code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __snake_case :Dict =logging.get_logger(__name__) class lowerCAmelCase__ : def __init__( self : str , __UpperCamelCase : str = None , __UpperCamelCase : uuid.UUID = None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : str=None ) -> Optional[int]: if not conversation_id: A = uuid.uuida() if past_user_inputs is None: A = [] if generated_responses is None: A = [] A = conversation_id A = past_user_inputs A = generated_responses A = text def __eq__( self : Tuple , __UpperCamelCase : int ) -> Union[str, Any]: if not isinstance(__UpperCamelCase , __UpperCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __UpperCamelCase ( self : str , __UpperCamelCase : str , __UpperCamelCase : bool = False ) -> Union[str, Any]: if self.new_user_input: if overwrite: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' f'''with: "{text}".''' ) A = text else: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' f'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: A = text def __UpperCamelCase ( self : str ) -> List[Any]: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) A = None def __UpperCamelCase ( self : Any , __UpperCamelCase : str ) -> List[Any]: self.generated_responses.append(__UpperCamelCase ) def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Dict ) -> Dict: A = f'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): A = 'user' if is_user else 'bot' output += f'''{name} >> {text} \n''' return output @add_end_docstrings( _lowerCamelCase , r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class lowerCAmelCase__ ( _lowerCamelCase ): def __init__( self : Tuple , *__UpperCamelCase : Tuple , **__UpperCamelCase : Tuple ) -> str: super().__init__(*__UpperCamelCase , **__UpperCamelCase ) if self.tokenizer.pad_token_id is None: A = self.tokenizer.eos_token def __UpperCamelCase ( self : Any , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : int ) -> Optional[Any]: A = {} A = {} A = {} if min_length_for_response is not None: A = min_length_for_response if minimum_tokens is not None: A = minimum_tokens if "max_length" in generate_kwargs: A = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: A = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__UpperCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] , __UpperCamelCase : Union[Conversation, List[Conversation]] , __UpperCamelCase : List[str]=0 , **__UpperCamelCase : str ) -> Any: A = super().__call__(__UpperCamelCase , num_workers=__UpperCamelCase , **__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) == 1: return outputs[0] return outputs def __UpperCamelCase ( self : Tuple , __UpperCamelCase : Conversation , __UpperCamelCase : Union[str, Any]=32 ) -> Dict[str, Any]: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( f'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): A = self.tokenizer._build_conversation_input_ids(__UpperCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version A = self._legacy_parse_and_tokenize(__UpperCamelCase ) if self.framework == "pt": A = torch.LongTensor([input_ids] ) elif self.framework == "tf": A = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any]=10 , **__UpperCamelCase : Dict ) -> Any: A = generate_kwargs.get('max_length' , self.model.config.max_length ) A = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) A = max_length - minimum_tokens A = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: A = model_inputs['attention_mask'][:, -trim:] A = model_inputs.pop('conversation' ) A = max_length A = self.model.generate(**__UpperCamelCase , **__UpperCamelCase ) if self.model.config.is_encoder_decoder: A = 1 else: A = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __UpperCamelCase ( self : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Any=True ) -> int: A = model_outputs['output_ids'] A = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , ) A = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(__UpperCamelCase ) return conversation def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : Conversation ) -> Dict: A = self.tokenizer.eos_token_id A = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) if len(__UpperCamelCase ) > self.tokenizer.model_max_length: A = input_ids[-self.tokenizer.model_max_length :] return input_ids
106
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowercase : Dict = KandinskyInpaintPipeline lowercase : Any = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowercase : Any = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowercase : Any = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase : Dict = False @property def __lowerCamelCase ( self ) -> int: '''simple docstring''' return 32 @property def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' return self.time_input_dim @property def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim * 4 @property def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return 1_00 @property def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Optional[int] = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase : Any = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __UpperCamelCase : Optional[int] = MultilingualCLIP(__UpperCamelCase ) __UpperCamelCase : int = text_encoder.eval() return text_encoder @property def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase : List[Any] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __UpperCamelCase : List[Any] = UNetaDConditionModel(**__UpperCamelCase ) return model @property def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Tuple = self.dummy_text_encoder __UpperCamelCase : Any = self.dummy_tokenizer __UpperCamelCase : Tuple = self.dummy_unet __UpperCamelCase : List[str] = self.dummy_movq __UpperCamelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=__UpperCamelCase , ) __UpperCamelCase : Dict = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : List[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) __UpperCamelCase : Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCamelCase ) # create init_image __UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) __UpperCamelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase : Optional[Any] = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert("RGB" ).resize((2_56, 2_56) ) # create mask __UpperCamelCase : Dict = np.ones((64, 64) , dtype=np.floataa ) __UpperCamelCase : List[Any] = 0 if str(__UpperCamelCase ).startswith("mps" ): __UpperCamelCase : int = torch.manual_seed(__UpperCamelCase ) else: __UpperCamelCase : Union[str, Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) __UpperCamelCase : Any = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Any = "cpu" __UpperCamelCase : Any = self.get_dummy_components() __UpperCamelCase : Optional[Any] = self.pipeline_class(**__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __UpperCamelCase : int = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) __UpperCamelCase : str = output.images __UpperCamelCase : Optional[int] = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] __UpperCamelCase : Tuple = image[0, -3:, -3:, -1] __UpperCamelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase : Tuple = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) __UpperCamelCase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __UpperCamelCase : str = np.ones((7_68, 7_68) , dtype=np.floataa ) __UpperCamelCase : Dict = 0 __UpperCamelCase : Union[str, Any] = "a hat" __UpperCamelCase : Any = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) __UpperCamelCase : Any = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) __UpperCamelCase : Any = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) __UpperCamelCase : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase , __UpperCamelCase : int = pipe_prior( __UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __UpperCamelCase : List[Any] = pipeline( __UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="np" , ) __UpperCamelCase : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
327
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' snake_case__ : Optional[Any] = 'unispeech' def __init__( self :str , __magic_name__ :Dict=32 , __magic_name__ :Optional[Any]=768 , __magic_name__ :int=12 , __magic_name__ :Any=12 , __magic_name__ :Optional[Any]=3072 , __magic_name__ :List[str]="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :Optional[int]=0.1 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[str]=0.0 , __magic_name__ :Optional[int]=0.1 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Union[str, Any]=0.02 , __magic_name__ :List[Any]=1e-5 , __magic_name__ :Optional[int]="group" , __magic_name__ :int="gelu" , __magic_name__ :List[Any]=(512, 512, 512, 512, 512, 512, 512) , __magic_name__ :List[Any]=(5, 2, 2, 2, 2, 2, 2) , __magic_name__ :str=(10, 3, 3, 3, 3, 2, 2) , __magic_name__ :Optional[int]=False , __magic_name__ :Tuple=128 , __magic_name__ :Union[str, Any]=16 , __magic_name__ :Dict=False , __magic_name__ :Tuple=True , __magic_name__ :List[str]=0.05 , __magic_name__ :str=10 , __magic_name__ :str=2 , __magic_name__ :int=0.0 , __magic_name__ :str=10 , __magic_name__ :Optional[int]=0 , __magic_name__ :int=320 , __magic_name__ :List[Any]=2 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :List[Any]=100 , __magic_name__ :str=256 , __magic_name__ :Dict=256 , __magic_name__ :Optional[Any]=0.1 , __magic_name__ :List[Any]="mean" , __magic_name__ :str=False , __magic_name__ :Dict=False , __magic_name__ :Dict=256 , __magic_name__ :List[str]=80 , __magic_name__ :Any=0 , __magic_name__ :Union[str, Any]=1 , __magic_name__ :Any=2 , __magic_name__ :List[str]=0.5 , **__magic_name__ :Any , ) -> Any: '''simple docstring''' super().__init__(**__magic_name__ , pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ ) a__ = hidden_size a__ = feat_extract_norm a__ = feat_extract_activation a__ = list(__magic_name__ ) a__ = list(__magic_name__ ) a__ = list(__magic_name__ ) a__ = conv_bias a__ = num_conv_pos_embeddings a__ = num_conv_pos_embedding_groups a__ = len(self.conv_dim ) a__ = num_hidden_layers a__ = intermediate_size a__ = hidden_act a__ = num_attention_heads a__ = hidden_dropout a__ = attention_dropout a__ = activation_dropout a__ = feat_proj_dropout a__ = final_dropout a__ = layerdrop a__ = layer_norm_eps a__ = initializer_range a__ = num_ctc_classes a__ = vocab_size a__ = do_stable_layer_norm a__ = use_weighted_layer_sum a__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a__ = apply_spec_augment a__ = mask_time_prob a__ = mask_time_length a__ = mask_time_min_masks a__ = mask_feature_prob a__ = mask_feature_length a__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations a__ = num_codevectors_per_group a__ = num_codevector_groups a__ = contrastive_logits_temperature a__ = feat_quantizer_dropout a__ = num_negatives a__ = codevector_dim a__ = proj_codevector_dim a__ = diversity_loss_weight # ctc loss a__ = ctc_loss_reduction a__ = ctc_zero_infinity # pretraining loss a__ = replace_prob @property def _UpperCamelCase ( self :List[Any] ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
703
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __snake_case ( UpperCamelCase , UpperCamelCase ) -> Optional[int]: """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a__ = JsonDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase ).read() _check_json_dataset(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: """simple docstring""" a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} a__ = features.copy() if features else default_expected_features a__ = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = JsonDatasetReader(UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_json_dataset(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" a__ = tmp_path / '''cache''' a__ = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} a__ = features.copy() if features else default_expected_features a__ = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = JsonDatasetReader(UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() assert isinstance(UpperCamelCase , UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __snake_case ( UpperCamelCase , UpperCamelCase ) -> List[str]: """simple docstring""" a__ = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} a__ = features.copy() a__ = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = tmp_path / '''cache''' a__ = JsonDatasetReader(UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() assert isinstance(UpperCamelCase , UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: """simple docstring""" a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} a__ = JsonDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase , split=UpperCamelCase ).read() _check_json_dataset(UpperCamelCase , UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" if issubclass(UpperCamelCase , UpperCamelCase ): a__ = jsonl_path elif issubclass(UpperCamelCase , UpperCamelCase ): a__ = [jsonl_path] a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} a__ = JsonDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_json_dataset(UpperCamelCase , UpperCamelCase ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase=("train",) ) -> str: """simple docstring""" assert isinstance(UpperCamelCase , UpperCamelCase ) for split in splits: a__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Tuple: """simple docstring""" a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a__ = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase ).read() _check_json_datasetdict(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[Any]: """simple docstring""" a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} a__ = features.copy() if features else default_expected_features a__ = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) a__ = JsonDatasetReader({'''train''': jsonl_path} , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_json_datasetdict(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[Any]: """simple docstring""" if split: a__ = {split: jsonl_path} else: a__ = '''train''' a__ = {'''train''': jsonl_path, '''test''': jsonl_path} a__ = tmp_path / '''cache''' a__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} a__ = JsonDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_json_datasetdict(UpperCamelCase , UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __snake_case ( UpperCamelCase ) -> Any: """simple docstring""" return json.load(UpperCamelCase ) def __snake_case ( UpperCamelCase ) -> Optional[int]: """simple docstring""" return [json.loads(UpperCamelCase ) for line in buffer] class SCREAMING_SNAKE_CASE : '''simple docstring''' @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def _UpperCamelCase ( self :Optional[Any] , __magic_name__ :Optional[Any] , __magic_name__ :Any , __magic_name__ :Optional[int] ) -> str: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ ).write() buffer.seek(0 ) a__ = load_json_function(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) assert isinstance(exported_content[0] , __magic_name__ ) assert len(__magic_name__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def _UpperCamelCase ( self :Union[str, Any] , __magic_name__ :int , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :List[str] , __magic_name__ :Any ) -> List[Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , orient=__magic_name__ ).write() buffer.seek(0 ) a__ = load_json(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__magic_name__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__magic_name__ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def _UpperCamelCase ( self :Optional[Any] , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Union[str, Any] ) -> List[str]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , num_proc=2 ).write() buffer.seek(0 ) a__ = load_json_function(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) assert isinstance(exported_content[0] , __magic_name__ ) assert len(__magic_name__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def _UpperCamelCase ( self :Any , __magic_name__ :Any , __magic_name__ :Optional[Any] , __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :Any ) -> Optional[Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , orient=__magic_name__ , num_proc=2 ).write() buffer.seek(0 ) a__ = load_json(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__magic_name__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__magic_name__ ) == 10 def _UpperCamelCase ( self :Optional[Any] , __magic_name__ :int ) -> Dict: '''simple docstring''' with pytest.raises(__magic_name__ ): with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def _UpperCamelCase ( self :Tuple , __magic_name__ :Optional[Any] , __magic_name__ :Tuple , __magic_name__ :Dict , __magic_name__ :List[Any] , __magic_name__ :Optional[int] ) -> Union[str, Any]: '''simple docstring''' a__ = tmp_path_factory.mktemp('''data''' ) / F"test.json.{extension}" a__ = str(shared_datadir / F"test_file.json.{extension}" ) JsonDatasetWriter(__magic_name__ , __magic_name__ , compression=__magic_name__ ).write() with fsspec.open(__magic_name__ , '''rb''' , compression='''infer''' ) as f: a__ = f.read() with fsspec.open(__magic_name__ , '''rb''' , compression='''infer''' ) as f: a__ = f.read() assert exported_content == original_content
158
0
from collections import deque def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = len(__lowerCAmelCase ) snake_case__ = deque() snake_case__ = [False for _ in range(__lowerCAmelCase )] snake_case__ = [-1 for _ in range(__lowerCAmelCase )] snake_case__ = index_of[:] def strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = index # the number when this node is seen snake_case__ = index # lowest rank node reachable from here index += 1 stack.append(__lowerCAmelCase ) snake_case__ = True for w in g[v]: if index_of[w] == -1: snake_case__ = strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: snake_case__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: snake_case__ = [] snake_case__ = stack.pop() snake_case__ = False component.append(__lowerCAmelCase ) while w != v: snake_case__ = stack.pop() snake_case__ = False component.append(__lowerCAmelCase ) components.append(__lowerCAmelCase ) return index snake_case__ = [] for v in range(__lowerCAmelCase ): if index_of[v] == -1: strong_connect(__lowerCAmelCase , 0 , __lowerCAmelCase ) return components def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = [[] for _ in range(__lowerCAmelCase )] for u, v in edges: g[u].append(__lowerCAmelCase ) return g if __name__ == "__main__": # Test lowerCamelCase__ : Tuple = 7 lowerCamelCase__ : Optional[Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] lowerCamelCase__ : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] lowerCamelCase__ : int = [(u, v) for u, v in zip(source, target)] lowerCamelCase__ : List[str] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
33
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __lowerCamelCase (UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict=[] ): SCREAMING_SNAKE_CASE = size[0] - overlap_pixels * 2 SCREAMING_SNAKE_CASE = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels SCREAMING_SNAKE_CASE = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_5_5 SCREAMING_SNAKE_CASE = np.pad(UpperCAmelCase__ , mode="linear_ramp" , pad_width=UpperCAmelCase__ , end_values=0 ) if "l" in remove_borders: SCREAMING_SNAKE_CASE = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: SCREAMING_SNAKE_CASE = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: SCREAMING_SNAKE_CASE = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: SCREAMING_SNAKE_CASE = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ): return max(UpperCAmelCase__ , min(UpperCAmelCase__ , UpperCAmelCase__ ) ) def __lowerCamelCase (UpperCAmelCase__ : [int] , UpperCAmelCase__ : [int] , UpperCAmelCase__ : [int] ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __lowerCamelCase (UpperCAmelCase__ : [int] , UpperCAmelCase__ : int , UpperCAmelCase__ : [int] ): SCREAMING_SNAKE_CASE = list(UpperCAmelCase__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap SCREAMING_SNAKE_CASE = clamp_rect(UpperCAmelCase__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def __lowerCamelCase (UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE = Image.new("RGB" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(UpperCAmelCase__ , (original_slice, 0) ) return result def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any ): SCREAMING_SNAKE_CASE = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) SCREAMING_SNAKE_CASE = tile.crop(UpperCAmelCase__ ) return tile def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = n % d return n - divisor class lowercase ( a ): def __init__( self : Tuple , _UpperCamelCase : AutoencoderKL , _UpperCamelCase : CLIPTextModel , _UpperCamelCase : CLIPTokenizer , _UpperCamelCase : UNetaDConditionModel , _UpperCamelCase : DDPMScheduler , _UpperCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCamelCase : int = 350 , ) -> Dict: '''simple docstring''' super().__init__( vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , max_noise_level=_UpperCamelCase , ) def __snake_case( self : List[str] , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , **_UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) SCREAMING_SNAKE_CASE = add_overlap_rect(_UpperCamelCase , _UpperCamelCase , image.size ) SCREAMING_SNAKE_CASE = image.crop(_UpperCamelCase ) SCREAMING_SNAKE_CASE = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] SCREAMING_SNAKE_CASE = translated_slice_x - (original_image_slice / 2) SCREAMING_SNAKE_CASE = max(0 , _UpperCamelCase ) SCREAMING_SNAKE_CASE = squeeze_tile(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = to_input.size SCREAMING_SNAKE_CASE = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) SCREAMING_SNAKE_CASE = super(_UpperCamelCase , self ).__call__(image=_UpperCamelCase , **_UpperCamelCase ).images[0] SCREAMING_SNAKE_CASE = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) SCREAMING_SNAKE_CASE = unsqueeze_tile(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) SCREAMING_SNAKE_CASE = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) SCREAMING_SNAKE_CASE = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=_UpperCamelCase ) , mode="L" , ) final_image.paste( _UpperCamelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , _UpperCamelCase ) @torch.no_grad() def __call__( self : Optional[Any] , _UpperCamelCase : Union[str, List[str]] , _UpperCamelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , _UpperCamelCase : int = 75 , _UpperCamelCase : float = 9.0 , _UpperCamelCase : int = 50 , _UpperCamelCase : Optional[Union[str, List[str]]] = None , _UpperCamelCase : Optional[int] = 1 , _UpperCamelCase : float = 0.0 , _UpperCamelCase : Optional[torch.Generator] = None , _UpperCamelCase : Optional[torch.FloatTensor] = None , _UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 128 , _UpperCamelCase : int = 32 , _UpperCamelCase : int = 32 , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) SCREAMING_SNAKE_CASE = math.ceil(image.size[0] / tile_size ) SCREAMING_SNAKE_CASE = math.ceil(image.size[1] / tile_size ) SCREAMING_SNAKE_CASE = tcx * tcy SCREAMING_SNAKE_CASE = 0 for y in range(_UpperCamelCase ): for x in range(_UpperCamelCase ): self._process_tile( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , prompt=_UpperCamelCase , num_inference_steps=_UpperCamelCase , guidance_scale=_UpperCamelCase , noise_level=_UpperCamelCase , negative_prompt=_UpperCamelCase , num_images_per_prompt=_UpperCamelCase , eta=_UpperCamelCase , generator=_UpperCamelCase , latents=_UpperCamelCase , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def __lowerCamelCase (): # Run a demo SCREAMING_SNAKE_CASE = "stabilityai/stable-diffusion-x4-upscaler" SCREAMING_SNAKE_CASE = StableDiffusionTiledUpscalePipeline.from_pretrained(UpperCAmelCase__ , revision="fp16" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE = pipe.to("cuda" ) SCREAMING_SNAKE_CASE = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(UpperCAmelCase__ : List[Any] ): print(F"progress: {obj['progress']:.4f}" ) obj["image"].save("diffusers_library_progress.jpg" ) SCREAMING_SNAKE_CASE = pipe(image=UpperCAmelCase__ , prompt="Black font, white background, vector" , noise_level=4_0 , callback=UpperCAmelCase__ ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
403
0
"""simple docstring""" def a_ ( _lowerCAmelCase : list ): '''simple docstring''' if len(_lowerCAmelCase ) <= 1: return lst lowercase__ : Dict = 1 while i < len(_lowerCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: lowercase__ , lowercase__ : Optional[int] = lst[i], lst[i - 1] i -= 1 if i == 0: lowercase__ : int = 1 return lst if __name__ == "__main__": _UpperCamelCase : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() _UpperCamelCase : List[str] = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
645
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
1
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = AudioLDMPipeline __UpperCAmelCase : Optional[int] = TEXT_TO_AUDIO_PARAMS __UpperCAmelCase : List[str] = TEXT_TO_AUDIO_BATCH_PARAMS __UpperCAmelCase : List[str] = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def __lowercase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) _a : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=(32, 64) ,class_embed_type='simple_projection' ,projection_class_embeddings_input_dim=32 ,class_embeddings_concat=UpperCamelCase_ ,) _a : Union[str, Any] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,clip_sample=UpperCamelCase_ ,set_alpha_to_one=UpperCamelCase_ ,) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=1 ,out_channels=1 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) _a : Optional[Any] = ClapTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,projection_dim=32 ,) _a : Any = ClapTextModelWithProjection(UpperCamelCase_ ) _a : List[Any] = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' ,model_max_length=77 ) _a : Any = SpeechTaHifiGanConfig( model_in_dim=8 ,sampling_rate=1_6000 ,upsample_initial_channel=16 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=UpperCamelCase_ ,) _a : Dict = SpeechTaHifiGan(UpperCamelCase_ ) _a : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def __lowercase ( self : str ,_a : List[str] ,_a : Union[str, Any]=0 ): '''simple docstring''' if str(UpperCamelCase_ ).startswith('mps' ): _a : Dict = torch.manual_seed(UpperCamelCase_ ) else: _a : Union[str, Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) _a : List[str] = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def __lowercase ( self : Dict ): '''simple docstring''' _a : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator _a : Optional[Any] = self.get_dummy_components() _a : Optional[int] = AudioLDMPipeline(**UpperCamelCase_ ) _a : List[str] = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _a : Optional[Any] = self.get_dummy_inputs(UpperCamelCase_ ) _a : int = audioldm_pipe(**UpperCamelCase_ ) _a : int = output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) == 256 _a : List[str] = audio[:10] _a : List[str] = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __lowercase ( self : int ): '''simple docstring''' _a : str = self.get_dummy_components() _a : List[str] = AudioLDMPipeline(**UpperCamelCase_ ) _a : Any = audioldm_pipe.to(UpperCamelCase_ ) _a : List[Any] = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _a : Any = self.get_dummy_inputs(UpperCamelCase_ ) _a : List[str] = 3 * [inputs['prompt']] # forward _a : str = audioldm_pipe(**UpperCamelCase_ ) _a : str = output.audios[0] _a : List[Any] = self.get_dummy_inputs(UpperCamelCase_ ) _a : List[str] = 3 * [inputs.pop('prompt' )] _a : Union[str, Any] = audioldm_pipe.tokenizer( UpperCamelCase_ ,padding='max_length' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=UpperCamelCase_ ,return_tensors='pt' ,) _a : Optional[int] = text_inputs['input_ids'].to(UpperCamelCase_ ) _a : List[str] = audioldm_pipe.text_encoder( UpperCamelCase_ ,) _a : List[str] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _a : Dict = F.normalize(UpperCamelCase_ ,dim=-1 ) _a : str = prompt_embeds # forward _a : Dict = audioldm_pipe(**UpperCamelCase_ ) _a : str = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Dict = self.get_dummy_components() _a : int = AudioLDMPipeline(**UpperCamelCase_ ) _a : Optional[int] = audioldm_pipe.to(UpperCamelCase_ ) _a : str = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _a : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) _a : Optional[Any] = 3 * ['this is a negative prompt'] _a : Any = negative_prompt _a : Any = 3 * [inputs['prompt']] # forward _a : Optional[int] = audioldm_pipe(**UpperCamelCase_ ) _a : int = output.audios[0] _a : str = self.get_dummy_inputs(UpperCamelCase_ ) _a : Optional[int] = 3 * [inputs.pop('prompt' )] _a : str = [] for p in [prompt, negative_prompt]: _a : Optional[int] = audioldm_pipe.tokenizer( UpperCamelCase_ ,padding='max_length' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=UpperCamelCase_ ,return_tensors='pt' ,) _a : Dict = text_inputs['input_ids'].to(UpperCamelCase_ ) _a : Dict = audioldm_pipe.text_encoder( UpperCamelCase_ ,) _a : Optional[int] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _a : Any = F.normalize(UpperCamelCase_ ,dim=-1 ) embeds.append(UpperCamelCase_ ) _a : List[str] = embeds # forward _a : List[Any] = audioldm_pipe(**UpperCamelCase_ ) _a : int = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _a : str = self.get_dummy_components() _a : int = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) _a : Optional[Any] = AudioLDMPipeline(**UpperCamelCase_ ) _a : Union[str, Any] = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _a : str = self.get_dummy_inputs(UpperCamelCase_ ) _a : str = 'egg cracking' _a : List[str] = audioldm_pipe(**UpperCamelCase_ ,negative_prompt=UpperCamelCase_ ) _a : List[str] = output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) == 256 _a : List[Any] = audio[:10] _a : List[Any] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __lowercase ( self : str ): '''simple docstring''' _a : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _a : Tuple = self.get_dummy_components() _a : Tuple = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) _a : Any = AudioLDMPipeline(**UpperCamelCase_ ) _a : Tuple = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _a : Dict = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) _a : Optional[Any] = audioldm_pipe(UpperCamelCase_ ,num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _a : Dict = 2 _a : Optional[int] = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _a : Tuple = 2 _a : Dict = audioldm_pipe(UpperCamelCase_ ,num_inference_steps=2 ,num_waveforms_per_prompt=UpperCamelCase_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _a : List[Any] = 2 _a : Dict = audioldm_pipe( [prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=UpperCamelCase_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _a : Union[str, Any] = self.get_dummy_components() _a : Any = AudioLDMPipeline(**UpperCamelCase_ ) _a : Union[str, Any] = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _a : int = audioldm_pipe.vocoder.config.sampling_rate _a : List[Any] = self.get_dummy_inputs(UpperCamelCase_ ) _a : Optional[Any] = audioldm_pipe(audio_length_in_s=0.016 ,**UpperCamelCase_ ) _a : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) / vocoder_sampling_rate == 0.016 _a : int = audioldm_pipe(audio_length_in_s=0.032 ,**UpperCamelCase_ ) _a : List[str] = output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) / vocoder_sampling_rate == 0.032 def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Optional[Any] = self.get_dummy_components() _a : Optional[Any] = AudioLDMPipeline(**UpperCamelCase_ ) _a : Optional[int] = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _a : Optional[Any] = ['hey'] _a : Union[str, Any] = audioldm_pipe(UpperCamelCase_ ,num_inference_steps=1 ) _a : Union[str, Any] = output.audios.shape assert audio_shape == (1, 256) _a : str = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _a : str = SpeechTaHifiGan(UpperCamelCase_ ).to(UpperCamelCase_ ) _a : List[Any] = audioldm_pipe(UpperCamelCase_ ,num_inference_steps=1 ) _a : Optional[Any] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def __lowercase ( self : str ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCamelCase_ ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=UpperCamelCase_ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCamelCase_ ) @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : str ,_a : int ,_a : Any="cpu" ,_a : str=torch.floataa ,_a : List[Any]=0 ): '''simple docstring''' _a : int = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) _a : Optional[int] = np.random.RandomState(UpperCamelCase_ ).standard_normal((1, 8, 128, 16) ) _a : Union[str, Any] = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ,dtype=UpperCamelCase_ ) _a : List[Any] = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def __lowercase ( self : Any ): '''simple docstring''' _a : List[str] = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) _a : int = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _a : Tuple = self.get_inputs(UpperCamelCase_ ) _a : str = 25 _a : int = audioldm_pipe(**UpperCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) == 8_1920 _a : Optional[Any] = audio[7_7230:7_7240] _a : Union[str, Any] = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) _a : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Any = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) _a : List[Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _a : List[Any] = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _a : Any = self.get_inputs(UpperCamelCase_ ) _a : Dict = audioldm_pipe(**UpperCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) == 8_1920 _a : Optional[int] = audio[2_7780:2_7790] _a : Optional[Any] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) _a : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
229
"""simple docstring""" from ...configuration_utils import PretrainedConfig class a ( lowercase ): UpperCamelCase : Union[str, Any] = """bert-generation""" def __init__( self , UpperCamelCase_=50_358 , UpperCamelCase_=1_024 , UpperCamelCase_=24 , UpperCamelCase_=16 , UpperCamelCase_=4_096 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=0.02 , UpperCamelCase_=1E-12 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_="absolute" , UpperCamelCase_=True , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Dict = num_attention_heads UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : Optional[Any] = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : List[Any] = max_position_embeddings UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Optional[int] = layer_norm_eps UpperCAmelCase__ : Union[str, Any] = position_embedding_type UpperCAmelCase__ : Dict = use_cache
110
0
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _lowercase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: _lowercase = json.load(f) @require_torch class lowercase_ ( unittest.TestCase ): def _snake_case ( self , __A ) -> int: return FSMTTokenizer.from_pretrained(__A ) def _snake_case ( self , __A ) -> Tuple: SCREAMING_SNAKE_CASE_ : int =FSMTForConditionalGeneration.from_pretrained(__A ).to(__A ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def _snake_case ( self , __A , __A ) -> List[Any]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality SCREAMING_SNAKE_CASE_ : int =F'facebook/wmt19-{pair}' SCREAMING_SNAKE_CASE_ : Optional[int] =self.get_tokenizer(__A ) SCREAMING_SNAKE_CASE_ : Dict =self.get_model(__A ) SCREAMING_SNAKE_CASE_ : List[str] =bleu_data[pair]['''src'''] SCREAMING_SNAKE_CASE_ : Dict =bleu_data[pair]['''tgt'''] SCREAMING_SNAKE_CASE_ : str =tokenizer(__A , return_tensors='''pt''' , truncation=__A , padding='''longest''' ).to(__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =model.generate( input_ids=batch.input_ids , num_beams=8 , ) SCREAMING_SNAKE_CASE_ : int =tokenizer.batch_decode( __A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =calculate_bleu(__A , __A ) print(__A ) self.assertGreaterEqual(scores['''bleu'''] , __A )
431
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Optional[Any] ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 2_0, '''a ''' * 3_0, '''b ''' * 7], } SCREAMING_SNAKE_CASE_ : Any =Dataset.from_dict(UpperCAmelCase_ ) return dataset class lowercase_ ( A ): def _snake_case ( self ) -> Dict: SCREAMING_SNAKE_CASE_ : int =get_dataset() SCREAMING_SNAKE_CASE_ : Any =make_duplicate_clusters(__A , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Optional[int] =get_dataset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict =deduplicate_dataset(__A ) self.assertEqual(len(__A ) , 2 ) print(__A ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , __A )
431
1
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [[0 for _ in range(_UpperCamelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _UpperCamelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: A : str = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: A : Any = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
636
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging A : List[Any] = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a ): super().__init__() __lowerCAmelCase = nn.ModuleList(__a ) def snake_case ( self , __a , __a , __a , __a , __a , __a = None , __a = None , __a = None , __a = None , __a = False , __a = True , ): for i, (image, scale, controlnet) in enumerate(zip(__a , __a , self.nets ) ): __lowerCAmelCase , __lowerCAmelCase = controlnet( __a , __a , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) # merge samples if i == 0: __lowerCAmelCase , __lowerCAmelCase = down_samples, mid_sample else: __lowerCAmelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__a , __a ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def snake_case ( self , __a , __a = True , __a = None , __a = False , __a = None , ): __lowerCAmelCase = 0 __lowerCAmelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( __a , is_main_process=__a , save_function=__a , safe_serialization=__a , variant=__a , ) idx += 1 __lowerCAmelCase = model_path_to_save + f"_{idx}" @classmethod def snake_case ( cls , __a , **__a ): __lowerCAmelCase = 0 __lowerCAmelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __lowerCAmelCase = pretrained_model_path while os.path.isdir(__a ): __lowerCAmelCase = ControlNetModel.from_pretrained(__a , **__a ) controlnets.append(__a ) idx += 1 __lowerCAmelCase = pretrained_model_path + f"_{idx}" logger.info(f"{len(__a )} controlnets loaded from {pretrained_model_path}." ) if len(__a ) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(__a )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(__a )
636
1
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Any = WavaVecaPhonemeCTCTokenizer UpperCamelCase : Union[str, Any] = False def UpperCAmelCase_ ( self ): super().setUp() __A : List[Any] = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) __A : Tuple = dict(zip(_A , range(len(_A ) ) ) ) __A : Any = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} __A : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) def UpperCAmelCase_ ( self , _A , _A=False , _A=20 , _A=5 ): __A : Dict = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=_A )) for i in range(len(_A ) )] __A : Tuple = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , do_phonemize=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __A : List[Any] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __A : List[Any] = toks + toks # toks_str = [t[1] for t in toks] __A : str = [t[0] for t in toks] # Ensure consistency __A : List[str] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __A : Union[str, Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __A : Tuple = ' ' + output_txt __A : Optional[Any] = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def UpperCAmelCase_ ( self , **_A ): kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase_ ( self ): __A : Any = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) __A : List[Any] = tokenizer('m xxx ɪ' , do_phonemize=_A ).input_ids self.assertEqual(_A , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) __A : Tuple = tokenizer('m aaa ɪ ccc' , do_phonemize=_A ).input_ids self.assertEqual(_A , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa __A : int = tokenizer('maɪ c' , do_phonemize=_A ).input_ids self.assertEqual(_A , [3, 200] ) # mai should be <unk> (=3) def UpperCAmelCase_ ( self ): __A : str = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __A : int = 'Hello how are you' __A : Optional[int] = tokenizer.phonemize(_A , phonemizer_lang='en-us' ) self.assertEqual(_A , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def UpperCAmelCase_ ( self ): __A : str = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __A : Tuple = 'Hello how are you' __A : Optional[int] = tokenizer.phonemize(_A , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(_A ).input_ids , tokenizer(_A , do_phonemize=_A ).input_ids ) def UpperCAmelCase_ ( self ): __A : Dict = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __A : Optional[int] = 'Hello how are you' __A : Dict = tokenizer.phonemize(_A , phonemizer_lang='en-us' ) __A : Any = tokenizer.decode(tokenizer(_A ).input_ids ) self.assertEqual(_A , _A ) def UpperCAmelCase_ ( self ): __A : Dict = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __A : str = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] __A : List[str] = tokenizer.decode(sample_ids[0] ) __A : Any = tokenizer.batch_decode(_A ) self.assertEqual(_A , batch_tokens[0] ) self.assertEqual(_A , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def UpperCAmelCase_ ( self ): __A : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __A : str = 'Hello how are you' __A : Any = tokenizer.phonemize(_A , phonemizer_lang='en-us' ) self.assertEqual(_A , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def UpperCAmelCase_ ( self ): __A : str = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __A : Tuple = 'Hello how are you' __A : Dict = tokenizer.phonemize(_A , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(_A ).input_ids , tokenizer(_A , do_phonemize=_A ).input_ids ) def UpperCAmelCase_ ( self ): __A : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off __A : str = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter __A : Dict = tokenizer.decode(sample_ids[0] ) __A : Any = tokenizer.batch_decode(_A ) self.assertEqual(_A , batch_tokens[0] ) self.assertEqual(_A , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter __A : List[Any] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=_A ) __A : List[str] = tokenizer.batch_decode(_A , filter_word_delimiter_token=_A ) self.assertEqual(_A , batch_tokens[0] ) self.assertEqual(_A , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def UpperCAmelCase_ ( self ): __A : List[Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __A : Dict = 'Hello how are you' __A : List[str] = tokenizer.phonemize(_A , phonemizer_lang='en-us' ) __A : Dict = tokenizer.decode(tokenizer(_A ).input_ids , filter_word_delimiter_token=_A ) self.assertEqual(_A , _A ) def UpperCAmelCase_ ( self ): __A : Optional[int] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __A : Any = 'Hello how are you' __A : Dict = tokenizer.phonemize(_A , phonemizer_lang='en-us' ) __A : Optional[Any] = tokenizer.decode(tokenizer(_A ).input_ids , filter_word_delimiter_token=_A ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , _A ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=_A ) __A : Optional[Any] = 'Hello how are you' __A : List[str] = tokenizer(_A , phonemizer_lang='en-us' ).input_ids __A : str = tokenizer(_A , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(_A , _A ) __A : List[Any] = tokenizer.decode(_A ) __A : Optional[int] = tokenizer.decode(_A ) self.assertEqual(_A , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(_A , 'ɛ l o h aʊ a ʁ j u' ) def UpperCAmelCase_ ( self ): __A : Tuple = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __A : Union[str, Any] = 'Hello how Are you' __A : Union[str, Any] = 'hello how are you' __A : List[str] = tokenizer(_A ).input_ids __A : Optional[int] = tokenizer(_A ).input_ids self.assertEqual(_A , _A ) def UpperCAmelCase_ ( self ): __A : Union[str, Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off __A : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on __A : Any = tokenizer.batch_decode(_A ) self.assertEqual(_A , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def UpperCAmelCase_ ( _A , _A ): __A : str = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase_ ( self ): __A : Optional[int] = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" __A : Tuple = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on __A : int = tokenizer.decode(_A , output_char_offsets=_A , filter_word_delimiter_token=_A ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(_A , _A ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def UpperCAmelCase_ ( self ): __A : List[str] = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(_A , _A ): self.assertTrue(isinstance(_A , _A ) ) self.assertTrue(isinstance(outputs_list[0] , _A ) ) # transform list to ModelOutput __A : Union[str, Any] = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(_A , _A ): if isinstance(_A , _A ): [recursive_check(_A , _A ) for la, la in zip(_A , _A )] self.assertEqual(_A , _A ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off __A : Dict = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char __A : List[str] = tokenizer.batch_decode(_A , output_char_offsets=_A ) __A : Tuple = [tokenizer.decode(_A , output_char_offsets=_A ) for ids in sample_ids] check_list_tuples_equal(_A , _A ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): __A : List[str] = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __A : Optional[Any] = tokenizer.vocab_size __A : List[str] = len(_A ) self.assertNotEqual(_A , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __A : int = ['aaaaa bbbbbb', 'cccccccccdddddddd'] __A : Tuple = tokenizer.add_tokens(_A ) __A : Optional[int] = tokenizer.vocab_size __A : Union[str, Any] = len(_A ) self.assertNotEqual(_A , 0 ) self.assertEqual(_A , _A ) self.assertEqual(_A , len(_A ) ) self.assertEqual(_A , all_size + len(_A ) ) __A : str = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_A ) self.assertGreaterEqual(len(_A ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __A : List[str] = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} __A : Union[str, Any] = tokenizer.add_special_tokens(_A ) __A : Optional[Any] = tokenizer.vocab_size __A : Optional[Any] = len(_A ) self.assertNotEqual(_A , 0 ) self.assertEqual(_A , _A ) self.assertEqual(_A , len(_A ) ) self.assertEqual(_A , all_size_a + len(_A ) ) __A : Any = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_A ) self.assertGreaterEqual(len(_A ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def UpperCAmelCase_ ( self ): pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. __A : Optional[Any] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __A : Dict = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] __A : Union[str, Any] = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(output['text'] , _A )
77
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Any = ShapEPipeline UpperCamelCase : str = ['''prompt'''] UpperCamelCase : Tuple = ['''prompt'''] UpperCamelCase : Optional[int] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCamelCase : int = False @property def UpperCAmelCase_ ( self ): return 32 @property def UpperCAmelCase_ ( self ): return 32 @property def UpperCAmelCase_ ( self ): return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self ): return 8 @property def UpperCAmelCase_ ( self ): __A : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) __A : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) __A : int = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __A : Optional[Any] = PriorTransformer(**_A ) return model @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) __A : List[str] = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __A : List[Any] = ShapERenderer(**_A ) return model def UpperCAmelCase_ ( self ): __A : List[str] = self.dummy_prior __A : Optional[int] = self.dummy_text_encoder __A : List[Any] = self.dummy_tokenizer __A : str = self.dummy_renderer __A : List[Any] = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=_A , clip_sample=_A , clip_sample_range=1.0 , ) __A : Any = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def UpperCAmelCase_ ( self , _A , _A=0 ): if str(_A ).startswith('mps' ): __A : List[Any] = torch.manual_seed(_A ) else: __A : Dict = torch.Generator(device=_A ).manual_seed(_A ) __A : int = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def UpperCAmelCase_ ( self ): __A : Tuple = 'cpu' __A : Any = self.get_dummy_components() __A : Tuple = self.pipeline_class(**_A ) __A : List[str] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __A : Tuple = pipe(**self.get_dummy_inputs(_A ) ) __A : int = output.images[0] __A : str = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __A : Any = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase_ ( self ): __A : List[str] = torch_device == 'cpu' __A : Any = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_A , relax_max_difference=_A , ) def UpperCAmelCase_ ( self ): __A : Any = self.get_dummy_components() __A : Any = self.pipeline_class(**_A ) __A : Dict = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __A : Any = 1 __A : Dict = 2 __A : Tuple = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: __A : Optional[int] = batch_size * [inputs[key]] __A : Optional[int] = pipe(**_A , num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ): __A : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __A : Dict = ShapEPipeline.from_pretrained('openai/shap-e' ) __A : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __A : str = torch.Generator(device=_A ).manual_seed(0 ) __A : Tuple = pipe( 'a shark' , generator=_A , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A , _A )
