Optional[Any]: UpperCAmelCase : Any = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : str = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Optional[int] = use_input_mask UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Any = use_labels UpperCAmelCase : Optional[Any] = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def _lowercase( self ) -> Any: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=A , initializer_range=self.initializer_range , ) def _lowercase( self ) -> Optional[Any]: ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase : List[Any] = True UpperCAmelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowercase( self , A , A , A , A , **A , ) -> List[Any]: UpperCAmelCase : Optional[int] = BertGenerationEncoder(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : int = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , **A , ) -> Any: UpperCAmelCase : Any = True UpperCAmelCase : Optional[Any] = BertGenerationEncoder(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : Dict = model( A , attention_mask=A , encoder_hidden_states=A , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , **A , ) -> Dict: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[str] = BertGenerationDecoder(config=A ).to(A ).eval() # first forward pass UpperCAmelCase : int = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : Optional[int] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Dict = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self , A , A , A , A , *A , ) -> Optional[int]: UpperCAmelCase : int = BertGenerationDecoder(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _lowercase( self ) -> List[str]: UpperCAmelCase : int = BertGenerationEncoderTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> int: self.config_tester.run_common_tests() def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> Dict: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase : str = """bert""" self.model_tester.create_and_check_model(A , A , A , A ) def _lowercase( self ) -> Any: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*A ) def _lowercase( self ) -> List[str]: # This regression test was failing with PyTorch < 1.3 ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : str = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( A , A , A , A , A , A , ) def _lowercase( self ) -> Tuple: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*A ) @slow def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(A ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) UpperCAmelCase : str = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): UpperCAmelCase : Tuple = model(A )[0] UpperCAmelCase : Optional[Any] = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , A ) UpperCAmelCase : Optional[int] = torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> str: UpperCAmelCase : Dict = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) UpperCAmelCase : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(A )[0] UpperCAmelCase : str = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , A ) UpperCAmelCase : List[str] = torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) )
672
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
1
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCAmelCase ( __a : int ) -> str: """simple docstring""" if not isinstance(__a ,__a ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) _a : Union[str, Any] = precision _a : str = ceil(precision / 14 ) _a : Dict = 426_880 * Decimal(10_005 ).sqrt() _a : Optional[Any] = 1 _a : Optional[Any] = 13_591_409 _a : List[Any] = Decimal(__a ) for k in range(1 ,__a ): _a : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(__a ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a__ = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
14
def A ( snake_case__ : str ) -> list: '''simple docstring''' if n_term == "": return [] __snake_case = [] for temp in range(int(snake_case__ ) ): series.append(f"1/{temp + 1}" if series else '1' ) return series if __name__ == "__main__": UpperCAmelCase__ : List[Any] = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
313
0
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowercase_ : Dict = logging.get_logger(__name__) class UpperCamelCase ( UpperCamelCase_ ): A__ = ["""audio_values""", """audio_mask"""] def __init__( self , snake_case__=2048 , snake_case__=1 , snake_case__=[16, 16] , snake_case__=128 , snake_case__=44100 , snake_case__=86 , snake_case__=2048 , snake_case__=0.0 , **snake_case__ , ): """simple docstring""" super().__init__( feature_size=snake_case__ , sampling_rate=snake_case__ , padding_value=snake_case__ , **snake_case__ , ) _SCREAMING_SNAKE_CASE : Optional[int] = spectrogram_length _SCREAMING_SNAKE_CASE : Optional[int] = num_channels _SCREAMING_SNAKE_CASE : Any = patch_size _SCREAMING_SNAKE_CASE : Any = feature_size // self.patch_size[1] _SCREAMING_SNAKE_CASE : List[str] = n_fft _SCREAMING_SNAKE_CASE : Optional[Any] = sampling_rate // hop_length_to_sampling_rate _SCREAMING_SNAKE_CASE : List[str] = sampling_rate _SCREAMING_SNAKE_CASE : Any = padding_value _SCREAMING_SNAKE_CASE : Dict = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=snake_case__ , min_frequency=0.0 , max_frequency=22_050.0 , sampling_rate=snake_case__ , norm="slaney" , mel_scale="slaney" , ).T def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = spectrogram( snake_case__ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=80.0 , ) _SCREAMING_SNAKE_CASE : Optional[Any] = log_spec[:, :-1] _SCREAMING_SNAKE_CASE : Any = log_spec - 20.0 _SCREAMING_SNAKE_CASE : Any = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , snake_case__ , snake_case__ = None , snake_case__ = True , snake_case__ = None , snake_case__ = False , snake_case__ = False , **snake_case__ , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _SCREAMING_SNAKE_CASE : int = isinstance(snake_case__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _SCREAMING_SNAKE_CASE : Optional[int] = is_batched_numpy or ( isinstance(snake_case__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _SCREAMING_SNAKE_CASE : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(snake_case__ , np.ndarray ): _SCREAMING_SNAKE_CASE : List[Any] = np.asarray(snake_case__ , dtype=np.floataa ) elif isinstance(snake_case__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _SCREAMING_SNAKE_CASE : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _SCREAMING_SNAKE_CASE : List[Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _SCREAMING_SNAKE_CASE : Optional[int] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , snake_case__ ): _SCREAMING_SNAKE_CASE : Optional[Any] = [np.asarray(snake_case__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _SCREAMING_SNAKE_CASE : Optional[int] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _SCREAMING_SNAKE_CASE : List[Any] = np.array(snake_case__ ).astype(np.floataa ) # convert into correct format for padding _SCREAMING_SNAKE_CASE : Optional[Any] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _SCREAMING_SNAKE_CASE : int = np.ones([len(snake_case__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _SCREAMING_SNAKE_CASE : List[str] = padded_audio_features * self.padding_value for i in range(len(snake_case__ ) ): _SCREAMING_SNAKE_CASE : str = audio_features[i] _SCREAMING_SNAKE_CASE : str = feature # return as BatchFeature if return_attention_mask: _SCREAMING_SNAKE_CASE : List[Any] = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: _SCREAMING_SNAKE_CASE : Union[str, Any] = {'''audio_values''': padded_audio_features} _SCREAMING_SNAKE_CASE : Dict = BatchFeature(data=snake_case__ , tensor_type=snake_case__ ) return encoded_inputs
719
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
295
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _A ( SCREAMING_SNAKE_CASE__ : Union[dict, list, tuple, torch.Tensor] ): UpperCamelCase :int = [] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for v in tree.values(): shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE__ ) ) elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE__ ) ) elif isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple[int, ...] ): UpperCamelCase :Dict = [] for d in reversed(SCREAMING_SNAKE_CASE__ ): idx.append(flat_idx % d ) UpperCamelCase :int = flat_idx // d return tuple(reversed(SCREAMING_SNAKE_CASE__ ) ) @torch.jit.ignore def _A ( SCREAMING_SNAKE_CASE__ : Sequence[int] , SCREAMING_SNAKE_CASE__ : Sequence[int] , SCREAMING_SNAKE_CASE__ : Sequence[int] , SCREAMING_SNAKE_CASE__ : Optional[Sequence[bool]] = None , SCREAMING_SNAKE_CASE__ : Optional[Sequence[bool]] = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(SCREAMING_SNAKE_CASE__ : List[bool] ) -> None: UpperCamelCase :Optional[int] = True for i in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCamelCase :List[str] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase :Dict = l[reversed_idx] if start_edges is None: UpperCamelCase :int = [s == 0 for s in start] reduce_edge_list(SCREAMING_SNAKE_CASE__ ) if end_edges is None: UpperCamelCase :Dict = [e == (d - 1) for e, d in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] reduce_edge_list(SCREAMING_SNAKE_CASE__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(SCREAMING_SNAKE_CASE__ ) == 0: return [()] elif len(SCREAMING_SNAKE_CASE__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCamelCase :List[Tuple[slice, ...]] = [] UpperCamelCase :List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if s == e: path_list.append(slice(SCREAMING_SNAKE_CASE__ , s + 1 ) ) else: break UpperCamelCase :Tuple[slice, ...] = tuple(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :str = len(SCREAMING_SNAKE_CASE__ ) # start == end, and we're done if divergence_idx == len(SCREAMING_SNAKE_CASE__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase :List[str] = start[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase :List[Any] = end[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCamelCase :Optional[Any] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _A ( SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :List[str] = t.shape[:no_batch_dims] UpperCamelCase :Optional[int] = list(_flat_idx_to_idx(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # _get_minimal_slice_set is inclusive UpperCamelCase :List[str] = list(_flat_idx_to_idx(flat_end - 1 , SCREAMING_SNAKE_CASE__ ) ) # Get an ordered list of slices to perform UpperCamelCase :List[Any] = _get_minimal_slice_set( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) UpperCamelCase :str = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _A ( SCREAMING_SNAKE_CASE__ : Callable , SCREAMING_SNAKE_CASE__ : Dict[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Any = None , SCREAMING_SNAKE_CASE__ : bool = False , ): if not (len(SCREAMING_SNAKE_CASE__ ) > 0): raise ValueError('''Must provide at least one input''' ) UpperCamelCase :List[Any] = [shape[:no_batch_dims] for shape in _fetch_dims(SCREAMING_SNAKE_CASE__ )] UpperCamelCase :Optional[int] = tuple([max(SCREAMING_SNAKE_CASE__ ) for s in zip(*SCREAMING_SNAKE_CASE__ )] ) def _prep_inputs(SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCamelCase :str = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCamelCase :Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCamelCase :List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCamelCase :Dict[str, Any] = tensor_tree_map(_prep_inputs , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Dict = None if _out is not None: UpperCamelCase :Union[str, Any] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCamelCase :Optional[int] = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase :Tuple = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase :Dict = 0 UpperCamelCase :Optional[Any] = prepped_outputs for _ in range(SCREAMING_SNAKE_CASE__ ): # Chunk the input if not low_mem: UpperCamelCase :List[Any] = _select_chunk else: UpperCamelCase :Union[str, Any] = partial( _chunk_slice , flat_start=SCREAMING_SNAKE_CASE__ , flat_end=min(SCREAMING_SNAKE_CASE__ , i + chunk_size ) , no_batch_dims=len(SCREAMING_SNAKE_CASE__ ) , ) UpperCamelCase :Dict[str, Any] = tensor_tree_map(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Run the layer on the chunk UpperCamelCase :str = layer(**SCREAMING_SNAKE_CASE__ ) # Allocate space for the output if out is None: UpperCamelCase :Optional[int] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , SCREAMING_SNAKE_CASE__ ) # Put the chunk in its pre-allocated space if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def assign(SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : dict ) -> None: for k, v in da.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assign(SCREAMING_SNAKE_CASE__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase :Optional[int] = da[k] assign(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for xa, xa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase :Optional[int] = xa elif isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase :Tuple = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size UpperCamelCase :List[Any] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE__ : t.view(orig_batch_dims + t.shape[1:] ) , SCREAMING_SNAKE_CASE__ ) return out class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 512 , ) -> Optional[Any]: UpperCamelCase :Optional[Any] = max_chunk_size UpperCamelCase :Optional[int] = None UpperCamelCase :Optional[tuple] = None def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase :List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCamelCase :Union[str, Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase :List[str] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(SCREAMING_SNAKE_CASE_ ) -> bool: try: with torch.no_grad(): fn(*SCREAMING_SNAKE_CASE_ , chunk_size=SCREAMING_SNAKE_CASE_ ) return True except RuntimeError: return False UpperCamelCase :Optional[Any] = 0 UpperCamelCase :List[str] = len(SCREAMING_SNAKE_CASE_ ) - 1 while i > min_viable_chunk_size_index: UpperCamelCase :int = test_chunk_size(candidates[i] ) if not viable: UpperCamelCase :Optional[int] = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase :str = i UpperCamelCase :Optional[int] = (i + len(SCREAMING_SNAKE_CASE_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: UpperCamelCase :Union[str, Any] = True for aa, aa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert type(SCREAMING_SNAKE_CASE_ ) == type(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase :Dict = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )] UpperCamelCase :Any = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )] consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: consistent &= aa == aa return consistent def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> int: UpperCamelCase :Optional[Any] = True UpperCamelCase :tuple = tree_map(lambda SCREAMING_SNAKE_CASE_ : a.shape if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) else a , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , SCREAMING_SNAKE_CASE_ ) else: # Otherwise, we can reuse the precomputed value UpperCamelCase :str = False if not consistent: UpperCamelCase :int = self._determine_favorable_chunk_size( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) UpperCamelCase :Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
658
def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list ): _enforce_args(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if n == 0: return 0 UpperCamelCase :Union[str, Any] = float('''-inf''' ) for i in range(1 , n + 1 ): UpperCamelCase :str = max( SCREAMING_SNAKE_CASE__ , prices[i - 1] + naive_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE__ ) ) return max_revue def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list ): _enforce_args(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Dict = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: UpperCamelCase :Dict = float('''-inf''' ) for i in range(1 , n + 1 ): UpperCamelCase :Union[str, Any] = max( SCREAMING_SNAKE_CASE__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) UpperCamelCase :str = max_revenue return max_rev[n] def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list ): _enforce_args(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. UpperCamelCase :List[str] = [float('''-inf''' ) for _ in range(n + 1 )] UpperCamelCase :Dict = 0 for i in range(1 , n + 1 ): UpperCamelCase :Optional[Any] = max_rev[i] for j in range(1 , i + 1 ): UpperCamelCase :Optional[Any] = max(SCREAMING_SNAKE_CASE__ , prices[j - 1] + max_rev[i - j] ) UpperCamelCase :Tuple = max_revenue_i return max_rev[n] def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list ): if n < 0: UpperCamelCase :Any = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) if n > len(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Union[str, Any] = ( '''Each integral piece of rod must have a corresponding price. ''' F'''Got n = {n} but length of prices = {len(SCREAMING_SNAKE_CASE__ )}''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) def _A ( ): UpperCamelCase :Dict = [6, 10, 12, 15, 20, 23] UpperCamelCase :List[str] = len(SCREAMING_SNAKE_CASE__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. UpperCamelCase :str = 36 UpperCamelCase :int = top_down_cut_rod(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Union[str, Any] = bottom_up_cut_rod(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :str = naive_cut_rod_recursive(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
658
1
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": snake_case_ : Optional[int] = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') snake_case_ : str = F'''https://www.google.com/search?q={query}&num=100''' snake_case_ : Optional[Any] = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: snake_case_ : Union[str, Any] = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: snake_case_ : Optional[int] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )["""url"""][0] webbrowser.open(link)
700
'''simple docstring''' import torch from torch import nn class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1 , lowerCamelCase__=False ): '''simple docstring''' super().