77
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Tuple = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCamelCase_ ( __snake_case ): '''simple docstring''' UpperCAmelCase__ = '''vivit''' def __init__( self : str , UpperCAmelCase__ : str=224 , UpperCAmelCase__ : Union[str, Any]=32 , UpperCAmelCase__ : Optional[int]=[2, 16, 16] , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Dict=768 , UpperCAmelCase__ : Tuple=12 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Optional[int]=3_072 , UpperCAmelCase__ : List[str]="gelu_fast" , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Any=1e-06 , UpperCAmelCase__ : Any=True , **UpperCAmelCase__ : str , ) ->Union[str, Any]: '''simple docstring''' A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = image_size A__ = num_frames A__ = tubelet_size A__ = num_channels A__ = qkv_bias super().__init__(**UpperCAmelCase__)
87
from __future__ import annotations def _lowercase ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: return False UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , SCREAMING_SNAKE_CASE_ ) else: return binary_search(a_list[midpoint + 1 :] , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __snake_case = input("Enter numbers separated by comma:\n").strip() __snake_case = [int(item.strip()) for item in user_input.split(",")] __snake_case = int(input("Enter the number to be found in the list:\n").strip()) __snake_case = "" if binary_search(sequence, target) else "not " print(F'''{target} was {not_str}found in {sequence}''')
386
0
'''simple docstring''' from manim import * class lowerCAmelCase__ ( _lowerCAmelCase ): def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : List[str] = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ : Optional[int] = [mem.copy() for i in range(6 )] lowerCamelCase_ : str = [mem.copy() for i in range(6 )] lowerCamelCase_ : str = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowerCamelCase_ : Union[str, Any] = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowerCamelCase_ : Optional[Any] = VGroup(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowerCamelCase_ : Optional[int] = Text('''CPU''' , font_size=24 ) lowerCamelCase_ : List[Any] = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = [mem.copy() for i in range(4 )] lowerCamelCase_ : Tuple = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowerCamelCase_ : Tuple = Text('''GPU''' , font_size=24 ) lowerCamelCase_ : Any = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCamelCase_ ) lowerCamelCase_ : int = [mem.copy() for i in range(6 )] lowerCamelCase_ : Union[str, Any] = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowerCamelCase_ : Optional[int] = Text('''Model''' , font_size=24 ) lowerCamelCase_ : int = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCamelCase_ ) lowerCamelCase_ : Dict = [] for i, rect in enumerate(UpperCamelCase_ ): rect.set_stroke(UpperCamelCase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowerCamelCase_ : Tuple = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCamelCase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=UpperCamelCase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=UpperCamelCase_ , buff=0.0 ) self.add(UpperCamelCase_ ) cpu_targs.append(UpperCamelCase_ ) lowerCamelCase_ : Tuple = [mem.copy() for i in range(6 )] lowerCamelCase_ : int = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowerCamelCase_ : Tuple = Text('''Loaded Checkpoint''' , font_size=24 ) lowerCamelCase_ : List[Any] = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , aligned_edge=UpperCamelCase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowerCamelCase_ : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ : int = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : List[Any] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(UpperCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowerCamelCase_ : Optional[int] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase_ ) , Write(UpperCamelCase_ ) ) self.play(Write(UpperCamelCase_ , run_time=1 ) , Create(UpperCamelCase_ , run_time=1 ) ) lowerCamelCase_ : int = [] lowerCamelCase_ : Optional[Any] = [] for i, rect in enumerate(UpperCamelCase_ ): lowerCamelCase_ : List[str] = fill.copy().set_fill(UpperCamelCase_ , opacity=0.7 ) target.move_to(UpperCamelCase_ ) first_animations.append(GrowFromCenter(UpperCamelCase_ , run_time=1 ) ) lowerCamelCase_ : Tuple = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(UpperCamelCase_ , run_time=1.5 ) ) self.play(*UpperCamelCase_ ) self.play(*UpperCamelCase_ ) self.wait()
418
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( _lowerCAmelCase ,_lowerCAmelCase ,unittest.TestCase ): A = StableDiffusionSAGPipeline A = TEXT_TO_IMAGE_PARAMS A = TEXT_TO_IMAGE_BATCH_PARAMS A = TEXT_TO_IMAGE_IMAGE_PARAMS A = TEXT_TO_IMAGE_IMAGE_PARAMS A = False def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowerCamelCase_ : int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) lowerCamelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowerCamelCase_ : Dict = CLIPTextModel(UpperCamelCase_ ) lowerCamelCase_ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCamelCase_ : Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCamelCase ( self : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any]=0 ) -> Tuple: """simple docstring""" if str(UpperCamelCase_ ).startswith('''mps''' ): lowerCamelCase_ : Any = torch.manual_seed(UpperCamelCase_ ) else: lowerCamelCase_ : str = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCamelCase_ : Tuple = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" lowerCamelCase_ : str = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) lowerCamelCase_ : int = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCamelCase_ : str = '''.''' lowerCamelCase_ : int = torch.manual_seed(0 ) lowerCamelCase_ : int = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowerCamelCase_ : Dict = output.images lowerCamelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : Tuple = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ : List[Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowerCamelCase_ : Optional[Any] = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCamelCase_ : Tuple = '''.''' lowerCamelCase_ : Tuple = torch.manual_seed(0 ) lowerCamelCase_ : List[Any] = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowerCamelCase_ : Optional[int] = output.images lowerCamelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : Dict = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Any = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowerCamelCase_ : Optional[Any] = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCamelCase_ : List[str] = '''.''' lowerCamelCase_ : Optional[Any] = torch.manual_seed(0 ) lowerCamelCase_ : int = sag_pipe( [prompt] , width=768 , height=512 , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) lowerCamelCase_ : Union[str, Any] = output.images assert image.shape == (1, 512, 768, 3)
418
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __a ( unittest.TestCase ): _a : int = JukeboxTokenizer _a : Optional[int] = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
618
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): _UpperCAmelCase = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = 'sgugger/tiny-distilbert-classification' _UpperCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , only_pretrain_model=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = 'patrickvonplaten/t5-tiny-random' _UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' _UpperCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , save_to_csv=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , 'env.csv' ) , multi_process=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) benchmark.run() self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'env.csv' ) ).exists() ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(_SCREAMING_SNAKE_CASE ): self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'sequential' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'cumulative' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'current' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_SCREAMING_SNAKE_CASE , 'log.txt' ) , log_print=_SCREAMING_SNAKE_CASE , trace_memory_line_by_line=_SCREAMING_SNAKE_CASE , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'log.txt' ) ).exists() )
618
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : list, UpperCAmelCase__ : int, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : int = 0 ) ->int: A__ : Dict = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
498
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 42 snake_case_ = 42 def __init__( self : Union[str, Any] , snake_case : UNetaDModel , snake_case : KarrasVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=snake_case , scheduler=snake_case ) @torch.no_grad() def __call__( self : Any , snake_case : int = 1 , snake_case : int = 50 , snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case : Optional[str] = "pil" , snake_case : bool = True , **snake_case : Dict , ): '''simple docstring''' A__ : Optional[int] = self.unet.config.sample_size A__ : Dict = (batch_size, 3, img_size, img_size) A__ : Tuple = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) A__ : Union[str, Any] = randn_tensor(snake_case , generator=snake_case , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper A__ : Optional[Any] = self.scheduler.schedule[t] A__ : Union[str, Any] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat A__ , A__ : Dict = self.scheduler.add_noise_to_input(snake_case , snake_case , generator=snake_case ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. A__ : int = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev A__ : Tuple = self.scheduler.step(snake_case , snake_case , snake_case , snake_case ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. A__ : Dict = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample A__ : Tuple = self.scheduler.step_correct( snake_case , snake_case , snake_case , snake_case , step_output.prev_sample , step_output["""derivative"""] , ) A__ : Tuple = step_output.prev_sample A__ : Dict = (sample / 2 + 0.5).clamp(0 , 1 ) A__ : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ : Optional[Any] = self.numpy_to_pil(snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case )
498
1
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _a : '''simple docstring''' A : List[str] = None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE : str = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key], __lowercase ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(__lowercase, 'feat_extract.json' ) feat_extract_first.to_json_file(__lowercase ) SCREAMING_SNAKE_CASE : int = self.feature_extraction_class.from_json_file(__lowercase ) self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict() ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : int = feat_extract_first.save_pretrained(__lowercase )[0] check_json_file_has_correct_format(__lowercase ) SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class.from_pretrained(__lowercase ) self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict() ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.feature_extraction_class() self.assertIsNotNone(__lowercase )
28
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = num - 1 __a = 0 while s % 2 == 0: __a = s // 2 t += 1 for _ in range(5 ): __a = random.randrange(2 , num - 1 ) __a = pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if v != 1: __a = 0 while v != (num - 1): if i == t - 1: return False else: __a = i + 1 __a = (v**2) % num return True def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if num < 2: return False __a = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 1024 ): """simple docstring""" while True: __a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_SCREAMING_SNAKE_CASE ): return num if __name__ == "__main__": lowerCamelCase__ = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
225
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( __snake_case , unittest.TestCase ): lowercase = XLMTokenizer lowercase = False def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) UpperCamelCase = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__magic_name__ ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__magic_name__ ) ) def lowerCamelCase_ ( self : Any , __magic_name__ : List[str] ): """simple docstring""" UpperCamelCase = """lower newer""" UpperCamelCase = """lower newer""" return input_text, output_text def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase = """lower""" UpperCamelCase = ["""low""", """er</w>"""] UpperCamelCase = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) UpperCamelCase = tokens + ["""<unk>"""] UpperCamelCase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) UpperCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=__magic_name__ ) UpperCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__magic_name__ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
181
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __snake_case = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __snake_case = { "facebook/mbart-large-en-ro": 1_024, "facebook/mbart-large-cc25": 1_024, } # fmt: off __snake_case = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase ( __snake_case ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ["""input_ids""", """attention_mask"""] lowercase = MBartTokenizer lowercase = [] lowercase = [] def __init__( self : Optional[int] , __magic_name__ : str=None , __magic_name__ : Optional[int]=None , __magic_name__ : Dict="<s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : List[str]="</s>" , __magic_name__ : Optional[int]="<s>" , __magic_name__ : int="<unk>" , __magic_name__ : str="<pad>" , __magic_name__ : List[str]="<mask>" , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Tuple , ): """simple docstring""" UpperCamelCase = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token super().__init__( vocab_file=__magic_name__ , tokenizer_file=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , src_lang=__magic_name__ , tgt_lang=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True UpperCamelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) UpperCamelCase = { lang_code: self.convert_tokens_to_ids(__magic_name__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase = src_lang if src_lang is not None else """en_XX""" UpperCamelCase = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return self._src_lang @src_lang.setter def lowerCamelCase_ ( self : List[str] , __magic_name__ : str ): """simple docstring""" UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase_ ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self : int , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : int , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Tuple ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCamelCase = src_lang UpperCamelCase = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) UpperCamelCase = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase = tgt_lang_id return inputs def lowerCamelCase_ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : int , ): """simple docstring""" UpperCamelCase = src_lang UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase_ ( self : Any ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase_ ( self : int , __magic_name__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase = [] UpperCamelCase = [self.eos_token_id, self.cur_lang_code] UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self : Tuple , __magic_name__ : str ): """simple docstring""" UpperCamelCase = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase = [] UpperCamelCase = [self.eos_token_id, self.cur_lang_code] UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self : Any , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__magic_name__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return UpperCamelCase = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ): copyfile(self.vocab_file , __magic_name__ ) return (out_vocab_file,)
181
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ = None , a_ = None , a_ = None , ) -> Optional[int]: """simple docstring""" if config_name_or_path is None: __A = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: __A = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __A = question_encoder_name_or_path __A = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. __A = RagConfig.from_pretrained(__UpperCamelCase ) __A = AutoConfig.from_pretrained(__UpperCamelCase ) __A = AutoConfig.from_pretrained(__UpperCamelCase ) __A = gen_config __A = question_encoder_config __A = model_class.from_pretrained_question_encoder_generator( __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) rag_model.save_pretrained(__UpperCamelCase ) # Sanity check. model_class.from_pretrained(__UpperCamelCase ) # Save tokenizers. __A = AutoTokenizer.from_pretrained(__UpperCamelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) __A = AutoTokenizer.from_pretrained(__UpperCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) SCREAMING_SNAKE_CASE :Dict = parser.parse_args() SCREAMING_SNAKE_CASE :Dict = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
55
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( __UpperCamelCase ) -> Optional[int]: A__ = filter(lambda __UpperCamelCase : p.requires_grad , model.parameters() ) A__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: if metric == "rouge2": A__ = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": A__ = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": A__ = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": A__ = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) A__ = ModelCheckpoint( dirpath=__UpperCamelCase , filename=__UpperCamelCase , monitor=f'''val_{metric}''' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( __UpperCamelCase , __UpperCamelCase ) -> Any: return EarlyStopping( monitor=f'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=__UpperCamelCase , verbose=__UpperCamelCase , ) class __lowerCAmelCase ( pl.Callback ): """simple docstring""" def _a ( self : Dict , _snake_case : Union[str, Any] , _snake_case : str ): """simple docstring""" A__ = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_snake_case ) @rank_zero_only def _a ( self : Union[str, Any] , _snake_case : pl.Trainer , _snake_case : pl.LightningModule , _snake_case : str , _snake_case : Optional[Any]=True ): """simple docstring""" logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) A__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results A__ = Path(pl_module.hparams.output_dir ) if type_path == "test": A__ = od / 'test_results.txt' A__ = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A__ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' A__ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_snake_case ) generations_file.parent.mkdir(exist_ok=_snake_case ) with open(_snake_case , 'a+' ) as writer: for key in sorted(_snake_case ): if key in ["log", "progress_bar", "preds"]: continue A__ = metrics[key] if isinstance(_snake_case , torch.Tensor ): A__ = val.item() A__ = F'''{key}: {val:.6f}\n''' writer.write(_snake_case ) if not save_generations: return if "preds" in metrics: A__ = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_snake_case ) @rank_zero_only def _a ( self : Dict , _snake_case : List[str] , _snake_case : List[Any] ): """simple docstring""" try: A__ = pl_module.model.model.num_parameters() except AttributeError: A__ = pl_module.model.num_parameters() A__ = count_trainable_parameters(_snake_case ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _a ( self : int , _snake_case : pl.Trainer , _snake_case : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_snake_case , _snake_case , 'test' ) @rank_zero_only def _a ( self : Optional[Any] , _snake_case : pl.Trainer , _snake_case : List[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
9
0
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowercase_ = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } lowercase_ = { 'facebook/blenderbot_small-90M': 5_1_2, } class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = BlenderbotSmallTokenizer def __init__( self: Optional[Any] , a: str=None , a: str=None , a: int="<|endoftext|>" , a: List[str]="<|endoftext|>" , a: Optional[Any]="<|endoftext|>" , a: Union[str, Any]=False , a: List[Any]=True , **a: str , ): super().__init__( ByteLevelBPETokenizer( vocab=__A , merges=__A , add_prefix_space=__A , trim_offsets=__A , ) , bos_token=__A , eos_token=__A , unk_token=__A , **__A , ) __lowerCamelCase : List[Any] = add_prefix_space def _snake_case ( self: Any , a: Optional[Any] , a: Optional[int]=None ): __lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _snake_case ( self: List[Any] , a: List[int] , a: Optional[List[int]] = None ): __lowerCamelCase : Any = [self.sep_token_id] __lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
711
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = '▁' lowercase_ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = BigBirdTokenizer __snake_case = BigBirdTokenizerFast __snake_case = True __snake_case = True def _snake_case ( self: int ): super().setUp() __lowerCamelCase : str = self.tokenizer_class(a , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self: str ): __lowerCamelCase : int = '<s>' __lowerCamelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def _snake_case ( self: Tuple ): __lowerCamelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(a ) , 1004 ) def _snake_case ( self: Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _snake_case ( self: Dict ): if not self.test_rust_tokenizer: return __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : Union[str, Any] = self.get_rust_tokenizer() __lowerCamelCase : str = 'I was born in 92000, and this is falsé.' __lowerCamelCase : List[Any] = tokenizer.tokenize(a ) __lowerCamelCase : List[Any] = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) __lowerCamelCase : str = tokenizer.encode(a , add_special_tokens=a ) __lowerCamelCase : str = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) __lowerCamelCase : Optional[Any] = self.get_rust_tokenizer() __lowerCamelCase : Tuple = tokenizer.encode(a ) __lowerCamelCase : str = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) def _snake_case ( self: Optional[Any] ): __lowerCamelCase : Tuple = BigBirdTokenizer(a , keep_accents=a ) __lowerCamelCase : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [285, 46, 10, 170, 382] , ) __lowerCamelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __lowerCamelCase : int = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __lowerCamelCase : Optional[int] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def _snake_case ( self: Dict ): return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def _snake_case ( self: List[Any] ): __lowerCamelCase : Tuple = 'Hello World!' __lowerCamelCase : Optional[int] = [65, 1_8536, 2260, 101, 66] self.assertListEqual(a , self.big_tokenizer.encode(a ) ) @slow def _snake_case ( self: Dict ): __lowerCamelCase : List[str] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off __lowerCamelCase : int = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(a , self.big_tokenizer.encode(a ) ) @require_torch @slow def _snake_case ( self: List[Any] ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __lowerCamelCase : Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowerCamelCase : int = ' '.join(a ) __lowerCamelCase : List[str] = self.big_tokenizer.encode_plus(a , return_tensors='pt' , return_token_type_ids=a ) __lowerCamelCase : Any = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=a ) __lowerCamelCase : Optional[int] = BigBirdConfig(attention_type='original_full' ) __lowerCamelCase : Any = BigBirdModel(a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**a ) model(**a ) @slow def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : Optional[int] = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def _snake_case ( self: List[Any] ): # fmt: off __lowerCamelCase : Optional[Any] = {'input_ids': [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
230
0
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCAmelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
343
from typing import Dict, Optional import numpy as np import datasets __A : Any = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' __A : int = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' __A : Tuple = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = False, ) -> List[str]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): lowerCAmelCase : Union[str, Any] = new_id # turn into Numpy arrays lowerCAmelCase : int = np.array(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = np.array(_UpperCAmelCase ) if reduce_labels: lowerCAmelCase : Union[str, Any] = 255 lowerCAmelCase : Any = label - 1 lowerCAmelCase : Tuple = 255 lowerCAmelCase : Any = label != ignore_index lowerCAmelCase : Dict = np.not_equal(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : Optional[int] = pred_label[mask] lowerCAmelCase : Optional[int] = np.array(_UpperCAmelCase )[mask] lowerCAmelCase : str = pred_label[pred_label == label] lowerCAmelCase : Optional[Any] = np.histogram(_UpperCAmelCase, bins=_UpperCAmelCase, range=(0, num_labels - 1) )[0] lowerCAmelCase : str = np.histogram(_UpperCAmelCase, bins=_UpperCAmelCase, range=(0, num_labels - 1) )[0] lowerCAmelCase : Optional[Any] = np.histogram(_UpperCAmelCase, bins=_UpperCAmelCase, range=(0, num_labels - 1) )[0] lowerCAmelCase : List[str] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = False, ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[Any] = np.zeros((num_labels,), dtype=np.floataa ) lowerCAmelCase : Dict = np.zeros((num_labels,), dtype=np.floataa ) lowerCAmelCase : int = np.zeros((num_labels,), dtype=np.floataa ) lowerCAmelCase : int = np.zeros((num_labels,), dtype=np.floataa ) for result, gt_seg_map in zip(_UpperCAmelCase, _UpperCAmelCase ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = intersect_and_union( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, ) -> Any: '''simple docstring''' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = total_intersect_and_union( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # compute metrics lowerCAmelCase : str = {} lowerCAmelCase : Dict = total_area_intersect.sum() / total_area_label.sum() lowerCAmelCase : Optional[Any] = total_area_intersect / total_area_union lowerCAmelCase : Optional[int] = total_area_intersect / total_area_label lowerCAmelCase : Union[str, Any] = np.nanmean(_UpperCAmelCase ) lowerCAmelCase : Any = np.nanmean(_UpperCAmelCase ) lowerCAmelCase : Dict = all_acc lowerCAmelCase : Tuple = iou lowerCAmelCase : Optional[int] = acc if nan_to_num is not None: lowerCAmelCase : int = {metric: np.nan_to_num(_UpperCAmelCase, nan=_UpperCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def lowercase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowercase__ ( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ): lowerCAmelCase : Optional[int] = mean_iou( results=UpperCAmelCase_ , gt_seg_maps=UpperCAmelCase_ , num_labels=UpperCAmelCase_ , ignore_index=UpperCAmelCase_ , nan_to_num=UpperCAmelCase_ , label_map=UpperCAmelCase_ , reduce_labels=UpperCAmelCase_ , ) return iou_result
343
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __magic_name__ : List[Any] = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : str = ['''BeitFeatureExtractor'''] __magic_name__ : int = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : List[Any] = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[Any] = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __magic_name__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
602
'''simple docstring''' from __future__ import annotations class UpperCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : str=None ): """simple docstring""" _lowercase = data _lowercase = None def __repr__( self : Optional[int] ): """simple docstring""" _lowercase = [] _lowercase = self while temp: string_rep.append(f"""{temp.data}""" ) _lowercase = temp.next return "->".join(__A ) def A__ ( A_ ) -> Any: if not elements_list: raise Exception("The Elements List is empty" ) _lowercase = _lowercase = Node(elements_list[0] ) for i in range(1 , len(A_ ) ): _lowercase = Node(elements_list[i] ) _lowercase = current.next return head def A__ ( A_ ) -> None: if head_node is not None and isinstance(A_ , A_ ): print_reverse(head_node.next ) print(head_node.data ) def A__ ( ) -> Union[str, Any]: from doctest import testmod testmod() _lowercase = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(A_ ) print("Elements in Reverse:" ) print_reverse(A_ ) if __name__ == "__main__": main()
602
1
import unittest import numpy as np def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = None, ): _SCREAMING_SNAKE_CASE : Any = np.shape(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = np.shape(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.shape(__lowerCamelCase ) if shape_a[0] != shape_b[0]: _SCREAMING_SNAKE_CASE : int = ( "Expected the same number of rows for A and B. " f"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(__lowerCamelCase ) if shape_b[1] != shape_c[1]: _SCREAMING_SNAKE_CASE : str = ( "Expected the same number of columns for B and C. " f"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = pseudo_inv if a_inv is None: try: _SCREAMING_SNAKE_CASE : Tuple = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Optional[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _SCREAMING_SNAKE_CASE : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) _SCREAMING_SNAKE_CASE : Dict = np.array([[2, 1], [6, 3]] ) _SCREAMING_SNAKE_CASE : List[str] = schur_complement(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.block([[a, b], [b.T, c]] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.linalg.det(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.det(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = np.linalg.det(__lowerCamelCase ) self.assertAlmostEqual(__lowerCamelCase , det_a * det_s ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) _SCREAMING_SNAKE_CASE : Optional[int] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__lowerCamelCase ): schur_complement(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> None: _SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _SCREAMING_SNAKE_CASE : str = np.array([[0, 3], [3, 0], [2, 3]] ) _SCREAMING_SNAKE_CASE : List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__lowerCamelCase ): schur_complement(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
249
from __future__ import annotations def lowerCamelCase__ (__lowerCamelCase ): # This function is recursive _SCREAMING_SNAKE_CASE : Tuple = len(__lowerCamelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _SCREAMING_SNAKE_CASE : List[str] = array[0] _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : Optional[Any] = [element for element in array[i:] if element >= array[i]] _SCREAMING_SNAKE_CASE : Dict = longest_subsequence(__lowerCamelCase ) if len(__lowerCamelCase ) > len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = temp_array else: i += 1 _SCREAMING_SNAKE_CASE : int = [element for element in array[1:] if element >= pivot] _SCREAMING_SNAKE_CASE : Any = [pivot, *longest_subsequence(__lowerCamelCase )] if len(__lowerCamelCase ) > len(__lowerCamelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
249
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable SCREAMING_SNAKE_CASE_ = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['DPTFeatureExtractor'] SCREAMING_SNAKE_CASE_ = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class a : """simple docstring""" A__ : int = MBartConfig A__ : Union[str, Any] = {} A__ : Optional[int] = "gelu" def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=False , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=20 , snake_case_=2 , snake_case_=1 , snake_case_=0 , ) -> Dict: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id def __A ( self ) -> Optional[Any]: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase = prepare_mbart_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) return config, inputs_dict def __A ( self , snake_case_ , snake_case_ ) -> List[str]: _UpperCAmelCase = TFMBartModel(config=snake_case_ ).get_decoder() _UpperCAmelCase = inputs_dict["input_ids"] _UpperCAmelCase = input_ids[:1, :] _UpperCAmelCase = inputs_dict["attention_mask"][:1, :] _UpperCAmelCase = inputs_dict["head_mask"] _UpperCAmelCase = 1 # first forward pass _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , head_mask=snake_case_ , use_cache=snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() _UpperCAmelCase = past_key_values[1] def A__ ( A__ , A__ , A__ , A__=None , A__=None , A__=None , A__=None , A__=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: _UpperCAmelCase = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" A__ : Dict = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A__ : Dict = (TFMBartForConditionalGeneration,) if is_tf_available() else () A__ : Dict = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A__ : Union[str, Any] = True A__ : Union[str, Any] = False A__ : int = False def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __A ( self ) -> int: _UpperCAmelCase = TFMBartModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ ) def __A ( self ) -> List[Any]: self.config_tester.run_common_tests() def __A ( self ) -> Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) @require_sentencepiece @require_tokenizers @require_tf class a ( unittest.TestCase ): """simple docstring""" A__ : Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", ] A__ : str = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] A__ : Dict = "facebook/mbart-large-en-ro" @cached_property def __A ( self ) -> Dict: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __A ( self ) -> Optional[int]: _UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __A ( self , **snake_case_ ) -> Dict: _UpperCAmelCase = self.translate_src_text(**snake_case_ ) self.assertListEqual(self.expected_text , snake_case_ ) def __A ( self , **snake_case_ ) -> str: _UpperCAmelCase = self.tokenizer(self.src_text , **snake_case_ , return_tensors="tf" ) _UpperCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _UpperCAmelCase = self.tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) return generated_words @slow def __A ( self ) -> Optional[int]: self._assert_generated_batch_equal_expected()
579
0
"""simple docstring""" import numpy as np def lowercase__ ( lowerCamelCase, lowerCamelCase ): return np.where(vector > 0, lowerCamelCase, (alpha * (np.exp(lowerCamelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
621
"""simple docstring""" def lowercase__ ( lowerCamelCase, lowerCamelCase ): return abs(lowerCamelCase ) if a == 0 else greatest_common_divisor(b % a, lowerCamelCase ) def lowercase__ ( lowerCamelCase, lowerCamelCase ): while y: # --> when y=0 then loop will terminate and return x as final GCD. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = y, x % y return abs(lowerCamelCase ) def lowercase__ ( ): try: _SCREAMING_SNAKE_CASE : Union[str, Any] = input('Enter two integers separated by comma (,): ' ).split(',' ) _SCREAMING_SNAKE_CASE : Dict = int(nums[0] ) _SCREAMING_SNAKE_CASE : Dict = int(nums[1] ) print( f"""greatest_common_divisor({num_a}, {num_a}) = """ f"""{greatest_common_divisor(lowerCamelCase, lowerCamelCase )}""" ) print(f"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowerCamelCase, lowerCamelCase )}""" ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
621
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class lowerCAmelCase_ : __a : Any = 42 __a : Optional[Any] = None # Automatically constructed __a : Optional[Any] = "dict" __a : Dict = None __a : Dict = field(default="Translation" , init=_A , repr=_A ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def snake_case ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class lowerCAmelCase_ : __a : Dict = None __a : int = None __a : List[str] = None # Automatically constructed __a : List[str] = "dict" __a : str = None __a : str = field(default="TranslationVariableLanguages" , init=_A , repr=_A ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(set(self.languages ) ) if self.languages else None SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = set(self.languages ) if self.languages and set(UpperCamelCase__ ) - lang_set: raise ValueError( F'Some languages in example ({", ".join(sorted(set(UpperCamelCase__ ) - lang_set ) )}) are not in valid set ({", ".join(UpperCamelCase__ )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. SCREAMING_SNAKE_CASE_ : Any = [] for lang, text in translation_dict.items(): if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = zip(*sorted(UpperCamelCase__ ) ) return {"language": languages, "translation": translations} def snake_case ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
710
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase__ : Union[str, Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : Optional[Any] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCamelCase__ : Any = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] UpperCamelCase__ : Union[str, Any] = 0 for log in Path().glob('''*.log'''): UpperCamelCase__ : Optional[int] = 0 with open(log, '''r''') as f: for line in f: UpperCamelCase__ : Any = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCamelCase__ : Tuple = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCamelCase__ : List[Any] = F"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase__ : Tuple = [] log.unlink() UpperCamelCase__ : List[Any] = '''''' UpperCamelCase__ : List[str] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Optional[int] = {} for test in failed_tests: UpperCamelCase__ : str = test[0].split('''::''') UpperCamelCase__ : List[Any] = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCamelCase__ : int = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase__ : str = [test[0] for test in failed_table] UpperCamelCase__ : Union[str, Any] = list(set(files)) # Count number of instances in failed_tests UpperCamelCase__ : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase__ : str = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: UpperCamelCase__ : List[Any] = '''Too many failed tests, please see the full report in the Action results.''' UpperCamelCase__ : Optional[Any] = len(err) + 10 UpperCamelCase__ : List[str] = message[: 30_00 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCamelCase__ : Optional[Any] = '''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCamelCase__ : int = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCamelCase__ : Optional[Any] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCamelCase__ : Tuple = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCamelCase__ : Any = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase__ : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase__ : str = row[0] else: UpperCamelCase__ : str = '''''' UpperCamelCase__ : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
685
0
import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A_ = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __UpperCAmelCase ( UpperCAmelCase=None )-> Optional[Any]: """simple docstring""" if subparsers is not None: lowercase = subparsers.add_parser('''tpu-config''', description=_description ) else: lowercase = argparse.ArgumentParser('''Accelerate tpu-config command''', description=_description ) # Core arguments lowercase = parser.add_argument_group( '''Config Arguments''', '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''', type=_lowerCAmelCase, default=_lowerCAmelCase, help='''Path to the config file to use for accelerate.''', ) config_args.add_argument( '''--tpu_name''', default=_lowerCAmelCase, help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''', ) config_args.add_argument( '''--tpu_zone''', default=_lowerCAmelCase, help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''', ) lowercase = parser.add_argument_group('''TPU Arguments''', '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''', action='''store_true''', help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''', ) pod_args.add_argument( '''--command_file''', default=_lowerCAmelCase, help='''The path to the file containing the commands to run on the pod on startup.''', ) pod_args.add_argument( '''--command''', action='''append''', nargs='''+''', help='''A command to run on the pod. Can be passed multiple times.''', ) pod_args.add_argument( '''--install_accelerate''', action='''store_true''', help='''Whether to install accelerate on the pod. Defaults to False.''', ) pod_args.add_argument( '''--accelerate_version''', default='''latest''', help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''', ) pod_args.add_argument( '''--debug''', action='''store_true''', help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=_lowerCAmelCase ) return parser def __UpperCAmelCase ( UpperCAmelCase )-> Union[str, Any]: """simple docstring""" lowercase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_lowerCAmelCase ): lowercase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowercase = defaults.command_file if not args.command and defaults.commands is not None: lowercase = defaults.commands if not args.tpu_name: lowercase = defaults.tpu_name if not args.tpu_zone: lowercase = defaults.tpu_zone if args.accelerate_version == "dev": lowercase = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": lowercase = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ), _lowerCAmelCase ): lowercase = f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file, '''r''' ) as f: lowercase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0], _lowerCAmelCase ): lowercase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowercase = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command lowercase = '''; '''.join(_lowerCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowercase = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(_lowerCAmelCase )}' ) return subprocess.run(_lowerCAmelCase ) print('''Successfully setup pod.''' ) def __UpperCAmelCase ( )-> Any: """simple docstring""" lowercase = tpu_command_parser() lowercase = parser.parse_args() tpu_command_launcher(_lowerCAmelCase )
604
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" __lowerCAmelCase = nn.Parameter(_lowerCAmelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" __lowerCAmelCase = nn.Parameter(_lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # set torch weights for 1-to-1 comparison __lowerCAmelCase = np.asarray(weights[0] ) __lowerCAmelCase = np.asarray(weights[1] ) __lowerCAmelCase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowerCAmelCase ).view(-1 , _lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # set torch weights for 1-to-1 comparison __lowerCAmelCase = np.asarray(weights[0] ) __lowerCAmelCase = np.asarray(weights[1] ) __lowerCAmelCase = np.asarray(weights[2] ) __lowerCAmelCase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCAmelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowerCAmelCase ).view(-1 , _lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # layernorm 1 __lowerCAmelCase = weights[0][0][0] __lowerCAmelCase = np.asarray(layer_norm_a[0] ) __lowerCAmelCase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_lowerCAmelCase ) , torch.tensor(_lowerCAmelCase ) , ) # lsh weights + output __lowerCAmelCase = weights[0][1] if len(_lowerCAmelCase ) < 4: set_layer_weights_in_torch_lsh(_lowerCAmelCase , torch_block.attention , _lowerCAmelCase ) else: set_layer_weights_in_torch_local(_lowerCAmelCase , torch_block.attention , _lowerCAmelCase ) # intermediate weighs __lowerCAmelCase = weights[2][0][1][2] # Chunked Feed Forward if len(_lowerCAmelCase ) == 4: __lowerCAmelCase = intermediate_weights[2] # layernorm 2 __lowerCAmelCase = np.asarray(intermediate_weights[0][0] ) __lowerCAmelCase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_lowerCAmelCase ) , torch.tensor(_lowerCAmelCase ) , ) # intermediate dense __lowerCAmelCase = np.asarray(intermediate_weights[1][0] ) __lowerCAmelCase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowerCAmelCase ) , ) # intermediate out __lowerCAmelCase = np.asarray(intermediate_weights[4][0] ) __lowerCAmelCase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowerCAmelCase ) , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # reformer model __lowerCAmelCase = torch_model.reformer # word embeds __lowerCAmelCase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_lowerCAmelCase ) , ) if isinstance(weights[3] , _lowerCAmelCase ): __lowerCAmelCase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __lowerCAmelCase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" __lowerCAmelCase = nn.Parameter(torch.tensor(_lowerCAmelCase ) ) __lowerCAmelCase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _lowerCAmelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __lowerCAmelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # output layer norm __lowerCAmelCase = np.asarray(weights[7][0] ) __lowerCAmelCase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_lowerCAmelCase ) , torch.tensor(_lowerCAmelCase ) , ) # output embeddings __lowerCAmelCase = np.asarray(weights[9][0] ) __lowerCAmelCase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowerCAmelCase ) , ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # Initialise PyTorch model __lowerCAmelCase = ReformerConfig.from_json_file(_lowerCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) __lowerCAmelCase = ReformerModelWithLMHead(_lowerCAmelCase ) with open(_lowerCAmelCase , """rb""" ) as f: __lowerCAmelCase = pickle.load(_lowerCAmelCase )["""weights"""] set_model_weights_in_torch(_lowerCAmelCase , _lowerCAmelCase , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
465
0
"""simple docstring""" UpperCAmelCase = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
700
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : List[str] = VQModel __A : Any = "sample" @property def __snake_case ( self : int , snake_case__ : int=(3_2, 3_2) ): '''simple docstring''' lowercase :Optional[int] = 4 lowercase :Tuple = 3 lowercase :List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case__ ) return {"sample": image} @property def __snake_case ( self : Union[str, Any] ): '''simple docstring''' return (3, 3_2, 3_2) @property def __snake_case ( self : List[str] ): '''simple docstring''' return (3, 3_2, 3_2) def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Optional[int] = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowercase :Dict = self.dummy_input return init_dict, inputs_dict def __snake_case ( self : Optional[int] ): '''simple docstring''' pass def __snake_case ( self : Union[str, Any] ): '''simple docstring''' pass def __snake_case ( self : Dict ): '''simple docstring''' lowercase , lowercase :Optional[int] = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(snake_case__ ) lowercase :List[str] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Optional[int] = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(snake_case__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowercase :List[Any] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowercase :int = image.to(snake_case__ ) with torch.no_grad(): lowercase :str = model(snake_case__ ).sample lowercase :List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowercase :Tuple = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) )
475
0
"""simple docstring""" def A_ ( snake_case__ = 3 , snake_case__ = 7 , snake_case__ = 1_00_00_00 ) -> Tuple: _UpperCamelCase :str = 0 _UpperCamelCase :Optional[int] = 1 for current_denominator in range(1 , limit + 1 ): _UpperCamelCase :List[str] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _UpperCamelCase :int = current_numerator _UpperCamelCase :Dict = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
355
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowerCamelCase ( _UpperCAmelCase ): def a_ ( self ): UpperCamelCase : int = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def a_ ( self ): with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def a_ ( self ): with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def a_ ( self ): UpperCamelCase : List[Any] = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a_ ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCamelCase : List[str] = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def a_ ( self ): UpperCamelCase : str = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a_ ( self ): UpperCamelCase : int = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def a_ ( self ): UpperCamelCase : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def a_ ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCamelCase : Tuple = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def a_ ( self ): UpperCamelCase : str = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def a_ ( self ): UpperCamelCase : Optional[int] = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def a_ ( self ): import PIL.Image UpperCamelCase : Any = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=SCREAMING_SNAKE_CASE_ ) as mock_cast_to_python_objects: UpperCamelCase : Union[str, Any] = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) ) UpperCamelCase , UpperCamelCase : Tuple = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , SCREAMING_SNAKE_CASE_ ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : int ): '''simple docstring''' UpperCamelCase : Tuple = pa.BufferReader(snake_case_ ) if isinstance(snake_case_ ,pa.Buffer ) else pa.memory_map(snake_case_ ) UpperCamelCase : Union[str, Any] = pa.ipc.open_stream(snake_case_ ) UpperCamelCase : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" ,[None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" ,[None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def A_ ( snake_case_ : List[str] ,snake_case_ : Union[str, Any] ): '''simple docstring''' UpperCamelCase : Union[str, Any] = pa.BufferOutputStream() UpperCamelCase : Optional[Any] = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ ,schema=snake_case_ ,writer_batch_size=snake_case_ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) UpperCamelCase , UpperCamelCase : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase : Optional[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def A_ ( ): '''simple docstring''' UpperCamelCase : Any = pa.BufferOutputStream() UpperCamelCase : Optional[Any] = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=snake_case_ ,features=snake_case_ ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) UpperCamelCase , UpperCamelCase : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata UpperCamelCase : Optional[Any] = pa.BufferReader(output.getvalue() ) UpperCamelCase : Dict = pa.ipc.open_stream(snake_case_ ) UpperCamelCase : pa.Table = f.read_all() UpperCamelCase : str = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(snake_case_ ) @pytest.mark.parametrize("""writer_batch_size""" ,[None, 1, 1_0] ) def A_ ( snake_case_ : Optional[Any] ): '''simple docstring''' UpperCamelCase : List[Any] = pa.BufferOutputStream() with ArrowWriter( stream=snake_case_ ,writer_batch_size=snake_case_ ,hash_salt="""split_name""" ,check_duplicates=snake_case_ ,) as writer: with pytest.raises(snake_case_ ): writer.write({"""col_1""": """foo""", """col_2""": 1} ,key=[1, 2] ) UpperCamelCase , UpperCamelCase : List[str] = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" ,[None, 2, 1_0] ) def A_ ( snake_case_ : Tuple ): '''simple docstring''' UpperCamelCase : str = pa.BufferOutputStream() with ArrowWriter( stream=snake_case_ ,writer_batch_size=snake_case_ ,hash_salt="""split_name""" ,check_duplicates=snake_case_ ,) as writer: with pytest.raises(snake_case_ ): writer.write({"""col_1""": """foo""", """col_2""": 1} ,key=1_0 ) writer.write({"""col_1""": """bar""", """col_2""": 2} ,key=1_0 ) UpperCamelCase , UpperCamelCase : Optional[Any] = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" ,[None, 2, 1_0] ) def A_ ( snake_case_ : int ): '''simple docstring''' UpperCamelCase : int = pa.BufferOutputStream() with ArrowWriter( stream=snake_case_ ,writer_batch_size=snake_case_ ,hash_salt="""split_name""" ,check_duplicates=snake_case_ ,) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ,key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} ,key=2 ) UpperCamelCase , UpperCamelCase : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" ,[None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" ,[None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def A_ ( snake_case_ : Any ,snake_case_ : int ): '''simple docstring''' UpperCamelCase : Optional[int] = pa.BufferOutputStream() UpperCamelCase : List[Any] = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ ,schema=snake_case_ ,writer_batch_size=snake_case_ ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) UpperCamelCase , UpperCamelCase : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase : Any = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" ,[None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" ,[None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Any ): '''simple docstring''' UpperCamelCase : Optional[int] = pa.BufferOutputStream() UpperCamelCase : Optional[Any] = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ ,schema=snake_case_ ,writer_batch_size=snake_case_ ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) UpperCamelCase , UpperCamelCase : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase : List[str] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" ,[None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" ,[None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def A_ ( snake_case_ : Optional[int] ,snake_case_ : Tuple ): '''simple docstring''' UpperCamelCase : int = pa.BufferOutputStream() UpperCamelCase : Dict = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ ,schema=snake_case_ ,writer_batch_size=snake_case_ ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) UpperCamelCase , UpperCamelCase : Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase : Optional[int] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def A_ ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Optional[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} UpperCamelCase : str = os.path.join(snake_case_ ,"""test.arrow""" ) with ArrowWriter(path=snake_case_ ,schema=pa.schema(snake_case_ ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) UpperCamelCase , UpperCamelCase : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(snake_case_ ,metadata=writer._schema.metadata ) _check_output(snake_case_ ,1 ) def A_ ( snake_case_ : Any ): '''simple docstring''' if pa.types.is_list(snake_case_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def A_ ( snake_case_ : Optional[int] ,snake_case_ : Optional[Any] ): '''simple docstring''' if isinstance(lst[0] ,snake_case_ ): change_first_primitive_element_in_list(lst[0] ,snake_case_ ) else: UpperCamelCase : Optional[Any] = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" ,[(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def A_ ( snake_case_ : Dict ,snake_case_ : Tuple ,snake_case_ : Tuple ): '''simple docstring''' UpperCamelCase : int = pa.array(TypedSequence(snake_case_ ,optimized_int_type=snake_case_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" ,[ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] ,) @pytest.mark.parametrize("""sequence""" ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def A_ ( snake_case_ : Any ,snake_case_ : Any ,snake_case_ : List[Any] ): '''simple docstring''' # in range UpperCamelCase : Union[str, Any] = pa.array(OptimizedTypedSequence(snake_case_ ,col=snake_case_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications UpperCamelCase : Dict = copy.deepcopy(snake_case_ ) UpperCamelCase : Optional[int] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(snake_case_ ,snake_case_ ) UpperCamelCase : Any = pa.array(OptimizedTypedSequence(snake_case_ ,col=snake_case_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" ,[False, True] ) def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : List[str] ): '''simple docstring''' UpperCamelCase : Optional[Any] = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=snake_case_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def A_ ( snake_case_ : Any ): '''simple docstring''' UpperCamelCase : Tuple = """mock://dataset-train.arrow""" with ArrowWriter(path=snake_case_ ,storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs ,type(snake_case_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) UpperCamelCase , UpperCamelCase : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(snake_case_ ) def A_ ( ): '''simple docstring''' UpperCamelCase : Dict = pa.BufferOutputStream() with ParquetWriter(stream=snake_case_ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) UpperCamelCase , UpperCamelCase : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 UpperCamelCase : Union[str, Any] = pa.BufferReader(output.getvalue() ) UpperCamelCase : pa.Table = pq.read_table(snake_case_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" ,[False, True] ) def A_ ( snake_case_ : Tuple ,snake_case_ : List[str] ): '''simple docstring''' import PIL.Image UpperCamelCase : Tuple = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) ,dtype=np.uinta ) ).save(snake_case_ ,format="""png""" ) UpperCamelCase : Dict = pa.BufferOutputStream() with ParquetWriter( stream=snake_case_ ,features=Features({"""image""": Image()} ) ,embed_local_files=snake_case_ ) as writer: writer.write({"""image""": image_path} ) writer.finalize() UpperCamelCase : Any = pa.BufferReader(output.getvalue() ) UpperCamelCase : pa.Table = pq.read_table(snake_case_ ) UpperCamelCase : Any = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] ,snake_case_ ) with open(snake_case_ ,"""rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def A_ ( ): '''simple docstring''' UpperCamelCase : Any = pa.schema([pa.field("""col_1""" ,pa.string() ,nullable=snake_case_ )] ) UpperCamelCase : Optional[int] = pa.BufferOutputStream() with ArrowWriter(stream=snake_case_ ) as writer: writer._build_writer(inferred_schema=snake_case_ ) assert writer._schema == pa.schema([pa.field("""col_1""" ,pa.string() )] )
499
0
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase : def __init__( self , UpperCamelCase , UpperCamelCase=13 , UpperCamelCase=32 , UpperCamelCase=2 , UpperCamelCase=3 , UpperCamelCase=16 , UpperCamelCase=[1, 2, 1] , UpperCamelCase=[2, 2, 4] , UpperCamelCase=2 , UpperCamelCase=2.0 , UpperCamelCase=True , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.1 , UpperCamelCase="gelu" , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=0.02 , UpperCamelCase=1e-5 , UpperCamelCase=True , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase=10 , UpperCamelCase=8 , ): _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = embed_dim _SCREAMING_SNAKE_CASE = depths _SCREAMING_SNAKE_CASE = num_heads _SCREAMING_SNAKE_CASE = window_size _SCREAMING_SNAKE_CASE = mlp_ratio _SCREAMING_SNAKE_CASE = qkv_bias _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = drop_path_rate _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = use_absolute_embeddings _SCREAMING_SNAKE_CASE = patch_norm _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = encoder_stride def lowercase ( self ): _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def lowercase ( self ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = SwinvaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCamelCase ) _SCREAMING_SNAKE_CASE = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _SCREAMING_SNAKE_CASE = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = SwinvaForMaskedImageModeling(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = SwinvaForMaskedImageModeling(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = self.type_sequence_label_size _SCREAMING_SNAKE_CASE = SwinvaForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): a : Tuple = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) a : Optional[Any] = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) a : Any = False a : Union[str, Any] = False a : List[Any] = False a : List[str] = False def lowercase ( self ): _SCREAMING_SNAKE_CASE = SwinvaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCamelCase , embed_dim=37 ) def lowercase ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def lowercase ( self ): pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def lowercase ( self ): pass def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) _SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) _SCREAMING_SNAKE_CASE = outputs.attentions _SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = config.window_size**2 _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) _SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _SCREAMING_SNAKE_CASE = len(UpperCamelCase ) # Check attention is always last and order is fine _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): _SCREAMING_SNAKE_CASE = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _SCREAMING_SNAKE_CASE = 2 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase ) ) _SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowercase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) _SCREAMING_SNAKE_CASE = outputs.hidden_states _SCREAMING_SNAKE_CASE = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # Swinv2 has a different seq_length _SCREAMING_SNAKE_CASE = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _SCREAMING_SNAKE_CASE = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = reshaped_hidden_states[0].shape _SCREAMING_SNAKE_CASE = ( reshaped_hidden_states[0].view(UpperCamelCase , UpperCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _SCREAMING_SNAKE_CASE = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _SCREAMING_SNAKE_CASE = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _SCREAMING_SNAKE_CASE = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase , (padded_height, padded_width) ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def lowercase ( self ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = SwinvaModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = _config_zero_init(UpperCamelCase ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(config=UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class lowerCAmelCase ( unittest.TestCase ): @cached_property def lowercase ( self ): return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def lowercase ( self ): _SCREAMING_SNAKE_CASE = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.default_image_processor _SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _SCREAMING_SNAKE_CASE = image_processor(images=UpperCamelCase , return_tensors="pt" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**UpperCamelCase ) # verify the logits _SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) _SCREAMING_SNAKE_CASE = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) )
493
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = dataset _SCREAMING_SNAKE_CASE = process _SCREAMING_SNAKE_CASE = params def __len__( self ): return len(self.dataset ) def __getitem__( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = self.dataset[i] _SCREAMING_SNAKE_CASE = self.process(UpperCamelCase , **self.params ) return processed class lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ): _SCREAMING_SNAKE_CASE = loader _SCREAMING_SNAKE_CASE = infer _SCREAMING_SNAKE_CASE = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = loader_batch_size # Internal bookkeeping _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None def __len__( self ): return len(self.loader ) def __iter__( self ): _SCREAMING_SNAKE_CASE = iter(self.loader ) return self def lowercase ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _SCREAMING_SNAKE_CASE = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _SCREAMING_SNAKE_CASE = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCamelCase , UpperCamelCase ): # Convert ModelOutput to tuple first _SCREAMING_SNAKE_CASE = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase , UpperCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _SCREAMING_SNAKE_CASE = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _SCREAMING_SNAKE_CASE = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _SCREAMING_SNAKE_CASE = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _SCREAMING_SNAKE_CASE = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _SCREAMING_SNAKE_CASE = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _SCREAMING_SNAKE_CASE = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _SCREAMING_SNAKE_CASE = self._loader_batch_data.__class__(UpperCamelCase ) self._loader_batch_index += 1 return result def lowercase ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _SCREAMING_SNAKE_CASE = next(self.iterator ) _SCREAMING_SNAKE_CASE = self.infer(UpperCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCamelCase , torch.Tensor ): _SCREAMING_SNAKE_CASE = processed else: _SCREAMING_SNAKE_CASE = list(processed.keys() )[0] _SCREAMING_SNAKE_CASE = processed[key] if isinstance(UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = len(UpperCamelCase ) else: _SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _SCREAMING_SNAKE_CASE = observed_batch_size # Setting internal index to unwrap the batch _SCREAMING_SNAKE_CASE = processed _SCREAMING_SNAKE_CASE = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ): super().__init__(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def __iter__( self ): _SCREAMING_SNAKE_CASE = iter(self.loader ) _SCREAMING_SNAKE_CASE = None return self def lowercase ( self ): if self.subiterator is None: _SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _SCREAMING_SNAKE_CASE = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) _SCREAMING_SNAKE_CASE = next(self.subiterator ) return processed class lowerCAmelCase ( __UpperCAmelCase ): def __iter__( self ): _SCREAMING_SNAKE_CASE = iter(self.loader ) return self def lowercase ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _SCREAMING_SNAKE_CASE = self.loader_batch_item() _SCREAMING_SNAKE_CASE = item.pop("is_last" ) accumulator.append(UpperCamelCase ) if is_last: return accumulator while not is_last: _SCREAMING_SNAKE_CASE = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCamelCase , torch.Tensor ): _SCREAMING_SNAKE_CASE = processed else: _SCREAMING_SNAKE_CASE = list(processed.keys() )[0] _SCREAMING_SNAKE_CASE = processed[key] if isinstance(UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = len(UpperCamelCase ) else: _SCREAMING_SNAKE_CASE = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _SCREAMING_SNAKE_CASE = observed_batch_size _SCREAMING_SNAKE_CASE = processed _SCREAMING_SNAKE_CASE = 0 while self._loader_batch_index < self.loader_batch_size: _SCREAMING_SNAKE_CASE = self.loader_batch_item() _SCREAMING_SNAKE_CASE = item.pop("is_last" ) accumulator.append(UpperCamelCase ) if is_last: return accumulator else: _SCREAMING_SNAKE_CASE = processed _SCREAMING_SNAKE_CASE = item.pop("is_last" ) accumulator.append(UpperCamelCase ) return accumulator class lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = dataset _SCREAMING_SNAKE_CASE = key def __len__( self ): return len(self.dataset ) def __getitem__( self , UpperCamelCase ): return self.dataset[i][self.key] class lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = dataset _SCREAMING_SNAKE_CASE = keya _SCREAMING_SNAKE_CASE = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , UpperCamelCase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
493
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : Tuple = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['''YolosFeatureExtractor'''] a : str = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys a : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
639
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase_ : '''simple docstring''' __UpperCAmelCase = None __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = 1 __UpperCAmelCase = None __UpperCAmelCase = False __UpperCAmelCase = None __UpperCAmelCase = None def A ( self ) -> "DownloadConfig": '''simple docstring''' return self.__class__(**{k: copy.deepcopy(snake_case_ ) for k, v in self.__dict__.items()} )
639
1
'''simple docstring''' import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() def __a ( self : Tuple ): '''simple docstring''' __a , __a = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __a = """A painting of a squirrel eating a burger""" __a = jax.device_count() __a = num_samples * [prompt] __a = sd_pipe.prepare_inputs(UpperCAmelCase__ ) __a = replicate(UpperCAmelCase__ ) __a = shard(UpperCAmelCase__ ) __a = jax.random.PRNGKey(0 ) __a = jax.random.split(UpperCAmelCase__ , jax.device_count() ) __a = sd_pipe(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , num_inference_steps=2_5 , jit=UpperCAmelCase__ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) __a = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __a = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __a = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __a = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __a ( self : List[str] ): '''simple docstring''' __a = """stabilityai/stable-diffusion-2""" __a , __a = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCAmelCase__ , subfolder="""scheduler""" ) __a , __a = FlaxStableDiffusionPipeline.from_pretrained( UpperCAmelCase__ , scheduler=UpperCAmelCase__ , revision="""bf16""" , dtype=jnp.bfloataa , ) __a = scheduler_params __a = """A painting of a squirrel eating a burger""" __a = jax.device_count() __a = num_samples * [prompt] __a = sd_pipe.prepare_inputs(UpperCAmelCase__ ) __a = replicate(UpperCAmelCase__ ) __a = shard(UpperCAmelCase__ ) __a = jax.random.PRNGKey(0 ) __a = jax.random.split(UpperCAmelCase__ , jax.device_count() ) __a = sd_pipe(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , num_inference_steps=2_5 , jit=UpperCAmelCase__ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) __a = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __a = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __a = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __a = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
721
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( snake_case__ , unittest.TestCase ): """simple docstring""" a_ :Union[str, Any] =LEDTokenizer a_ :List[Any] =LEDTokenizerFast a_ :Union[str, Any] =True def __a ( self : Dict ): '''simple docstring''' super().setUp() __a = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __a = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __a = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __a = {"""unk_token""": """<unk>"""} __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(SCREAMING_SNAKE_CASE__ ) ) def __a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __a ( self : int , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __a ( self : str , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def __a ( self : Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def __a ( self : Union[str, Any] ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def __a ( self : Tuple ): '''simple docstring''' __a = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __a = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a = tokenizer(SCREAMING_SNAKE_CASE__ , max_length=len(SCREAMING_SNAKE_CASE__ ) , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __a = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_torch def __a ( self : Dict ): '''simple docstring''' __a = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) self.assertIn("""input_ids""" , SCREAMING_SNAKE_CASE__ ) self.assertIn("""attention_mask""" , SCREAMING_SNAKE_CASE__ ) self.assertNotIn("""labels""" , SCREAMING_SNAKE_CASE__ ) self.assertNotIn("""decoder_attention_mask""" , SCREAMING_SNAKE_CASE__ ) @require_torch def __a ( self : Union[str, Any] ): '''simple docstring''' __a = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a = tokenizer(text_target=SCREAMING_SNAKE_CASE__ , max_length=3_2 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) @require_torch def __a ( self : Any ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a = tokenizer( ["""I am a small frog""" * 1_0_2_4, """I am a small frog"""] , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def __a ( self : Tuple ): '''simple docstring''' __a = ["""A long paragraph for summarization."""] __a = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) __a = tokenizer(text_target=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) __a = inputs["""input_ids"""] __a = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __a ( self : Dict ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a = ["""Summary of the text.""", """Another summary."""] __a = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __a = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) __a = [[0] * len(SCREAMING_SNAKE_CASE__ ) for x in encoded_output["""input_ids"""]] __a = tokenizer.pad(SCREAMING_SNAKE_CASE__ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , SCREAMING_SNAKE_CASE__ ) def __a ( self : List[Any] ): '''simple docstring''' pass def __a ( self : Any ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a = """A, <mask> AllenNLP sentence.""" __a = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) __a = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __a = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __a = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
201
0
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def _UpperCamelCase (_lowerCamelCase : Optional[int] , _lowerCamelCase : Any=False )-> int: '''simple docstring''' try: __snake_case = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case = default else: # KEY is set, convert it to True or False. try: __snake_case = strtobool(__lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value UpperCAmelCase_ : Union[str, Any] = parse_flag_from_env('''RUN_SLOW''', default=False) UpperCAmelCase_ : Any = parse_flag_from_env('''RUN_REMOTE''', default=False) UpperCAmelCase_ : str = parse_flag_from_env('''RUN_LOCAL''', default=True) UpperCAmelCase_ : Tuple = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression UpperCAmelCase_ : Dict = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') UpperCAmelCase_ : Union[str, Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') UpperCAmelCase_ : List[str] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio UpperCAmelCase_ : str = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam UpperCAmelCase_ : List[str] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility UpperCAmelCase_ : Tuple = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows UpperCAmelCase_ : int = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def _UpperCamelCase (_lowerCamelCase : List[str] )-> Dict: '''simple docstring''' try: import faiss # noqa except ImportError: __snake_case = unittest.skip('''test requires faiss''' )(__lowerCAmelCase ) return test_case def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> str: '''simple docstring''' try: import regex # noqa except ImportError: __snake_case = unittest.skip('''test requires regex''' )(__lowerCAmelCase ) return test_case def _UpperCamelCase (_lowerCamelCase : Union[str, Any] )-> str: '''simple docstring''' try: import elasticsearch # noqa except ImportError: __snake_case = unittest.skip('''test requires elasticsearch''' )(__lowerCAmelCase ) return test_case def _UpperCamelCase (_lowerCamelCase : Optional[int] )-> List[str]: '''simple docstring''' try: import sqlalchemy # noqa except ImportError: __snake_case = unittest.skip('''test requires sqlalchemy''' )(__lowerCAmelCase ) return test_case def _UpperCamelCase (_lowerCamelCase : Any )-> Optional[Any]: '''simple docstring''' if not config.TORCH_AVAILABLE: __snake_case = unittest.skip('''test requires PyTorch''' )(__lowerCAmelCase ) return test_case def _UpperCamelCase (_lowerCamelCase : List[Any] )-> Optional[int]: '''simple docstring''' if not config.TF_AVAILABLE: __snake_case = unittest.skip('''test requires TensorFlow''' )(__lowerCAmelCase ) return test_case def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' if not config.JAX_AVAILABLE: __snake_case = unittest.skip('''test requires JAX''' )(__lowerCAmelCase ) return test_case def _UpperCamelCase (_lowerCamelCase : List[Any] )-> List[str]: '''simple docstring''' if not config.PIL_AVAILABLE: __snake_case = unittest.skip('''test requires Pillow''' )(__lowerCAmelCase ) return test_case def _UpperCamelCase (_lowerCamelCase : Optional[int] )-> int: '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(__lowerCAmelCase ) else: return test_case def _UpperCamelCase (_lowerCamelCase : Union[str, Any] )-> List[str]: '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(__lowerCAmelCase ) else: return test_case def _UpperCamelCase (_lowerCamelCase : Optional[int] )-> Any: '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(__lowerCAmelCase ) else: return test_case def _UpperCamelCase (_lowerCamelCase : int )-> Any: '''simple docstring''' def _require_spacy_model(_lowerCamelCase : Optional[Any] ): try: import spacy # noqa F401 spacy.load(__lowerCAmelCase ) except ImportError: return unittest.skip('''test requires spacy''' )(__lowerCAmelCase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(__lowerCAmelCase ) )(__lowerCAmelCase ) else: return test_case return _require_spacy_model def _UpperCamelCase (_lowerCamelCase : List[str] )-> Any: '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(__lowerCAmelCase ) else: return test_case def _UpperCamelCase (_lowerCamelCase : Optional[int] )-> str: '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(__lowerCAmelCase ) else: return test_case def _UpperCamelCase (_lowerCamelCase : int )-> str: '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: __snake_case = unittest.skip('''test is slow''' )(__lowerCAmelCase ) return test_case def _UpperCamelCase (_lowerCamelCase : str )-> Dict: '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: __snake_case = unittest.skip('''test is local''' )(__lowerCAmelCase ) return test_case def _UpperCamelCase (_lowerCamelCase : Any )-> List[str]: '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case = unittest.skip('''test is packaged''' )(__lowerCAmelCase ) return test_case def _UpperCamelCase (_lowerCamelCase : Optional[int] )-> str: '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: __snake_case = unittest.skip('''test requires remote''' )(__lowerCAmelCase ) return test_case def _UpperCamelCase (*_lowerCamelCase : List[Any] )-> Union[str, Any]: '''simple docstring''' def decorate(cls : Union[str, Any] ): for name, fn in cls.__dict__.items(): if callable(__lowerCAmelCase ) and name.startswith('''test''' ): for decorator in decorators: __snake_case = decorator(__lowerCAmelCase ) setattr(cls , __lowerCAmelCase , __lowerCAmelCase ) return cls return decorate class lowerCAmelCase ( __lowercase): pass class lowerCAmelCase ( __lowercase): __lowercase : Union[str, Any] = 0 __lowercase : Tuple = 1 __lowercase : Dict = 2 @contextmanager def _UpperCamelCase (_lowerCamelCase : List[str]=OfflineSimulationMode.CONNECTION_FAILS , _lowerCamelCase : Any=1E-16 )-> Dict: '''simple docstring''' __snake_case = requests.Session().request def timeout_request(_lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , **_lowerCamelCase : Any ): # Change the url to an invalid url so that the connection hangs __snake_case = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) __snake_case = timeout try: return online_request(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case = url __snake_case = e.args[0] __snake_case = (max_retry_error.args[0].replace('''10.255.255.1''' , f'''OfflineMock[{url}]''' ),) __snake_case = (max_retry_error,) raise def raise_connection_error(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , **_lowerCamelCase : str ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=__lowerCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , __lowerCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , __lowerCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def _UpperCamelCase (*_lowerCamelCase : List[Any] , **_lowerCamelCase : List[str] )-> Any: '''simple docstring''' __snake_case = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__lowerCAmelCase , **__lowerCAmelCase ) as tmp_dir: try: os.chdir(__lowerCAmelCase ) yield finally: os.chdir(__lowerCAmelCase ) @contextmanager def _UpperCamelCase ()-> Optional[Any]: '''simple docstring''' import gc gc.collect() __snake_case = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _UpperCamelCase ()-> Optional[Any]: '''simple docstring''' import gc gc.collect() __snake_case = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _UpperCamelCase (_lowerCamelCase : Union[str, Any] , _lowerCamelCase : str )-> List[str]: '''simple docstring''' return deepcopy(__lowerCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__lowerCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> List[str]: '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(_lowerCamelCase : str , *_lowerCamelCase : List[str] , **_lowerCamelCase : List[str] ): try: return func(*__lowerCAmelCase , **__lowerCAmelCase ) except HTTPError as err: if str(__lowerCAmelCase ).startswith('''500''' ) or str(__lowerCAmelCase ).startswith('''502''' ): pytest.xfail(str(__lowerCAmelCase ) ) raise err return decorator.decorator(_wrapper , __lowerCAmelCase ) class lowerCAmelCase : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __snake_case = returncode __snake_case = stdout __snake_case = stderr async def _UpperCamelCase (_lowerCamelCase : Dict , _lowerCamelCase : List[str] )-> Tuple: '''simple docstring''' while True: __snake_case = await stream.readline() if line: callback(__lowerCAmelCase ) else: break async def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : List[str]=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Tuple=False )-> _RunOutput: '''simple docstring''' if echo: print('''\nRunning: ''' , ''' '''.join(__lowerCAmelCase ) ) __snake_case = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case = [] __snake_case = [] def tee(_lowerCamelCase : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int="" ): __snake_case = line.decode('''utf-8''' ).rstrip() sink.append(__lowerCAmelCase ) if not quiet: print(__lowerCAmelCase , __lowerCAmelCase , file=__lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _lowerCamelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda _lowerCamelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stderr , label='''stderr:''' ) ), ] , timeout=__lowerCAmelCase , ) return _RunOutput(await p.wait() , __lowerCAmelCase , __lowerCAmelCase ) def _UpperCamelCase (_lowerCamelCase : str , _lowerCamelCase : int=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=1_80 , _lowerCamelCase : str=False , _lowerCamelCase : List[Any]=True )-> _RunOutput: '''simple docstring''' __snake_case = asyncio.get_event_loop() __snake_case = loop.run_until_complete( _stream_subprocess(__lowerCAmelCase , env=__lowerCAmelCase , stdin=__lowerCAmelCase , timeout=__lowerCAmelCase , quiet=__lowerCAmelCase , echo=__lowerCAmelCase ) ) __snake_case = ''' '''.join(__lowerCAmelCase ) if result.returncode > 0: __snake_case = '''\n'''.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def _UpperCamelCase ()-> Union[str, Any]: '''simple docstring''' __snake_case = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) __snake_case = re.sub(R'''^gw''' , '''''' , __lowerCAmelCase , 0 , re.M ) return int(__lowerCAmelCase ) def _UpperCamelCase ()-> str: '''simple docstring''' __snake_case = 2_95_00 __snake_case = pytest_xdist_worker_id() return port + uniq_delta
24
from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE__ : List[Any] = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __magic_name__ ( ) -> int: __lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowerCamelCase = g.get_repo('''huggingface/transformers''' ) __lowerCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) __lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
298
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _snake_case : Dict = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Any = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _snake_case : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _snake_case : List[Any] = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" _snake_case : Any = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" _snake_case : str = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return float((preds == labels).mean() ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="binary" ): __snake_case : Union[str, Any] = simple_accuracy(__lowerCamelCase , __lowerCamelCase ) __snake_case : List[str] = float(fa_score(y_true=__lowerCamelCase , y_pred=__lowerCamelCase , average=__lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = {} for id_pred, label in zip(__lowerCamelCase , __lowerCamelCase ): __snake_case : int = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' __snake_case : str = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __snake_case : Optional[Any] = [(pred, label)] __snake_case , __snake_case : Dict = [], [] for question, preds_labels in question_map.items(): __snake_case , __snake_case : int = zip(*__lowerCamelCase ) __snake_case : Optional[Any] = fa_score(y_true=__lowerCamelCase , y_pred=__lowerCamelCase , average="macro" ) fas.append(__lowerCamelCase ) __snake_case : Union[str, Any] = int(sum(pred == label for pred, label in preds_labels ) == len(__lowerCamelCase ) ) ems.append(__lowerCamelCase ) __snake_case : Tuple = float(sum(__lowerCamelCase ) / len(__lowerCamelCase ) ) __snake_case : Any = sum(__lowerCamelCase ) / len(__lowerCamelCase ) __snake_case : int = float(fa_score(y_true=__lowerCamelCase , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a (datasets.Metric ): """simple docstring""" def __snake_case ( self : List[Any] ) -> Union[str, Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def __snake_case ( self : Any ) -> int: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def __snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[Any] ) -> str: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase , lowerCamelCase )} elif self.config_name == "cb": return acc_and_fa(lowerCamelCase , lowerCamelCase , fa_avg="macro" ) elif self.config_name == "record": __snake_case : Tuple = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] __snake_case : List[str] = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(lowerCamelCase , lowerCamelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(lowerCamelCase , lowerCamelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowerCamelCase , lowerCamelCase )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
203
0
'''simple docstring''' def UpperCamelCase__ ( _lowercase : int ) -> bool: __UpperCAmelCase: List[Any] = (1 + 2_4 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCamelCase__ ( _lowercase : int = 5_0_0_0 ) -> int: __UpperCAmelCase: Tuple = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowercase )] for i, pentagonal_i in enumerate(_lowercase ): for j in range(_lowercase , len(_lowercase ) ): __UpperCAmelCase: Dict = pentagonal_nums[j] __UpperCAmelCase: Optional[Any] = pentagonal_i + pentagonal_j __UpperCAmelCase: str = pentagonal_j - pentagonal_i if is_pentagonal(_lowercase ) and is_pentagonal(_lowercase ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
523
'''simple docstring''' import numpy as np def UpperCamelCase__ ( _lowercase : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
523
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = Dict[str, Any] UpperCamelCase_ = List[Prediction] @add_end_docstrings(lowercase__ ) class __SCREAMING_SNAKE_CASE ( lowercase__ ): def __init__( self : Any , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : Optional[int] ): '''simple docstring''' super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def lowerCamelCase_ ( self : Dict , **UpperCAmelCase__ : int ): '''simple docstring''' lowercase : Dict ={} if "threshold" in kwargs: lowercase : str =kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : Tuple , *UpperCAmelCase__ : int , **UpperCAmelCase__ : Union[str, Any] ): '''simple docstring''' return super().__call__(*UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : Optional[Any] ): '''simple docstring''' lowercase : Optional[Any] =load_image(UpperCAmelCase__ ) lowercase : Optional[Any] =torch.IntTensor([[image.height, image.width]] ) lowercase : int =self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: lowercase : int =self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) lowercase : str =target_size return inputs def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : Optional[int] ): '''simple docstring''' lowercase : Any =model_inputs.pop('''target_size''' ) lowercase : Union[str, Any] =self.model(**UpperCAmelCase__ ) lowercase : Any =outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: lowercase : List[str] =model_inputs['''bbox'''] return model_outputs def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict=0.9 ): '''simple docstring''' lowercase : Dict =model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowercase : Union[str, Any] =target_size[0].tolist() def unnormalize(UpperCAmelCase__ : Union[str, Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) lowercase : List[Any] =model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowercase : Optional[int] =[self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowercase : Dict =[unnormalize(UpperCAmelCase__ ) for bbox in model_outputs['''bbox'''].squeeze(0 )] lowercase : List[str] =['''score''', '''label''', '''box'''] lowercase : Any =[dict(zip(UpperCAmelCase__ , UpperCAmelCase__ ) ) for vals in zip(scores.tolist() , UpperCAmelCase__ , UpperCAmelCase__ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowercase : Tuple =self.image_processor.post_process_object_detection(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : int =raw_annotations[0] lowercase : Dict =raw_annotation['''scores'''] lowercase : Optional[Any] =raw_annotation['''labels'''] lowercase : List[str] =raw_annotation['''boxes'''] lowercase : List[Any] =scores.tolist() lowercase : str =[self.model.config.idalabel[label.item()] for label in labels] lowercase : List[str] =[self._get_bounding_box(UpperCAmelCase__ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowercase : str =['''score''', '''label''', '''box'''] lowercase : Optional[int] =[ dict(zip(UpperCAmelCase__ , UpperCAmelCase__ ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) lowercase : Union[str, Any] =box.int().tolist() lowercase : Optional[Any] ={ '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
701
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : int , __magic_name__ : Optional[Any] ) -> str: lowercase : Optional[Any] =[0 for i in range(r + 1 )] # nc0 = 1 lowercase : Optional[Any] =1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowercase : str =min(__magic_name__ , __magic_name__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
88
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __UpperCamelCase ( lowercase__ : Optional[Any] ): '''simple docstring''' if "cls_token" in name: __lowercase =name.replace('cls_token', 'vit.embeddings.cls_token' ) if "mask_token" in name: __lowercase =name.replace('mask_token', 'decoder.mask_token' ) if "decoder_pos_embed" in name: __lowercase =name.replace('decoder_pos_embed', 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: __lowercase =name.replace('pos_embed', 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: __lowercase =name.replace('patch_embed.proj', 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowercase =name.replace('patch_embed.norm', 'vit.embeddings.norm' ) if "decoder_blocks" in name: __lowercase =name.replace('decoder_blocks', 'decoder.decoder_layers' ) if "blocks" in name: __lowercase =name.replace('blocks', 'vit.encoder.layer' ) if "attn.proj" in name: __lowercase =name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: __lowercase =name.replace('attn', 'attention.self' ) if "norm1" in name: __lowercase =name.replace('norm1', 'layernorm_before' ) if "norm2" in name: __lowercase =name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: __lowercase =name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: __lowercase =name.replace('mlp.fc2', 'output.dense' ) if "decoder_embed" in name: __lowercase =name.replace('decoder_embed', 'decoder.decoder_embed' ) if "decoder_norm" in name: __lowercase =name.replace('decoder_norm', 'decoder.decoder_norm' ) if "decoder_pred" in name: __lowercase =name.replace('decoder_pred', 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: __lowercase =name.replace('norm.weight', 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: __lowercase =name.replace('norm.bias', 'vit.layernorm.bias' ) return name def __UpperCamelCase ( lowercase__ : List[str], lowercase__ : List[str] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __lowercase =orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: __lowercase =key.split('.' ) __lowercase =int(key_split[1] ) if "decoder_blocks" in key: __lowercase =config.decoder_hidden_size __lowercase ='decoder.decoder_layers.' if "weight" in key: __lowercase =val[:dim, :] __lowercase =val[dim : dim * 2, :] __lowercase =val[-dim:, :] elif "bias" in key: __lowercase =val[:dim] __lowercase =val[dim : dim * 2] __lowercase =val[-dim:] else: __lowercase =config.hidden_size __lowercase ='vit.encoder.layer.' if "weight" in key: __lowercase =val[:dim, :] __lowercase =val[dim : dim * 2, :] __lowercase =val[-dim:, :] elif "bias" in key: __lowercase =val[:dim] __lowercase =val[dim : dim * 2] __lowercase =val[-dim:] else: __lowercase =val return orig_state_dict def __UpperCamelCase ( lowercase__ : Union[str, Any], lowercase__ : str ): '''simple docstring''' __lowercase =ViTMAEConfig() if "large" in checkpoint_url: __lowercase =10_24 __lowercase =40_96 __lowercase =24 __lowercase =16 elif "huge" in checkpoint_url: __lowercase =14 __lowercase =12_80 __lowercase =51_20 __lowercase =32 __lowercase =16 __lowercase =ViTMAEForPreTraining(lowerCAmelCase__ ) __lowercase =torch.hub.load_state_dict_from_url(lowerCAmelCase__, map_location='cpu' )['model'] __lowercase =ViTMAEImageProcessor(size=config.image_size ) __lowercase =convert_state_dict(lowerCAmelCase__, lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() __lowercase ='https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' __lowercase =Image.open(requests.get(lowerCAmelCase__, stream=lowerCAmelCase__ ).raw ) __lowercase =ViTMAEImageProcessor(size=config.image_size ) __lowercase =image_processor(images=lowerCAmelCase__, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) __lowercase =model(**lowerCAmelCase__ ) __lowercase =outputs.logits if "large" in checkpoint_url: __lowercase =torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: __lowercase =torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: __lowercase =torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3], lowerCAmelCase__, atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
119
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter SCREAMING_SNAKE_CASE : Dict = True except ImportError: SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) # pylint: disable=invalid-name def _UpperCamelCase ( lowerCAmelCase__: Namespace ) -> Optional[Any]: return AddNewModelCommand(args.testing ,args.testing_file ,path=args.path ) class snake_case ( lowercase_ ): """simple docstring""" @staticmethod def a__ ( _lowercase ) -> Tuple: SCREAMING_SNAKE_CASE_ = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing', action='store_true', help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file', type=_lowercase, help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path', type=_lowercase, help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=_lowercase ) def __init__( self, _lowercase, _lowercase, _lowercase=None, *_lowercase ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = testing SCREAMING_SNAKE_CASE_ = testing_file SCREAMING_SNAKE_CASE_ = path def a__ ( self ) -> Optional[int]: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory SCREAMING_SNAKE_CASE_ = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(_lowercase ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) SCREAMING_SNAKE_CASE_ = ( Path(_lowercase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) SCREAMING_SNAKE_CASE_ = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(_lowercase ) ) else: with open(self._testing_file, 'r' ) as configuration_file: SCREAMING_SNAKE_CASE_ = json.load(_lowercase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ), no_input=_lowercase, extra_context=_lowercase, ) SCREAMING_SNAKE_CASE_ = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json', 'r' ) as configuration_file: SCREAMING_SNAKE_CASE_ = json.load(_lowercase ) SCREAMING_SNAKE_CASE_ = configuration['lowercase_modelname'] SCREAMING_SNAKE_CASE_ = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f"""{directory}/configuration.json""" ) SCREAMING_SNAKE_CASE_ = 'PyTorch' in generate_tensorflow_pytorch_and_flax SCREAMING_SNAKE_CASE_ = 'TensorFlow' in generate_tensorflow_pytorch_and_flax SCREAMING_SNAKE_CASE_ = 'Flax' in generate_tensorflow_pytorch_and_flax SCREAMING_SNAKE_CASE_ = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(_lowercase, exist_ok=_lowercase ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""", exist_ok=_lowercase ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""", 'w' ): pass shutil.move( f"""{directory}/__init__.py""", f"""{model_dir}/__init__.py""", ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""", f"""{model_dir}/configuration_{lowercase_model_name}.py""", ) def remove_copy_lines(_lowercase ): with open(_lowercase, 'r' ) as f: SCREAMING_SNAKE_CASE_ = f.readlines() with open(_lowercase, 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(_lowercase ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""", f"""{model_dir}/modeling_{lowercase_model_name}.py""", ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""", f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""", ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""", f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""", ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""", f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""", ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""", f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""", ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""", f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""", ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""", f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""", ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""", f"""{model_dir}/tokenization_{lowercase_model_name}.py""", ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""", f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""", ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(_lowercase, _lowercase, _lowercase ): # Create temp file SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = mkstemp() SCREAMING_SNAKE_CASE_ = False with fdopen(_lowercase, 'w' ) as new_file: with open(_lowercase ) as old_file: for line in old_file: new_file.write(_lowercase ) if line_to_copy_below in line: SCREAMING_SNAKE_CASE_ = True for line_to_copy in lines_to_copy: new_file.write(_lowercase ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(_lowercase, _lowercase ) # Remove original file remove(_lowercase ) # Move new file move(_lowercase, _lowercase ) def skip_units(_lowercase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(_lowercase ): with open(_lowercase ) as datafile: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False for line in datafile: if "# To replace in: " in line and "##" not in line: SCREAMING_SNAKE_CASE_ = line.split('"' )[1] SCREAMING_SNAKE_CASE_ = skip_units(_lowercase ) elif "# Below: " in line and "##" not in line: SCREAMING_SNAKE_CASE_ = line.split('"' )[1] SCREAMING_SNAKE_CASE_ = skip_units(_lowercase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(_lowercase, _lowercase, _lowercase ) SCREAMING_SNAKE_CASE_ = [] elif "# Replace with" in line and "##" not in line: SCREAMING_SNAKE_CASE_ = [] elif "##" not in line: lines_to_copy.append(_lowercase ) remove(_lowercase ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(_lowercase )