__init__() UpperCamelCase = n_token UpperCamelCase = d_embed UpperCamelCase = d_proj UpperCamelCase = cutoffs + [n_token] UpperCamelCase = [0] + self.cutoffs UpperCamelCase = div_val UpperCamelCase = self.cutoffs[0] UpperCamelCase = len(self.cutoffs ) - 1 UpperCamelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCamelCase = nn.ModuleList() UpperCamelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCamelCase__ , lowerCamelCase__ ) ) ) else: self.out_projs.append(lowerCamelCase__ ) self.out_layers.append(nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCamelCase__ , lowerCamelCase__ ) ) ) self.out_layers.append(nn.Linear(lowerCamelCase__ , r_idx - l_idx ) ) UpperCamelCase = keep_order def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if proj is None: UpperCamelCase = nn.functional.linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCamelCase = nn.functional.linear(lowerCamelCase__ , proj.t().contiguous() ) UpperCamelCase = nn.functional.linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n UpperCamelCase = hidden[..., :-1, :].contiguous() UpperCamelCase = labels[..., 1:].contiguous() UpperCamelCase = hidden.view(-1 , hidden.size(-1 ) ) UpperCamelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: UpperCamelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCamelCase = self._compute_logit(lowerCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCamelCase = labels != -1_0_0 UpperCamelCase = torch.zeros_like(lowerCamelCase__ , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase = ( -nn.functional.log_softmax(lowerCamelCase__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCamelCase = nn.functional.log_softmax(lowerCamelCase__ , dim=-1 ) else: # construct weights and biases UpperCamelCase , UpperCamelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase = self.out_layers[i].weight UpperCamelCase = self.out_layers[i].bias if i == 0: UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCamelCase__ ) biases.append(lowerCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[0], biases[0], self.out_projs[0] UpperCamelCase = self._compute_logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = nn.functional.log_softmax(lowerCamelCase__ , dim=1 ) if labels is None: UpperCamelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCamelCase = torch.zeros_like(lowerCamelCase__ , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase = 0 UpperCamelCase = [0] + self.cutoffs for i in range(len(lowerCamelCase__ ) - 1 ): UpperCamelCase , UpperCamelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCamelCase = (labels >= l_idx) & (labels < r_idx) UpperCamelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCamelCase = labels.index_select(0 , lowerCamelCase__ ) - l_idx UpperCamelCase = head_logprob.index_select(0 , lowerCamelCase__ ) UpperCamelCase = hidden.index_select(0 , lowerCamelCase__ ) else: UpperCamelCase = hidden if i == 0: if labels is not None: UpperCamelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[i], biases[i], self.out_projs[i] UpperCamelCase = self._compute_logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = nn.functional.log_softmax(lowerCamelCase__ , dim=1 ) UpperCamelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCamelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCamelCase = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , lowerCamelCase__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' if self.n_clusters == 0: UpperCamelCase = self._compute_logit(lowerCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(lowerCamelCase__ , dim=-1 ) else: # construct weights and biases UpperCamelCase , UpperCamelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase = self.out_layers[i].weight UpperCamelCase = self.out_layers[i].bias if i == 0: UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCamelCase__ ) biases.append(lowerCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[0], biases[0], self.out_projs[0] UpperCamelCase = self._compute_logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCamelCase = nn.functional.log_softmax(lowerCamelCase__ , dim=1 ) UpperCamelCase = [0] + self.cutoffs for i in range(len(lowerCamelCase__ ) - 1 ): UpperCamelCase , UpperCamelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCamelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[i], biases[i], self.out_projs[i] UpperCamelCase = self._compute_logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = nn.functional.log_softmax(lowerCamelCase__ , dim=1 ) UpperCamelCase = head_logprob[:, -i] + tail_logprob_i UpperCamelCase = logprob_i return out
350
0
def lowercase ( __A : str ) -> str: '''simple docstring''' snake_case : Optional[int] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Optional[int] = """""" snake_case : Tuple = """""" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Any = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Union[str, Any] = [1 for i in range(len(__A ) )] # for each character in new_string find corresponding palindromic string snake_case : Tuple = 0 for j in range(len(__A ) ): snake_case : List[str] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : str = j - k + 1 # noqa: E741 snake_case : int = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : str = length[j] snake_case : Optional[Any] = j # create that string snake_case : int = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
36
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowercase_ = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Optional[Any] , **_A : Dict ): """simple docstring""" requires_backends(self , ['''bs4'''] ) super().__init__(**_A ) def UpperCAmelCase__ ( self : Optional[int] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __SCREAMING_SNAKE_CASE : Optional[int] = parent.find_all(child.name , recursive=_A ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_A ) else next(i for i, s in enumerate(_A , 1 ) if s is child ) ) __SCREAMING_SNAKE_CASE : Any = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def UpperCAmelCase__ ( self : Dict , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = BeautifulSoup(_A , '''html.parser''' ) __SCREAMING_SNAKE_CASE : str = [] __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : int = [] for element in html_code.descendants: if type(_A ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __SCREAMING_SNAKE_CASE : List[Any] = html.unescape(_A ).strip() if not text_in_this_tag: continue all_doc_strings.append(_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = self.xpath_soup(_A ) stringaxtag_seq.append(_A ) stringaxsubs_seq.append(_A ) if len(_A ) != len(_A ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_A ) != len(_A ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def UpperCAmelCase__ ( self : int , _A : Tuple , _A : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' for tagname, subs in zip(_A , _A ): xpath += F'''/{tagname}''' if subs != 0: xpath += F'''[{subs}]''' return xpath def __call__( self : Optional[int] , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = False # Check that strings has a valid type if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Any = True elif isinstance(_A , (list, tuple) ): if len(_A ) == 0 or isinstance(html_strings[0] , _A ): __SCREAMING_SNAKE_CASE : List[Any] = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F'''but is of type {type(_A )}.''' ) __SCREAMING_SNAKE_CASE : Any = bool(isinstance(_A , (list, tuple) ) and (isinstance(html_strings[0] , _A )) ) if not is_batched: __SCREAMING_SNAKE_CASE : Dict = [html_strings] # Get nodes + xpaths __SCREAMING_SNAKE_CASE : str = [] __SCREAMING_SNAKE_CASE : Tuple = [] for html_string in html_strings: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_three_from_single(_A ) nodes.append(_A ) __SCREAMING_SNAKE_CASE : Dict = [] for node, tag_list, sub_list in zip(_A , _A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = self.construct_xpath(_A , _A ) xpath_strings.append(_A ) xpaths.append(_A ) # return as Dict __SCREAMING_SNAKE_CASE : Optional[int] = {'''nodes''': nodes, '''xpaths''': xpaths} __SCREAMING_SNAKE_CASE : List[str] = BatchFeature(data=_A , tensor_type=_A ) return encoded_inputs
74
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets A = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' A = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' A = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def lowerCamelCase ( UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : bool , UpperCamelCase : Optional[Dict[int, int]] = None , UpperCamelCase : bool = False , ) -> Optional[Any]: if label_map is not None: for old_id, new_id in label_map.items(): _lowerCamelCase = new_id # turn into Numpy arrays _lowerCamelCase = np.array(UpperCamelCase ) _lowerCamelCase = np.array(UpperCamelCase ) if reduce_labels: _lowerCamelCase = 2_55 _lowerCamelCase = label - 1 _lowerCamelCase = 2_55 _lowerCamelCase = label != ignore_index _lowerCamelCase = np.not_equal(UpperCamelCase , UpperCamelCase ) _lowerCamelCase = pred_label[mask] _lowerCamelCase = np.array(UpperCamelCase )[mask] _lowerCamelCase = pred_label[pred_label == label] _lowerCamelCase = np.histogram(UpperCamelCase , bins=UpperCamelCase , range=(0, num_labels - 1) )[0] _lowerCamelCase = np.histogram(UpperCamelCase , bins=UpperCamelCase , range=(0, num_labels - 1) )[0] _lowerCamelCase = np.histogram(UpperCamelCase , bins=UpperCamelCase , range=(0, num_labels - 1) )[0] _lowerCamelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowerCamelCase ( UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : bool , UpperCamelCase : Optional[Dict[int, int]] = None , UpperCamelCase : bool = False , ) -> Any: _lowerCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(UpperCamelCase , UpperCamelCase ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = intersect_and_union( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowerCamelCase ( UpperCamelCase : int , UpperCamelCase : List[str] , UpperCamelCase : Dict , UpperCamelCase : bool , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[Dict[int, int]] = None , UpperCamelCase : bool = False , ) -> List[str]: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = total_intersect_and_union( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # compute metrics _lowerCamelCase = {} _lowerCamelCase = total_area_intersect.sum() / total_area_label.sum() _lowerCamelCase = total_area_intersect / total_area_union _lowerCamelCase = total_area_intersect / total_area_label _lowerCamelCase = np.nanmean(UpperCamelCase ) _lowerCamelCase = np.nanmean(UpperCamelCase ) _lowerCamelCase = all_acc _lowerCamelCase = iou _lowerCamelCase = acc if nan_to_num is not None: _lowerCamelCase = {metric: np.nan_to_num(UpperCamelCase , nan=UpperCamelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Optional[int] ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def _snake_case ( self : str , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Optional[Any] = None , snake_case__ : int = None , snake_case__ : str = False , ) -> Optional[Any]: _lowerCamelCase = mean_iou( results=A__ , gt_seg_maps=A__ , num_labels=A__ , ignore_index=A__ , nan_to_num=A__ , label_map=A__ , reduce_labels=A__ , ) return iou_result