294
0
import random def __a ( __UpperCAmelCase , __UpperCAmelCase ): a__ , a__ , a__ = [], [], [] for element in data: if element < pivot: less.append(__UpperCAmelCase ) elif element > pivot: greater.append(__UpperCAmelCase ) else: equal.append(__UpperCAmelCase ) return less, equal, greater def __a ( __UpperCAmelCase , __UpperCAmelCase ): # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__UpperCAmelCase ) or index < 0: return None a__ = items[random.randint(0 , len(__UpperCAmelCase ) - 1 )] a__ = 0 a__ , a__ , a__ = _partition(__UpperCAmelCase , __UpperCAmelCase ) a__ = len(__UpperCAmelCase ) a__ = len(__UpperCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__UpperCAmelCase , __UpperCAmelCase ) # must be in larger else: return quick_select(__UpperCAmelCase , index - (m + count) )
148
from __future__ import annotations def __a ( __UpperCAmelCase , __UpperCAmelCase ): a__ = get_failure_array(__UpperCAmelCase ) # 2) Step through text searching for pattern a__ , a__ = 0, 0 # index into text, pattern while i < len(__UpperCAmelCase ): if pattern[j] == text[i]: if j == (len(__UpperCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: a__ = failure[j - 1] continue i += 1 return False def __a ( __UpperCAmelCase ): a__ = [0] a__ = 0 a__ = 1 while j < len(__UpperCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: a__ = failure[i - 1] continue j += 1 failure.append(__UpperCAmelCase ) return failure if __name__ == "__main__": # Test 1) a_ : Tuple = 'abc1abc12' a_ : Optional[Any] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' a_ : Optional[Any] = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) a_ : Any = 'ABABX' a_ : Any = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) a_ : Union[str, Any] = 'AAAB' a_ : int = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) a_ : Tuple = 'abcdabcy' a_ : Optional[Any] = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) a_ : Dict = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
148
1
import random from typing import Any def a (lowerCAmelCase__ ): for _ in range(len(lowerCAmelCase__ ) ): __a = random.randint(0 , len(lowerCAmelCase__ ) - 1 ) __a = random.randint(0 , len(lowerCAmelCase__ ) - 1 ) __a , __a = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
99
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase_ ( A__ : str , A__ : str = "cpu" , A__ : Union[str, None] = None ): '''simple docstring''' lowerCAmelCase_ : Dict = torch.load(A__ , map_location=A__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(A__ , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowerCAmelCase_ : List[str] = v.half() if save_path is None: # overwrite src_path lowerCAmelCase_ : List[str] = src_path torch.save(A__ , A__ ) if __name__ == "__main__": fire.Fire(convert)
275
0
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _A : str = logging.get_logger(__name__) class _lowercase ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : Dict , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: requires_backends(self , ["""bs4"""] ) super().__init__(**__A ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> int: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __lowerCAmelCase = parent.find_all(child.name , recursive=__A ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__A ) else next(i for i, s in enumerate(__A , 1 ) if s is child ) ) __lowerCAmelCase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> str: __lowerCAmelCase = BeautifulSoup(__A , """html.parser""" ) __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] for element in html_code.descendants: if type(__A ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __lowerCAmelCase = html.unescape(__A ).strip() if not text_in_this_tag: continue all_doc_strings.append(__A ) __lowerCAmelCase , __lowerCAmelCase = self.xpath_soup(__A ) stringaxtag_seq.append(__A ) stringaxsubs_seq.append(__A ) if len(__A ) != len(__A ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(__A ) != len(__A ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: __lowerCAmelCase = """""" for tagname, subs in zip(__A , __A ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> BatchFeature: __lowerCAmelCase = False # Check that strings has a valid type if isinstance(__A , __A ): __lowerCAmelCase = True elif isinstance(__A , (list, tuple) ): if len(__A ) == 0 or isinstance(html_strings[0] , __A ): __lowerCAmelCase = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ f"""but is of type {type(__A )}.""" ) __lowerCAmelCase = bool(isinstance(__A , (list, tuple) ) and (isinstance(html_strings[0] , __A )) ) if not is_batched: __lowerCAmelCase = [html_strings] # Get nodes + xpaths __lowerCAmelCase = [] __lowerCAmelCase = [] for html_string in html_strings: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.get_three_from_single(__A ) nodes.append(__A ) __lowerCAmelCase = [] for node, tag_list, sub_list in zip(__A , __A , __A ): __lowerCAmelCase = self.construct_xpath(__A , __A ) xpath_strings.append(__A ) xpaths.append(__A ) # return as Dict __lowerCAmelCase = {"""nodes""": nodes, """xpaths""": xpaths} __lowerCAmelCase = BatchFeature(data=__A , tensor_type=__A ) return encoded_inputs
715
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : int = 10_00 ) -> int: '''simple docstring''' __lowerCAmelCase = -1 __lowerCAmelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __lowerCAmelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) __lowerCAmelCase = n - a - b if c * c == (a * a + b * b): __lowerCAmelCase = a * b * c if candidate >= product: __lowerCAmelCase = candidate return product if __name__ == "__main__": print(f'{solution() = }')
330
0
import math def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list[int]: _lowercase : int = [] _lowercase : Optional[Any] = 2 _lowercase : Union[str, Any] = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) # Size of every segment _lowercase : Union[str, Any] = [True] * (end + 1) _lowercase : List[str] = [] while start <= end: if temp[start] is True: in_prime.append(SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , SCREAMING_SNAKE_CASE ): _lowercase : Tuple = False start += 1 prime += in_prime _lowercase : int = end + 1 _lowercase : List[str] = min(2 * end , SCREAMING_SNAKE_CASE ) while low <= n: _lowercase : str = [True] * (high - low + 1) for each in in_prime: _lowercase : Dict = math.floor(low / each ) * each if t < low: t += each for j in range(SCREAMING_SNAKE_CASE , high + 1 , SCREAMING_SNAKE_CASE ): _lowercase : Optional[Any] = False for j in range(len(SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) _lowercase : Tuple = high + 1 _lowercase : Any = min(high + end , SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
66
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowerCamelCase = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ lowerCamelCase = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ lowerCamelCase = r""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = 0.0 for i, j in zip(_UpperCAmelCase , _UpperCAmelCase ): n_correct += 1.0 if math_equivalence.is_equiv(_UpperCAmelCase , _UpperCAmelCase ) else 0.0 UpperCAmelCase_ = n_correct / len(_UpperCAmelCase ) return { "accuracy": accuracy, }
82
0
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def lowerCAmelCase_ ( _lowerCamelCase: Dict ): __SCREAMING_SNAKE_CASE : List[Any] = torch.exp(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = torch.sum(_lowerCamelCase , dim=1 ) # sum of exp(x_i) __SCREAMING_SNAKE_CASE : List[Any] = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowerCamelCase ) - B / A class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase__ : Dict ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : Optional[int] = config.output_attentions __SCREAMING_SNAKE_CASE : Dict = config.output_hidden_states __SCREAMING_SNAKE_CASE : Tuple = nn.ModuleList([BertLayer(lowerCAmelCase__ ) for _ in range(config.num_hidden_layers )] ) __SCREAMING_SNAKE_CASE : Any = nn.ModuleList([BertHighway(lowerCAmelCase__ ) for _ in range(config.num_hidden_layers )] ) __SCREAMING_SNAKE_CASE : Tuple = [-1 for _ in range(config.num_hidden_layers )] def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : List[str] ): """simple docstring""" if (type(lowerCAmelCase__ ) is float) or (type(lowerCAmelCase__ ) is int): for i in range(len(self.early_exit_entropy ) ): __SCREAMING_SNAKE_CASE : Optional[Any] = x else: __SCREAMING_SNAKE_CASE : Optional[Any] = x def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Dict=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = () __SCREAMING_SNAKE_CASE : Dict = () __SCREAMING_SNAKE_CASE : List[Any] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __SCREAMING_SNAKE_CASE : Tuple = all_hidden_states + (hidden_states,) __SCREAMING_SNAKE_CASE : List[Any] = layer_module( lowerCAmelCase__ , lowerCAmelCase__ , head_mask[i] , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = layer_outputs[0] if self.output_attentions: __SCREAMING_SNAKE_CASE : str = all_attentions + (layer_outputs[1],) __SCREAMING_SNAKE_CASE : int = (hidden_states,) if self.output_hidden_states: __SCREAMING_SNAKE_CASE : Tuple = current_outputs + (all_hidden_states,) if self.output_attentions: __SCREAMING_SNAKE_CASE : str = current_outputs + (all_attentions,) __SCREAMING_SNAKE_CASE : Optional[Any] = self.highway[i](lowerCAmelCase__ ) # logits, pooled_output if not self.training: __SCREAMING_SNAKE_CASE : str = highway_exit[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = entropy(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __SCREAMING_SNAKE_CASE : Dict = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __SCREAMING_SNAKE_CASE : int = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowerCAmelCase__ , i + 1 ) else: __SCREAMING_SNAKE_CASE : List[str] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __SCREAMING_SNAKE_CASE : Dict = all_hidden_states + (hidden_states,) __SCREAMING_SNAKE_CASE : Optional[Any] = (hidden_states,) if self.output_hidden_states: __SCREAMING_SNAKE_CASE : Optional[int] = outputs + (all_hidden_states,) if self.output_attentions: __SCREAMING_SNAKE_CASE : List[Any] = outputs + (all_attentions,) __SCREAMING_SNAKE_CASE : str = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , lowerCamelCase__ , ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = config __SCREAMING_SNAKE_CASE : Optional[int] = BertEmbeddings(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = DeeBertEncoder(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = BertPooler(lowerCAmelCase__ ) self.init_weights() def UpperCamelCase__ ( self : int ): """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def UpperCamelCase__ ( self : int ): """simple docstring""" return self.embeddings.word_embeddings def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = value def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : List[Any] ): """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowerCAmelCase__ ) @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str=None , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: __SCREAMING_SNAKE_CASE : Tuple = input_ids.size() elif inputs_embeds is not None: __SCREAMING_SNAKE_CASE : List[Any] = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) __SCREAMING_SNAKE_CASE : Optional[int] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __SCREAMING_SNAKE_CASE : str = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ ) if encoder_attention_mask is None: __SCREAMING_SNAKE_CASE : Optional[int] = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ ) if token_type_ids is None: __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros(lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __SCREAMING_SNAKE_CASE : torch.Tensor = self.get_extended_attention_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __SCREAMING_SNAKE_CASE : Any = encoder_attention_mask[:, None, None, :] __SCREAMING_SNAKE_CASE : int = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __SCREAMING_SNAKE_CASE : Union[str, Any] = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_head_mask(lowerCAmelCase__ , self.config.num_hidden_layers ) __SCREAMING_SNAKE_CASE : str = self.embeddings( input_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.encoder( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[Any] = encoder_outputs[0] __SCREAMING_SNAKE_CASE : Tuple = self.pooler(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = message __SCREAMING_SNAKE_CASE : List[str] = exit_layer # start from 1! class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase__ : Optional[int] ): """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE : Any = BertPooler(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = nn.Dropout(config.hidden_dropout_prob ) __SCREAMING_SNAKE_CASE : Dict = nn.Linear(config.hidden_size , config.num_labels ) def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = encoder_outputs[0] __SCREAMING_SNAKE_CASE : str = self.pooler(lowerCAmelCase__ ) # "return" pooler_output # BertModel __SCREAMING_SNAKE_CASE : str = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __SCREAMING_SNAKE_CASE : Tuple = bmodel_output[1] __SCREAMING_SNAKE_CASE : Dict = self.dropout(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self.classifier(lowerCAmelCase__ ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , lowerCamelCase__ , ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase__ : int ): """simple docstring""" super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = config.num_labels __SCREAMING_SNAKE_CASE : Optional[int] = config.num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = DeeBertModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = nn.Dropout(config.hidden_dropout_prob ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Tuple=-1 , lowerCAmelCase__ : Union[str, Any]=False , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.num_layers try: __SCREAMING_SNAKE_CASE : Optional[Any] = self.bert( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __SCREAMING_SNAKE_CASE : List[Any] = outputs[1] __SCREAMING_SNAKE_CASE : str = self.dropout(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.classifier(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __SCREAMING_SNAKE_CASE : Union[str, Any] = e.message __SCREAMING_SNAKE_CASE : Optional[Any] = e.exit_layer __SCREAMING_SNAKE_CASE : List[str] = outputs[0] if not self.training: __SCREAMING_SNAKE_CASE : Optional[Any] = entropy(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression __SCREAMING_SNAKE_CASE : Tuple = MSELoss() __SCREAMING_SNAKE_CASE : Dict = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __SCREAMING_SNAKE_CASE : Optional[int] = CrossEntropyLoss() __SCREAMING_SNAKE_CASE : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __SCREAMING_SNAKE_CASE : List[str] = [] for highway_exit in outputs[-1]: __SCREAMING_SNAKE_CASE : str = highway_exit[0] if not self.training: highway_logits_all.append(lowerCAmelCase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __SCREAMING_SNAKE_CASE : List[Any] = MSELoss() __SCREAMING_SNAKE_CASE : List[Any] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __SCREAMING_SNAKE_CASE : Any = CrossEntropyLoss() __SCREAMING_SNAKE_CASE : Dict = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCAmelCase__ ) if train_highway: __SCREAMING_SNAKE_CASE : int = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __SCREAMING_SNAKE_CASE : Dict = (loss,) + outputs if not self.training: __SCREAMING_SNAKE_CASE : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __SCREAMING_SNAKE_CASE : List[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
705
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Optional[int] = (KDPMaDiscreteScheduler,) _A : Dict = 10 def UpperCamelCase__ ( self : Optional[int] , **lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowerCAmelCase__ ) return config def UpperCamelCase__ ( self : int ): """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def UpperCamelCase__ ( self : str ): """simple docstring""" for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def UpperCamelCase__ ( self : int ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" ) __SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __SCREAMING_SNAKE_CASE : Union[str, Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = output.prev_sample __SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34E-07 ) < 1E-2 assert abs(result_mean.item() - 6.11_12E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72E-07 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" if torch_device == "mps": return __SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : str = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_model() __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma __SCREAMING_SNAKE_CASE : str = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE : Tuple = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = output.prev_sample __SCREAMING_SNAKE_CASE : int = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def UpperCamelCase__ ( self : List[str] ): """simple docstring""" if torch_device == "mps": return __SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_model() __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __SCREAMING_SNAKE_CASE : Dict = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = output.prev_sample __SCREAMING_SNAKE_CASE : Dict = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(lowerCAmelCase__ ) ) if str(lowerCAmelCase__ ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
178
0
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ = None ) -> None: """simple docstring""" if components is None: __SCREAMING_SNAKE_CASE :int = [] __SCREAMING_SNAKE_CASE :List[str] = list(SCREAMING_SNAKE_CASE__ ) def __len__( self ) -> int: """simple docstring""" return len(self.__components ) def __str__( self ) -> str: """simple docstring""" return "(" + ",".join(map(SCREAMING_SNAKE_CASE__ ,self.__components ) ) + ")" def __add__( self ,SCREAMING_SNAKE_CASE__ ) -> Vector: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = len(self ) if size == len(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Optional[Any] = [self.__components[i] + other.component(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) else: raise Exception('''must have the same size''' ) def __sub__( self ,SCREAMING_SNAKE_CASE__ ) -> Vector: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = len(self ) if size == len(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Union[str, Any] = [self.__components[i] - other.component(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self ,SCREAMING_SNAKE_CASE__ ) -> Vector: """simple docstring""" ... @overload def __mul__( self ,SCREAMING_SNAKE_CASE__ ) -> float: """simple docstring""" ... def __mul__( self ,SCREAMING_SNAKE_CASE__ ) -> float | Vector: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ ,(float, int) ): __SCREAMING_SNAKE_CASE :Tuple = [c * other for c in self.__components] return Vector(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) and len(self ) == len(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Any = len(self ) __SCREAMING_SNAKE_CASE :Tuple = [self.__components[i] * other.component(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ )] return sum(SCREAMING_SNAKE_CASE__ ) else: # error case raise Exception('''invalid operand!''' ) def _UpperCamelCase ( self ) -> Vector: """simple docstring""" return Vector(self.__components ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> float: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) __SCREAMING_SNAKE_CASE :Optional[int] = value def _UpperCamelCase ( self ) -> float: """simple docstring""" if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) __SCREAMING_SNAKE_CASE :Dict = [c**2 for c in self.__components] return math.sqrt(sum(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = False ) -> float: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self * other __SCREAMING_SNAKE_CASE :Any = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __lowerCamelCase ( a_ : int ) -> Vector: assert isinstance(a_ , a_ ) return Vector([0] * dimension ) def __lowerCamelCase ( a_ : int , a_ : int ) -> Vector: assert isinstance(a_ , a_ ) and (isinstance(a_ , a_ )) __SCREAMING_SNAKE_CASE :Dict = [0] * dimension __SCREAMING_SNAKE_CASE :str = 1 return Vector(a_ ) def __lowerCamelCase ( a_ : float , a_ : Vector , a_ : Vector ) -> Vector: assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (isinstance(a_ , (int, float) )) ) return x * scalar + y def __lowerCamelCase ( a_ : int , a_ : int , a_ : int ) -> Vector: random.seed(a_ ) __SCREAMING_SNAKE_CASE :Optional[int] = [random.randint(a_ , a_ ) for _ in range(a_ )] return Vector(a_ ) class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = matrix __SCREAMING_SNAKE_CASE :List[Any] = w __SCREAMING_SNAKE_CASE :List[Any] = h def __str__( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self ,SCREAMING_SNAKE_CASE__ ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __SCREAMING_SNAKE_CASE :Tuple = [] for i in range(self.__height ): __SCREAMING_SNAKE_CASE :Optional[int] = [ self.__matrix[i][j] + other.component(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE__ ) return Matrix(SCREAMING_SNAKE_CASE__ ,self.__width ,self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self ,SCREAMING_SNAKE_CASE__ ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __SCREAMING_SNAKE_CASE :str = [] for i in range(self.__height ): __SCREAMING_SNAKE_CASE :Union[str, Any] = [ self.__matrix[i][j] - other.component(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE__ ) return Matrix(SCREAMING_SNAKE_CASE__ ,self.__width ,self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self ,SCREAMING_SNAKE_CASE__ ) -> Matrix: """simple docstring""" ... @overload def __mul__( self ,SCREAMING_SNAKE_CASE__ ) -> Vector: """simple docstring""" ... def __mul__( self ,SCREAMING_SNAKE_CASE__ ) -> Vector | Matrix: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): # matrix-vector if len(SCREAMING_SNAKE_CASE__ ) == self.__width: __SCREAMING_SNAKE_CASE :str = zero_vector(self.__height ) for i in range(self.__height ): __SCREAMING_SNAKE_CASE :Optional[int] = [ self.__matrix[i][j] * other.component(SCREAMING_SNAKE_CASE__ ) for j in range(self.__width ) ] ans.change_component(SCREAMING_SNAKE_CASE__ ,sum(SCREAMING_SNAKE_CASE__ ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(SCREAMING_SNAKE_CASE__ ,(int, float) ): # matrix-scalar __SCREAMING_SNAKE_CASE :str = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(SCREAMING_SNAKE_CASE__ ,self.__width ,self.__height ) return None def _UpperCamelCase ( self ) -> int: """simple docstring""" return self.__height def _UpperCamelCase ( self ) -> int: """simple docstring""" return self.__width def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> float: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: __SCREAMING_SNAKE_CASE :List[Any] = value else: raise Exception('''change_component: indices out of bounds''' ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) __SCREAMING_SNAKE_CASE :Dict = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __SCREAMING_SNAKE_CASE :Tuple = minor[i][:y] + minor[i][y + 1 :] return Matrix(SCREAMING_SNAKE_CASE__ ,self.__width - 1 ,self.__height - 1 ).determinant() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) else: raise Exception('''Indices out of bounds''' ) def _UpperCamelCase ( self ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __SCREAMING_SNAKE_CASE :int = [ self.__matrix[0][y] * self.cofactor(0 ,SCREAMING_SNAKE_CASE__ ) for y in range(self.__width ) ] return sum(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( a_ : int ) -> Matrix: __SCREAMING_SNAKE_CASE :list[list[float]] = [[0] * n for _ in range(a_ )] return Matrix(a_ , a_ , a_ ) def __lowerCamelCase ( a_ : int , a_ : int , a_ : int , a_ : int ) -> Matrix: random.seed(a_ ) __SCREAMING_SNAKE_CASE :list[list[float]] = [ [random.randint(a_ , a_ ) for _ in range(a_ )] for _ in range(a_ ) ] return Matrix(a_ , a_ , a_ )
498
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class _SCREAMING_SNAKE_CASE( A ): @staticmethod @abstractmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" raise NotImplementedError() @abstractmethod def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" raise NotImplementedError()
498
1
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _lowerCamelCase( a , a , a , a ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def _lowerCamelCase( a , a , a , a , a=True ): model.train() __a = model(a ) __a = F.mse_loss(a , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(a ) def _lowerCamelCase( a , a=False ): set_seed(4_2 ) __a = RegressionModel() __a = deepcopy(a ) __a = RegressionDataset(length=8_0 ) __a = DataLoader(a , batch_size=1_6 ) model.to(accelerator.device ) if sched: __a = AdamW(params=model.parameters() , lr=1E-3 ) __a = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __a = LambdaLR(a , lr_lambda=lambda a : epoch**0.65 ) __a = LambdaLR(a , lr_lambda=lambda a : epoch**0.65 ) # Make a copy of `model` if sched: __a , __a , __a , __a = accelerator.prepare(a , a , a , a ) else: __a , __a = accelerator.prepare(a , a ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _lowerCamelCase( a ): # Test when on a single CPU or GPU that the context manager does nothing __a , __a , __a = get_training_setup(a ) # Use a single batch __a , __a = next(iter(a ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __a , __a = accelerator.gather((ddp_input, ddp_target) ) __a , __a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a , a , a , a ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(a ): step_model(a , a , a , a ) else: # Sync grads step_model(a , a , a , a ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(a , a , a , a ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __a = ddp_input[torch.randperm(len(a ) )] def _lowerCamelCase( a ): # Test on distributed setup that context manager behaves properly __a , __a , __a = get_training_setup(a ) # Use a single batch __a , __a = next(iter(a ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __a , __a = accelerator.gather((ddp_input, ddp_target) ) __a , __a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a , a , a , a ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(a ): step_model(a , a , a , a ) else: # Sync grads step_model(a , a , a , a ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __a = ddp_input[torch.randperm(len(a ) )] def _lowerCamelCase( a=False , a=False ): __a = Accelerator( split_batches=a , dispatch_batches=a , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __a , __a , __a = get_training_setup(a ) for iteration, batch in enumerate(a ): __a , __a = batch.values() # Gather the distributed inputs and targs for the base model __a , __a = accelerator.gather((ddp_input, ddp_target) ) __a , __a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(a , a , a , a , a ) # Do "gradient accumulation" (noop) with accelerator.accumulate(a ): step_model(a , a , a , a ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(a ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __a = ddp_input[torch.randperm(len(a ) )] GradientState._reset_state() def _lowerCamelCase( a=False , a=False ): __a = Accelerator( split_batches=a , dispatch_batches=a , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __a , __a , __a , __a , __a , __a , __a = get_training_setup(a , a ) for iteration, batch in enumerate(a ): __a , __a = batch.values() # Gather the distributed inputs and targs for the base model __a , __a = accelerator.gather((ddp_input, ddp_target) ) __a , __a = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(a , a , a , a , a ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(a )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(a ): step_model(a , a , a , a ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" __a = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(a )) if accelerator.num_processes > 1: check_model_parameters(a , a , a , a ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def _lowerCamelCase( ): __a = Accelerator() __a = RegressionDataset(length=8_0 ) __a = DataLoader(a , batch_size=1_6 ) __a = RegressionDataset(length=9_6 ) __a = DataLoader(a , batch_size=1_6 ) __a , __a = accelerator.prepare(a , a ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(a ): assert id(accelerator.gradient_state.active_dataloader ) == id(a ) if iteration < len(a ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(a ): assert id(accelerator.gradient_state.active_dataloader ) == id(a ) if batch_num < len(a ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _lowerCamelCase( ): __a = Accelerator() __a = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(a ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(a ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(a , a ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(a , a ) def _lowerCamelCase( a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
706
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase=99 , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=9 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase=8 , lowerCamelCase=0.1 , lowerCamelCase=0.002 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=0 , lowerCamelCase=None , lowerCamelCase=None , ): __a = parent __a = batch_size __a = encoder_seq_length __a = decoder_seq_length # For common tests __a = self.decoder_seq_length __a = is_training __a = use_attention_mask __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = d_ff __a = relative_attention_num_buckets __a = dropout_rate __a = initializer_factor __a = eos_token_id __a = pad_token_id __a = decoder_start_token_id __a = None __a = decoder_layers def a__ ( self ): return TaConfig.from_pretrained("google/umt5-base" ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): if attention_mask is None: __a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowerCamelCase ) if decoder_head_mask is None: __a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowerCamelCase ) if cross_attn_head_mask is None: __a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def a__ ( self ): __a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __a = input_ids.clamp(self.pad_token_id + 1 ) __a = decoder_input_ids.clamp(self.pad_token_id + 1 ) __a = self.get_config() __a = config.num_attention_heads __a = self.prepare_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return config, input_dict def a__ ( self ): __a , __a = self.prepare_config_and_inputs() return config, inputs_dict def a__ ( self ): return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def a__ ( self ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __a = UMTaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model( input_ids=lowerCamelCase , decoder_input_ids=lowerCamelCase , attention_mask=lowerCamelCase , decoder_attention_mask=lowerCamelCase , ) __a = model(input_ids=lowerCamelCase , decoder_input_ids=lowerCamelCase ) __a = result.last_hidden_state __a = result.past_key_values __a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(lowerCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __a = UMTaModel(config=lowerCamelCase ).get_decoder().to(lowerCamelCase ).eval() # first forward pass __a = model(lowerCamelCase , use_cache=lowerCamelCase ) __a = model(lowerCamelCase ) __a = model(lowerCamelCase , use_cache=lowerCamelCase ) self.parent.assertTrue(len(lowerCamelCase ) == len(lowerCamelCase ) ) self.parent.assertTrue(len(lowerCamelCase ) == len(lowerCamelCase ) + 1 ) __a , __a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1 ) __a = model(lowerCamelCase )["last_hidden_state"] __a = model(lowerCamelCase , past_key_values=lowerCamelCase )["last_hidden_state"] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a = output_from_no_past[:, -1, random_slice_idx].detach() __a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def a__ ( self , lowerCamelCase , lowerCamelCase , ): __a = UMTaModel(config=lowerCamelCase ).to(lowerCamelCase ).half().eval() __a = model(**lowerCamelCase )["last_hidden_state"] self.parent.assertFalse(torch.isnan(lowerCamelCase ).any().item() ) @require_torch class snake_case__ ( snake_case_, snake_case_, snake_case_, unittest.TestCase ): _snake_case : Union[str, Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _snake_case : int = (UMTaForConditionalGeneration,) if is_torch_available() else () _snake_case : Optional[int] = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) _snake_case : List[Any] = True _snake_case : Union[str, Any] = False _snake_case : Union[str, Any] = False _snake_case : Tuple = True _snake_case : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests _snake_case : Optional[Any] = [0.8, 0.9] def a__ ( self ): __a = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() __a = UMTaModel(config_and_inputs[0] ).to(lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( lowerCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"{tmpdirname}/t5_test.onnx" , export_params=lowerCamelCase , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*lowerCamelCase ) def a__ ( self ): __a = ["encoder_attentions", "decoder_attentions", "cross_attentions"] __a = self.model_tester.prepare_config_and_inputs() __a = config_and_inputs[0] __a = UMTaForConditionalGeneration(lowerCamelCase ).eval() model.to(lowerCamelCase ) __a = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=lowerCamelCase ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCamelCase ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCamelCase ), } for attn_name, (name, mask) in zip(lowerCamelCase , head_masking.items() ): __a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __a = torch.ones( config.num_decoder_layers , config.num_heads , device=lowerCamelCase ) __a = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=lowerCamelCase , return_dict_in_generate=lowerCamelCase , **lowerCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step __a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def a__ ( self ): pass @require_torch @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase ): @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def a__ ( self ): __a = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=lowerCamelCase ).to(lowerCamelCase ) __a = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=lowerCamelCase , legacy=lowerCamelCase ) __a = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] __a = tokenizer(lowerCamelCase , return_tensors="pt" , padding=lowerCamelCase ).input_ids # fmt: off __a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(lowerCamelCase , lowerCamelCase ) __a = model.generate(input_ids.to(lowerCamelCase ) ) __a = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] __a = tokenizer.batch_decode(lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase )
67
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _A : '''simple docstring''' def _snake_case ( self : Tuple , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] ): '''simple docstring''' return None class _A : '''simple docstring''' def _snake_case ( self : Any , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : Any ): '''simple docstring''' return None class _A ( unittest.TestCase ): '''simple docstring''' _snake_case : Tuple = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : str ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase , "tf" , 12 , **lowerCamelCase ) @require_torch @slow def _snake_case ( self : Optional[int] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase , "pt" , 12 , **lowerCamelCase ) @require_torch @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' from transformers import BertModel __lowercase = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(lowerCamelCase ) ) vocab_file.flush() __lowercase = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __lowercase = BertModel(BertConfig(vocab_size=len(lowerCamelCase ) ) ) model.save_pretrained(lowerCamelCase ) self._test_export(lowerCamelCase , "pt" , 12 , lowerCamelCase ) @require_tf @slow def _snake_case ( self : Any ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowercase = self._test_export(lowerCamelCase , "tf" , 12 , **lowerCamelCase ) __lowercase = quantize(Path(lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : str ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowercase = self._test_export(lowerCamelCase , "pt" , 12 , **lowerCamelCase ) __lowercase = quantize(lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : List[str]=None , **lowerCamelCase : Optional[int] ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: __lowercase = Path(lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) return path except Exception as e: self.fail(lowerCamelCase ) @require_torch @require_tokenizers @slow def _snake_case ( self : List[str] ): '''simple docstring''' from transformers import BertModel __lowercase = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) __lowercase = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCamelCase , lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : Dict ): '''simple docstring''' from transformers import TFBertModel __lowercase = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) __lowercase = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCamelCase , lowerCamelCase , "tf" ) def _snake_case ( self : Any , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Dict ): '''simple docstring''' __lowercase = FeatureExtractionPipeline(lowerCamelCase , lowerCamelCase ) __lowercase = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] __lowercase , __lowercase , __lowercase , __lowercase = infer_shapes(lowerCamelCase , lowerCamelCase ) # Assert all variables are present self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = ["input_ids", "attention_mask", "token_type_ids"] __lowercase = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} __lowercase , __lowercase = ensure_valid_input(FuncContiguousArgs() , lowerCamelCase , lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase ) , set(lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __lowercase , __lowercase = ensure_valid_input(FuncNonContiguousArgs() , lowerCamelCase , lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase ) , 1 ) self.assertEqual(len(lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
402
def snake_case_ ( _SCREAMING_SNAKE_CASE ): return 1_0 - x * x def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Bolzano theory in order to find if there is a root between a and b if equation(_SCREAMING_SNAKE_CASE ) * equation(_SCREAMING_SNAKE_CASE ) >= 0: raise ValueError("Wrong space!" ) __lowercase = a while (b - a) >= 0.0_1: # Find middle point __lowercase = (a + b) / 2 # Check if middle point is root if equation(_SCREAMING_SNAKE_CASE ) == 0.0: break # Decide the side to repeat the steps if equation(_SCREAMING_SNAKE_CASE ) * equation(_SCREAMING_SNAKE_CASE ) < 0: __lowercase = c else: __lowercase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
402
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = AudioLDMPipeline lowercase__ = TEXT_TO_AUDIO_PARAMS lowercase__ = TEXT_TO_AUDIO_BATCH_PARAMS lowercase__ = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=(32, 64), class_embed_type='''simple_projection''', projection_class_embeddings_input_dim=32, class_embeddings_concat=lowerCamelCase, ) lowercase__ = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64], in_channels=1, out_channels=1, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) torch.manual_seed(0 ) lowercase__ = ClapTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, projection_dim=32, ) lowercase__ = ClapTextModelWithProjection(lowerCamelCase ) lowercase__ = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''', model_max_length=77 ) lowercase__ = SpeechTaHifiGanConfig( model_in_dim=8, sampling_rate=16_000, upsample_initial_channel=16, upsample_rates=[2, 2], upsample_kernel_sizes=[4, 4], resblock_kernel_sizes=[3, 7], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]], normalize_before=lowerCamelCase, ) lowercase__ = SpeechTaHifiGan(lowerCamelCase ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def lowercase__ ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : Optional[Any]=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(lowerCamelCase ) else: lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowercase__ = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = audioldm_pipe(**lowerCamelCase ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) == 256 lowercase__ = audio[:10] lowercase__ = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = 3 * [inputs['''prompt''']] # forward lowercase__ = audioldm_pipe(**lowerCamelCase ) lowercase__ = output.audios[0] lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = 3 * [inputs.pop('''prompt''' )] lowercase__ = audioldm_pipe.tokenizer( lowerCamelCase, padding='''max_length''', max_length=audioldm_pipe.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = text_inputs['''input_ids'''].to(lowerCamelCase ) lowercase__ = audioldm_pipe.text_encoder( lowerCamelCase, ) lowercase__ = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase__ = F.normalize(lowerCamelCase, dim=-1 ) lowercase__ = prompt_embeds # forward lowercase__ = audioldm_pipe(**lowerCamelCase ) lowercase__ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = 3 * ['''this is a negative prompt'''] lowercase__ = negative_prompt lowercase__ = 3 * [inputs['''prompt''']] # forward lowercase__ = audioldm_pipe(**lowerCamelCase ) lowercase__ = output.audios[0] lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = 3 * [inputs.pop('''prompt''' )] lowercase__ = [] for p in [prompt, negative_prompt]: lowercase__ = audioldm_pipe.tokenizer( lowerCamelCase, padding='''max_length''', max_length=audioldm_pipe.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='''pt''', ) lowercase__ = text_inputs['''input_ids'''].to(lowerCamelCase ) lowercase__ = audioldm_pipe.text_encoder( lowerCamelCase, ) lowercase__ = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase__ = F.normalize(lowerCamelCase, dim=-1 ) embeds.append(lowerCamelCase ) lowercase__ , lowercase__ = embeds # forward lowercase__ = audioldm_pipe(**lowerCamelCase ) lowercase__ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase ) lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = '''egg cracking''' lowercase__ = audioldm_pipe(**lowerCamelCase, negative_prompt=lowerCamelCase ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) == 256 lowercase__ = audio[:10] lowercase__ = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase ) lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) lowercase__ = audioldm_pipe(lowerCamelCase, num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowercase__ = 2 lowercase__ = audioldm_pipe([prompt] * batch_size, num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt lowercase__ = 2 lowercase__ = audioldm_pipe(lowerCamelCase, num_inference_steps=2, num_waveforms_per_prompt=lowerCamelCase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts lowercase__ = 2 lowercase__ = audioldm_pipe( [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=lowerCamelCase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = audioldm_pipe.vocoder.config.sampling_rate lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = audioldm_pipe(audio_length_in_s=0.016, **lowerCamelCase ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) / vocoder_sampling_rate == 0.016 lowercase__ = audioldm_pipe(audio_length_in_s=0.032, **lowerCamelCase ) lowercase__ = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) / vocoder_sampling_rate == 0.032 def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = AudioLDMPipeline(**lowerCamelCase ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = ['''hey'''] lowercase__ = audioldm_pipe(lowerCamelCase, num_inference_steps=1 ) lowercase__ = output.audios.shape assert audio_shape == (1, 256) lowercase__ = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowercase__ = SpeechTaHifiGan(lowerCamelCase ).to(lowerCamelCase ) lowercase__ = audioldm_pipe(lowerCamelCase, num_inference_steps=1 ) lowercase__ = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def lowercase__ ( self : int ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase ) def lowercase__ ( self : Dict ): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available(), reason='''XFormers attention is only available with CUDA and `xformers` installed''', ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase ) @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[Any]="cpu", lowerCamelCase : List[Any]=torch.floataa, lowerCamelCase : List[str]=0 ): '''simple docstring''' lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowercase__ = np.random.RandomState(lowerCamelCase ).standard_normal((1, 8, 128, 16) ) lowercase__ = torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase, dtype=lowerCamelCase ) lowercase__ = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_inputs(lowerCamelCase ) lowercase__ = 25 lowercase__ = audioldm_pipe(**lowerCamelCase ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) == 81_920 lowercase__ = audio[77_230:77_240] lowercase__ = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) lowercase__ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase__ = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowercase__ = audioldm_pipe.to(lowerCamelCase ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_inputs(lowerCamelCase ) lowercase__ = audioldm_pipe(**lowerCamelCase ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase ) == 81_920 lowercase__ = audio[27_780:27_790] lowercase__ = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) lowercase__ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
701
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
671
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: A_ = None A_ = logging.get_logger(__name__) A_ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } A_ = { "google/fnet-base": 512, "google/fnet-large": 512, } A_ = "▁" class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' __lowerCamelCase : str = VOCAB_FILES_NAMES __lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Tuple = ["input_ids", "token_type_ids"] __lowerCamelCase : str = FNetTokenizer def __init__( self: Dict , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: Any=False , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple="<unk>" , UpperCamelCase_: Union[str, Any]="[SEP]" , UpperCamelCase_: str="<pad>" , UpperCamelCase_: Any="[CLS]" , UpperCamelCase_: Tuple="[MASK]" , **UpperCamelCase_: int , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCamelCase_ =( AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ , normalized=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token ) super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , remove_space=UpperCamelCase_ , keep_accents=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase_ =do_lower_case UpperCamelCase_ =remove_space UpperCamelCase_ =keep_accents UpperCamelCase_ =vocab_file UpperCamelCase_ =False if not self.vocab_file else True def UpperCamelCase__ ( self: Dict , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): UpperCamelCase_ =[self.sep_token_id] UpperCamelCase_ =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): UpperCamelCase_ =[self.sep_token_id] UpperCamelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self: Dict , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase_ =os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
391
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) set_seed(770) A_ = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } A_ = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } A_ = os.path.dirname(os.path.abspath(__file__)) A_ = os.path.join(os.path.expanduser("~"), ".cache") A_ = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def _UpperCamelCase ( A , A=False ): UpperCamelCase_ =model_type if use_small: key += "_small" return os.path.join(A , REMOTE_MODEL_PATHS[key]["file_name"] ) def _UpperCamelCase ( A , A ): os.makedirs(A , exist_ok=A ) hf_hub_download(repo_id=A , filename=A , local_dir=A ) def _UpperCamelCase ( A , A , A=False , A="text" ): if model_type == "text": UpperCamelCase_ =BarkSemanticModel UpperCamelCase_ =BarkSemanticConfig UpperCamelCase_ =BarkSemanticGenerationConfig elif model_type == "coarse": UpperCamelCase_ =BarkCoarseModel UpperCamelCase_ =BarkCoarseConfig UpperCamelCase_ =BarkCoarseGenerationConfig elif model_type == "fine": UpperCamelCase_ =BarkFineModel UpperCamelCase_ =BarkFineConfig UpperCamelCase_ =BarkFineGenerationConfig else: raise NotImplementedError() UpperCamelCase_ =f"""{model_type}_small""" if use_small else model_type UpperCamelCase_ =REMOTE_MODEL_PATHS[model_key] if not os.path.exists(A ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["repo_id"] , model_info["file_name"] ) UpperCamelCase_ =torch.load(A , map_location=A ) # this is a hack UpperCamelCase_ =checkpoint["model_args"] if "input_vocab_size" not in model_args: UpperCamelCase_ =model_args["vocab_size"] UpperCamelCase_ =model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments UpperCamelCase_ =model_args.pop("n_head" ) UpperCamelCase_ =model_args.pop("n_embd" ) UpperCamelCase_ =model_args.pop("n_layer" ) UpperCamelCase_ =ConfigClass(**checkpoint["model_args"] ) UpperCamelCase_ =ModelClass(config=A ) UpperCamelCase_ =GenerationConfigClass() UpperCamelCase_ =model_generation_config UpperCamelCase_ =checkpoint["model"] # fixup checkpoint UpperCamelCase_ ="_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(A ): # replace part of the key with corresponding layer name in HF implementation UpperCamelCase_ =k[len(A ) :] for old_layer_name in new_layer_name_dict: UpperCamelCase_ =new_k.replace(A , new_layer_name_dict[old_layer_name] ) UpperCamelCase_ =state_dict.pop(A ) UpperCamelCase_ =set(state_dict.keys() ) - set(model.state_dict().keys() ) UpperCamelCase_ ={k for k in extra_keys if not k.endswith(".attn.bias" )} UpperCamelCase_ =set(model.state_dict().keys() ) - set(state_dict.keys() ) UpperCamelCase_ ={k for k in missing_keys if not k.endswith(".attn.bias" )} if len(A ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(A ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(A , strict=A ) UpperCamelCase_ =model.num_parameters(exclude_embeddings=A ) UpperCamelCase_ =checkpoint["best_val_loss"].item() logger.info(f"""model loaded: {round(n_params/1e6 , 1 )}M params, {round(A , 3 )} loss""" ) model.eval() model.to(A ) del checkpoint, state_dict return model def _UpperCamelCase ( A , A=False , A="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() UpperCamelCase_ ="cpu" # do conversion on cpu UpperCamelCase_ =_get_ckpt_path(A , use_small=A ) UpperCamelCase_ =_load_model(A , A , model_type=A , use_small=A ) # load bark initial model UpperCamelCase_ =_bark_load_model(A , "cpu" , model_type=A , use_small=A ) if model_type == "text": UpperCamelCase_ =bark_model["model"] if model.num_parameters(exclude_embeddings=A ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model UpperCamelCase_ =5 UpperCamelCase_ =10 if model_type in ["text", "coarse"]: UpperCamelCase_ =torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) UpperCamelCase_ =bark_model(A )[0] UpperCamelCase_ =model(A ) # take last logits UpperCamelCase_ =output_new_model_total.logits[:, [-1], :] else: UpperCamelCase_ =3 UpperCamelCase_ =8 UpperCamelCase_ =torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) UpperCamelCase_ =model(A , A ) UpperCamelCase_ =bark_model(A , A ) UpperCamelCase_ =output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("initial and new outputs are not equal" ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) def _UpperCamelCase ( A , A , A , A , A , A , ): UpperCamelCase_ =os.path.join(A , A ) UpperCamelCase_ =BarkSemanticConfig.from_pretrained(os.path.join(A , "config.json" ) ) UpperCamelCase_ =BarkCoarseConfig.from_pretrained(os.path.join(A , "config.json" ) ) UpperCamelCase_ =BarkFineConfig.from_pretrained(os.path.join(A , "config.json" ) ) UpperCamelCase_ =EncodecConfig.from_pretrained("facebook/encodec_24khz" ) UpperCamelCase_ =BarkSemanticModel.from_pretrained(A ) UpperCamelCase_ =BarkCoarseModel.from_pretrained(A ) UpperCamelCase_ =BarkFineModel.from_pretrained(A ) UpperCamelCase_ =EncodecModel.from_pretrained("facebook/encodec_24khz" ) UpperCamelCase_ =BarkConfig.from_sub_model_configs( A , A , A , A ) UpperCamelCase_ =BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) UpperCamelCase_ =BarkModel(A ) UpperCamelCase_ =semantic UpperCamelCase_ =coarseAcoustic UpperCamelCase_ =fineAcoustic UpperCamelCase_ =codec UpperCamelCase_ =bark_generation_config Path(A ).mkdir(exist_ok=A ) bark.save_pretrained(A , repo_id=A , push_to_hub=A ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") A_ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
391
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCAmelCase__ ( snake_case ): """simple docstring""" lowerCAmelCase__ : List[str] = 'donut-swin' lowerCAmelCase__ : Optional[Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self: str , __lowerCAmelCase: int=224 , __lowerCAmelCase: Optional[Any]=4 , __lowerCAmelCase: List[str]=3 , __lowerCAmelCase: Union[str, Any]=96 , __lowerCAmelCase: List[Any]=[2, 2, 6, 2] , __lowerCAmelCase: Union[str, Any]=[3, 6, 12, 24] , __lowerCAmelCase: Optional[Any]=7 , __lowerCAmelCase: Optional[int]=4.0 , __lowerCAmelCase: Optional[int]=True , __lowerCAmelCase: int=0.0 , __lowerCAmelCase: int=0.0 , __lowerCAmelCase: List[Any]=0.1 , __lowerCAmelCase: Optional[Any]="gelu" , __lowerCAmelCase: Optional[Any]=False , __lowerCAmelCase: Optional[int]=0.02 , __lowerCAmelCase: Any=1E-5 , **__lowerCAmelCase: Union[str, Any] , ) -> List[Any]: '''simple docstring''' super().__init__(**__lowerCAmelCase ) __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = len(__lowerCAmelCase ) __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase = int(embed_dim * 2 ** (len(__lowerCAmelCase ) - 1) )
286
from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=snake_case ): """simple docstring""" lowerCAmelCase__ : List[str] = ['transformers', 'torch', 'note_seq'] def __init__( self: List[str] , *__lowerCAmelCase: Optional[int] , **__lowerCAmelCase: List[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def _UpperCAmelCase ( cls: Optional[int] , *__lowerCAmelCase: Any , **__lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def _UpperCAmelCase ( cls: Union[str, Any] , *__lowerCAmelCase: Optional[Any] , **__lowerCAmelCase: Optional[Any] ) -> Any: '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] )
286
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): _A : List[str] = DebertaTokenizer _A : List[str] = True _A : Tuple = DebertaTokenizerFast def A_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] snake_case__ = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) snake_case__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case__ = {"unk_token": "[UNK]"} snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase ) ) def A_ ( self , **lowerCamelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase ) def A_ ( self , lowerCamelCase ): snake_case__ = "lower newer" snake_case__ = "lower newer" return input_text, output_text def A_ ( self ): snake_case__ = self.get_tokenizer() snake_case__ = "lower newer" snake_case__ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] snake_case__ = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) snake_case__ = tokens + [tokenizer.unk_token] snake_case__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase ) def A_ ( self ): snake_case__ = self.get_tokenizer() snake_case__ = tokenizer("Hello" , "World" ) snake_case__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , lowerCamelCase ) @slow def A_ ( self ): snake_case__ = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) snake_case__ = tokenizer.encode("sequence builders" , add_special_tokens=lowerCamelCase ) snake_case__ = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCamelCase ) snake_case__ = tokenizer.encode( "sequence builders" , add_special_tokens=lowerCamelCase , add_prefix_space=lowerCamelCase ) snake_case__ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowerCamelCase , add_prefix_space=lowerCamelCase ) snake_case__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) snake_case__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase , lowerCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def A_ ( self ): snake_case__ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case__ = tokenizer_class.from_pretrained("microsoft/deberta-base" ) snake_case__ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] snake_case__ = tokenizer(lowerCamelCase , padding=lowerCamelCase ) snake_case__ = [tokenizer.decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) for seq in encoding["input_ids"]] # fmt: off snake_case__ = { "input_ids": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case__ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , lowerCamelCase ) for expected, decoded in zip(lowerCamelCase , lowerCamelCase ): self.assertEqual(lowerCamelCase , lowerCamelCase )
276
def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__lowerCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
276
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase (a_ :List[str] , a_ :Union[str, Any] , a_ :Dict=None , a_ :str=None) -> Union[str, Any]: if attention_mask is None: lowercase :Optional[int] = tf.cast(tf.math.not_equal(a_ , config.pad_token_id) , tf.inta) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __magic_name__ : __A : int = OPTConfig __A : Union[str, Any] = {} __A : Tuple = "gelu" def __init__( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : str=1_3 , snake_case__ : Optional[int]=7 , snake_case__ : Tuple=True , snake_case__ : Any=False , snake_case__ : str=9_9 , snake_case__ : Any=1_6 , snake_case__ : List[str]=2 , snake_case__ : List[Any]=4 , snake_case__ : Any=4 , snake_case__ : Any="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : Any=0.1 , snake_case__ : Union[str, Any]=2_0 , snake_case__ : List[str]=2 , snake_case__ : Optional[int]=1 , snake_case__ : Any=0 , snake_case__ : Tuple=1_6 , snake_case__ : List[str]=1_6 , ): '''simple docstring''' lowercase :str = parent lowercase :Tuple = batch_size lowercase :List[str] = seq_length lowercase :Any = is_training lowercase :Union[str, Any] = use_labels lowercase :Optional[int] = vocab_size lowercase :List[Any] = hidden_size lowercase :int = num_hidden_layers lowercase :List[str] = num_attention_heads lowercase :Tuple = intermediate_size lowercase :str = hidden_act lowercase :Tuple = hidden_dropout_prob lowercase :Dict = attention_probs_dropout_prob lowercase :str = max_position_embeddings lowercase :Optional[int] = eos_token_id lowercase :Tuple = pad_token_id lowercase :Union[str, Any] = bos_token_id lowercase :Dict = embed_dim lowercase :Optional[Any] = word_embed_proj_dim lowercase :List[Any] = False def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase :Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase :List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase :Any = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=snake_case__ , **self.config_updates , ) lowercase :str = prepare_opt_inputs_dict(snake_case__ , snake_case__ ) return config, inputs_dict def __snake_case ( self : str , snake_case__ : Dict , snake_case__ : Any ): '''simple docstring''' lowercase :Any = TFOPTModel(config=snake_case__ ) lowercase :List[Any] = inputs_dict['''input_ids'''] lowercase :Optional[Any] = input_ids[:1, :] lowercase :List[str] = inputs_dict['''attention_mask'''][:1, :] lowercase :List[Any] = 1 # first forward pass lowercase :Optional[Any] = model(snake_case__ , attention_mask=snake_case__ , use_cache=snake_case__ ) lowercase , lowercase :int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase :str = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase :Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowercase :List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) lowercase :int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowercase :Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ )[0] lowercase :Dict = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowercase :List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowercase :Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] lowercase :Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) @require_tf class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : int = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __A : Optional[int] = (TFOPTForCausalLM,) if is_tf_available() else () __A : List[str] = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) __A : Tuple = False __A : Optional[Any] = False __A : int = False __A : Optional[Any] = 10 def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Optional[int] = TFOPTModelTester(self ) lowercase :Tuple = ConfigTester(self , config_class=snake_case__ ) def __snake_case ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) def __snake_case ( self : List[str] ): '''simple docstring''' lowercase , lowercase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(snake_case__ : List[str] , snake_case__ : Union[str, Any] ): if hasattr(snake_case__ , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(snake_case__ , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowercase :Any = model_class(config=snake_case__ ) lowercase :Optional[Any] = _get_word_embedding_weight(snake_case__ , model.get_input_embeddings() ) lowercase :Optional[Any] = _get_word_embedding_weight(snake_case__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(snake_case__ ) lowercase :List[str] = _get_word_embedding_weight(snake_case__ , model.get_input_embeddings() ) lowercase :List[str] = _get_word_embedding_weight(snake_case__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowercase :Dict = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , snake_case__ ) # check that weights remain the same after resizing lowercase :Optional[int] = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowercase :Tuple = False self.assertTrue(snake_case__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , snake_case__ ) lowercase :Any = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowercase :Union[str, Any] = False self.assertTrue(snake_case__ ) def lowerCamelCase (a_ :List[Any]) -> List[Any]: return tf.constant(a_ , dtype=tf.intaa) @require_tf class __magic_name__ ( unittest.TestCase ): __A : List[str] = 99 def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :Optional[int] = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowercase :Union[str, Any] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowercase :List[Any] = input_ids.shape[0] lowercase :Any = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __magic_name__ ( unittest.TestCase ): @slow def __snake_case ( self : int ): '''simple docstring''' lowercase :Optional[Any] = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) lowercase :int = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowercase :List[Any] = tf.not_equal(snake_case__ , model.config.pad_token_id ) with tf.GradientTape(): lowercase :List[str] = model(input_ids=snake_case__ , attention_mask=snake_case__ ).last_hidden_state lowercase :Any = (1, 1_1, 5_1_2) self.assertEqual(output.shape , snake_case__ ) lowercase :str = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=4e-3 ) ) lowercase :Optional[int] = tf.function(snake_case__ , jit_compile=snake_case__ ) lowercase :List[str] = xla_generate(snake_case__ , snake_case__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=4e-2 ) ) @require_tf @slow class __magic_name__ ( unittest.TestCase ): def __snake_case ( self : Dict ): '''simple docstring''' super().setUp() lowercase :str = '''facebook/opt-350m''' def __snake_case ( self : str ): '''simple docstring''' lowercase :str = TFOPTForCausalLM.from_pretrained(self.path_model ) lowercase :Optional[Any] = GPTaTokenizer.from_pretrained(self.path_model ) lowercase :int = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowercase :Tuple = tokenizer(snake_case__ , return_tensors='''tf''' , padding=snake_case__ , add_special_tokens=snake_case__ ) lowercase :str = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowercase :Dict = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-4 ) ) lowercase :int = tf.function(snake_case__ , jit_compile=snake_case__ ) lowercase :Optional[int] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-4 ) ) @require_tf @slow class __magic_name__ ( unittest.TestCase ): @property def __snake_case ( self : Optional[int] ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __snake_case ( self : Optional[Any] ): '''simple docstring''' lowercase :Any = '''facebook/opt-125m''' lowercase :Tuple = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] lowercase :Tuple = [] lowercase :Dict = GPTaTokenizer.from_pretrained(snake_case__ ) lowercase :Dict = TFOPTForCausalLM.from_pretrained(snake_case__ ) for prompt in self.prompts: lowercase :Any = tokenizer(snake_case__ , return_tensors='''tf''' ).input_ids lowercase :Optional[int] = model.generate(snake_case__ , max_length=1_0 ) lowercase :Dict = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) predicted_outputs += generated_string self.assertListEqual(snake_case__ , snake_case__ ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Optional[int] = '''facebook/opt-350m''' lowercase :Dict = GPTaTokenizer.from_pretrained(snake_case__ ) lowercase :int = TFOPTForCausalLM.from_pretrained(snake_case__ ) lowercase :int = '''left''' # use different length sentences to test batching lowercase :Optional[int] = [ '''Hello, my dog is a little''', '''Today, I''', ] lowercase :Optional[int] = tokenizer(snake_case__ , return_tensors='''tf''' , padding=snake_case__ ) lowercase :Any = inputs['''input_ids'''] lowercase :List[Any] = model.generate(input_ids=snake_case__ , attention_mask=inputs['''attention_mask'''] ) lowercase :List[str] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids lowercase :Tuple = model.generate(input_ids=snake_case__ ) lowercase :Union[str, Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) lowercase :Tuple = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids lowercase :Dict = model.generate(input_ids=snake_case__ , max_length=model.config.max_length - num_paddings ) lowercase :Optional[int] = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) lowercase :Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) lowercase :List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) lowercase :Union[str, Any] = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] ) def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :List[str] = '''facebook/opt-350m''' lowercase :str = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] lowercase :str = [] lowercase :Tuple = GPTaTokenizer.from_pretrained(snake_case__ ) lowercase :Any = TFOPTForCausalLM.from_pretrained(snake_case__ ) for prompt in self.prompts: lowercase :Optional[int] = tokenizer(snake_case__ , return_tensors='''tf''' ).input_ids lowercase :Tuple = model.generate(snake_case__ , max_length=1_0 ) lowercase :Tuple = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) predicted_outputs += generated_string self.assertListEqual(snake_case__ , snake_case__ )
475
"""simple docstring""" def lowerCamelCase (a_ :int) -> str: if number > 0: raise ValueError('''input must be a negative integer''') lowercase :Any = len(bin(a_)[3:]) lowercase :Any = bin(abs(a_) - (1 << binary_number_length))[3:] lowercase :Tuple = ( ( '''1''' + '''0''' * (binary_number_length - len(a_)) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
475
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union UpperCAmelCase_ = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$') @total_ordering @dataclass class lowercase__ : '''simple docstring''' a : str a : Optional[str] = None a : Optional[Union[str, int]] = None a : Optional[Union[str, int]] = None a : Optional[Union[str, int]] = None def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : str = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Tuple: """simple docstring""" return f"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def UpperCamelCase__ ( self ) -> Any: """simple docstring""" return self.major, self.minor, self.patch def UpperCamelCase__ ( self, __magic_name__ ) -> Tuple: """simple docstring""" if isinstance(__magic_name__, __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__, __magic_name__ ): return other raise TypeError(f"{other} (type {type(__magic_name__ )}) cannot be compared to version." ) def __eq__( self, __magic_name__ ) -> Optional[int]: """simple docstring""" try: UpperCamelCase__ : int = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self, __magic_name__ ) -> int: """simple docstring""" UpperCamelCase__ : List[str] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self ) -> Union[str, Any]: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def UpperCamelCase__ ( cls, __magic_name__ ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" return self.version_str def lowerCAmelCase_ ( __UpperCAmelCase: Any ) -> Dict: UpperCamelCase__ : Union[str, Any] = _VERSION_REG.match(__UpperCAmelCase ) if not res: raise ValueError(f"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(__UpperCAmelCase ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def lowerCAmelCase_ ( __UpperCAmelCase: Any ) -> Optional[int]: return ".".join(str(__UpperCAmelCase ) for v in version_tuple )
253
def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
253
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __SCREAMING_SNAKE_CASE =16 __SCREAMING_SNAKE_CASE =32 def lowercase__( __SCREAMING_SNAKE_CASE : Accelerator , __SCREAMING_SNAKE_CASE : int = 16 ): lowercase_ : int = AutoTokenizer.from_pretrained('bert-base-cased' ) lowercase_ : int = load_dataset('glue' , 'mrpc' ) def tokenize_function(__SCREAMING_SNAKE_CASE : Optional[int] ): # max_length=None => use the model max length (it's actually the default) lowercase_ : List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase_ : List[Any] = datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase_ : Any = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__SCREAMING_SNAKE_CASE : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase_ : int = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase_ : Dict = 16 elif accelerator.mixed_precision != "no": lowercase_ : List[str] = 8 else: lowercase_ : Any = None return tokenizer.pad( __SCREAMING_SNAKE_CASE , padding='longest' , max_length=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_tensors='pt' , ) # Instantiate dataloaders. lowercase_ : str = DataLoader( tokenized_datasets['train'] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = DataLoader( tokenized_datasets['validation'] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __SCREAMING_SNAKE_CASE =mocked_dataloaders # noqa: F811 def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __SCREAMING_SNAKE_CASE ) == "1": lowercase_ : List[str] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowercase_ : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: lowercase_ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ : int = config['lr'] lowercase_ : Any = int(config['num_epochs'] ) lowercase_ : Optional[Any] = int(config['seed'] ) lowercase_ : Dict = int(config['batch_size'] ) set_seed(__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Optional[Any] = get_dataloaders(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowercase_ : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase_ : int = batch_size // MAX_GPU_BATCH_SIZE lowercase_ : int = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ : Dict = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase_ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase_ : Optional[int] = AdamW(params=model.parameters() , lr=__SCREAMING_SNAKE_CASE ) # Instantiate scheduler lowercase_ : List[Any] = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowercase_ : List[Any] = os.path.split(__SCREAMING_SNAKE_CASE )[-1].split('.' )[0] accelerator.init_trackers(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowercase_ : Union[str, Any] = 0 for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase_ : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowercase_ : Tuple = loss / gradient_accumulation_steps accelerator.backward(__SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowercase_ : str = model(**__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = outputs.logits.argmax(dim=-1 ) lowercase_ , lowercase_ : str = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE , ) lowercase_ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __SCREAMING_SNAKE_CASE ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(__SCREAMING_SNAKE_CASE ), 'epoch': epoch, } , step=__SCREAMING_SNAKE_CASE , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowercase__( ): lowercase_ : Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=__SCREAMING_SNAKE_CASE , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) lowercase_ : Optional[Any] = parser.parse_args() lowercase_ : Union[str, Any] = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
477
"""simple docstring""" from math import sqrt def lowercase__( __SCREAMING_SNAKE_CASE : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase__( __SCREAMING_SNAKE_CASE : int = 1_00_01 ): lowercase_ : str = 0 lowercase_ : Optional[Any] = 1 while count != nth and number < 3: number += 1 if is_prime(__SCREAMING_SNAKE_CASE ): count += 1 while count != nth: number += 2 if is_prime(__SCREAMING_SNAKE_CASE ): count += 1 return number if __name__ == "__main__": print(F"{solution() = }")
477
1
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = ['a', 'b', 'c'] # Defaults to last layer if both are None UpperCAmelCase_ , UpperCAmelCase_ : str = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , ['c'] ) self.assertEqual(_UpperCamelCase , [2] ) # Out indices set to match out features UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_aligned_output_features_output_indices(['a', 'c'] , _UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , ['a', 'c'] ) self.assertEqual(_UpperCamelCase , [0, 2] ) # Out features set to match out indices UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , ['a', 'c'] ) self.assertEqual(_UpperCamelCase , [0, 2] ) # Out features selected from negative indices UpperCAmelCase_ , UpperCAmelCase_ : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , ['a', 'c'] ) self.assertEqual(_UpperCamelCase , [-3, -1] ) def __UpperCAmelCase ( self ) -> Any: # Stage names must be set with self.assertRaises(_UpperCamelCase ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , _UpperCamelCase ) # Out features must be a list with self.assertRaises(_UpperCamelCase ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase ): verify_out_features_out_indices(_UpperCamelCase , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase ): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(_UpperCamelCase ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : str = BackboneMixin() UpperCAmelCase_ : int = ['a', 'b', 'c'] UpperCAmelCase_ : List[Any] = ['a', 'c'] UpperCAmelCase_ : Optional[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly UpperCAmelCase_ : Dict = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) UpperCAmelCase_ : Optional[Any] = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
406
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
406
1
from __future__ import annotations snake_case = 8.988e9 # units = N * m^s * C^-2 def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if distance < 0: raise ValueError("Distance cannot be negative" ) if force == 0: SCREAMING_SNAKE_CASE : Any = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: SCREAMING_SNAKE_CASE : Optional[Any] = abs(lowercase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: SCREAMING_SNAKE_CASE : List[str] = abs(lowercase ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: SCREAMING_SNAKE_CASE : str = (COULOMBS_CONSTANT * charge_product / abs(lowercase )) ** 0.5 return {"distance": distance} raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
488
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : Optional[torch.FloatTensor] = None def lowerCamelCase__ ( lowercase , lowercase=0.999 , lowercase="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) SCREAMING_SNAKE_CASE : Optional[int] = [] for i in range(lowercase ): SCREAMING_SNAKE_CASE : str = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase ) / alpha_bar_fn(lowercase ) , lowercase ) ) return torch.tensor(lowercase , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = 1 @register_to_config def __init__( self : Union[str, Any] , UpperCAmelCase_ : int = 1000 , UpperCAmelCase_ : float = 0.0_001 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : str = "epsilon" , UpperCAmelCase_ : float = 1.0 , **UpperCAmelCase_ : Dict , ): if kwargs.get("set_alpha_to_one" , UpperCAmelCase_ ) is not None: SCREAMING_SNAKE_CASE : int = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = kwargs["set_alpha_to_one"] if trained_betas is not None: SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(UpperCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE : List[str] = torch.linspace(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE : Optional[int] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE : int = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) SCREAMING_SNAKE_CASE : Tuple = 1.0 - self.betas SCREAMING_SNAKE_CASE : Any = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. SCREAMING_SNAKE_CASE : Dict = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE : List[str] = 1.0 # setable values SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(np.arange(0 , UpperCAmelCase_ ).copy().astype(np.intaa ) ) def _A ( self : Optional[int] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Optional[int] = None ): return sample def _A ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) SCREAMING_SNAKE_CASE : Dict = num_inference_steps SCREAMING_SNAKE_CASE : Optional[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE : str = (np.arange(0 , UpperCAmelCase_ ) * step_ratio).round().copy().astype(np.intaa ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) self.timesteps += self.config.steps_offset def _A ( self : Any , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : bool = True , ): # 1. get previous step value (=t+1) SCREAMING_SNAKE_CASE : Tuple = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process SCREAMING_SNAKE_CASE : List[str] = self.alphas_cumprod[timestep] SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) SCREAMING_SNAKE_CASE : Tuple = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 SCREAMING_SNAKE_CASE : List[Any] = model_output elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE : Union[str, Any] = model_output SCREAMING_SNAKE_CASE : Optional[int] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE : Optional[int] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output SCREAMING_SNAKE_CASE : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE : List[str] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE : Dict = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE : str = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=UpperCAmelCase_ , pred_original_sample=UpperCAmelCase_ ) def __len__( self : Dict ): return self.config.num_train_timesteps
488
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''dpr''' def __init__( self : List[Any] , __UpperCAmelCase : List[Any]=30_522 , __UpperCAmelCase : Tuple=768 , __UpperCAmelCase : List[Any]=12 , __UpperCAmelCase : List[Any]=12 , __UpperCAmelCase : int=3_072 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : List[str]=512 , __UpperCAmelCase : str=2 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : Optional[Any]=1e-1_2 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : str="absolute" , __UpperCAmelCase : int = 0 , **__UpperCAmelCase : Union[str, Any] , ) ->Tuple: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = projection_dim a = position_embedding_type
117
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _a ( a :List[str] , a :Tuple=False ) -> List[Any]: a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _a ( a :List[str] , a :int , a :Tuple=False ) -> Any: for i in range(config.num_hidden_layers ): if base_model: a = '''''' else: a = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) a = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[ : config.hidden_size, : ] a = in_proj_bias[: config.hidden_size] a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a = in_proj_weight[ -config.hidden_size :, : ] a = in_proj_bias[-config.hidden_size :] def _a ( a :List[Any] ) -> Dict: a = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a , a ) def _a ( a :Union[str, Any] , a :str , a :List[Any] ) -> str: a = dct.pop(a ) a = val def _a ( ) -> Optional[Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def _a ( a :Tuple , a :str , a :Optional[int]=True ) -> Dict: a = ViTConfig() # patch_size if model_name[-1] == "8": a = 8 # set labels if required if not base_model: a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: a = 384 a = 1_536 a = 12 a = 6 # load original model from torch hub a = torch.hub.load('''facebookresearch/dino:main''' , a ) original_model.eval() # load state_dict of original model, remove and rename some keys a = original_model.state_dict() if base_model: remove_classification_head_(a ) a = create_rename_keys(a , base_model=a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a , a ) # load HuggingFace model if base_model: a = ViTModel(a , add_pooling_layer=a ).eval() else: a = ViTForImageClassification(a ).eval() model.load_state_dict(a ) # Check outputs on an image, prepared by ViTImageProcessor a = ViTImageProcessor() a = image_processor(images=prepare_img() , return_tensors='''pt''' ) a = encoding['''pixel_values'''] a = model(a ) if base_model: a = original_model(a ) assert torch.allclose(a , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: a = original_model(a ) assert logits.shape == outputs.logits.shape assert torch.allclose(a , outputs.logits , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
117
1
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class __UpperCAmelCase: """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : Optional[int]= str(id_ ) lowercase__ : Optional[Any]= None lowercase__ : List[Any]= None lowercase__ : Dict= [] lowercase__ : Dict= {} # {vertex:distance} def __lt__( self , snake_case__ ): '''simple docstring''' return self.key < other.key def __repr__( self ): '''simple docstring''' return self.id def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' self.neighbors.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Union[str, Any]= weight def lowercase__(A , A , A , A ) ->Any: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , A ) graph[b - 1].add_edge(graph[a - 1] , A ) def lowercase__(A , A ) ->list: """simple docstring""" lowercase__ : Tuple= [] for u in graph: lowercase__ : Dict= math.inf lowercase__ : Dict= None lowercase__ : List[Any]= 0 lowercase__ : List[str]= graph[:] while q: lowercase__ : Dict= min(A ) q.remove(A ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowercase__ : Union[str, Any]= u lowercase__ : Tuple= u.edges[v.id] for i in range(1 , len(A ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase__(A , A ) ->Iterator[tuple]: """simple docstring""" for u in graph: lowercase__ : Optional[int]= math.inf lowercase__ : List[str]= None lowercase__ : Optional[Any]= 0 lowercase__ : Dict= list(A ) hq.heapify(A ) while h: lowercase__ : List[Any]= hq.heappop(A ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowercase__ : List[str]= u lowercase__ : int= u.edges[v.id] hq.heapify(A ) for i in range(1 , len(A ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase__() ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) lowercase__ : str= AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase__ : Tuple= tokenizer("Hello there" , return_tensors="tf" ).input_ids lowercase__ : Optional[Any]= tokenizer("Hi I am" , return_tensors="tf" ).input_ids lowercase__ : Optional[Any]= model(snake_case__ , labels=snake_case__ ).loss lowercase__ : int= -tf.math.reduce_mean(snake_case__ ).numpy() lowercase__ : int= -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
85
0
'''simple docstring''' import numpy as np def __lowerCamelCase ( __lowerCAmelCase : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int ) -> Tuple: # noqa: E741 while r - l > 1: snake_case = (l + r) // 2 if v[m] >= key: snake_case = m else: snake_case = m # noqa: E741 return r def __lowerCamelCase ( __lowerCAmelCase : list[int] ) -> int: if len(__lowerCAmelCase ) == 0: return 0 snake_case = [0] * len(__lowerCAmelCase ) snake_case = 1 snake_case = v[0] for i in range(1 , len(__lowerCAmelCase ) ): if v[i] < tail[0]: snake_case = v[i] elif v[i] > tail[length - 1]: snake_case = v[i] length += 1 else: snake_case = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
369
1
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class __magic_name__ ( __UpperCAmelCase ): def __init__( self : Any , snake_case__ : List[str]="" , snake_case__ : List[Any]="train" ): '''simple docstring''' assert os.path.isdir(snake_case__ ) lowercase :Union[str, Any] = [] lowercase :str = os.listdir(snake_case__ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue lowercase :int = os.path.join(snake_case__ , snake_case__ ) if not os.path.isfile(snake_case__ ): continue self.documents.append(snake_case__ ) def __len__( self : List[str] ): '''simple docstring''' return len(self.documents ) def __getitem__( self : Union[str, Any] , snake_case__ : Optional[int] ): '''simple docstring''' lowercase :Dict = self.documents[idx] lowercase :Optional[int] = document_path.split('''/''' )[-1] with open(snake_case__ , encoding='''utf-8''' ) as source: lowercase :str = source.read() lowercase , lowercase :str = process_story(snake_case__ ) return document_name, story_lines, summary_lines def lowerCamelCase (a_ :Tuple) -> List[Any]: lowercase :Optional[Any] = list(filter(lambda a_: len(a_) != 0 , [line.strip() for line in raw_story.split('''\n''')])) # for some unknown reason some lines miss a period, add it lowercase :Tuple = [_add_missing_period(a_) for line in nonempty_lines] # gather article lines lowercase :Optional[int] = [] lowercase :str = deque(a_) while True: try: lowercase :Optional[Any] = lines.popleft() if element.startswith('''@highlight'''): break story_lines.append(a_) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines lowercase :Tuple = list(filter(lambda a_: not t.startswith('''@highlight''') , a_)) return story_lines, summary_lines def lowerCamelCase (a_ :List[Any]) -> Optional[int]: lowercase :int = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')'''] if line.startswith('''@highlight'''): return line if line[-1] in END_TOKENS: return line return line + "." def lowerCamelCase (a_ :List[Any] , a_ :Optional[Any] , a_ :Union[str, Any]) -> List[Any]: if len(a_) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(a_))) return sequence def lowerCamelCase (a_ :Tuple , a_ :Union[str, Any]) -> Union[str, Any]: lowercase :Any = torch.ones_like(a_) lowercase :Union[str, Any] = sequence == pad_token_id lowercase :str = 0 return mask def lowerCamelCase (a_ :Optional[int] , a_ :Any , a_ :Union[str, Any]) -> List[str]: lowercase :Optional[Any] = [tokenizer.encode(a_) for line in story_lines] lowercase :int = [token for sentence in story_lines_token_ids for token in sentence] lowercase :int = [tokenizer.encode(a_) for line in summary_lines] lowercase :Optional[int] = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def lowerCamelCase (a_ :Dict , a_ :str) -> Optional[int]: lowercase :int = [] for sequence in batch: lowercase :Dict = -1 lowercase :List[str] = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2) batch_embeddings.append(a_) return torch.tensor(a_)
475
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowerCamelCase (a_ :Dict) -> Dict: lowercase :Tuple = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(a_ , a_) def lowerCamelCase (a_ :Union[str, Any]) -> str: lowercase , lowercase :Tuple = emb.weight.shape lowercase :List[str] = nn.Linear(a_ , a_ , bias=a_) lowercase :List[str] = emb.weight.data return lin_layer def lowerCamelCase (a_ :int , a_ :Union[str, Any]="facebook/mbart-large-en-ro" , a_ :Union[str, Any]=False , a_ :List[Any]=False) -> List[Any]: lowercase :List[Any] = torch.load(a_ , map_location='''cpu''')['''model'''] remove_ignore_keys_(a_) lowercase :Dict = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase :Tuple = MBartConfig.from_pretrained(a_ , vocab_size=a_) if mbart_aa and finetuned: lowercase :List[Any] = '''relu''' lowercase :Optional[int] = state_dict['''decoder.embed_tokens.weight'''] lowercase :Union[str, Any] = MBartForConditionalGeneration(a_) model.model.load_state_dict(a_) if finetuned: lowercase :Dict = make_linear_from_emb(model.model.shared) return model if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') UpperCAmelCase = parser.parse_args() UpperCAmelCase = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
475
1
'''simple docstring''' def a__ ( lowercase : int, lowercase : int, lowercase : int ) -> float: """simple docstring""" _UpperCamelCase = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def a__ ( ) -> Tuple: """simple docstring""" print(sum_of_series(1, 1, 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
98
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore A = '\nHuman: <<task>>\n\nAssistant: ' A = 'huggingface-tools/default-prompts' A = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[int] , lowerCamelCase_: str , lowerCamelCase_: Tuple="run" ): """simple docstring""" if prompt_or_repo_id is None: snake_case : Any = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , lowerCamelCase_ ) is not None: return prompt_or_repo_id snake_case : Optional[int] = cached_file( lowerCamelCase_ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(lowerCamelCase_ , "r" , encoding="utf-8" ) as f: return f.read()
449
0
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable ): return x return (x, x) @require_flax class _a : """simple docstring""" def lowercase__ ( self : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] )->Dict: pass def lowercase__ ( self : Union[str, Any] )->Dict: pass def lowercase__ ( self : List[Any] )->Tuple: pass def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : np.ndarray , __UpperCamelCase : float )->int: _UpperCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(__UpperCamelCase , __UpperCamelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any]=None , **__UpperCamelCase : Optional[int] )->Union[str, Any]: _UpperCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = FlaxVisionTextDualEncoderModel(__UpperCamelCase ) _UpperCAmelCase = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def lowercase__ ( self : str , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : List[str]=None , **__UpperCamelCase : str )->Tuple: _UpperCAmelCase , _UpperCAmelCase = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCamelCase ) _UpperCAmelCase = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=None , **__UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase , _UpperCAmelCase = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCamelCase ) _UpperCAmelCase = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase ) _UpperCAmelCase = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase ) _UpperCAmelCase = after_output[0] _UpperCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1e-3 ) def lowercase__ ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : List[str]=None , **__UpperCamelCase : int )->Optional[Any]: _UpperCAmelCase , _UpperCAmelCase = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCamelCase ) _UpperCAmelCase = model( input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase , output_attentions=__UpperCamelCase ) _UpperCAmelCase = output.vision_model_output.attentions self.assertEqual(len(__UpperCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = to_atuple(vision_model.config.image_size ) _UpperCAmelCase = to_atuple(vision_model.config.patch_size ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCAmelCase = output.text_model_output.attentions self.assertEqual(len(__UpperCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase__ ( self : int , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : List[str] )->Any: pt_model.to(__UpperCamelCase ) pt_model.eval() # prepare inputs _UpperCAmelCase = inputs_dict _UpperCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _UpperCAmelCase = pt_model(**__UpperCamelCase ).to_tuple() _UpperCAmelCase = fx_model(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__UpperCamelCase , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase , from_pt=__UpperCamelCase ) _UpperCAmelCase = fx_model_loaded(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__UpperCamelCase , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = VisionTextDualEncoderModel.from_pretrained(__UpperCamelCase , from_flax=__UpperCamelCase ) pt_model_loaded.to(__UpperCamelCase ) pt_model_loaded.eval() with torch.no_grad(): _UpperCAmelCase = pt_model_loaded(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__UpperCamelCase , pt_output_loaded.numpy() , 4e-2 ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = VisionTextDualEncoderModel(__UpperCamelCase ) _UpperCAmelCase = FlaxVisionTextDualEncoderModel(__UpperCamelCase ) _UpperCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCamelCase ) _UpperCAmelCase = fx_state self.check_pt_flax_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] )->Union[str, Any]: _UpperCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = VisionTextDualEncoderModel(__UpperCamelCase ) _UpperCAmelCase = FlaxVisionTextDualEncoderModel(__UpperCamelCase ) _UpperCAmelCase = load_flax_weights_in_pytorch_model(__UpperCamelCase , fx_model.params ) self.check_pt_flax_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->List[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__UpperCamelCase ) def lowercase__ ( self : int )->List[str]: _UpperCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**__UpperCamelCase ) def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__UpperCamelCase ) @is_pt_flax_cross_test def lowercase__ ( self : List[str] )->Optional[int]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = config_inputs_dict.pop('''vision_config''' ) _UpperCAmelCase = config_inputs_dict.pop('''text_config''' ) _UpperCAmelCase = config_inputs_dict self.check_equivalence_pt_to_flax(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.check_equivalence_flax_to_pt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @slow def lowercase__ ( self : List[str] )->List[Any]: _UpperCAmelCase , _UpperCAmelCase = self.get_pretrained_model_and_inputs() _UpperCAmelCase = model_a(**__UpperCamelCase ) _UpperCAmelCase = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = model_a(**__UpperCamelCase ) _UpperCAmelCase = after_outputs[0] _UpperCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1e-5 ) @require_flax class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" def lowercase__ ( self : Tuple )->List[Any]: _UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__UpperCamelCase , text_from_pt=__UpperCamelCase , ) _UpperCAmelCase = 1_3 _UpperCAmelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCAmelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCAmelCase = random_attention_mask([batch_size, 4] ) _UpperCAmelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowercase__ ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = FlaxViTModel(__UpperCamelCase ) _UpperCAmelCase = FlaxBertModel(__UpperCamelCase ) return vision_model, text_model def lowercase__ ( self : List[str] )->List[Any]: _UpperCAmelCase = FlaxViTModelTester(self ) _UpperCAmelCase = FlaxBertModelTester(self ) _UpperCAmelCase = vit_model_tester.prepare_config_and_inputs() _UpperCAmelCase = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase = vision_config_and_inputs _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__UpperCamelCase , text_from_pt=__UpperCamelCase , ) _UpperCAmelCase = 1_3 _UpperCAmelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCAmelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCAmelCase = random_attention_mask([batch_size, 4] ) _UpperCAmelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowercase__ ( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = FlaxCLIPVisionModel(__UpperCamelCase ) _UpperCAmelCase = FlaxBertModel(__UpperCamelCase ) return vision_model, text_model def lowercase__ ( self : Optional[Any] )->int: _UpperCAmelCase = FlaxCLIPVisionModelTester(self ) _UpperCAmelCase = FlaxBertModelTester(self ) _UpperCAmelCase = clip_model_tester.prepare_config_and_inputs() _UpperCAmelCase = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase = vision_config_and_inputs _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : Any )->List[Any]: _UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) _UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__UpperCamelCase , padding=__UpperCamelCase , return_tensors='''np''' ) _UpperCAmelCase = model(**__UpperCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _UpperCAmelCase = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __UpperCamelCase , atol=1e-3 ) )