700
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
234
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Union[str, Any] , __a : WhisperForConditionalGeneration , __a : WhisperProcessor , __a : AutoencoderKL , __a : CLIPTextModel , __a : CLIPTokenizer , __a : UNetaDConditionModel , __a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __a : StableDiffusionSafetyChecker , __a : CLIPImageProcessor , ): super().__init__() if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=_lowercase , speech_processor=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , unet=_lowercase , scheduler=_lowercase , feature_extractor=_lowercase , ) def UpperCamelCase__ ( self : Optional[int] , __a : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowercase ) def UpperCamelCase__ ( self : Optional[int] ): self.enable_attention_slicing(_lowercase ) @torch.no_grad() def __call__( self : Union[str, Any] , __a : List[str] , __a : Union[str, Any]=1_60_00 , __a : int = 5_12 , __a : int = 5_12 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Dict , ): _a = self.speech_processor.feature_extractor( _lowercase , return_tensors="pt" , sampling_rate=_lowercase ).input_features.to(self.device ) _a = self.speech_model.generate(_lowercase , max_length=48_00_00 ) _a = self.speech_processor.tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase , normalize=_lowercase )[ 0 ] if isinstance(_lowercase , _lowercase ): _a = 1 elif isinstance(_lowercase , _lowercase ): _a = len(_lowercase ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(_lowercase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(_lowercase )}.' ) # get prompt text embeddings _a = self.tokenizer( _lowercase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) _a = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _a = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _a = text_input_ids[:, : self.tokenizer.model_max_length] _a = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _a = text_embeddings.shape _a = text_embeddings.repeat(1 , _lowercase , 1 ) _a = text_embeddings.view(bs_embed * num_images_per_prompt , _lowercase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = 42 if negative_prompt is None: _a = [""] * batch_size elif type(_lowercase ) is not type(_lowercase ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(_lowercase )} !=' f' {type(_lowercase )}.' ) elif isinstance(_lowercase , _lowercase ): _a = [negative_prompt] elif batch_size != len(_lowercase ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(_lowercase )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: _a = negative_prompt _a = text_input_ids.shape[-1] _a = self.tokenizer( _lowercase , padding="max_length" , max_length=_lowercase , truncation=_lowercase , return_tensors="pt" , ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _a = uncond_embeddings.shape[1] _a = uncond_embeddings.repeat(1 , _lowercase , 1 ) _a = uncond_embeddings.view(batch_size * num_images_per_prompt , _lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _a = torch.randn(_lowercase , generator=_lowercase , device="cpu" , dtype=_lowercase ).to( self.device ) else: _a = torch.randn(_lowercase , generator=_lowercase , device=self.device , dtype=_lowercase ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) _a = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _a = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(_lowercase , _lowercase ) # predict the noise residual _a = self.unet(_lowercase , _lowercase , encoder_hidden_states=_lowercase ).sample # perform guidance if do_classifier_free_guidance: _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase , _lowercase ) _a = 1 / 0.18215 * latents _a = self.vae.decode(_lowercase ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _a = self.numpy_to_pil(_lowercase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_lowercase , nsfw_content_detected=_lowercase )
692
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: List[str] , lowerCamelCase_: List[Any]=False ): """simple docstring""" try: snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case : List[Any] = default else: # KEY is set, convert it to True or False. try: snake_case : Dict = strtobool(lowerCamelCase_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value A = parse_flag_from_env('RUN_SLOW', default=False) A = parse_flag_from_env('RUN_REMOTE', default=False) A = parse_flag_from_env('RUN_LOCAL', default=True) A = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression A = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') A = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') A = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio A = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam A = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility A = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows A = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] ): """simple docstring""" try: import faiss # noqa except ImportError: snake_case : Dict = unittest.skip("test requires faiss" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any ): """simple docstring""" try: import regex # noqa except ImportError: snake_case : List[Any] = unittest.skip("test requires regex" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: int ): """simple docstring""" try: import elasticsearch # noqa except ImportError: snake_case : Tuple = unittest.skip("test requires elasticsearch" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: snake_case : Dict = unittest.skip("test requires sqlalchemy" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: List[Any] ): """simple docstring""" if not config.TORCH_AVAILABLE: snake_case : Dict = unittest.skip("test requires PyTorch" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] ): """simple docstring""" if not config.TF_AVAILABLE: snake_case : Tuple = unittest.skip("test requires TensorFlow" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: List[str] ): """simple docstring""" if not config.JAX_AVAILABLE: snake_case : str = unittest.skip("test requires JAX" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any ): """simple docstring""" if not config.PIL_AVAILABLE: snake_case : Union[str, Any] = unittest.skip("test requires Pillow" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Union[str, Any] ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(lowerCamelCase_ ) else: return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Dict ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(lowerCamelCase_ ) else: return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: List[str] ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(lowerCamelCase_ ) else: return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: str ): """simple docstring""" def _require_spacy_model(lowerCamelCase_: Dict ): try: import spacy # noqa F401 spacy.load(lowerCamelCase_ ) except ImportError: return unittest.skip("test requires spacy" )(lowerCamelCase_ ) except OSError: return unittest.skip("test requires spacy model '{}'".format(lowerCamelCase_ ) )(lowerCamelCase_ ) else: return test_case return _require_spacy_model def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Dict ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(lowerCamelCase_ ) else: return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(lowerCamelCase_ ) else: return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: snake_case : Dict = unittest.skip("test is slow" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: snake_case : int = unittest.skip("test is local" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Dict ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: snake_case : List[str] = unittest.skip("test is packaged" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[int] ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: snake_case : Union[str, Any] = unittest.skip("test requires remote" )(lowerCamelCase_ ) return test_case def __SCREAMING_SNAKE_CASE ( *lowerCamelCase_: Union[str, Any] ): """simple docstring""" def decorate(cls: int ): for name, fn in cls.__dict__.items(): if callable(lowerCamelCase_ ) and name.startswith("test" ): for decorator in decorators: snake_case : Optional[Any] = decorator(lowerCamelCase_ ) setattr(cls , lowerCamelCase_ , lowerCamelCase_ ) return cls return decorate class _a ( SCREAMING_SNAKE_CASE__): pass class _a ( SCREAMING_SNAKE_CASE__): __magic_name__ = 0 __magic_name__ = 1 __magic_name__ = 2 @contextmanager def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: int=OfflineSimulationMode.CONNECTION_FAILS , lowerCamelCase_: Dict=1e-16 ): """simple docstring""" snake_case : Union[str, Any] = requests.Session().request def timeout_request(lowerCamelCase_: Tuple , lowerCamelCase_: List[Any] , lowerCamelCase_: str , **lowerCamelCase_: List[Any] ): # Change the url to an invalid url so that the connection hangs snake_case : Optional[int] = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) snake_case : str = timeout try: return online_request(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier snake_case : Dict = url snake_case : Union[str, Any] = e.args[0] snake_case : Any = (max_retry_error.args[0].replace("10.255.255.1" , f'''OfflineMock[{url}]''' ),) snake_case : List[Any] = (max_retry_error,) raise def raise_connection_error(lowerCamelCase_: Tuple , lowerCamelCase_: str , **lowerCamelCase_: int ): raise requests.ConnectionError("Offline mode is enabled." , request=lowerCamelCase_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , lowerCamelCase_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , lowerCamelCase_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCamelCase_ ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def __SCREAMING_SNAKE_CASE ( *lowerCamelCase_: List[str] , **lowerCamelCase_: Any ): """simple docstring""" snake_case : Any = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowerCamelCase_ , **lowerCamelCase_ ) as tmp_dir: try: os.chdir(lowerCamelCase_ ) yield finally: os.chdir(lowerCamelCase_ ) @contextmanager def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" import gc gc.collect() snake_case : Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" import gc gc.collect() snake_case : Optional[int] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Tuple , lowerCamelCase_: Dict ): """simple docstring""" return deepcopy(lowerCamelCase_ ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(lowerCamelCase_ ).integers(0 , 1_0_0 , 1_0 ).tolist() def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: List[Any] ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(lowerCamelCase_: Dict , *lowerCamelCase_: Tuple , **lowerCamelCase_: Any ): try: return func(*lowerCamelCase_ , **lowerCamelCase_ ) except HTTPError as err: if str(lowerCamelCase_ ).startswith("500" ) or str(lowerCamelCase_ ).startswith("502" ): pytest.xfail(str(lowerCamelCase_ ) ) raise err return decorator.decorator(_wrapper , lowerCamelCase_ ) class _a : def __init__( self : str , _lowercase : Optional[Any] , _lowercase : str , _lowercase : Optional[Any] ) -> Optional[int]: snake_case : List[Any] = returncode snake_case : Tuple = stdout snake_case : Dict = stderr async def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: str , lowerCamelCase_: Optional[Any] ): """simple docstring""" while True: snake_case : List[Any] = await stream.readline() if line: callback(lowerCamelCase_ ) else: break async def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any , lowerCamelCase_: Dict=None , lowerCamelCase_: Union[str, Any]=None , lowerCamelCase_: int=None , lowerCamelCase_: str=False , lowerCamelCase_: Optional[Any]=False ): """simple docstring""" if echo: print("\nRunning: " , " ".join(lowerCamelCase_ ) ) snake_case : Any = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case : Optional[int] = [] snake_case : Tuple = [] def tee(lowerCamelCase_: Union[str, Any] , lowerCamelCase_: str , lowerCamelCase_: Dict , lowerCamelCase_: Union[str, Any]="" ): snake_case : Optional[Any] = line.decode("utf-8" ).rstrip() sink.append(lowerCamelCase_ ) if not quiet: print(lowerCamelCase_ , lowerCamelCase_ , file=lowerCamelCase_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda lowerCamelCase_ : tee(lowerCamelCase_ , lowerCamelCase_ , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda lowerCamelCase_ : tee(lowerCamelCase_ , lowerCamelCase_ , sys.stderr , label="stderr:" ) ), ] , timeout=lowerCamelCase_ , ) return _RunOutput(await p.wait() , lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[int] , lowerCamelCase_: Union[str, Any]=None , lowerCamelCase_: Any=None , lowerCamelCase_: List[str]=1_8_0 , lowerCamelCase_: Dict=False , lowerCamelCase_: Optional[Any]=True ): """simple docstring""" snake_case : Optional[int] = asyncio.get_event_loop() snake_case : str = loop.run_until_complete( _stream_subprocess(lowerCamelCase_ , env=lowerCamelCase_ , stdin=lowerCamelCase_ , timeout=lowerCamelCase_ , quiet=lowerCamelCase_ , echo=lowerCamelCase_ ) ) snake_case : Union[str, Any] = " ".join(lowerCamelCase_ ) if result.returncode > 0: snake_case : List[Any] = "\n".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" snake_case : int = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) snake_case : Dict = re.sub(r"^gw" , "" , lowerCamelCase_ , 0 , re.M ) return int(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" snake_case : int = 2_9_5_0_0 snake_case : str = pytest_xdist_worker_id() return port + uniq_delta
449
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCamelCase : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = "utf-8" UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = True # deprecated UpperCAmelCase__ = None # deprecated UpperCAmelCase__ = 10 << 20 # 10MB UpperCAmelCase__ = None class UpperCamelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__ = JsonConfig def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') A__ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : str) ->Optional[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") A__ = dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCAmelCase__ , (str, list, tuple)): A__ = data_files if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] A__ = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files})) return splits def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : pa.Table) ->pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : List[Any]) ->List[str]: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) # We keep only the field we are interested in A__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCAmelCase__ , (list, tuple)): A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} else: A__ = dataset A__ = pa.Table.from_pydict(UpperCAmelCase__) yield file_idx, self._cast_table(UpperCAmelCase__) # If the file has one json object per line else: with open(UpperCAmelCase__ , '''rb''') as f: A__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ = max(self.config.chunksize // 32 , 16 << 10) A__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A__ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCAmelCase__) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''') try: while True: try: A__ = paj.read_json( io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCAmelCase__ , pa.ArrowInvalid) and "straddling" not in str(UpperCAmelCase__) or block_size > len(UpperCAmelCase__) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON try: A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} A__ = pa.Table.from_pydict(UpperCAmelCase__) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(UpperCAmelCase__) break else: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__) batch_idx += 1
177
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = XGLMConfig UpperCAmelCase__ = {} UpperCAmelCase__ = '''gelu''' def __init__( self : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any]=14 , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Any=99 , UpperCAmelCase__ : Union[str, Any]=32 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : List[str]=37 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Any=512 , UpperCAmelCase__ : List[Any]=0.02 , ) ->str: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = d_model A__ = num_hidden_layers A__ = num_attention_heads A__ = ffn_dim A__ = activation_function A__ = activation_dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = None A__ = 0 A__ = 2 A__ = 1 def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' return XGLMConfig.from_pretrained('''facebook/xglm-564M''') def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) , clip_value_min=0 , clip_value_max=3) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = self.get_config() A__ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCAmelCase__ = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCAmelCase__ = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' A__ = TFXGLMModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , n_embd=37) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' self.config_tester.run_common_tests() @slow def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFXGLMModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''') def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=True) ->Union[str, Any]: '''simple docstring''' A__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') A__ = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off A__ = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on A__ = model.generate(UpperCAmelCase__ , do_sample=UpperCAmelCase__ , num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''') A__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') tf.random.set_seed(0) A__ = tokenizer('''Today is a nice day and''' , return_tensors='''tf''') A__ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0'''): A__ = model.generate(UpperCAmelCase__ , do_sample=UpperCAmelCase__ , seed=[7, 0]) A__ = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase__) A__ = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') A__ = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''') A__ = '''left''' # use different length sentences to test batching A__ = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] A__ = tokenizer(UpperCAmelCase__ , return_tensors='''tf''' , padding=UpperCAmelCase__) A__ = inputs['''input_ids'''] A__ = model.generate(input_ids=UpperCAmelCase__ , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12) A__ = tokenizer(sentences[0] , return_tensors='''tf''').input_ids A__ = model.generate(input_ids=UpperCAmelCase__ , max_new_tokens=12) A__ = tokenizer(sentences[1] , return_tensors='''tf''').input_ids A__ = model.generate(input_ids=UpperCAmelCase__ , max_new_tokens=12) A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) A__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase__) A__ = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase__) A__ = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , [non_padded_sentence, padded_sentence])
177
1
"""simple docstring""" from math import ceil def _UpperCamelCase ( UpperCamelCase = 1001 ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Dict = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __UpperCAmelCase : Optional[Any] = 2 * i + 1 __UpperCAmelCase : Optional[int] = 2 * i __UpperCAmelCase : Dict = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
77