718
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """bit""" UpperCamelCase__ = ["""preactivation""", """bottleneck"""] UpperCamelCase__ = ["""SAME""", """VALID"""] def __init__( self : List[Any] , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Optional[int]=6_4 , __UpperCamelCase : List[Any]=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __UpperCamelCase : Any=[3, 4, 6, 3] , __UpperCamelCase : str="preactivation" , __UpperCamelCase : Union[str, Any]="relu" , __UpperCamelCase : str=None , __UpperCamelCase : Dict=3_2 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : Any=False , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=1 , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : List[str] , )->List[Any]: super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _UpperCAmelCase = global_padding.upper() else: raise ValueError(F'Padding strategy {global_padding} not supported' ) _UpperCAmelCase = num_channels _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = layer_type _UpperCAmelCase = hidden_act _UpperCAmelCase = global_padding _UpperCAmelCase = num_groups _UpperCAmelCase = drop_path_rate _UpperCAmelCase = embedding_dynamic_padding _UpperCAmelCase = output_stride _UpperCAmelCase = width_factor _UpperCAmelCase = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(__UpperCamelCase ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
95
0
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def A__ ( A__ , A__ ) -> int: '''simple docstring''' _UpperCAmelCase = int(A__ ) assert noofclusters < len(A__ ) # Find out the dimensionality _UpperCAmelCase = len(vectors[0] ) # Will help select random centroids from among the available vectors _UpperCAmelCase = list(range(len(A__ ) ) ) shuffle(A__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _UpperCAmelCase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _UpperCAmelCase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _UpperCAmelCase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(A__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values _UpperCAmelCase = tf.placeholder("float64" , [dim] ) _UpperCAmelCase = [] for centroid in centroids: cent_assigns.append(tf.assign(A__ , A__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _UpperCAmelCase = [tf.Variable(0 ) for i in range(len(A__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value _UpperCAmelCase = tf.placeholder("int32" ) _UpperCAmelCase = [] for assignment in assignments: cluster_assigns.append(tf.assign(A__ , A__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _UpperCAmelCase = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _UpperCAmelCase = tf.reduce_mean(A__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input _UpperCAmelCase = tf.placeholder("float" , [dim] ) _UpperCAmelCase = tf.placeholder("float" , [dim] ) _UpperCAmelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(A__ , A__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _UpperCAmelCase = tf.placeholder("float" , [noofclusters] ) _UpperCAmelCase = tf.argmin(A__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _UpperCAmelCase = tf.initialize_all_variables() # Initialize all variables sess.run(A__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _UpperCAmelCase = 100 for _ in range(A__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(A__ ) ): _UpperCAmelCase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _UpperCAmelCase = [ sess.run(A__ , feed_dict={va: vect, va: sess.run(A__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _UpperCAmelCase = sess.run( A__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(A__ ): # Collect all the vectors assigned to this cluster _UpperCAmelCase = [ vectors[i] for i in range(len(A__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _UpperCAmelCase = sess.run( A__ , feed_dict={mean_input: array(A__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments _UpperCAmelCase = sess.run(A__ ) _UpperCAmelCase = sess.run(A__ ) return centroids, assignments
426
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class a ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : List[Any] = "nat" A__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , snake_case_=4 , snake_case_=3 , snake_case_=64 , snake_case_=[3, 4, 6, 5] , snake_case_=[2, 4, 8, 16] , snake_case_=7 , snake_case_=3.0 , snake_case_=True , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_="gelu" , snake_case_=0.02 , snake_case_=1e-5 , snake_case_=0.0 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> Any: super().__init__(**snake_case_ ) _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case_ ) _UpperCAmelCase = num_heads _UpperCAmelCase = kernel_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case_ ) - 1) ) _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(snake_case_ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names )
426
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ]) class snake_case__ ( unittest.TestCase): def A ( self : Union[str, Any] ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='''utf-8''' , check=_lowerCAmelCase , ) assert hasattr(self , '''env''' ) def A ( self : Any , _A : List[Any] ) -> List[str]: UpperCAmelCase_ : Any = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings UpperCAmelCase_ : Any = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_lowerCAmelCase , instance_count=_lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=_lowerCAmelCase , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_lowerCAmelCase , py_version='''py36''' , ) def A ( self : Any , _A : Tuple ) -> Union[str, Any]: TrainingJobAnalytics(_lowerCAmelCase ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) @parameterized.expand([(2,)] ) def A ( self : Optional[Any] , _A : int ) -> List[Any]: # create estimator UpperCAmelCase_ : List[str] = self.create_estimator(_lowerCAmelCase ) # run training estimator.fit() # result dataframe UpperCAmelCase_ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase_ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase_ : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase_ : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _lowerCAmelCase )
709
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _UpperCamelCase : List[Any] = 0 _UpperCamelCase : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _UpperCamelCase : int = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _UpperCamelCase : List[str] = tuple[int, int] class snake_case__ : def __init__( self : Dict , _A : int , _A : int , _A : int , _A : int , _A : int , _A : Node | None , ) -> None: UpperCAmelCase_ : str = pos_x UpperCAmelCase_ : Union[str, Any] = pos_y UpperCAmelCase_ : int = (pos_y, pos_x) UpperCAmelCase_ : Tuple = goal_x UpperCAmelCase_ : List[Any] = goal_y UpperCAmelCase_ : List[str] = g_cost UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : List[str] = self.calculate_heuristic() UpperCAmelCase_ : str = self.g_cost + self.h_cost def A ( self : Union[str, Any] ) -> float: UpperCAmelCase_ : List[str] = self.pos_x - self.goal_x UpperCAmelCase_ : Dict = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_A ) + abs(_A ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : int , _A : Node ) -> bool: return self.f_cost < other.f_cost class snake_case__ : def __init__( self : List[Any] , _A : TPosition , _A : TPosition ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _A ) UpperCAmelCase_ : Optional[int] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , _A ) UpperCAmelCase_ : Dict = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : List[Any] = False def A ( self : Optional[int] ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : Optional[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_A ) self.closed_nodes.append(_A ) UpperCAmelCase_ : Optional[Any] = self.get_successors(_A ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_A ) else: # retrieve the best current path UpperCAmelCase_ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(_A ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_A ) else: self.open_nodes.append(_A ) return [self.start.pos] def A ( self : Any , _A : Node ) -> list[Node]: UpperCAmelCase_ : Optional[Any] = [] for action in delta: UpperCAmelCase_ : List[str] = parent.pos_x + action[1] UpperCAmelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _A , _A , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _A , ) ) return successors def A ( self : List[Any] , _A : Node | None ) -> list[TPosition]: UpperCAmelCase_ : List[Any] = node UpperCAmelCase_ : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[Any] = current_node.parent path.reverse() return path class snake_case__ : def __init__( self : int , _A : TPosition , _A : TPosition ) -> None: UpperCAmelCase_ : Any = AStar(_A , _A ) UpperCAmelCase_ : Dict = AStar(_A , _A ) UpperCAmelCase_ : Union[str, Any] = False def A ( self : Union[str, Any] ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : Optional[Any] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : Optional[int] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _A , _A ) self.fwd_astar.closed_nodes.append(_A ) self.bwd_astar.closed_nodes.append(_A ) UpperCAmelCase_ : int = current_bwd_node UpperCAmelCase_ : int = current_fwd_node UpperCAmelCase_ : List[Any] = { self.fwd_astar: self.fwd_astar.get_successors(_A ), self.bwd_astar: self.bwd_astar.get_successors(_A ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_A ) else: # retrieve the best current path UpperCAmelCase_ : Optional[int] = astar.open_nodes.pop( astar.open_nodes.index(_A ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_A ) else: astar.open_nodes.append(_A ) return [self.fwd_astar.start.pos] def A ( self : List[Any] , _A : Node , _A : Node ) -> list[TPosition]: UpperCAmelCase_ : Dict = self.fwd_astar.retrace_path(_A ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(_A ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _UpperCamelCase : Optional[int] = (0, 0) _UpperCamelCase : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _UpperCamelCase : str = time.time() _UpperCamelCase : int = AStar(init, goal) _UpperCamelCase : Any = a_star.search() _UpperCamelCase : str = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _UpperCamelCase : Union[str, Any] = time.time() _UpperCamelCase : Dict = BidirectionalAStar(init, goal) _UpperCamelCase : List[str] = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
216
0
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __A : Any = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") __A , __A : Dict = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") __A : Optional[Any] = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: __A : Tuple = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __A : Tuple = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'pip install -r transformers/examples/{example_dir}/requirements.txt']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
130
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ (a_ , unittest.TestCase ): UpperCAmelCase__ = LEDTokenizer UpperCAmelCase__ = LEDTokenizerFast UpperCAmelCase__ = True def _lowercase ( self ): '''simple docstring''' super().setUp() UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase = {'''unk_token''': '''<unk>'''} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) def _lowercase ( self , **_A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _lowercase ( self , **_A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _lowercase ( self , _A ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def _lowercase ( self ): '''simple docstring''' return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def _lowercase ( self ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(_A , padding=_A , return_tensors='''pt''' ) self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''labels''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(text_target=_A , max_length=3_2 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) @require_torch def _lowercase ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer( ['''I am a small frog''' * 1_0_2_4, '''I am a small frog'''] , padding=_A , truncation=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = ['''A long paragraph for summarization.'''] UpperCAmelCase = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = tokenizer(_A , return_tensors='''pt''' ) UpperCAmelCase = tokenizer(text_target=_A , return_tensors='''pt''' ) UpperCAmelCase = inputs['''input_ids'''] UpperCAmelCase = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _lowercase ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase = ['''Summary of the text.''', '''Another summary.'''] UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase = tokenizer(_A , padding=_A ) UpperCAmelCase = [[0] * len(_A ) for x in encoded_output['''input_ids''']] UpperCAmelCase = tokenizer.pad(_A ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , _A ) def _lowercase ( self ): '''simple docstring''' pass def _lowercase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' UpperCAmelCase = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) UpperCAmelCase = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
130
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class UpperCamelCase__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=None , ) -> Any: A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope A__ = self.vocab_size - 1 def snake_case__ ( self ) -> List[str]: A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) A__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: A__ = OpenAIGPTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) A__ = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: A__ = OpenAIGPTLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) -> Dict: A__ = OpenAIGPTDoubleHeadsModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: A__ = self.num_labels A__ = OpenAIGPTForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self ) -> Tuple: A__ = self.prepare_config_and_inputs() ( A__ ) = config_and_inputs A__ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" A__ : Optional[int] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A__ : int = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A__ : List[str] = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Any: A__ = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , ) A__ = inputs_dict["labels"] A__ = inputs_dict["labels"] A__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , ) A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def snake_case__ ( self ) -> List[Any]: A__ = OpenAIGPTModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def snake_case__ ( self ) -> str: self.config_tester.run_common_tests() def snake_case__ ( self ) -> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase ) def snake_case__ ( self ) -> int: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) def snake_case__ ( self ) -> List[Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase ) def snake_case__ ( self ) -> int: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase ) @slow def snake_case__ ( self ) -> Optional[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = OpenAIGPTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self ) -> int: A__ = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(__lowerCamelCase ) A__ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is A__ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A__ = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
705
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
562
0
def a(lowercase__ , lowercase__ ): '''simple docstring''' return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
187
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", F"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", F"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_qpos_proj.weight", F"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_kpos_proj.weight", F"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.sa_v_proj.weight", F"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", F"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", F"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_kpos_proj.weight", F"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.ca_v_proj.weight", F"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", F"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", F"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", F"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.sa_qpos_proj.bias", F"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.sa_kpos_proj.bias", F"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.sa_v_proj.bias", F"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", F"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", F"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.ca_kpos_proj.bias", F"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.ca_v_proj.bias", F"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", F"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> List[str]: """simple docstring""" lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val def __UpperCAmelCase ( UpperCAmelCase )-> List[str]: """simple docstring""" lowercase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase = key.replace('''backbone.0.body''', '''backbone.conv_encoder.model''' ) lowercase = value else: lowercase = value return new_state_dict def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase=False )-> Tuple: """simple docstring""" lowercase = '''''' if is_panoptic: lowercase = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) lowercase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowercase = in_proj_weight[:256, :] lowercase = in_proj_bias[:256] lowercase = in_proj_weight[256:512, :] lowercase = in_proj_bias[256:512] lowercase = in_proj_weight[-256:, :] lowercase = in_proj_bias[-256:] def __UpperCAmelCase ( )-> Any: """simple docstring""" lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase = Image.open(requests.get(UpperCAmelCase, stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> Tuple: """simple docstring""" lowercase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowercase = '''resnet101''' if "dc5" in model_name: lowercase = True lowercase = '''panoptic''' in model_name if is_panoptic: lowercase = 250 else: lowercase = 91 lowercase = '''huggingface/label-files''' lowercase = '''coco-detection-id2label.json''' lowercase = json.load(open(hf_hub_download(UpperCAmelCase, UpperCAmelCase, repo_type='''dataset''' ), '''r''' ) ) lowercase = {int(UpperCAmelCase ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} # load image processor lowercase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowercase = ConditionalDetrImageProcessor(format=UpperCAmelCase ) # prepare image lowercase = prepare_img() lowercase = image_processor(images=UpperCAmelCase, return_tensors='''pt''' ) lowercase = encoding['''pixel_values'''] logger.info(f'Converting model {model_name}...' ) # load original model from torch hub lowercase = torch.hub.load('''DeppMeng/ConditionalDETR''', UpperCAmelCase, pretrained=UpperCAmelCase ).eval() lowercase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowercase = '''conditional_detr.''' + src rename_key(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) lowercase = rename_backbone_keys(UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase, is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val # finally, create HuggingFace model and load state dict lowercase = ConditionalDetrForSegmentation(UpperCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() model.push_to_hub(repo_id=UpperCAmelCase, organization='''DepuMeng''', commit_message='''Add model''' ) # verify our conversion lowercase = conditional_detr(UpperCAmelCase ) lowercase = model(UpperCAmelCase ) assert torch.allclose(outputs.logits, original_outputs['''pred_logits'''], atol=1e-4 ) assert torch.allclose(outputs.pred_boxes, original_outputs['''pred_boxes'''], atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs['''pred_masks'''], atol=1e-4 ) # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A_ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
604
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__ ( __lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 def __init__( self : Any , lowerCamelCase_ : UNetaDModel , lowerCamelCase_ : ScoreSdeVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self : List[str] , lowerCamelCase_ : int = 1 , lowerCamelCase_ : int = 20_00 , lowerCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , **lowerCamelCase_ : Any , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.unet.config.sample_size SCREAMING_SNAKE_CASE : List[Any] = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : str = self.unet SCREAMING_SNAKE_CASE : Any = randn_tensor(__a , generator=__a ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Any = sample.to(self.device ) self.scheduler.set_timesteps(__a ) self.scheduler.set_sigmas(__a ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : int = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE : Optional[Any] = self.unet(__a , __a ).sample SCREAMING_SNAKE_CASE : Any = self.scheduler.step_correct(__a , __a , generator=__a ).prev_sample # prediction step SCREAMING_SNAKE_CASE : Any = model(__a , __a ).sample SCREAMING_SNAKE_CASE : int = self.scheduler.step_pred(__a , __a , __a , generator=__a ) SCREAMING_SNAKE_CASE : List[str] = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE : Tuple = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : List[Any] = self.numpy_to_pil(__a ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__a )
720
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = get_activation("""swish""" ) self.assertIsInstance(lowerCamelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = get_activation("""silu""" ) self.assertIsInstance(lowerCamelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = get_activation("""mish""" ) self.assertIsInstance(lowerCamelCase_ , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = get_activation("""gelu""" ) self.assertIsInstance(lowerCamelCase_ , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
79
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase__ ( _lowerCamelCase ) ->Union[str, Any]: if isinstance(_lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class _a : """simple docstring""" def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): pass def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =np.abs((a - b) ).max() self.assertLessEqual(_snake_case , _snake_case , F"Difference between torch and flax is {diff} (>= {tol})." ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _UpperCAmelCase =VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case , _snake_case ) _UpperCAmelCase =FlaxVisionTextDualEncoderModel(_snake_case ) _UpperCAmelCase =model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _UpperCAmelCase , _UpperCAmelCase =self.get_vision_text_model(_snake_case , _snake_case ) _UpperCAmelCase ={"vision_model": vision_model, "text_model": text_model} _UpperCAmelCase =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case ) _UpperCAmelCase =model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _UpperCAmelCase , _UpperCAmelCase =self.get_vision_text_model(_snake_case , _snake_case ) _UpperCAmelCase ={"vision_model": vision_model, "text_model": text_model} _UpperCAmelCase =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case ) _UpperCAmelCase =model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _UpperCAmelCase =output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) _UpperCAmelCase =FlaxVisionTextDualEncoderModel.from_pretrained(_snake_case ) _UpperCAmelCase =model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _UpperCAmelCase =after_output[0] _UpperCAmelCase =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1E-3 ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _UpperCAmelCase , _UpperCAmelCase =self.get_vision_text_model(_snake_case , _snake_case ) _UpperCAmelCase ={"vision_model": vision_model, "text_model": text_model} _UpperCAmelCase =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case ) _UpperCAmelCase =model( input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case ) _UpperCAmelCase =output.vision_model_output.attentions self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase =to_atuple(vision_model.config.image_size ) _UpperCAmelCase =to_atuple(vision_model.config.patch_size ) _UpperCAmelCase =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCAmelCase =num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCAmelCase =output.text_model_output.attentions self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): pt_model.to(_snake_case ) pt_model.eval() # prepare inputs _UpperCAmelCase =inputs_dict _UpperCAmelCase ={k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _UpperCAmelCase =pt_model(**_snake_case ).to_tuple() _UpperCAmelCase =fx_model(**_snake_case ).to_tuple() self.assertEqual(len(_snake_case ) , len(_snake_case ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_snake_case , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_snake_case ) _UpperCAmelCase =FlaxVisionTextDualEncoderModel.from_pretrained(_snake_case , from_pt=_snake_case ) _UpperCAmelCase =fx_model_loaded(**_snake_case ).to_tuple() self.assertEqual(len(_snake_case ) , len(_snake_case ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_snake_case , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_snake_case ) _UpperCAmelCase =VisionTextDualEncoderModel.from_pretrained(_snake_case , from_flax=_snake_case ) pt_model_loaded.to(_snake_case ) pt_model_loaded.eval() with torch.no_grad(): _UpperCAmelCase =pt_model_loaded(**_snake_case ).to_tuple() self.assertEqual(len(_snake_case ) , len(_snake_case ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_snake_case , pt_output_loaded.numpy() , 4E-2 ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case , _snake_case ) _UpperCAmelCase =VisionTextDualEncoderModel(_snake_case ) _UpperCAmelCase =FlaxVisionTextDualEncoderModel(_snake_case ) _UpperCAmelCase =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _snake_case ) _UpperCAmelCase =fx_state self.check_pt_flax_equivalence(_snake_case , _snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case , _snake_case ) _UpperCAmelCase =VisionTextDualEncoderModel(_snake_case ) _UpperCAmelCase =FlaxVisionTextDualEncoderModel(_snake_case ) _UpperCAmelCase =load_flax_weights_in_pytorch_model(_snake_case , fx_model.params ) self.check_pt_flax_equivalence(_snake_case , _snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.prepare_config_and_inputs() self.check_save_load(**_snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_snake_case ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.prepare_config_and_inputs() _UpperCAmelCase =config_inputs_dict.pop("vision_config" ) _UpperCAmelCase =config_inputs_dict.pop("text_config" ) _UpperCAmelCase =config_inputs_dict self.check_equivalence_pt_to_flax(_snake_case , _snake_case , _snake_case ) self.check_equivalence_flax_to_pt(_snake_case , _snake_case , _snake_case ) @slow def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase , _UpperCAmelCase =self.get_pretrained_model_and_inputs() _UpperCAmelCase =model_a(**_snake_case ) _UpperCAmelCase =outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_snake_case ) _UpperCAmelCase =FlaxVisionTextDualEncoderModel.from_pretrained(_snake_case ) _UpperCAmelCase =model_a(**_snake_case ) _UpperCAmelCase =after_outputs[0] _UpperCAmelCase =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1E-5 ) @require_flax class _a ( A__ , unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=_snake_case , text_from_pt=_snake_case , ) _UpperCAmelCase =13 _UpperCAmelCase =floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCAmelCase =ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCAmelCase =random_attention_mask([batch_size, 4] ) _UpperCAmelCase ={"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): _UpperCAmelCase =FlaxViTModel(_snake_case ) _UpperCAmelCase =FlaxBertModel(_snake_case ) return vision_model, text_model def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =FlaxViTModelTester(self ) _UpperCAmelCase =FlaxBertModelTester(self ) _UpperCAmelCase =vit_model_tester.prepare_config_and_inputs() _UpperCAmelCase =bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase =vision_config_and_inputs _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _a ( A__ , unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=_snake_case , text_from_pt=_snake_case , ) _UpperCAmelCase =13 _UpperCAmelCase =floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCAmelCase =ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCAmelCase =random_attention_mask([batch_size, 4] ) _UpperCAmelCase ={"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): _UpperCAmelCase =FlaxCLIPVisionModel(_snake_case ) _UpperCAmelCase =FlaxBertModel(_snake_case ) return vision_model, text_model def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =FlaxCLIPVisionModelTester(self ) _UpperCAmelCase =FlaxBertModelTester(self ) _UpperCAmelCase =clip_model_tester.prepare_config_and_inputs() _UpperCAmelCase =bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase =vision_config_and_inputs _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _a ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) _UpperCAmelCase =VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) _UpperCAmelCase =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase =processor( text=["una foto di un gatto", "una foto di un cane"] , images=_snake_case , padding=_snake_case , return_tensors="np" ) _UpperCAmelCase =model(**_snake_case ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _UpperCAmelCase =np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _snake_case , atol=1E-3 ) )
408
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _a ( A__ ): """simple docstring""" def __init__( self , _snake_case , _snake_case ): _UpperCAmelCase =params _UpperCAmelCase =np.array(_snake_case ) _UpperCAmelCase =np.array([len(_snake_case ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , _snake_case ): return (self.token_ids[index], self.lengths[index]) def __len__( self ): return len(self.lengths ) def SCREAMING_SNAKE_CASE ( self ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.params.max_model_input_size _UpperCAmelCase =self.lengths > max_len logger.info(F"Splitting {sum(_snake_case )} too long sequences." ) def divide_chunks(_snake_case , _snake_case ): return [l[i : i + n] for i in range(0 , len(_snake_case ) , _snake_case )] _UpperCAmelCase =[] _UpperCAmelCase =[] if self.params.mlm: _UpperCAmelCase , _UpperCAmelCase =self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: _UpperCAmelCase , _UpperCAmelCase =self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _UpperCAmelCase =[] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _UpperCAmelCase =np.insert(_snake_case , 0 , _snake_case ) if sub_s[-1] != sep_id: _UpperCAmelCase =np.insert(_snake_case , len(_snake_case ) , _snake_case ) assert len(_snake_case ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_snake_case ) new_tok_ids.extend(_snake_case ) new_lengths.extend([len(_snake_case ) for l in sub_seqs] ) _UpperCAmelCase =np.array(_snake_case ) _UpperCAmelCase =np.array(_snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =len(self ) _UpperCAmelCase =self.lengths > 11 _UpperCAmelCase =self.token_ids[indices] _UpperCAmelCase =self.lengths[indices] _UpperCAmelCase =len(self ) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def SCREAMING_SNAKE_CASE ( self ): if "unk_token" not in self.params.special_tok_ids: return else: _UpperCAmelCase =self.params.special_tok_ids["unk_token"] _UpperCAmelCase =len(self ) _UpperCAmelCase =np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _UpperCAmelCase =(unk_occs / self.lengths) < 0.5 _UpperCAmelCase =self.token_ids[indices] _UpperCAmelCase =self.lengths[indices] _UpperCAmelCase =len(self ) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def SCREAMING_SNAKE_CASE ( self ): if not self.params.is_master: return logger.info(F"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =[t[0] for t in batch] _UpperCAmelCase =[t[1] for t in batch] assert len(_snake_case ) == len(_snake_case ) # Max for paddings _UpperCAmelCase =max(_snake_case ) # Pad token ids if self.params.mlm: _UpperCAmelCase =self.params.special_tok_ids["pad_token"] else: _UpperCAmelCase =self.params.special_tok_ids["unk_token"] _UpperCAmelCase =[list(t.astype(_snake_case ) ) + [pad_idx] * (max_seq_len_ - len(_snake_case )) for t in token_ids] assert len(tk_ ) == len(_snake_case ) assert all(len(_snake_case ) == max_seq_len_ for t in tk_ ) _UpperCAmelCase =torch.tensor(tk_ ) # (bs, max_seq_len_) _UpperCAmelCase =torch.tensor(_snake_case ) # (bs) return tk_t, lg_t
408
1
"""simple docstring""" from collections.abc import Sequence def UpperCAmelCase ( a_ = None ): '''simple docstring''' if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) lowerCamelCase : List[Any] = nums[0] for i in range(1, len(a_ ) ): lowerCamelCase : Tuple = nums[i] lowerCamelCase : List[Any] = max(a_, ans + num, a_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _A = int(input('Enter number of elements : ').strip()) _A = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
701
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _A = 2_5_0_0_0_4 _A = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class _lowercase ( __UpperCAmelCase , unittest.TestCase ): lowercase_ = MBartaaTokenizer lowercase_ = MBartaaTokenizerFast lowercase_ = True lowercase_ = True def _UpperCamelCase ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase : int = MBartaaTokenizer(UpperCAmelCase_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self ) -> Tuple: lowerCamelCase : str = '<s>' lowerCamelCase : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> List[Any]: lowerCamelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(UpperCAmelCase_ ) , 1054 ) def _UpperCamelCase ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def _UpperCamelCase ( self ) -> str: lowerCamelCase : Optional[int] = MBartaaTokenizer(UpperCAmelCase_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=UpperCAmelCase_ ) lowerCamelCase : Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) lowerCamelCase : Dict = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def _UpperCamelCase ( self ) -> List[Any]: # fmt: off lowerCamelCase : Optional[Any] = {'input_ids': [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def _UpperCamelCase ( self ) -> List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase : int = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : Tuple = tempfile.mkdtemp() lowerCamelCase : Any = tokenizer_r.save_pretrained(UpperCAmelCase_ ) lowerCamelCase : List[str] = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCamelCase : int = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way lowerCamelCase : Dict = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=True lowerCamelCase : Optional[int] = tempfile.mkdtemp() lowerCamelCase : Union[str, Any] = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) lowerCamelCase : List[Any] = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way lowerCamelCase : Dict = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCamelCase : Optional[int] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=False lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() lowerCamelCase : List[str] = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) lowerCamelCase : Optional[int] = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase : int = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): lowercase_ = 'facebook/mbart-large-50-one-to-many-mmt' lowercase_ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowercase_ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowercase_ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def _UpperCamelCase ( cls ) -> int: lowerCamelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCamelCase : Union[str, Any] = 1 return cls def _UpperCamelCase ( self ) -> int: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 250038 ) def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids ) lowerCamelCase : str = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase : Union[str, Any] = self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) lowerCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : Tuple = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , UpperCAmelCase_ ) lowerCamelCase : str = 10 lowerCamelCase : Optional[int] = self.tokenizer(UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ ).input_ids[0] self.assertEqual(ids[0] , UpperCAmelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> List[str]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250053, 250001] ) def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : List[str] = tempfile.mkdtemp() lowerCamelCase : Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCamelCase : str = MBartaaTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase_ ) @require_torch def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , return_tensors='pt' ) lowerCamelCase : Any = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _UpperCamelCase ( self ) -> Optional[int]: lowerCamelCase : int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCamelCase : Dict = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Optional[Any] = self.tokenizer(self.src_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=3 , return_tensors='pt' ) lowerCamelCase : Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=10 , return_tensors='pt' ) lowerCamelCase : List[Any] = targets['input_ids'] lowerCamelCase : List[Any] = shift_tokens_right(UpperCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : List[Any] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , { # en_XX, A, test, EOS 'input_ids': [[250004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
133
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = """timesformer""" def __init__( self , lowerCAmelCase=224 , lowerCAmelCase=16 , lowerCAmelCase=3 , lowerCAmelCase=8 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3_072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-6 , lowerCAmelCase=True , lowerCAmelCase="divided_space_time" , lowerCAmelCase=0 , **lowerCAmelCase , ) -> Any: '''simple docstring''' super().__init__(**lowerCAmelCase ) _lowercase =image_size _lowercase =patch_size _lowercase =num_channels _lowercase =num_frames _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =qkv_bias _lowercase =attention_type _lowercase =drop_path_rate
291
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowercase_ = logging.get_logger(__name__) def a ( A__ : Optional[int] , A__ : Union[str, Any] ) -> int: """simple docstring""" _lowercase =nn.functional.normalize(A__ ) _lowercase =nn.functional.normalize(A__ ) return torch.mm(A__ , normalized_text_embeds.t() ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = CLIPConfig _a = ["""CLIPEncoderLayer"""] def __init__( self , lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowerCAmelCase ) _lowercase =CLIPVisionModel(config.vision_config ) _lowercase =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase ) _lowercase =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase ) _lowercase =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase ) _lowercase =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase ) _lowercase =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase ) @torch.no_grad() def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: '''simple docstring''' _lowercase =self.vision_model(lowerCAmelCase )[1] # pooled_output _lowercase =self.visual_projection(lowerCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowercase =cosine_distance(lowerCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowercase =cosine_distance(lowerCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowercase =[] _lowercase =image_embeds.shape[0] for i in range(lowerCAmelCase ): _lowercase ={'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowercase =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowercase =special_cos_dist[i][concept_idx] _lowercase =self.special_care_embeds_weights[concept_idx].item() _lowercase =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowercase =0.01 for concept_idx in range(len(cos_dist[0] ) ): _lowercase =cos_dist[i][concept_idx] _lowercase =self.concept_embeds_weights[concept_idx].item() _lowercase =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase ) result.append(lowerCAmelCase ) _lowercase =[len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase =self.vision_model(lowerCAmelCase )[1] # pooled_output _lowercase =self.visual_projection(lowerCAmelCase ) _lowercase =cosine_distance(lowerCAmelCase , self.special_care_embeds ) _lowercase =cosine_distance(lowerCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowercase =0.0 _lowercase =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowercase =torch.any(special_scores > 0 , dim=1 ) _lowercase =special_care * 0.01 _lowercase =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowercase =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowercase =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
291
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __a ( A__ ) -> str: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def __a ( A__ , A__ ) -> Optional[int]: lowerCAmelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCAmelCase = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) lowerCAmelCase = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) lowerCAmelCase = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) lowerCAmelCase = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) lowerCAmelCase = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) lowerCAmelCase = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) lowerCAmelCase = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) lowerCAmelCase = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) lowerCAmelCase = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) lowerCAmelCase = key.replace("image_encoder.module" , "flava.image_model" ) lowerCAmelCase = key.replace("text_encoder.module" , "flava.text_model" ) lowerCAmelCase = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) lowerCAmelCase = key.replace("mm_encoder.module" , "flava.multimodal_model" ) lowerCAmelCase = key.replace("text_projection" , "flava.text_projection" ) lowerCAmelCase = key.replace("image_projection" , "flava.image_projection" ) lowerCAmelCase = value.float() for key, value in codebook_state_dict.items(): lowerCAmelCase = value return upgrade @torch.no_grad() def __a ( A__ , A__ , A__ , A__=None ) -> Tuple: if config_path is not None: lowerCAmelCase = FlavaConfig.from_pretrained(snake_case_ ) else: lowerCAmelCase = FlavaConfig() lowerCAmelCase = FlavaForPreTraining(snake_case_ ).eval() lowerCAmelCase = convert_dalle_checkpoint(snake_case_ , snake_case_ , save_checkpoint=snake_case_ ) if os.path.exists(snake_case_ ): lowerCAmelCase = torch.load(snake_case_ , map_location="cpu" ) else: lowerCAmelCase = torch.hub.load_state_dict_from_url(snake_case_ , map_location="cpu" ) lowerCAmelCase = upgrade_state_dict(snake_case_ , snake_case_ ) hf_model.load_state_dict(snake_case_ ) lowerCAmelCase = hf_model.state_dict() lowerCAmelCase = count_parameters(snake_case_ ) lowerCAmelCase = count_parameters(snake_case_ ) + count_parameters(snake_case_ ) assert torch.allclose(snake_case_ , snake_case_ , atol=1e-3 ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowercase : Dict = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
703
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowercase : Optional[int] = random.Random() def __a ( A__ , A__=1.0 , A__=None , A__=None ) -> Any: if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int=7 , SCREAMING_SNAKE_CASE : Optional[Any]=4_0_0 , SCREAMING_SNAKE_CASE : Optional[Any]=2_0_0_0 , SCREAMING_SNAKE_CASE : Union[str, Any]=1 , SCREAMING_SNAKE_CASE : int=0.0 , SCREAMING_SNAKE_CASE : Optional[int]=1_6_0_0_0 , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Optional[Any]=8_0 , SCREAMING_SNAKE_CASE : int=1_6 , SCREAMING_SNAKE_CASE : Any=6_4 , SCREAMING_SNAKE_CASE : List[Any]="hann_window" , SCREAMING_SNAKE_CASE : Dict=8_0 , SCREAMING_SNAKE_CASE : Any=7_6_0_0 , SCREAMING_SNAKE_CASE : Optional[Any]=1E-10 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , ) -> Any: """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = do_normalize lowerCAmelCase = num_mel_bins lowerCAmelCase = hop_length lowerCAmelCase = win_length lowerCAmelCase = win_function lowerCAmelCase = fmin lowerCAmelCase = fmax lowerCAmelCase = mel_floor lowerCAmelCase = return_attention_mask def __A ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __A ( self : List[str] , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> str: """simple docstring""" def _flatten(SCREAMING_SNAKE_CASE : List[Any] ): return list(itertools.chain(*SCREAMING_SNAKE_CASE ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs def __A ( self : List[str] , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : Optional[int]=False ) -> str: """simple docstring""" if equal_length: lowerCAmelCase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs @require_torch class _lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = SpeechTaFeatureExtractor def __A ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase = SpeechTaFeatureExtractionTester(self ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: """simple docstring""" self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE , axis=0 ) - 1 ) < 1E-3 ) ) def __A ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values lowerCAmelCase = feat_extract(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def __A ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = ["longest", "max_length", "do_not_pad"] lowerCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = feat_extract(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , return_tensors="np" ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __A ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = range(8_0_0 , 1_4_0_0 , 2_0_0 ) lowerCAmelCase = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase = ["longest", "max_length", "do_not_pad"] lowerCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = feat_extract(SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __A ( self : str ) -> Any: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=1_0_0_0 , padding="max_length" , return_tensors="np" ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __A ( self : int ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=1_0_0_0 , padding="longest" , return_tensors="np" ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=2_0_0_0 , padding="longest" , return_tensors="np" ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def __A ( self : Optional[int] ) -> Any: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __A ( self : int ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase = feature_extractor(audio_target=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowerCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test batched lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(SCREAMING_SNAKE_CASE ) lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def __A ( self : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , processed_features[input_name] ) ) ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=SCREAMING_SNAKE_CASE ) lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __A ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __A ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = feat_extract.num_mel_bins # hack! lowerCAmelCase = feat_extract.pad(SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="np" )[input_name] lowerCAmelCase = feat_extract.pad(SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __A ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = self.feat_extract_dict lowerCAmelCase = True lowerCAmelCase = self.feature_extraction_class(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase = [len(SCREAMING_SNAKE_CASE ) for x in speech_inputs] lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = feat_extract.num_mel_bins # hack! lowerCAmelCase = feat_extract.pad(SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , SCREAMING_SNAKE_CASE ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , SCREAMING_SNAKE_CASE ) def __A ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCAmelCase = self.feat_extract_dict lowerCAmelCase = True lowerCAmelCase = self.feature_extraction_class(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase = [len(SCREAMING_SNAKE_CASE ) for x in speech_inputs] lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = min(SCREAMING_SNAKE_CASE ) lowerCAmelCase = feat_extract.num_mel_bins # hack! lowerCAmelCase = feat_extract.pad( SCREAMING_SNAKE_CASE , padding="max_length" , max_length=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors="np" ) self.assertIn("attention_mask" , SCREAMING_SNAKE_CASE ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: """simple docstring""" from datasets import load_dataset lowerCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowerCAmelCase = ds.sort("id" ).select(range(SCREAMING_SNAKE_CASE ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __A ( self : List[Any] ) -> int: """simple docstring""" lowerCAmelCase = torch.tensor( [2.38_04E-03, 2.07_52E-03, 1.98_36E-03, 2.10_57E-03, 1.61_74E-03, 3.05_18E-04, 9.15_53E-05, 3.35_69E-04, 9.76_56E-04, 1.83_11E-03, 2.01_42E-03, 2.10_57E-03, 1.73_95E-03, 4.57_76E-04, -3.96_73E-04, 4.57_76E-04, 1.00_71E-03, 9.15_53E-05, 4.88_28E-04, 1.15_97E-03, 7.32_42E-04, 9.46_04E-04, 1.80_05E-03, 1.83_11E-03, 8.85_01E-04, 4.27_25E-04, 4.88_28E-04, 7.32_42E-04, 1.09_86E-03, 2.10_57E-03] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = SpeechTaFeatureExtractor() lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , SCREAMING_SNAKE_CASE , atol=1E-6 ) ) def __A ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = SpeechTaFeatureExtractor() lowerCAmelCase = feature_extractor(audio_target=SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
159
0
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : int = 10_00 ) -> int: _snake_case = 3 _snake_case = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"{solution() = }")
224
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=True , __lowerCamelCase : int="pt" ) -> int: _snake_case = {'''add_prefix_space''': True} if isinstance(__lowerCamelCase , __lowerCamelCase ) and not line.startswith(''' ''' ) else {} _snake_case = padding_side return tokenizer( [line] , max_length=__lowerCamelCase , padding='''max_length''' if pad_to_max_length else None , truncation=__lowerCamelCase , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) def _UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None , ) -> Any: _snake_case = input_ids.ne(__lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCAmelCase__ ( A_ ): def __init__( self : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str="train" , _lowerCamelCase : List[str]=None , _lowerCamelCase : List[str]=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Union[str, Any]="" , ): super().__init__() _snake_case = Path(_lowerCamelCase ).joinpath(type_path + '''.source''' ) _snake_case = Path(_lowerCamelCase ).joinpath(type_path + '''.target''' ) _snake_case = self.get_char_lens(self.src_file ) _snake_case = max_source_length _snake_case = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' _snake_case = tokenizer _snake_case = prefix if n_obs is not None: _snake_case = self.src_lens[:n_obs] _snake_case = src_lang _snake_case = tgt_lang def __len__( self : List[str] ): return len(self.src_lens ) def __getitem__( self : str , _lowerCamelCase : List[str] ): _snake_case = index + 1 # linecache starts at 1 _snake_case = self.prefix + linecache.getline(str(self.src_file ) , _lowerCamelCase ).rstrip('''\n''' ) _snake_case = linecache.getline(str(self.tgt_file ) , _lowerCamelCase ).rstrip('''\n''' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowerCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _snake_case = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowerCamelCase ) else self.tokenizer ) _snake_case = self.tokenizer.generator if isinstance(self.tokenizer , _lowerCamelCase ) else self.tokenizer _snake_case = encode_line(_lowerCamelCase , _lowerCamelCase , self.max_source_length , '''right''' ) _snake_case = encode_line(_lowerCamelCase , _lowerCamelCase , self.max_target_length , '''right''' ) _snake_case = source_inputs['''input_ids'''].squeeze() _snake_case = target_inputs['''input_ids'''].squeeze() _snake_case = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase ( _lowerCamelCase : Optional[Any] ): return [len(_lowerCamelCase ) for x in Path(_lowerCamelCase ).open().readlines()] def lowercase ( self : int , _lowerCamelCase : int ): _snake_case = torch.stack([x['''input_ids'''] for x in batch] ) _snake_case = torch.stack([x['''attention_mask'''] for x in batch] ) _snake_case = torch.stack([x['''decoder_input_ids'''] for x in batch] ) _snake_case = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowerCamelCase ) else self.tokenizer.pad_token_id ) _snake_case = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowerCamelCase ) else self.tokenizer.pad_token_id ) _snake_case = trim_batch(_lowerCamelCase , _lowerCamelCase ) _snake_case , _snake_case = trim_batch(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase ) _snake_case = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch UpperCAmelCase__ = getLogger(__name__) def _UpperCAmelCase ( __lowerCamelCase : List[List] ) -> Any: return list(itertools.chain.from_iterable(__lowerCamelCase ) ) def _UpperCAmelCase ( __lowerCamelCase : str ) -> None: _snake_case = get_git_info() save_json(__lowerCamelCase , os.path.join(__lowerCamelCase , '''git_log.json''' ) ) def _UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=4 , **__lowerCamelCase : Union[str, Any] ) -> str: with open(__lowerCamelCase , '''w''' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase , **__lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Union[str, Any]: with open(__lowerCamelCase ) as f: return json.load(__lowerCamelCase ) def _UpperCAmelCase ( ) -> str: _snake_case = git.Repo(search_parent_directories=__lowerCamelCase ) _snake_case = { '''repo_id''': str(__lowerCamelCase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def _UpperCAmelCase ( __lowerCamelCase : Callable , __lowerCamelCase : Iterable ) -> List: return list(map(__lowerCamelCase , __lowerCamelCase ) ) def _UpperCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : Tuple ) -> Tuple: with open(__lowerCamelCase , '''wb''' ) as f: return pickle.dump(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Optional[int]: def remove_articles(__lowerCamelCase : Tuple ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , __lowerCamelCase ) def white_space_fix(__lowerCamelCase : int ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase : List[Any] ): _snake_case = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) ) def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : List[Any] ) -> Any: _snake_case = normalize_answer(__lowerCamelCase ).split() _snake_case = normalize_answer(__lowerCamelCase ).split() _snake_case = Counter(__lowerCamelCase ) & Counter(__lowerCamelCase ) _snake_case = sum(common.values() ) if num_same == 0: return 0 _snake_case = 1.0 * num_same / len(__lowerCamelCase ) _snake_case = 1.0 * num_same / len(__lowerCamelCase ) _snake_case = (2 * precision * recall) / (precision + recall) return fa def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : int ) -> Any: return normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ) -> Dict: assert len(__lowerCamelCase ) == len(__lowerCamelCase ) _snake_case = 0 for hypo, pred in zip(__lowerCamelCase , __lowerCamelCase ): em += exact_match_score(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: em /= len(__lowerCamelCase ) return {"em": em} def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Optional[int]: return model_prefix.startswith('''rag''' ) def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ) -> Union[str, Any]: _snake_case = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _snake_case = '''dropout_rate''' for p in extra_params: if getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if not hasattr(__lowerCamelCase , __lowerCamelCase ) and not hasattr(__lowerCamelCase , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(__lowerCamelCase ) ) delattr(__lowerCamelCase , __lowerCamelCase ) continue _snake_case = p if hasattr(__lowerCamelCase , __lowerCamelCase ) else equivalent_param[p] setattr(__lowerCamelCase , __lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) delattr(__lowerCamelCase , __lowerCamelCase ) return hparams, config
224
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :int = (KDPMaDiscreteScheduler,) lowerCamelCase :str = 10 def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> str: _A = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowerCAmelCase_ ) return config def UpperCAmelCase ( self ) -> str: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> str: _A = self.scheduler_classes[0] _A = self.get_scheduler_config(prediction_type="""v_prediction""" ) _A = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(lowerCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) _A = model(lowerCAmelCase_ , lowerCAmelCase_ ) _A = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A = output.prev_sample _A = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A = torch.mean(torch.abs(lowerCAmelCase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def UpperCAmelCase ( self ) -> str: if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(lowerCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) _A = model(lowerCAmelCase_ , lowerCAmelCase_ ) _A = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A = output.prev_sample _A = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A = torch.mean(torch.abs(lowerCAmelCase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def UpperCAmelCase ( self ) -> List[Any]: if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase_ ) _A = self.dummy_model() _A = self.dummy_sample_deter.to(lowerCAmelCase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) _A = model(lowerCAmelCase_ , lowerCAmelCase_ ) _A = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A = output.prev_sample _A = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A = torch.mean(torch.abs(lowerCAmelCase_ ) ) if str(lowerCAmelCase_ ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
83
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Tuple = '''philschmid/bart-large-cnn-samsum''' lowerCamelCase :Tuple = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) lowerCamelCase :List[Any] = '''summarizer''' lowerCamelCase :List[str] = AutoTokenizer lowerCamelCase :Dict = AutoModelForSeqaSeqLM lowerCamelCase :int = ['''text'''] lowerCamelCase :List[Any] = ['''text'''] def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: return self.pre_processor(lowerCAmelCase_ , return_tensors="""pt""" , truncation=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: return self.model.generate(**lowerCAmelCase_ )[0] def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return self.pre_processor.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ )
83
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _A ( _lowercase ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowerCamelCase (nn.Module ): def __init__( self: Union[str, Any],A_: nn.Module,A_: int ): '''simple docstring''' super().__init__() __UpperCamelCase = module __UpperCamelCase = nn.Sequential( nn.Linear(module.in_features,A_,bias=A_ ),nn.Linear(A_,module.out_features,bias=A_ ),) __UpperCamelCase = (2.0 / (5 * min(module.in_features,module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight,std=A_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def snake_case_ ( self: Optional[Any],A_: int,*A_: Union[str, Any],**A_: str ): '''simple docstring''' return self.module(A_,*A_,**A_ ) + self.adapter(A_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCamelCase (unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _lowercase = """bigscience/bloom-1b7""" # Constant values _lowercase = 2.109659552692574 _lowercase = """Hello my name is""" _lowercase = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) _lowercase = 10 def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained(self.model_name ) class __lowerCamelCase (_a ): def snake_case_ ( self: int ): '''simple docstring''' super().setUp() # Models and tokenizer __UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name,torch_dtype=torch.floataa,device_map='auto' ) __UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.model_abit.config self.assertTrue(hasattr(A_,'quantization_config' ) ) __UpperCamelCase = config.to_dict() __UpperCamelCase = config.to_diff_dict() __UpperCamelCase = config.to_json_string() def snake_case_ ( self: Optional[int] ): '''simple docstring''' from bitsandbytes.nn import Paramsabit __UpperCamelCase = self.model_fpaa.get_memory_footprint() __UpperCamelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit,self.EXPECTED_RELATIVE_DIFFERENCE ) __UpperCamelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def snake_case_ ( self: str ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(A_,torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ) __UpperCamelCase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ),max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0],skip_special_tokens=A_ ),self.EXPECTED_OUTPUTS ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = BitsAndBytesConfig() __UpperCamelCase = True __UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name,quantization_config=A_,device_map='auto' ) __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ) __UpperCamelCase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ),max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0],skip_special_tokens=A_ ),self.EXPECTED_OUTPUTS ) def snake_case_ ( self: List[str] ): '''simple docstring''' with self.assertRaises(A_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = BitsAndBytesConfig() with self.assertRaises(A_ ): __UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name,quantization_config=A_,load_in_abit=A_,device_map='auto',bnb_abit_quant_type='nf4',) def snake_case_ ( self: Tuple ): '''simple docstring''' with self.assertRaises(A_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(A_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(A_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(A_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(A_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ) __UpperCamelCase = self.model_fpaa.to(torch.floataa ) __UpperCamelCase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ),max_new_tokens=10 ) # Check this does not throw an error __UpperCamelCase = self.model_fpaa.to('cpu' ) # Check this does not throw an error __UpperCamelCase = self.model_fpaa.half() # Check this does not throw an error __UpperCamelCase = self.model_fpaa.float() def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('t5-small',load_in_abit=A_,device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCamelCase (unittest.TestCase ): @classmethod def snake_case_ ( cls: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 't5-small' __UpperCamelCase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __UpperCamelCase = AutoTokenizer.from_pretrained(cls.model_name ) __UpperCamelCase = 'Translate in German: Hello, my dog is cute' def snake_case_ ( self: Dict ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: List[str] ): '''simple docstring''' from transformers import TaForConditionalGeneration __UpperCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules __UpperCamelCase = None # test with `t5-small` __UpperCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' ) __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ).to(0 ) __UpperCamelCase = model.generate(**A_ ) # test with `flan-t5-small` __UpperCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name,load_in_abit=A_,device_map='auto' ) __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ).to(0 ) __UpperCamelCase = model.generate(**A_ ) __UpperCamelCase = modules def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __UpperCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q,bnb.nn.Linearabit ) ) __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ).to(0 ) __UpperCamelCase = model.generate(**A_ ) # test with `flan-t5-small` __UpperCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name,load_in_abit=A_,device_map='auto' ) __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ).to(0 ) __UpperCamelCase = model.generate(**A_ ) class __lowerCamelCase (_a ): def snake_case_ ( self: Tuple ): '''simple docstring''' super().setUp() # model_name __UpperCamelCase = 'bigscience/bloom-560m' __UpperCamelCase = 't5-small' # Different types of model __UpperCamelCase = AutoModel.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' ) # Sequence classification model __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name,load_in_abit=A_,device_map='auto' ) # CausalLM model __UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name,load_in_abit=A_,device_map='auto' ) # Seq2seq model __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name,load_in_abit=A_,device_map='auto' ) def snake_case_ ( self: Any ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: str ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowerCamelCase (_a ): def snake_case_ ( self: Any ): '''simple docstring''' super().setUp() def snake_case_ ( self: List[str] ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = pipeline( 'text-generation',model=self.model_name,model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa},max_new_tokens=self.MAX_NEW_TOKENS,) # Real second forward pass __UpperCamelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'],self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowerCamelCase (_a ): def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' super().setUp() def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name,load_in_abit=A_,device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ),{0, 1} ) # Check that inference pass works on the model __UpperCamelCase = self.tokenizer(self.input_text,return_tensors='pt' ) # Second real batch __UpperCamelCase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ),max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0],skip_special_tokens=A_ ),self.EXPECTED_OUTPUTS ) class __lowerCamelCase (_a ): def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'facebook/opt-350m' super().setUp() def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __UpperCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name,load_in_abit=A_ ) self.assertEqual(set(model.hf_device_map.values() ),{torch.cuda.current_device()} ) for param in model.parameters(): __UpperCamelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __UpperCamelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(A_ ) ): __UpperCamelCase = LoRALayer(module.q_proj,rank=16 ) __UpperCamelCase = LoRALayer(module.k_proj,rank=16 ) __UpperCamelCase = LoRALayer(module.v_proj,rank=16 ) # Step 3: dummy batch __UpperCamelCase = self.tokenizer('Test batch ',return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __UpperCamelCase = model.forward(**A_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(A_,A_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(A_,nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowerCamelCase (_a ): _lowercase = """gpt2-xl""" _lowercase = 3.3191854854152187
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case = 1_6 __snake_case = 3_2 def _A ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase ) __UpperCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCamelCase = datasets.map( _lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(_lowercase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) __UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['lr'] __UpperCamelCase = int(config['num_epochs'] ) __UpperCamelCase = int(config['seed'] ) __UpperCamelCase = int(config['batch_size'] ) __UpperCamelCase = args.model_name_or_path set_seed(_lowercase ) __UpperCamelCase, __UpperCamelCase = get_dataloaders(_lowercase , _lowercase , _lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase ) # Instantiate optimizer __UpperCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_lowercase ) if accelerator.state.deepspeed_plugin is not None: __UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: __UpperCamelCase = 1 __UpperCamelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: __UpperCamelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over __UpperCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __UpperCamelCase = 0 # Now we train the model __UpperCamelCase = evaluate.load('glue' , 'mrpc' ) __UpperCamelCase = 0 __UpperCamelCase = {} for epoch in range(_lowercase , _lowercase ): model.train() for step, batch in enumerate(_lowercase ): __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = outputs.loss __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __UpperCamelCase = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**_lowercase ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __UpperCamelCase, __UpperCamelCase = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase ) - 1: __UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _lowercase ) __UpperCamelCase = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: __UpperCamelCase = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(_lowercase , _lowercase ) def _A ( ) -> List[str]: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowercase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowercase , ) parser.add_argument( '--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=_lowercase , default=_lowercase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=_lowercase , default=3 , help='Number of train epochs.' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
1
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowerCamelCase : '''simple docstring''' a = PegasusConfig a = {} a = "gelu" def __init__( self : Dict , _snake_case : Any , _snake_case : int=13 , _snake_case : str=7 , _snake_case : int=True , _snake_case : Tuple=False , _snake_case : int=99 , _snake_case : Any=32 , _snake_case : int=2 , _snake_case : Optional[int]=4 , _snake_case : int=37 , _snake_case : Optional[Any]=0.1 , _snake_case : str=0.1 , _snake_case : List[Any]=40 , _snake_case : Any=2 , _snake_case : int=1 , _snake_case : int=0 , ) -> Any: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = bos_token_id def lowerCAmelCase_ ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE__ = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE__ = prepare_pegasus_inputs_dict(_snake_case , _snake_case , _snake_case ) return config, inputs_dict def lowerCAmelCase_ ( self : Any , _snake_case : Union[str, Any] , _snake_case : List[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = TFPegasusModel(config=_snake_case ).get_decoder() SCREAMING_SNAKE_CASE__ = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE__ = input_ids[:1, :] SCREAMING_SNAKE_CASE__ = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE__ = inputs_dict["head_mask"] SCREAMING_SNAKE_CASE__ = 1 # first forward pass SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case , head_mask=_snake_case , use_cache=_snake_case ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE__ = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case )[0] SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE__ = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_snake_case , _snake_case , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Any: if attention_mask is None: SCREAMING_SNAKE_CASE__ = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a = (TFPegasusForConditionalGeneration,) if is_tf_available() else () a = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a = True a = False a = False def lowerCAmelCase_ ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = TFPegasusModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_snake_case ) def lowerCAmelCase_ ( self : str ) -> List[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) @require_sentencepiece @require_tokenizers @require_tf class lowerCamelCase (unittest.TestCase ): '''simple docstring''' a = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] a = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers a = "google/pegasus-xsum" @cached_property def lowerCAmelCase_ ( self : str ) -> Tuple: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase_ ( self : str ) -> Any: SCREAMING_SNAKE_CASE__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase_ ( self : Tuple , **_snake_case : Dict ) -> str: SCREAMING_SNAKE_CASE__ = self.translate_src_text(**_snake_case ) assert self.expected_text == generated_words def lowerCAmelCase_ ( self : Optional[Any] , **_snake_case : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.tokenizer(self.src_text , **_snake_case , padding=_snake_case , return_tensors="tf" ) SCREAMING_SNAKE_CASE__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_snake_case , ) SCREAMING_SNAKE_CASE__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_snake_case ) return generated_words @slow def lowerCAmelCase_ ( self : Optional[int] ) -> Any: self._assert_generated_batch_equal_expected()
538
"""simple docstring""" import math def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> float: if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCAmelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
538
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset UpperCAmelCase__ = random.Random() def a_ (__A , __A=1.0 , __A=None , __A=None ) -> int: """simple docstring""" if rng is None: __a : List[Any] = global_rng __a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__(self: Dict , __UpperCAmelCase: Tuple , __UpperCAmelCase: str=7 , __UpperCAmelCase: Dict=400 , __UpperCAmelCase: Any=2000 , __UpperCAmelCase: str=2048 , __UpperCAmelCase: Tuple=128 , __UpperCAmelCase: str=1 , __UpperCAmelCase: Any=512 , __UpperCAmelCase: Dict=30 , __UpperCAmelCase: Dict=44100 , ) -> str: '''simple docstring''' __a : Union[str, Any] = parent __a : str = batch_size __a : Dict = min_seq_length __a : Dict = max_seq_length __a : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Optional[int] = spectrogram_length __a : Union[str, Any] = feature_size __a : int = num_audio_channels __a : List[Any] = hop_length __a : Union[str, Any] = chunk_length __a : Any = sampling_rate def UpperCAmelCase__ (self: Dict ) -> List[Any]: '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCAmelCase__ (self: Optional[int] , __UpperCAmelCase: Any=False , __UpperCAmelCase: Dict=False ) -> Tuple: '''simple docstring''' def _flatten(__UpperCAmelCase: Optional[int] ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: __a : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Tuple = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case_ ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" snake_case__ = TvltFeatureExtractor def UpperCAmelCase__ (self: Optional[Any] ) -> List[Any]: '''simple docstring''' __a : str = TvltFeatureExtractionTester(self ) def UpperCAmelCase__ (self: str ) -> int: '''simple docstring''' __a : Any = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__UpperCAmelCase , "spectrogram_length" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "feature_size" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "num_audio_channels" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "hop_length" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "chunk_length" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "sampling_rate" ) ) def UpperCAmelCase__ (self: List[Any] ) -> int: '''simple docstring''' __a : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : str = feat_extract_first.save_pretrained(__UpperCAmelCase )[0] check_json_file_has_correct_format(__UpperCAmelCase ) __a : Union[str, Any] = self.feature_extraction_class.from_pretrained(__UpperCAmelCase ) __a : List[str] = feat_extract_first.to_dict() __a : Union[str, Any] = feat_extract_second.to_dict() __a : str = dict_first.pop("mel_filters" ) __a : List[Any] = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__ (self: Union[str, Any] ) -> int: '''simple docstring''' __a : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : Tuple = os.path.join(__UpperCAmelCase , "feat_extract.json" ) feat_extract_first.to_json_file(__UpperCAmelCase ) __a : List[Any] = self.feature_extraction_class.from_json_file(__UpperCAmelCase ) __a : List[Any] = feat_extract_first.to_dict() __a : Tuple = feat_extract_second.to_dict() __a : Any = dict_first.pop("mel_filters" ) __a : Union[str, Any] = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__ (self: List[str] ) -> List[Any]: '''simple docstring''' __a : Any = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : List[str] = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : int = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a : Union[str, Any] = feature_extractor(__UpperCAmelCase , return_tensors="np" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a : Optional[int] = feature_extractor( __UpperCAmelCase , return_tensors="np" , sampling_rate=44100 , mask_audio=__UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a : Optional[int] = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : Tuple = np.asarray(__UpperCAmelCase ) __a : int = feature_extractor(__UpperCAmelCase , return_tensors="np" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCAmelCase__ (self: int , __UpperCAmelCase: str ) -> str: '''simple docstring''' __a : Optional[int] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __a : Optional[int] = ds.sort("id" ).select(range(__UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCAmelCase__ (self: Optional[Any] ) -> List[Any]: '''simple docstring''' __a : str = self._load_datasamples(1 ) __a : Any = TvltFeatureExtractor() __a : Tuple = feature_extractor(__UpperCAmelCase , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a : Any = torch.tensor([[-0.30_32, -0.27_08], [-0.44_34, -0.40_07]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __UpperCAmelCase , atol=1E-4 ) )
351
def lowerCAmelCase_ ( __UpperCAmelCase: float , __UpperCAmelCase: list[float] ) -> float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) UpperCamelCase__ : Any = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__UpperCAmelCase ) ) return round(__UpperCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
253
0
from collections.abc import Generator def __UpperCamelCase ( ): lowerCAmelCase_ , lowerCAmelCase_ = 0, 1 while True: lowerCAmelCase_ , lowerCAmelCase_ = b, a + b yield b def __UpperCamelCase ( _A = 1000 ): lowerCAmelCase_ = 1 lowerCAmelCase_ = fibonacci_generator() while len(str(next(_A ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
711
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( __UpperCAmelCase ): def __init__( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" super().__init__() self.register_modules(vqvae=UpperCamelCase__, unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self, UpperCamelCase__ = 1, UpperCamelCase__ = None, UpperCamelCase__ = 0.0, UpperCamelCase__ = 50, UpperCamelCase__ = "pil", UpperCamelCase__ = True, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=UpperCamelCase__, ) lowerCAmelCase_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase_ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCamelCase__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowerCAmelCase_ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase_ = {} if accepts_eta: lowerCAmelCase_ = eta for t in self.progress_bar(self.scheduler.timesteps ): lowerCAmelCase_ = self.scheduler.scale_model_input(UpperCamelCase__, UpperCamelCase__ ) # predict the noise residual lowerCAmelCase_ = self.unet(UpperCamelCase__, UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, **UpperCamelCase__ ).prev_sample # decode the image latents with the VAE lowerCAmelCase_ = self.vqvae.decode(UpperCamelCase__ ).sample lowerCAmelCase_ = (image / 2 + 0.5).clamp(0, 1 ) lowerCAmelCase_ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
325
0
def snake_case__ ( UpperCAmelCase : int ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
145
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) lowerCAmelCase__ : Tuple = """CIDAS/clipseg-rd64-refined""" lowerCAmelCase__ : Optional[Any] = """image_segmenter""" lowerCAmelCase__ : Optional[Any] = CLIPSegForImageSegmentation lowerCAmelCase__ : Any = ["""image""", """text"""] lowerCAmelCase__ : Optional[Any] = ["""image"""] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: requires_backends(self , ["vision"] ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: return self.pre_processor(text=[label] , images=[image] , padding=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) def A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: with torch.no_grad(): a_ : List[Any] = self.model(**_SCREAMING_SNAKE_CASE ).logits return logits def A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: a_ : List[Any] = outputs.cpu().detach().numpy() a_ : Optional[Any] = 0 a_ : Optional[int] = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
473
0
from __future__ import annotations def _lowerCAmelCase ( _a : str ) -> bool: return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
712
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase__ ( unittest.TestCase ): __UpperCamelCase = inspect.getfile(accelerate.test_utils ) __UpperCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) __UpperCamelCase = ["""accelerate""", """launch"""] __UpperCamelCase = Path.home() / """.cache/huggingface/accelerate""" __UpperCamelCase = """default_config.yaml""" __UpperCamelCase = config_folder / config_file __UpperCamelCase = config_folder / """_default_config.yaml""" __UpperCamelCase = Path("""tests/test_configs""" ) @classmethod def UpperCAmelCase__ ( cls ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCAmelCase__ ( cls ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : int = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase__ ( self ): for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ["""--config_file""", str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase__ ( self ): execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy() ) class lowercase__ ( unittest.TestCase ): __UpperCamelCase = """test-tpu""" __UpperCamelCase = """us-central1-a""" __UpperCamelCase = """ls""" __UpperCamelCase = ["""accelerate""", """tpu-config"""] __UpperCamelCase = """cd /usr/share""" __UpperCamelCase = """tests/test_samples/test_command_file.sh""" __UpperCamelCase = """Running gcloud compute tpus tpu-vm ssh""" def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = run_command( self.cmd + ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Optional[Any] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=_lowercase ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Tuple = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--command""", """echo \"Hello World\"""", """--debug""", ] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Optional[Any] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command_file""", self.command_file, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Tuple = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Any = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--accelerate_version""", """12.0.0""", """--debug""", ] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , )
440
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: # Initialise PyTorch model lowercase : List[str] = BigBirdConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f"Building PyTorch model from configuration: {config}" ) if is_trivia_qa: lowercase : str = BigBirdForQuestionAnswering(SCREAMING_SNAKE_CASE__ ) else: lowercase : List[Any] = BigBirdForPreTraining(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , is_trivia_qa=SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) lowercase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
336
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowercase : Optional[Any] = """http://www.mocksite.com/file1.txt""" lowercase : str = """\"text\": [\"foo\", \"foo\"]""" lowercase : Tuple = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class __snake_case : _a : Tuple= 200 _a : int= {"Content-Length": "100"} _a : Tuple= {} def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return [bytes(snake_case ,"""utf-8""" )] def _snake_case( *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: import requests monkeypatch.setattr(SCREAMING_SNAKE_CASE__ , """request""" , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = URL if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = url elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = [url] elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = {"""train""": url} lowercase : Union[str, Any] = """dummy""" lowercase : List[Any] = """downloads""" lowercase : Optional[Any] = tmp_path lowercase : Dict = DownloadConfig( cache_dir=os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , use_etag=SCREAMING_SNAKE_CASE__ , ) lowercase : Union[str, Any] = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE__ , download_config=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = dl_manager.download(SCREAMING_SNAKE_CASE__ ) lowercase : str = urls for downloaded_paths in [downloaded_paths]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = [downloaded_paths] lowercase : Any = [urls] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert "train" in downloaded_paths.keys() lowercase : Tuple = downloaded_paths.values() lowercase : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowercase : Optional[Any] = Path(SCREAMING_SNAKE_CASE__ ) lowercase : str = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowercase : Optional[Any] = downloaded_path.read_text() assert content == CONTENT lowercase : Tuple = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() lowercase : Dict = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ ) if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = filename elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = [filename] elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = {"""train""": filename} lowercase : int = """dummy""" lowercase : List[Any] = xz_file.parent lowercase : Union[str, Any] = """extracted""" lowercase : List[str] = DownloadConfig( cache_dir=SCREAMING_SNAKE_CASE__ , use_etag=SCREAMING_SNAKE_CASE__ , ) lowercase : List[Any] = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE__ , download_config=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = dl_manager.extract(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = [extracted_paths] lowercase : Optional[Any] = [paths] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert "train" in extracted_paths.keys() lowercase : Optional[Any] = extracted_paths.values() lowercase : Optional[int] = paths.values() assert extracted_paths for extracted_path, input_path in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert extracted_path == dl_manager.extracted_paths[input_path] lowercase : List[Any] = Path(SCREAMING_SNAKE_CASE__ ) lowercase : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(SCREAMING_SNAKE_CASE__ , etag=SCREAMING_SNAKE_CASE__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowercase : Optional[int] = extracted_path.read_text() lowercase : str = text_file.read_text() assert extracted_file_content == expected_file_content def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(SCREAMING_SNAKE_CASE__ , start=1 ): lowercase : Optional[Any] = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : str = request.getfixturevalue(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Optional[Any] = request.getfixturevalue(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert num_tar == 1 assert num_jsonl == 2 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Dict = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) , start=1 ): assert os.path.basename(SCREAMING_SNAKE_CASE__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
336
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowercase_ = (720, 1280) # Height, Width lowercase_ = (0.4, 0.6) # if height or width lower than this scale, drop it. lowercase_ = 1 / 100 lowercase_ = '' lowercase_ = '' lowercase_ = '' lowercase_ = 250 def lowerCAmelCase ( ): """simple docstring""" __A , __A = get_dataset(__UpperCamelCase , __UpperCamelCase ) for index in range(__UpperCamelCase ): __A = random.sample(range(len(__UpperCamelCase ) ) , 4 ) __A , __A , __A = update_image_and_anno( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , filter_scale=__UpperCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __A = random_chars(3_2 ) __A = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] __A = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(f'{file_root}.jpg' , __UpperCamelCase , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) __A = [] for anno in new_annos: __A = anno[3] - anno[1] __A = anno[4] - anno[2] __A = anno[1] + width / 2 __A = anno[2] + height / 2 __A = f'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(__UpperCamelCase ) with open(f'{file_root}.txt' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = [] __A = [] for label_file in glob.glob(os.path.join(__UpperCamelCase , '''*.txt''' ) ): __A = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__UpperCamelCase ) as in_file: __A = in_file.readlines() __A = os.path.join(__UpperCamelCase , f'{label_name}.jpg' ) __A = [] for obj_list in obj_lists: __A = obj_list.rstrip('''\n''' ).split(''' ''' ) __A = float(obj[1] ) - float(obj[3] ) / 2 __A = float(obj[2] ) - float(obj[4] ) / 2 __A = float(obj[1] ) + float(obj[3] ) / 2 __A = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__UpperCamelCase ) labels.append(__UpperCamelCase ) return img_paths, labels def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0.0 , ): """simple docstring""" __A = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __A = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __A = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __A = int(scale_x * output_size[1] ) __A = int(scale_y * output_size[0] ) __A = [] __A = [] for i, index in enumerate(__UpperCamelCase ): __A = all_img_list[index] path_list.append(__UpperCamelCase ) __A = all_annos[index] __A = cva.imread(__UpperCamelCase ) if i == 0: # top-left __A = cva.resize(__UpperCamelCase , (divid_point_x, divid_point_y) ) __A = img for bbox in img_annos: __A = bbox[1] * scale_x __A = bbox[2] * scale_y __A = bbox[3] * scale_x __A = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __A = cva.resize(__UpperCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) __A = img for bbox in img_annos: __A = scale_x + bbox[1] * (1 - scale_x) __A = bbox[2] * scale_y __A = scale_x + bbox[3] * (1 - scale_x) __A = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __A = cva.resize(__UpperCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) __A = img for bbox in img_annos: __A = bbox[1] * scale_x __A = scale_y + bbox[2] * (1 - scale_y) __A = bbox[3] * scale_x __A = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __A = cva.resize( __UpperCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __A = img for bbox in img_annos: __A = scale_x + bbox[1] * (1 - scale_x) __A = scale_y + bbox[2] * (1 - scale_y) __A = scale_x + bbox[3] * (1 - scale_x) __A = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __A = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __A = ascii_lowercase + digits return "".join(random.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
215
"""simple docstring""" lowercase_ = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowercase_ = [{'type': 'code', 'content': INSTALL_CONTENT}] lowercase_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
215
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): lowercase = SwinConfig(image_size=192 ) if "base" in model_name: lowercase = 6 lowercase = 128 lowercase = (2, 2, 18, 2) lowercase = (4, 8, 16, 32) elif "large" in model_name: lowercase = 12 lowercase = 192 lowercase = (2, 2, 18, 2) lowercase = (6, 12, 24, 48) else: raise ValueError("""Model not supported, only supports base and large variants""" ) lowercase = window_size lowercase = embed_dim lowercase = depths lowercase = num_heads return config def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[int] ): if "encoder.mask_token" in name: lowercase = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: lowercase = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: lowercase = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" ) if "attn.proj" in name: lowercase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase = "layernorm.weight" if name == "encoder.norm.bias": lowercase = "layernorm.bias" if "decoder" in name: pass else: lowercase = "swin." + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCamelCase__ ) if "attn_mask" in key: pass elif "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[2] ) lowercase = int(key_split[4] ) lowercase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[ :dim ] lowercase = val[ dim : dim * 2 ] lowercase = val[ -dim: ] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any ): lowercase = torch.load(lowerCamelCase__ , map_location="""cpu""" )["model"] lowercase = get_swin_config(lowerCamelCase__ ) lowercase = SwinForMaskedImageModeling(lowerCamelCase__ ) model.eval() lowercase = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase = ViTImageProcessor(size={"""height""": 192, """width""": 192} ) lowercase = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) lowercase = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCamelCase__ ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": lowercase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : str = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
588
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase__ ( snake_case__, unittest.TestCase ): _UpperCAmelCase :Dict = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Any=0 ): lowerCamelCase_ : Tuple =np.random.RandomState(snake_case__ ) lowerCamelCase_ : Union[str, Any] ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : str =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[str] =self.get_dummy_inputs() lowerCamelCase_ : List[str] =pipe(**snake_case__ ).images lowerCamelCase_ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Dict =np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Optional[Any] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : int =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[Any] =self.get_dummy_inputs() lowerCamelCase_ : Union[str, Any] =pipe(**snake_case__ ).images lowerCamelCase_ : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Union[str, Any] =np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Optional[int] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : int =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : int =self.get_dummy_inputs() lowerCamelCase_ : Optional[Any] =pipe(**snake_case__ ).images lowerCamelCase_ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Any =np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : List[Any] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : str =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Dict =self.get_dummy_inputs() lowerCamelCase_ : Dict =pipe(**snake_case__ ).images lowerCamelCase_ : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Tuple =np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : int =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : Optional[Any] =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Dict =self.get_dummy_inputs() lowerCamelCase_ : str =pipe(**snake_case__ ).images lowerCamelCase_ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Optional[int] =np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Any =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : Union[str, Any] =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Optional[int] =self.get_dummy_inputs() lowerCamelCase_ : Tuple =pipe(**snake_case__ ).images lowerCamelCase_ : List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : List[Any] =np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : int =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.get_dummy_inputs() lowerCamelCase_ : Optional[Any] =3 * [inputs["prompt"]] # forward lowerCamelCase_ : Optional[int] =pipe(**snake_case__ ) lowerCamelCase_ : Dict =output.images[0, -3:, -3:, -1] lowerCamelCase_ : Any =self.get_dummy_inputs() lowerCamelCase_ : Dict =3 * [inputs.pop("prompt" )] lowerCamelCase_ : Union[str, Any] =pipe.tokenizer( snake_case__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors="np" , ) lowerCamelCase_ : Any =text_inputs["input_ids"] lowerCamelCase_ : Dict =pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] lowerCamelCase_ : Union[str, Any] =prompt_embeds # forward lowerCamelCase_ : Tuple =pipe(**snake_case__ ) lowerCamelCase_ : List[str] =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : List[str] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[Any] =self.get_dummy_inputs() lowerCamelCase_ : Dict =3 * ["this is a negative prompt"] lowerCamelCase_ : Tuple =negative_prompt lowerCamelCase_ : List[str] =3 * [inputs["prompt"]] # forward lowerCamelCase_ : Optional[Any] =pipe(**snake_case__ ) lowerCamelCase_ : Any =output.images[0, -3:, -3:, -1] lowerCamelCase_ : str =self.get_dummy_inputs() lowerCamelCase_ : int =3 * [inputs.pop("prompt" )] lowerCamelCase_ : List[Any] =[] for p in [prompt, negative_prompt]: lowerCamelCase_ : Tuple =pipe.tokenizer( snake_case__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors="np" , ) lowerCamelCase_ : Dict =text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) lowerCamelCase_ , lowerCamelCase_ : int =embeds # forward lowerCamelCase_ : str =pipe(**snake_case__ ) lowerCamelCase_ : Any =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): @property def UpperCAmelCase__ ( self : int ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : List[str] =ort.SessionOptions() lowerCamelCase_ : List[Any] =False return options def UpperCAmelCase__ ( self : Tuple ): # using the PNDM scheduler by default lowerCamelCase_ : Optional[Any] =OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[Any] ="A painting of a squirrel eating a burger" np.random.seed(0 ) lowerCamelCase_ : Tuple =sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) lowerCamelCase_ : Union[str, Any] =output.images lowerCamelCase_ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : List[str] =np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : List[Any] =DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) lowerCamelCase_ : List[str] =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : int ="open neural network exchange" lowerCamelCase_ : List[Any] =np.random.RandomState(0 ) lowerCamelCase_ : str =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type="np" ) lowerCamelCase_ : Optional[int] =output.images lowerCamelCase_ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : Any =np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : str =LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) lowerCamelCase_ : Any =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Union[str, Any] ="open neural network exchange" lowerCamelCase_ : str =np.random.RandomState(0 ) lowerCamelCase_ : Optional[int] =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type="np" ) lowerCamelCase_ : Dict =output.images lowerCamelCase_ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : Dict =np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Any =0 def test_callback_fn(snake_case__ : int , snake_case__ : int , snake_case__ : np.ndarray ) -> None: lowerCamelCase_ : Optional[int] =True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) lowerCamelCase_ : List[str] =latents[0, -3:, -3:, -1] lowerCamelCase_ : Union[str, Any] =np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) lowerCamelCase_ : Optional[Any] =latents[0, -3:, -3:, -1] lowerCamelCase_ : List[Any] =np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 lowerCamelCase_ : Any =False lowerCamelCase_ : int =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Dict ="Andromeda galaxy in a bottle" lowerCamelCase_ : Union[str, Any] =np.random.RandomState(0 ) pipe( prompt=snake_case__ , num_inference_steps=5 , guidance_scale=7.5 , generator=snake_case__ , callback=snake_case__ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : List[str] =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(snake_case__ , snake_case__ ) assert pipe.safety_checker is None lowerCamelCase_ : Tuple =pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) lowerCamelCase_ : str =OnnxStableDiffusionPipeline.from_pretrained(snake_case__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCamelCase_ : Any =pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