def _lowercase ( UpperCAmelCase_=28_123): """simple docstring""" snake_case__ : Dict = [1] * (limit + 1) for i in range(2 , int(limit**0.5) + 1): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1): sum_divs[k * i] += k + i snake_case__ : Union[str, Any] = set() snake_case__ : Union[str, Any] = 0 for n in range(1 , limit + 1): if sum_divs[n] > n: abundants.add(UpperCAmelCase_) if not any((n - a in abundants) for a in abundants): res += n return res if __name__ == "__main__": print(solution())
648
0
"""simple docstring""" a__ : Union[str, Any] = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 1_0: '''a''', 1_1: '''b''', 1_2: '''c''', 1_3: '''d''', 1_4: '''e''', 1_5: '''f''', } def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert type(__lowerCAmelCase ) in (int, float) and decimal == int(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE = int(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE = "" __SCREAMING_SNAKE_CASE = False if decimal < 0: __SCREAMING_SNAKE_CASE = True decimal *= -1 while decimal > 0: __SCREAMING_SNAKE_CASE = divmod(__lowerCAmelCase , 16 ) __SCREAMING_SNAKE_CASE = values[remainder] + hexadecimal __SCREAMING_SNAKE_CASE = "0x" + hexadecimal if negative: __SCREAMING_SNAKE_CASE = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a__ : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
553
0
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __lowerCAmelCase : Optional[int] = object() # For specifying empty leaf dict `{}` __lowerCAmelCase : Any = object() def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Any = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(__UpperCamelCase ) - len(__UpperCamelCase ) + 1 ): snake_case_ : List[Any] = [x.match(__UpperCamelCase ) for x, y in zip(__UpperCamelCase , ks[i:] )] if matches and all(__UpperCamelCase ): return True return False def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' def replace(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): for rule, replacement in rules: if _match(__UpperCamelCase , __UpperCamelCase ): return replacement return val return replace def __lowerCAmelCase ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , __UpperCamelCase )), (("transformer", "wte", "embedding"), P("""mp""" , __UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__UpperCamelCase , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , __UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__UpperCamelCase , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , __UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Optional[int] = _get_partition_rules() snake_case_ : Optional[int] = _replacement_rules(__UpperCamelCase ) snake_case_ : List[str] = {k: _unmatched for k in flatten_dict(__UpperCamelCase )} snake_case_ : List[str] = {k: replace(__UpperCamelCase , __UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__UpperCamelCase ) )
58
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , SCREAMING_SNAKE_CASE__ , ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = RobertaConfig _lowerCamelCase = '''roberta''' def __init__( self , _lowercase ) -> Optional[Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : str = RobertaEmbeddings(_lowercase ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , SCREAMING_SNAKE_CASE__ , ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = RobertaConfig _lowerCamelCase = '''roberta''' def __init__( self , _lowercase ) -> List[Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Optional[Any] = config.num_labels snake_case_ : Dict = config.num_hidden_layers snake_case_ : str = DeeRobertaModel(_lowercase ) snake_case_ : Dict = nn.Dropout(config.hidden_dropout_prob ) snake_case_ : List[str] = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_lowercase ) def UpperCAmelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=-1 , _lowercase=False , ) -> Tuple: '''simple docstring''' snake_case_ : Any = self.num_layers try: snake_case_ : int = self.roberta( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , position_ids=_lowercase , head_mask=_lowercase , inputs_embeds=_lowercase , ) snake_case_ : str = outputs[1] snake_case_ : Union[str, Any] = self.dropout(_lowercase ) snake_case_ : Tuple = self.classifier(_lowercase ) snake_case_ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case_ : List[Any] = e.message snake_case_ : Union[str, Any] = e.exit_layer snake_case_ : Dict = outputs[0] if not self.training: snake_case_ : Dict = entropy(_lowercase ) snake_case_ : Optional[int] = [] snake_case_ : Union[str, Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case_ : Dict = MSELoss() snake_case_ : Dict = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ : Union[str, Any] = CrossEntropyLoss() snake_case_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case_ : int = [] for highway_exit in outputs[-1]: snake_case_ : Tuple = highway_exit[0] if not self.training: highway_logits_all.append(_lowercase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case_ : Optional[int] = MSELoss() snake_case_ : Optional[Any] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ : Optional[int] = CrossEntropyLoss() snake_case_ : Union[str, Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_lowercase ) if train_highway: snake_case_ : Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case_ : List[str] = (loss,) + outputs if not self.training: snake_case_ : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case_ : Tuple = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
58
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class snake_case_ (_lowerCAmelCase ): """simple docstring""" _lowerCamelCase = 'speech_to_text_2' _lowerCamelCase = ['past_key_values'] _lowerCamelCase = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self ,lowercase=10000 ,lowercase=6 ,lowercase=2048 ,lowercase=4 ,lowercase=0.0 ,lowercase=True ,lowercase="relu" ,lowercase=256 ,lowercase=0.1 ,lowercase=0.0 ,lowercase=0.0 ,lowercase=0.02 ,lowercase=2 ,lowercase=True ,lowercase=1 ,lowercase=0 ,lowercase=2 ,lowercase=1024 ,**lowercase ,): """simple docstring""" UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : Optional[int] = d_model UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[int] = decoder_layers UpperCAmelCase_ : Optional[int] = decoder_attention_heads UpperCAmelCase_ : List[str] = dropout UpperCAmelCase_ : List[Any] = attention_dropout UpperCAmelCase_ : Tuple = activation_dropout UpperCAmelCase_ : List[Any] = activation_function UpperCAmelCase_ : List[Any] = init_std UpperCAmelCase_ : str = decoder_layerdrop UpperCAmelCase_ : int = use_cache UpperCAmelCase_ : Optional[int] = decoder_layers UpperCAmelCase_ : int = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase_ : str = max_target_positions super().__init__( pad_token_id=_lowerCAmelCase ,bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,decoder_start_token_id=_lowerCAmelCase ,**_lowerCAmelCase ,)
709
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCamelCase = 16 __lowerCamelCase = 32 def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = 1_6 ) -> Tuple: '''simple docstring''' UpperCAmelCase_ : int = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase_ : List[Any] = DatasetDict( { "train": dataset["train"].select(__snake_case ), "validation": dataset["train"].select(__snake_case ), "test": dataset["validation"], } ) def tokenize_function(__snake_case ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : List[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ : int = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ : Optional[Any] = 1_6 elif accelerator.mixed_precision != "no": UpperCAmelCase_ : str = 8 else: UpperCAmelCase_ : Dict = None return tokenizer.pad( __snake_case , padding="longest" , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors="pt" , ) # Instantiate dataloaders. UpperCAmelCase_ : List[str] = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) UpperCAmelCase_ : Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) UpperCAmelCase_ : str = DataLoader( tokenized_datasets["test"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader, test_dataloader def _snake_case ( __snake_case , __snake_case ) -> List[str]: '''simple docstring''' UpperCAmelCase_ : Tuple = [] # Download the dataset UpperCAmelCase_ : Optional[int] = load_dataset("glue" , "mrpc" ) # Create our splits UpperCAmelCase_ : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase_ : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : Optional[int] = config["lr"] UpperCAmelCase_ : Dict = int(config["num_epochs"] ) UpperCAmelCase_ : Union[str, Any] = int(config["seed"] ) UpperCAmelCase_ : Optional[Any] = int(config["batch_size"] ) UpperCAmelCase_ : Optional[Any] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase_ : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase_ : int = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase_ : List[str] = MAX_GPU_BATCH_SIZE set_seed(__snake_case ) # New Code # # Create our folds: UpperCAmelCase_ : int = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] ) UpperCAmelCase_ : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__snake_case ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = get_fold_dataloaders( __snake_case , __snake_case , __snake_case , __snake_case , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ : Tuple = AdamW(params=model.parameters() , lr=__snake_case ) # Instantiate scheduler UpperCAmelCase_ : str = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=1_0_0 , num_training_steps=(len(__snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase_ : Optional[Any] = model(**__snake_case ) UpperCAmelCase_ : Dict = outputs.loss UpperCAmelCase_ : List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : str = model(**__snake_case ) UpperCAmelCase_ : Optional[int] = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) UpperCAmelCase_ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , __snake_case ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase_ : Union[str, Any] = [] for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : Tuple = model(**__snake_case ) UpperCAmelCase_ : Optional[int] = outputs.logits UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__snake_case , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase_ : Union[str, Any] = torch.cat(__snake_case , dim=0 ) UpperCAmelCase_ : str = torch.stack(__snake_case , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase_ : List[str] = metric.compute(predictions=__snake_case , references=__snake_case ) accelerator.print("Average test metrics from all folds:" , __snake_case ) def _snake_case ( ) -> str: '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__snake_case , default=__snake_case , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" , type=__snake_case , default=3 , help="The number of splits to perform across the dataset" ) UpperCAmelCase_ : Any = parser.parse_args() UpperCAmelCase_ : List[Any] = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
455
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCAmelCase_ = logging.getLogger() def __SCREAMING_SNAKE_CASE (): snake_case_ = argparse.ArgumentParser() parser.add_argument('''-f''' ) snake_case_ = parser.parse_args() return args.f class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : Dict ) ->None: snake_case_ = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) def snake_case__( self : List[str] , _UpperCamelCase : Any ) ->Dict: snake_case_ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''' ) with patch.object(_UpperCamelCase , '''argv''' , _UpperCamelCase ): snake_case_ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_UpperCamelCase , 0.666 ) @slow @require_torch_non_multi_gpu def snake_case__( self : Union[str, Any] ) ->Union[str, Any]: snake_case_ = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(_UpperCamelCase ) snake_case_ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(_UpperCamelCase ) snake_case_ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(_UpperCamelCase )
39
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: _lowercase = ksize + 1 _lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(SCREAMING_SNAKE_CASE_ ): for x in range(SCREAMING_SNAKE_CASE_ ): # distance from center _lowercase = x - ksize // 2 _lowercase = y - ksize // 2 # degree to radiant _lowercase = theta / 1_80 * np.pi _lowercase = np.cos(_theta ) _lowercase = np.sin(_theta ) # get kernel x _lowercase = cos_theta * px + sin_theta * py # get kernel y _lowercase = -sin_theta * px + cos_theta * py # fill kernel _lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A : Optional[Any] = imread('''../image_data/lena.jpg''') # turn image in gray scale value A : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A : Optional[int] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A : Optional[int] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A : int = out / out.max() * 255 A : str = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
287
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Optional[Any]: super().__init__() self.register_modules( vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = "auto" ) -> Any: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def __call__( self , lowerCamelCase_ , lowerCamelCase_ = 5_12 , lowerCamelCase_ = 5_12 , lowerCamelCase_ = 50 , lowerCamelCase_ = 7.5 , lowerCamelCase_ = None , lowerCamelCase_ = 1 , lowerCamelCase_ = 0.0 , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = "pil" , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = 1 , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> Any: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = 1 elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = len(lowerCamelCase_ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase_ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase_ )}.""" ) # get prompt text embeddings lowerCAmelCase__ = self.tokenizer( lowerCamelCase_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) lowerCAmelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowerCAmelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCAmelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = text_embeddings.shape lowerCAmelCase__ = text_embeddings.repeat(1 , lowerCamelCase_ , 1 ) lowerCAmelCase__ = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase__ = 42 if negative_prompt is None: lowerCAmelCase__ = [''''''] elif type(lowerCamelCase_ ) is not type(lowerCamelCase_ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase_ )} !=""" F""" {type(lowerCamelCase_ )}.""" ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = [negative_prompt] elif batch_size != len(lowerCamelCase_ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase_ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: lowerCAmelCase__ = negative_prompt lowerCAmelCase__ = text_input_ids.shape[-1] lowerCAmelCase__ = self.tokenizer( lowerCamelCase_ , padding='''max_length''' , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , return_tensors='''pt''' , ) lowerCAmelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ = uncond_embeddings.shape[1] lowerCAmelCase__ = uncond_embeddings.repeat(lowerCamelCase_ , lowerCamelCase_ , 1 ) lowerCAmelCase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowerCAmelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase__ = torch.randn( lowerCamelCase_ , generator=lowerCamelCase_ , device='''cpu''' , dtype=lowerCamelCase_ ).to(self.device ) lowerCAmelCase__ = torch.randn(lowerCamelCase_ , generator=lowerCamelCase_ , device='''cpu''' , dtype=lowerCamelCase_ ).to( self.device ) else: lowerCAmelCase__ = torch.randn( lowerCamelCase_ , generator=lowerCamelCase_ , device=self.device , dtype=lowerCamelCase_ ) lowerCAmelCase__ = torch.randn(lowerCamelCase_ , generator=lowerCamelCase_ , device=self.device , dtype=lowerCamelCase_ ) else: if latents_reference.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowerCAmelCase__ = latents_reference.to(self.device ) lowerCAmelCase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCAmelCase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCAmelCase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCAmelCase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCAmelCase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCAmelCase__ = 0 if dx < 0 else dx lowerCAmelCase__ = 0 if dy < 0 else dy lowerCAmelCase__ = max(-dx , 0 ) lowerCAmelCase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowerCAmelCase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCamelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase__ = {} if accepts_eta: lowerCAmelCase__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase__ = self.scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # predict the noise residual lowerCAmelCase__ = self.unet(lowerCamelCase_ , lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.chunk(2 ) lowerCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = 1 / 0.18_215 * latents lowerCAmelCase__ = self.vae.decode(lowerCamelCase_ ).sample lowerCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowerCAmelCase__ = self.feature_extractor(self.numpy_to_pil(lowerCamelCase_ ) , return_tensors='''pt''' ).to( self.device ) lowerCAmelCase__ , lowerCAmelCase__ = self.safety_checker( images=lowerCamelCase_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCAmelCase__ = None if output_type == "pil": lowerCAmelCase__ = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCamelCase_ , nsfw_content_detected=lowerCamelCase_ )
98
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class a__ ( a__ ): '''simple docstring''' lowercase__ : Dict = "ctrl" lowercase__ : str = ["past_key_values"] lowercase__ : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowerCamelCase_=24_65_34 , lowerCamelCase_=2_56 , lowerCamelCase_=12_80 , lowerCamelCase_=81_92 , lowerCamelCase_=48 , lowerCamelCase_=16 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=1e-6 , lowerCamelCase_=0.02 , lowerCamelCase_=True , **lowerCamelCase_ , ) -> Union[str, Any]: lowerCAmelCase__ = vocab_size lowerCAmelCase__ = n_positions lowerCAmelCase__ = n_embd lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head lowerCAmelCase__ = dff lowerCAmelCase__ = resid_pdrop lowerCAmelCase__ = embd_pdrop lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_range lowerCAmelCase__ = use_cache super().__init__(**lowerCamelCase_ )
98
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase : Tuple = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def snake_case ( lowerCamelCase ): '''simple docstring''' config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main __lowercase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(lowerCamelCase , id=lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if exitstatus == 5: __lowercase = 0 # Doctest custom flag to ignore output. __UpperCamelCase : Optional[Any] = doctest.register_optionflag("""IGNORE_RESULT""") __UpperCamelCase : List[Any] = doctest.OutputChecker class __UpperCamelCase ( _lowerCAmelCase ): def _a ( self : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict ) -> List[str]: """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : Optional[int] = CustomOutputChecker __UpperCamelCase : Optional[Any] = HfDoctestModule __UpperCamelCase : Any = HfDocTestParser
80
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case : List[str] = logging.get_logger(__name__) snake_case : List[str] = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class __lowercase ( UpperCamelCase , UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "resnet" SCREAMING_SNAKE_CASE : List[Any] = ["basic", "bottleneck"] def __init__( self , A_=3 , A_=64 , A_=[256, 512, 1024, 2048] , A_=[3, 4, 6, 3] , A_="bottleneck" , A_="relu" , A_=False , A_=None , A_=None , **A_ , )-> Union[str, Any]: super().__init__(**A_ ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = embedding_size _SCREAMING_SNAKE_CASE = hidden_sizes _SCREAMING_SNAKE_CASE = depths _SCREAMING_SNAKE_CASE = layer_type _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = downsample_in_first_stage _SCREAMING_SNAKE_CASE = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(A_ ) + 1 )] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names ) class __lowercase ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = version.parse("1.11" ) @property def __magic_name__ ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self )-> float: return 1e-3
605
0
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): raise TypeError('only integers accepted as input' ) else: snake_case_ : Union[str, Any] = str(abs(__a ) ) snake_case_ : Dict = [list(__a ) for char in range(len(__a ) )] for index in range(len(__a ) ): num_transpositions[index].pop(__a ) return max( int(''.join(list(__a ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
534
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: Optional[Any] = BertJapaneseTokenizer __magic_name__: Optional[int] = False __magic_name__: Optional[int] = True def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" super().setUp() snake_case_ : int = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] snake_case_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self : int , _A : Union[str, Any] ) -> Optional[int]: """simple docstring""" snake_case_ : List[Any] = 'こんにちは、世界。 \nこんばんは、世界。' snake_case_ : Optional[int] = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def UpperCAmelCase_ ( self : Any , _A : List[Any] ) -> int: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.get_input_output_texts(_A ) snake_case_ : Any = tokenizer.encode(_A , add_special_tokens=_A ) snake_case_ : Union[str, Any] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) return text, ids def UpperCAmelCase_ ( self : List[str] ) -> str: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase_ ( self : str ) -> Optional[int]: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = self.tokenizer_class(self.vocab_file ) snake_case_ : int = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(_A , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case_ : int = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(_A ) snake_case_ : str = 'こんにちは、世界。\nこんばんは、世界。' snake_case_ : Optional[Any] = tokenizer.tokenize(_A ) self.assertListEqual(_A , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case_ : Optional[Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_A , 'wb' ) as handle: pickle.dump(_A , _A ) with open(_A , 'rb' ) as handle: snake_case_ : Any = pickle.load(_A ) snake_case_ : Optional[Any] = tokenizer_new.tokenize(_A ) self.assertListEqual(_A , _A ) def UpperCAmelCase_ ( self : Tuple ) -> int: """simple docstring""" snake_case_ : str = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: """simple docstring""" try: snake_case_ : Dict = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" try: snake_case_ : Any = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: """simple docstring""" snake_case_ : Tuple = MecabTokenizer(do_lower_case=_A , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: """simple docstring""" try: snake_case_ : Union[str, Any] = MecabTokenizer( do_lower_case=_A , normalize_text=_A , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case_ : Union[str, Any] = MecabTokenizer(normalize_text=_A , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case_ : Optional[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(_A ) snake_case_ : Optional[Any] = 'こんにちは、世界。\nこんばんは、世界。' snake_case_ : Optional[int] = tokenizer.tokenize(_A ) self.assertListEqual(_A , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case_ : Optional[int] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_A , 'wb' ) as handle: pickle.dump(_A , _A ) with open(_A , 'rb' ) as handle: snake_case_ : Dict = pickle.load(_A ) snake_case_ : Any = tokenizer_new.tokenize(_A ) self.assertListEqual(_A , _A ) @require_sudachi def UpperCAmelCase_ ( self : str ) -> Optional[Any]: """simple docstring""" snake_case_ : Optional[Any] = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" snake_case_ : str = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def UpperCAmelCase_ ( self : Tuple ) -> int: """simple docstring""" snake_case_ : List[str] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def UpperCAmelCase_ ( self : Any ) -> int: """simple docstring""" snake_case_ : List[str] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case_ : Any = SudachiTokenizer(do_lower_case=_A , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def UpperCAmelCase_ ( self : Any ) -> List[str]: """simple docstring""" snake_case_ : Optional[int] = SudachiTokenizer(normalize_text=_A , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def UpperCAmelCase_ ( self : List[Any] ) -> Dict: """simple docstring""" snake_case_ : List[str] = SudachiTokenizer(trim_whitespace=_A , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def UpperCAmelCase_ ( self : List[str] ) -> Any: """simple docstring""" snake_case_ : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(_A ) snake_case_ : Any = 'こんにちは、世界。\nこんばんは、世界。' snake_case_ : Any = tokenizer.tokenize(_A ) self.assertListEqual(_A , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case_ : Any = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_A , 'wb' ) as handle: pickle.dump(_A , _A ) with open(_A , 'rb' ) as handle: snake_case_ : Optional[Any] = pickle.load(_A ) snake_case_ : Union[str, Any] = tokenizer_new.tokenize(_A ) self.assertListEqual(_A , _A ) @require_jumanpp def UpperCAmelCase_ ( self : Optional[int] ) -> int: """simple docstring""" snake_case_ : Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def UpperCAmelCase_ ( self : str ) -> List[str]: """simple docstring""" snake_case_ : Dict = JumanppTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = JumanppTokenizer(normalize_text=_A ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[int] = JumanppTokenizer(trim_whitespace=_A ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def UpperCAmelCase_ ( self : Any ) -> Any: """simple docstring""" snake_case_ : List[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" snake_case_ : List[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] snake_case_ : List[Any] = {} for i, token in enumerate(_A ): snake_case_ : List[str] = i snake_case_ : List[str] = WordpieceTokenizer(vocab=_A , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case_ : Any = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) snake_case_ : Optional[int] = tokenizer.subword_tokenizer snake_case_ : List[str] = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(_A , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) snake_case_ : Dict = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(_A , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: """simple docstring""" snake_case_ : Dict = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) snake_case_ : Tuple = tokenizer.encode('ありがとう。' , add_special_tokens=_A ) snake_case_ : Optional[Any] = tokenizer.encode('どういたしまして。' , add_special_tokens=_A ) snake_case_ : Dict = tokenizer.build_inputs_with_special_tokens(_A ) snake_case_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_A , _A ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BertJapaneseTokenizer __magic_name__: int = False def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" super().setUp() snake_case_ : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] snake_case_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self : List[Any] , **_A : Dict ) -> List[str]: """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **_A ) def UpperCAmelCase_ ( self : Dict , _A : str ) -> Optional[int]: """simple docstring""" snake_case_ : Tuple = 'こんにちは、世界。 \nこんばんは、世界。' snake_case_ : str = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def UpperCAmelCase_ ( self : Optional[int] ) -> int: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase_ ( self : Optional[int] ) -> str: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase_ ( self : Tuple ) -> str: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" snake_case_ : Any = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) snake_case_ : int = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( _A , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: """simple docstring""" snake_case_ : Dict = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] snake_case_ : Optional[Any] = {} for i, token in enumerate(_A ): snake_case_ : str = i snake_case_ : Tuple = CharacterTokenizer(vocab=_A , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def UpperCAmelCase_ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ : str = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) snake_case_ : Optional[Any] = tokenizer.encode('ありがとう。' , add_special_tokens=_A ) snake_case_ : List[str] = tokenizer.encode('どういたしまして。' , add_special_tokens=_A ) snake_case_ : List[Any] = tokenizer.build_inputs_with_special_tokens(_A ) snake_case_ : Tuple = tokenizer.build_inputs_with_special_tokens(_A , _A ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : str ) -> Optional[int]: """simple docstring""" snake_case_ : Optional[Any] = 'cl-tohoku/bert-base-japanese' snake_case_ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[Any] = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(_A ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) snake_case_ : int = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(_A ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
534
1