153
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : List[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
719
def A_ ( a , a ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
353
0
def __A ( _lowercase ): '''simple docstring''' assert column_title.isupper() _A = 0 _A = len(_lowercase ) - 1 _A = 0 while index >= 0: _A = (ord(column_title[index] ) - 64) * pow(26 , _lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
484
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _A = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _A = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _A = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) _A = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) _A = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _A = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) _A = tf.keras.preprocessing.image.img_to_array(test_image) _A = np.expand_dims(test_image, axis=0) _A = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _A = '''Normal''' if result[0][0] == 1: _A = '''Abnormality detected'''
325
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _A = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class A ( __UpperCAmelCase ): def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" super().__init__(*UpperCamelCase__, **UpperCamelCase__ ) requires_backends(self, '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=None ): """simple docstring""" lowerCAmelCase_ = {} lowerCAmelCase_ = {} if prompt is not None: lowerCAmelCase_ = prompt if generate_kwargs is not None: lowerCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowerCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) lowerCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self, UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return super().__call__(UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=None ): """simple docstring""" lowerCAmelCase_ = load_image(UpperCamelCase__ ) if prompt is not None: if not isinstance(UpperCamelCase__, UpperCamelCase__ ): raise ValueError( f"Received an invalid text input, got - {type(UpperCamelCase__ )} - but expected a single string. " '''Note also that one single text can be provided for conditional image to text generation.''' ) lowerCAmelCase_ = self.model.config.model_type if model_type == "git": lowerCAmelCase_ = self.image_processor(images=UpperCamelCase__, return_tensors=self.framework ) lowerCAmelCase_ = self.tokenizer(text=UpperCamelCase__, add_special_tokens=UpperCamelCase__ ).input_ids lowerCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids lowerCAmelCase_ = torch.tensor(UpperCamelCase__ ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": lowerCAmelCase_ = self.image_processor(images=UpperCamelCase__, header_text=UpperCamelCase__, return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowerCAmelCase_ = self.image_processor(images=UpperCamelCase__, return_tensors=self.framework ) lowerCAmelCase_ = self.tokenizer(UpperCamelCase__, return_tensors=self.framework ) model_inputs.update(UpperCamelCase__ ) else: raise ValueError(f"Model type {model_type} does not support conditional text generation" ) else: lowerCAmelCase_ = self.image_processor(images=UpperCamelCase__, return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowerCAmelCase_ = None return model_inputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''], UpperCamelCase__ ) and all(x is None for x in model_inputs['''input_ids'''] ) ): lowerCAmelCase_ = None if generate_kwargs is None: lowerCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowerCAmelCase_ = model_inputs.pop(self.model.main_input_name ) lowerCAmelCase_ = self.model.generate(UpperCamelCase__, **UpperCamelCase__, **UpperCamelCase__ ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [] for output_ids in model_outputs: lowerCAmelCase_ = { '''generated_text''': self.tokenizer.decode( UpperCamelCase__, skip_special_tokens=UpperCamelCase__, ) } records.append(UpperCamelCase__ ) return records
325
1
def UpperCamelCase( __UpperCamelCase : int ): lowerCAmelCase_ : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
171
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys A__ : str = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') A__ : Union[str, Any] = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode('''utf-8''').split() A__ : Any = '''|'''.join(sys.argv[1:]) A__ : Tuple = re.compile(RF'''^({joined_dirs}).*?\.py$''') A__ : List[str] = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
171
1
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _UpperCamelCase = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def _lowercase ( lowercase__ = "mumbai" ): __lowerCAmelCase : int = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __lowerCAmelCase : int = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __lowerCAmelCase : str = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F"Job {i:>2} is {job[0]} at {job[1]}")
583
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _UpperCamelCase = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __lowercase : def __init__( self , A_ , A_=16 , A_=13 , A_=7 , A_=14 , A_=10 , A_=19 , A_=5 , A_=4 , A_=True , A_=16 , A_=2 , A_=4 , A_=4 , A_="gelu" , A_=0.1 , A_=0.1 , A_=[1, 2, 3, 4, 5] , A_=25 , A_=5 , ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[Any] = d_model __lowerCAmelCase : Any = parent __lowerCAmelCase : List[Any] = batch_size __lowerCAmelCase : int = prediction_length __lowerCAmelCase : str = context_length __lowerCAmelCase : Any = cardinality __lowerCAmelCase : Tuple = num_time_features __lowerCAmelCase : List[str] = lags_sequence __lowerCAmelCase : Any = embedding_dimension __lowerCAmelCase : Dict = is_training __lowerCAmelCase : Optional[int] = hidden_size __lowerCAmelCase : List[str] = num_hidden_layers __lowerCAmelCase : List[Any] = num_attention_heads __lowerCAmelCase : Tuple = intermediate_size __lowerCAmelCase : int = hidden_act __lowerCAmelCase : Optional[int] = hidden_dropout_prob __lowerCAmelCase : List[str] = attention_probs_dropout_prob __lowerCAmelCase : Optional[Any] = context_length __lowerCAmelCase : Any = prediction_length + label_length __lowerCAmelCase : Union[str, Any] = label_length __lowerCAmelCase : Any = moving_average __lowerCAmelCase : Optional[int] = autocorrelation_factor def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCamelCase__ ( self , A_ ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : str = config.context_length + max(config.lags_sequence ) __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase : Dict = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase : Tuple = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase : str = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase : Tuple = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase : Optional[int] = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.get_config() __lowerCAmelCase : Tuple = self.prepare_autoformer_inputs_dict(A_ ) return config, inputs_dict def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : int = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self , A_ , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = AutoformerModel(config=A_ ).to(A_ ).eval() __lowerCAmelCase : Optional[int] = model(**A_ ) __lowerCAmelCase : Dict = outputs.encoder_last_hidden_state __lowerCAmelCase : int = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Tuple = model.get_encoder() encoder.save_pretrained(A_ ) __lowerCAmelCase : List[Any] = AutoformerEncoder.from_pretrained(A_ ).to(A_ ) __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Any = model.create_network_inputs(**A_ ) __lowerCAmelCase, __lowerCAmelCase : Dict = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase : Dict = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase : Optional[Any] = encoder(inputs_embeds=A_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase : List[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase : List[str] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase : Dict = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase : str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Dict = model.get_decoder() decoder.save_pretrained(A_ ) __lowerCAmelCase : Any = AutoformerDecoder.from_pretrained(A_ ).to(A_ ) __lowerCAmelCase : List[str] = decoder( trend=A_ , inputs_embeds=A_ , encoder_hidden_states=A_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __lowercase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _UpperCamelCase = (AutoformerForPrediction,) if is_torch_available() else () _UpperCamelCase = {"""feature-extraction""": AutoformerModel} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : int = AutoformerModelTester(self ) __lowerCAmelCase : Dict = ConfigTester(self , config_class=A_ , has_text_modality=A_ ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase : Optional[Any] = model_class(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ ) __lowerCAmelCase, __lowerCAmelCase : Optional[Any] = model_class.from_pretrained(A_ , output_loading_info=A_ ) self.assertEqual(info['''missing_keys'''] , [] ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A_ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' pass def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = inspect.signature(getattr(A_ , '''forward''' ) ) # The main input is the name of the argument after `self` __lowerCAmelCase : Optional[Any] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : str = model_class(A_ ) __lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] __lowerCAmelCase : str = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A_ )] , A_ ) def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Any = True __lowerCAmelCase : Tuple = getattr(self.model_tester , '''seq_length''' , A_ ) __lowerCAmelCase : Tuple = getattr(self.model_tester , '''decoder_seq_length''' , A_ ) __lowerCAmelCase : Any = getattr(self.model_tester , '''encoder_seq_length''' , A_ ) __lowerCAmelCase : List[str] = getattr(self.model_tester , '''d_model''' , A_ ) __lowerCAmelCase : int = getattr(self.model_tester , '''num_attention_heads''' , A_ ) __lowerCAmelCase : Union[str, Any] = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase : Any = True __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Optional[int] = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): __lowerCAmelCase : str = model(**self._prepare_for_class(A_ , A_ ) ) __lowerCAmelCase : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Union[str, Any] = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): __lowerCAmelCase : Any = model(**self._prepare_for_class(A_ , A_ ) ) __lowerCAmelCase : Dict = outputs.encoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase : Optional[Any] = len(A_ ) __lowerCAmelCase : List[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A_ , A_ ) # decoder attentions __lowerCAmelCase : List[str] = outputs.decoder_attentions self.assertIsInstance(A_ , (list, tuple) ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase : Any = outputs.cross_attentions self.assertIsInstance(A_ , (list, tuple) ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase : List[str] = True __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Dict = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): __lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + 2 , len(A_ ) ) __lowerCAmelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def _lowercase ( lowercase__="train-batch.pt" ): __lowerCAmelCase : List[str] = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=lowercase__ , repo_type='''dataset''' ) __lowerCAmelCase : Tuple = torch.load(lowercase__ , map_location=lowercase__ ) return batch @require_torch @slow class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A_ ) __lowerCAmelCase : Tuple = prepare_batch() with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] __lowerCAmelCase : Dict = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A_ ) __lowerCAmelCase : Union[str, Any] = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=A_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , A_ , atol=A_ ) ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Tuple = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A_ ) __lowerCAmelCase : Dict = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): __lowerCAmelCase : List[Any] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state __lowerCAmelCase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A_ ) __lowerCAmelCase : Any = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=A_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , A_ , atol=A_ ) ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Dict = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A_ ) __lowerCAmelCase : Dict = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): __lowerCAmelCase : Optional[int] = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) __lowerCAmelCase : Optional[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A_ ) __lowerCAmelCase : Optional[Any] = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=A_ ) __lowerCAmelCase : Tuple = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A_ , rtol=1e-1 ) )
583
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ) -> Optional[int]: _snake_case = s.rsplit(__lowerCamelCase , __lowerCamelCase ) return new.join(__lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : Dict ) -> List[Any]: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def _UpperCAmelCase ( __lowerCamelCase : Optional[int] ) -> Union[str, Any]: _snake_case = {} _snake_case = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: _snake_case = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: _snake_case = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): _snake_case = rreplace(__lowerCamelCase , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): _snake_case = rreplace(__lowerCamelCase , '''.b''' , '''.bias''' , 1 ) _snake_case = value.float() return upgrade @torch.no_grad() def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict=None , __lowerCamelCase : int=True ) -> Tuple: from dall_e import Encoder _snake_case = Encoder() if os.path.exists(__lowerCamelCase ): _snake_case = torch.load(__lowerCamelCase ) else: _snake_case = torch.hub.load_state_dict_from_url(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = ckpt.state_dict() encoder.load_state_dict(__lowerCamelCase ) if config_path is not None: _snake_case = FlavaImageCodebookConfig.from_pretrained(__lowerCamelCase ) else: _snake_case = FlavaImageCodebookConfig() _snake_case = FlavaImageCodebook(__lowerCamelCase ).eval() _snake_case = encoder.state_dict() _snake_case = upgrade_state_dict(__lowerCamelCase ) hf_model.load_state_dict(__lowerCamelCase ) _snake_case = hf_model.state_dict() _snake_case = count_parameters(__lowerCamelCase ) _snake_case = count_parameters(__lowerCamelCase ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') UpperCAmelCase__ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
224
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets UpperCAmelCase__ = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' UpperCAmelCase__ = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' UpperCAmelCase__ = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowercase ( self : List[str] ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def lowercase ( self : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , ): _snake_case = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _snake_case = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] _snake_case = TER( normalized=_lowerCamelCase , no_punct=_lowerCamelCase , asian_support=_lowerCamelCase , case_sensitive=_lowerCamelCase , ) _snake_case = sb_ter.corpus_score(_lowerCamelCase , _lowerCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
224
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) class a ( lowercase__ ): """simple docstring""" __UpperCAmelCase = ["""input_features""", """attention_mask"""] def __init__( self : str , snake_case_ : str=8_0 , snake_case_ : Optional[int]=1_6_0_0_0 , snake_case_ : Optional[int]=8_0 , snake_case_ : Dict=0.0 , snake_case_ : List[Any]=True , snake_case_ : Tuple=True , snake_case_ : Optional[int]=True , **snake_case_ : Optional[int] , ): '''simple docstring''' super().__init__(feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , **__lowerCamelCase ) snake_case__ : Any = num_mel_bins snake_case__ : Any = do_ceptral_normalize snake_case__ : List[str] = normalize_means snake_case__ : List[Any] = normalize_vars snake_case__ : int = True def __magic_name__ ( self : List[Any] , snake_case_ : np.ndarray , ): '''simple docstring''' snake_case__ : int = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers snake_case__ : Dict = torch.from_numpy(__lowerCamelCase ).unsqueeze(0 ) snake_case__ : Optional[Any] = ta_kaldi.fbank(__lowerCamelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __magic_name__ ( snake_case_ : np.ndarray , snake_case_ : int , snake_case_ : Optional[bool] = True , snake_case_ : Optional[bool] = True , snake_case_ : float = 0.0 , ): '''simple docstring''' if normalize_means: snake_case__ : int = x[:input_length].mean(axis=0 ) snake_case__ : int = np.subtract(__lowerCamelCase , __lowerCamelCase ) if normalize_vars: snake_case__ : int = x[:input_length].std(axis=0 ) snake_case__ : List[Any] = np.divide(__lowerCamelCase , __lowerCamelCase ) if input_length < x.shape[0]: snake_case__ : Optional[int] = padding_value # make sure array is in float32 snake_case__ : List[Any] = x.astype(np.floataa ) return x def __magic_name__ ( self : Any , snake_case_ : List[np.ndarray] , snake_case_ : Optional[np.ndarray] = None ): '''simple docstring''' snake_case__ : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__lowerCamelCase , __lowerCamelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__lowerCamelCase , __lowerCamelCase ) ] def __call__( self : Dict , snake_case_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case_ : Union[bool, str, PaddingStrategy] = False , snake_case_ : Optional[int] = None , snake_case_ : bool = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , **snake_case_ : List[str] , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) snake_case__ : int = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) snake_case__ : int = is_batched_numpy or ( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case__ : Optional[Any] = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): snake_case__ : List[Any] = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case__ : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case__ : Dict = [raw_speech] # extract fbank features snake_case__ : Dict = [self._extract_fbank_features(__lowerCamelCase ) for waveform in raw_speech] # convert into correct format for padding snake_case__ : Optional[Any] = BatchFeature({'''input_features''': features} ) snake_case__ : Dict = self.pad( __lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) # make sure list is in array format snake_case__ : Tuple = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __lowerCamelCase ): snake_case__ : List[str] = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in input_features] snake_case__ : Optional[int] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: snake_case__ : Tuple = [np.asarray(__lowerCamelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: snake_case__ : Any = ( np.array(__lowerCamelCase , dtype=np.intaa ) if self._get_padding_strategies(__lowerCamelCase , max_length=__lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) snake_case__ : List[Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=__lowerCamelCase ) if return_tensors is not None: snake_case__ : Optional[Any] = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs
705
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class a : """simple docstring""" def __init__( self : Dict , snake_case_ : Tuple , snake_case_ : List[str]=1_3 , snake_case_ : Dict=7 , snake_case_ : int=True , snake_case_ : Tuple=True , snake_case_ : int=True , snake_case_ : Any=True , snake_case_ : Union[str, Any]=9_9 , snake_case_ : List[Any]=2_4 , snake_case_ : Optional[Any]=2 , snake_case_ : Union[str, Any]=6 , snake_case_ : Any=3_7 , snake_case_ : Any="gelu" , snake_case_ : Dict=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : Dict=5_1_2 , snake_case_ : Any=1_6 , snake_case_ : Optional[int]=2 , snake_case_ : Union[str, Any]=0.0_2 , snake_case_ : int=3 , snake_case_ : int=None , snake_case_ : Union[str, Any]=1_0_0_0 , ): '''simple docstring''' snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : List[str] = seq_length snake_case__ : List[Any] = is_training snake_case__ : Optional[Any] = use_input_mask snake_case__ : Optional[Any] = use_token_type_ids snake_case__ : Tuple = use_labels snake_case__ : List[Any] = vocab_size snake_case__ : Union[str, Any] = hidden_size snake_case__ : Optional[int] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : str = intermediate_size snake_case__ : Optional[int] = hidden_act snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Dict = max_position_embeddings snake_case__ : int = type_vocab_size snake_case__ : Tuple = type_sequence_label_size snake_case__ : Optional[Any] = initializer_range snake_case__ : Union[str, Any] = num_labels snake_case__ : Dict = scope snake_case__ : Tuple = range_bbox def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case__ : Optional[int] = bbox[i, j, 3] snake_case__ : Dict = bbox[i, j, 1] snake_case__ : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case__ : Dict = bbox[i, j, 2] snake_case__ : List[str] = bbox[i, j, 0] snake_case__ : Dict = t snake_case__ : int = None if self.use_input_mask: snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case__ : str = None if self.use_token_type_ids: snake_case__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Tuple = None snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __magic_name__ ( self : List[Any] ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __magic_name__ ( self : Optional[int] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , ): '''simple docstring''' snake_case__ : Optional[Any] = LiltModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) snake_case__ : Optional[Any] = model(snake_case_ , bbox=snake_case_ , token_type_ids=snake_case_ ) snake_case__ : Union[str, Any] = model(snake_case_ , bbox=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : int , snake_case_ : int , snake_case_ : Tuple , ): '''simple docstring''' snake_case__ : List[Any] = self.num_labels snake_case__ : str = LiltForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : List[Any] = model( snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Dict , snake_case_ : int , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : int , ): '''simple docstring''' snake_case__ : Optional[int] = LiltForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Optional[int] = model( snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ : Dict = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Tuple = config_and_inputs snake_case__ : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __UpperCAmelCase = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def __magic_name__ ( self : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Dict , snake_case_ : str , snake_case_ : Any ): '''simple docstring''' return True def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ : List[Any] = LiltModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def __magic_name__ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : int = type self.model_tester.create_and_check_model(*snake_case_ ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) @slow def __magic_name__ ( self : str ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = LiltModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @slow class a ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Any = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(snake_case_ ) snake_case__ : int = torch.tensor([[1, 2]] , device=snake_case_ ) snake_case__ : List[str] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Optional[int] = model(input_ids=snake_case_ , bbox=snake_case_ ) snake_case__ : Tuple = torch.Size([1, 2, 7_6_8] ) snake_case__ : Dict = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=snake_case_ , ) self.assertTrue(outputs.last_hidden_state.shape , snake_case_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , snake_case_ , atol=1e-3 ) )
502
0
"""simple docstring""" from collections import defaultdict def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = 1 _UpperCAmelCase = True for v in tree[start]: if v not in visited: ret += dfs(a_ ) if ret % 2 == 0: cuts.append(a_ ) return ret def __UpperCAmelCase ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": UpperCAmelCase__ , UpperCAmelCase__ = 1_0, 9 UpperCAmelCase__ = defaultdict(list) UpperCAmelCase__ = {} UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (1_0, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
277
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '''▁''' A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BigBirdTokenizer __lowerCAmelCase = BigBirdTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : Dict = self.tokenizer_class(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): __a : List[str] = '''<s>''' __a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCAmelCase ) , 1004 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): if not self.test_rust_tokenizer: return __a : Dict = self.get_tokenizer() __a : Any = self.get_rust_tokenizer() __a : int = '''I was born in 92000, and this is falsé.''' __a : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase ) __a : List[str] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __a : Any = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = self.get_rust_tokenizer() __a : Tuple = tokenizer.encode(_UpperCAmelCase ) __a : List[Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = BigBirdTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __a : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) __a : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowerCamelCase ( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def _lowerCamelCase ( self ): __a : str = '''Hello World!''' __a : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def _lowerCamelCase ( self ): __a : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __a : Optional[Any] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __a : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __a : List[str] = ''' '''.join(_UpperCAmelCase ) __a : Tuple = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Any = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCAmelCase ) __a : Optional[Any] = BigBirdConfig(attention_type='''original_full''' ) __a : Tuple = BigBirdModel(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __a : List[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[Any] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
52
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] ): """simple docstring""" # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(UpperCamelCase__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(UpperCamelCase__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
0
"""simple docstring""" from __future__ import annotations from typing import Any class A_ : def __init__( self: Tuple ,__lowerCAmelCase: int = 6 ): '''simple docstring''' _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None self.create_linked_list(__lowerCAmelCase ) def _lowercase ( self: Dict ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : List[Any] = Node() _lowerCamelCase : Optional[int] = current_node _lowerCamelCase : Any = current_node _lowerCamelCase : int = current_node for _ in range(1 ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = Node() _lowerCamelCase : Any = current_node _lowerCamelCase : Tuple = previous_node _lowerCamelCase : Optional[Any] = current_node _lowerCamelCase : Union[str, Any] = self.front _lowerCamelCase : Any = previous_node def _lowercase ( self: Optional[Any] ): '''simple docstring''' return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _lowercase ( self: Any ): '''simple docstring''' self.check_can_perform_operation() return self.front.data if self.front else None def _lowercase ( self: List[Any] ,__lowerCAmelCase: Any ): '''simple docstring''' if self.rear is None: return self.check_is_full() if not self.is_empty(): _lowerCamelCase : List[str] = self.rear.next if self.rear: _lowerCamelCase : List[str] = data def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: _lowerCamelCase : Any = self.front.data _lowerCamelCase : Dict = None return data _lowerCamelCase : List[Any] = self.front _lowerCamelCase : Optional[Any] = old_front.next _lowerCamelCase : str = old_front.data _lowerCamelCase : List[str] = None return data def _lowercase ( self: List[str] ): '''simple docstring''' if self.is_empty(): raise Exception("Empty Queue" ) def _lowercase ( self: Dict ): '''simple docstring''' if self.rear and self.rear.next == self.front: raise Exception("Full Queue" ) class A_ : def __init__( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Any | None = None _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
46
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __UpperCAmelCase : Dict = None __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : Any = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase : Tuple = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } __UpperCAmelCase : int = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } __UpperCAmelCase : int = '▁' class __lowerCAmelCase (__UpperCamelCase ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = AlbertTokenizer def __init__( self , a=None , a=None , a=True , a=True , a=False , a="[CLS]" , a="[SEP]" , a="<unk>" , a="[SEP]" , a="<pad>" , a="[CLS]" , a="[MASK]" , **a , ): """simple docstring""" snake_case_ :Tuple = ( AddedToken(a , lstrip=a , rstrip=a , normalized=a ) if isinstance(a , a ) else mask_token ) super().__init__( a , tokenizer_file=a , do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , **a , ) snake_case_ :Tuple = do_lower_case snake_case_ :str = remove_space snake_case_ :List[str] = keep_accents snake_case_ :Union[str, Any] = vocab_file snake_case_ :Any = False if not self.vocab_file else True def _a ( self , a , a = None ): """simple docstring""" snake_case_ :List[str] = [self.sep_token_id] snake_case_ :Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self , a , a = None ): """simple docstring""" snake_case_ :Union[str, Any] = [self.sep_token_id] snake_case_ :str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , a , a = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ :Dict = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
584
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : List[Any] = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """spiece.model"""} a_ : Any = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } a_ : int = {"""bert_for_seq_generation""": 5_1_2} class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = [] _A = ["input_ids", "attention_mask"] def __init__(self , __a , __a="<s>" , __a="</s>" , __a="<unk>" , __a="<pad>" , __a="<::::>" , __a = None , **__a , ): '''simple docstring''' lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) lowerCamelCase = vocab_file lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def _a (self ): '''simple docstring''' return self.sp_model.get_piece_size() def _a (self ): '''simple docstring''' lowerCamelCase = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): '''simple docstring''' lowerCamelCase = self.__dict__.copy() lowerCamelCase = None return state def __setstate__(self , __a ): '''simple docstring''' lowerCamelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase = {} lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a (self , __a ): '''simple docstring''' return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def _a (self , __a ): '''simple docstring''' return self.sp_model.piece_to_id(UpperCamelCase__ ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = self.sp_model.IdToPiece(UpperCamelCase__ ) return token def _a (self , __a ): '''simple docstring''' lowerCamelCase = [] lowerCamelCase = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token lowerCamelCase = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def _a (self , __a , __a = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
700
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def _a (self ): '''simple docstring''' lowerCamelCase = SMALL_MODEL_IDENTIFIER lowerCamelCase = "pt" lowerCamelCase = "tf" def _a (self , __a ): '''simple docstring''' lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__a ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=__a ) model_tf.save_pretrained(__a ) def _a (self ): '''simple docstring''' lowerCamelCase = "mock_framework" # Framework provided - return whatever the user provides lowerCamelCase = FeaturesManager.determine_framework(self.test_model , __a ) self.assertEqual(__a , __a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) def _a (self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a ): lowerCamelCase = FeaturesManager.determine_framework(__a ) def _a (self ): '''simple docstring''' lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_torch_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_tf ) # Both in environment -> use PyTorch lowerCamelCase = MagicMock(return_value=__a ) lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ), patch( "transformers.onnx.features.is_torch_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # Both not in environment -> raise error lowerCamelCase = MagicMock(return_value=__a ) lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ), patch( "transformers.onnx.features.is_torch_available" , __a ): with self.assertRaises(__a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
484
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: Union[str, Any] ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self: Optional[int] ) -> Optional[int]: torch.manual_seed(0 ) _A = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def __A ( self: Any ) -> int: torch.manual_seed(0 ) _A = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def __A ( self: Optional[Any] ) -> str: torch.manual_seed(0 ) _A = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) _A = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def __A ( self: List[Any] ) -> int: _A = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _A = DDPMScheduler() _A = AudioDiffusionPipeline(vqvae=__A , unet=self.dummy_unet , mel=__A , scheduler=__A ) _A = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _A = torch.Generator(device=__A ).manual_seed(42 ) _A = pipe(generator=__A , steps=4 ) _A = output.audios[0] _A = output.images[0] _A = torch.Generator(device=__A ).manual_seed(42 ) _A = pipe(generator=__A , steps=4 , return_dict=__A ) _A = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _A = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _A = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] _A = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _A = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _A = DDIMScheduler() _A = self.dummy_vqvae_and_unet _A = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__A , scheduler=__A ) _A = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) np.random.seed(0 ) _A = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _A = torch.Generator(device=__A ).manual_seed(42 ) _A = pipe(raw_audio=__A , generator=__A , start_step=5 , steps=10 ) _A = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _A = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _A = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _A = self.dummy_unet_condition _A = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__A , mel=__A , scheduler=__A ) _A = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) np.random.seed(0 ) _A = torch.rand((1, 1, 10) ) _A = pipe(generator=__A , encoding=__A ) _A = output.images[0] _A = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _A = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: str ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self: Union[str, Any] ) -> Tuple: _A = torch_device _A = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) _A = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _A = torch.Generator(device=__A ).manual_seed(42 ) _A = pipe(generator=__A ) _A = output.audios[0] _A = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _A = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _A = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
484
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __A = 2 class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: int , *, # begin keyword-only arguments __A: Any="<s>" , __A: List[str]="<pad>" , __A: Optional[Any]="</s>" , __A: Dict="<unk>" , __A: Any=None , ) -> Tuple: _A ,_A ,_A ,_A = bos, unk, pad, eos _A = [] _A = [] _A = {} _A = self.add_symbol(__A ) _A = self.add_symbol(__A ) _A = self.add_symbol(__A ) _A = self.add_symbol(__A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__A ) _A = len(self.symbols ) def __eq__( self: Any , __A: Any ) -> Optional[Any]: return self.indices == other.indices def __getitem__( self: Tuple , __A: Optional[int] ) -> int: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self: Optional[Any] ) -> Optional[Any]: return len(self.symbols ) def __contains__( self: Dict , __A: List[str] ) -> Union[str, Any]: return sym in self.indices @classmethod def __A ( cls: Tuple , __A: Optional[Any] ) -> Optional[Any]: _A = cls() d.add_from_file(__A ) return d def __A ( self: List[Any] , __A: List[str] , __A: List[Any]=1 , __A: List[Any]=False ) -> Optional[Any]: if word in self.indices and not overwrite: _A = self.indices[word] _A = self.count[idx] + n return idx else: _A = len(self.symbols ) _A = idx self.symbols.append(__A ) self.count.append(__A ) return idx def __A ( self: Optional[Any] , __A: Optional[int] ) -> str: return 0 def __A ( self: List[str] , __A: Optional[Any] ) -> List[Any]: if isinstance(__A , __A ): try: with open(__A , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(__A ) ) return _A = f.readlines() _A = self._load_meta(__A ) for line in lines[indices_start_line:]: try: _A ,_A = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": _A = True _A ,_A = line.rsplit(''' ''' , 1 ) else: _A = False _A = int(__A ) _A = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(__A ) ) self.add_symbol(__A , n=__A , overwrite=__A ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def __A ( _lowercase ): '''simple docstring''' _A = dict((re.sub(R'''@@$''' , '''''' , _lowercase ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , _lowercase ), v) for k, v in d.items() ) _A = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] _A = d[k] # restore return da def __A ( _lowercase , _lowercase ): '''simple docstring''' if not os.path.exists(_lowercase ): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(_lowercase , exist_ok=_lowercase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _A = os.path.join(_lowercase , '''checkpoint.pt''' ) if not os.path.isfile(_lowercase ): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" ) _A = torch.load(_lowercase , map_location='''cpu''' ) _A = chkpt['''cfg''']['''model'''] # dicts _A = os.path.join(_lowercase , '''dict.txt''' ) if not os.path.isfile(_lowercase ): raise ValueError(f"""path to the file {dict_file} does not exist!""" ) _A = Dictionary.load(_lowercase ) _A = rewrite_dict_keys(src_dict.indices ) _A = len(_lowercase ) _A = os.path.join(_lowercase , VOCAB_FILES_NAMES['''vocab_file'''] ) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # merges_file (bpecodes) _A = os.path.join(_lowercase , '''bpecodes''' ) if not os.path.isfile(_lowercase ): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" ) _A = os.path.join(_lowercase , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(_lowercase , _lowercase ) # model config _A = os.path.join(_lowercase , '''config.json''' ) _A = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # tokenizer config _A = os.path.join(_lowercase , _lowercase ) _A = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 10_24, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f"""Generating {biogpt_tokenizer_config_file}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # model _A = chkpt['''model'''] # remove unneeded keys _A = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(_lowercase , _lowercase ) _A = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): _A = model_state_dict.pop(_lowercase ) else: _A = model_state_dict.pop(_lowercase ) _A = BioGptConfig.from_pretrained(_lowercase ) _A = BioGptForCausalLM(_lowercase ) # check that it loads ok model_new.load_state_dict(_lowercase ) # save _A = os.path.join(_lowercase , _lowercase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_lowercase , _lowercase ) print('''Conversion is done!''' ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
484
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Optional[Any] = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
525
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __A ( _A , _A=False , _A=False ): """simple docstring""" __a = "backbone." if is_semantic else "" __a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", "beit.embeddings.cls_token"), (f"""{prefix}patch_embed.proj.weight""", "beit.embeddings.patch_embeddings.projection.weight"), (f"""{prefix}patch_embed.proj.bias""", "beit.embeddings.patch_embeddings.projection.bias"), (f"""{prefix}pos_embed""", "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __A ( _A , _A , _A=False , _A=False ): """simple docstring""" for i in range(config.num_hidden_layers ): __a = "backbone." if is_semantic else "" # queries, keys and values __a = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) __a = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) __a = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) __a = in_proj_weight[ : config.hidden_size, : ] __a = q_bias __a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __a = in_proj_weight[ -config.hidden_size :, : ] __a = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __a = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) __a = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) __a = gamma_a __a = gamma_a def __A ( _A , _A , _A ): """simple docstring""" __a = dct.pop(_A ) __a = val def __A ( ): """simple docstring""" __a = "http://images.cocodataset.org/val2017/000000039769.jpg" __a = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def __A ( _A , _A , _A=False ): """simple docstring""" __a = False if "rvlcdip" in checkpoint_url else True __a = BeitConfig(use_absolute_position_embeddings=_A , use_mask_token=_A ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __a = 1024 __a = 4096 __a = 24 __a = 16 # labels if "rvlcdip" in checkpoint_url: __a = 16 __a = "huggingface/label-files" __a = "rvlcdip-id2label.json" __a = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) __a = {int(_A ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __a = torch.hub.load_state_dict_from_url(_A , map_location="cpu" )["model"] __a = create_rename_keys(_A , has_lm_head=_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , _A , has_lm_head=_A ) # load HuggingFace model __a = BeitForMaskedImageModeling(_A ) if has_lm_head else BeitForImageClassification(_A ) model.eval() model.load_state_dict(_A ) # Check outputs on an image __a = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_A ) __a = prepare_img() __a = image_processor(images=_A , return_tensors="pt" ) __a = encoding["pixel_values"] __a = model(_A ) __a = outputs.logits # verify logits __a = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(_A ), "Shape of logits not as expected" Path(_A ).mkdir(exist_ok=_A ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_A ) if push_to_hub: if has_lm_head: __a = "dit-base" if "base" in checkpoint_url else "dit-large" else: __a = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_A , ) model.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_A , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
525
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class __lowercase ( _A , unittest.TestCase ): lowercase = BartphoTokenizer lowercase = False lowercase = True def __a ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().setUp() lowercase = ["▁This", "▁is", "▁a", "▁t", "est"] lowercase = dict(zip(a_ , range(len(a_ ) ) ) ) lowercase = {"unk_token": "<unk>"} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) lowercase = BartphoTokenizer(a_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : int , **__lowerCamelCase : Any ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a_ ) def __a ( self : str , __lowerCamelCase : List[Any] ) -> int: '''simple docstring''' lowercase = "This is a là test" lowercase = "This is a<unk><unk> test" return input_text, output_text def __a ( self : Dict ) -> List[Any]: '''simple docstring''' lowercase = BartphoTokenizer(a_ , self.monolingual_vocab_file , **self.special_tokens_map ) lowercase = "This is a là test" lowercase = "▁This ▁is ▁a ▁l à ▁t est".split() lowercase = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) lowercase = tokens + [tokenizer.unk_token] lowercase = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ )
604
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowerCAmelCase = True except ImportError: lowerCAmelCase = False lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def __A ( a_ : Namespace ): return AddNewModelCommand(args.testing ,args.testing_file ,path=args.path ) class lowerCamelCase ( _A ): @staticmethod def _lowerCamelCase ( a_ ): lowerCAmelCase : Optional[int] = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=a_ , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=a_ , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=a_ ) def __init__( self , a_ , a_ , a_=None , *a_ ): lowerCAmelCase : Any = testing lowerCAmelCase : str = testing_file lowerCAmelCase : Optional[int] = path def _lowerCamelCase ( self ): warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCAmelCase : Optional[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(a_ ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) lowerCAmelCase : List[str] = ( Path(a_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCAmelCase : str = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(a_ ) ) else: with open(self._testing_file , "r" ) as configuration_file: lowerCAmelCase : Dict = json.load(a_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=a_ , extra_context=a_ , ) lowerCAmelCase : Optional[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: lowerCAmelCase : str = json.load(a_ ) lowerCAmelCase : List[str] = configuration["lowercase_modelname"] lowerCAmelCase : List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(F'''{directory}/configuration.json''' ) lowerCAmelCase : Optional[int] = "PyTorch" in generate_tensorflow_pytorch_and_flax lowerCAmelCase : Optional[int] = "TensorFlow" in generate_tensorflow_pytorch_and_flax lowerCAmelCase : Optional[Any] = "Flax" in generate_tensorflow_pytorch_and_flax lowerCAmelCase : List[str] = F'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(a_ , exist_ok=a_ ) os.makedirs(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=a_ ) # Tests require submodules as they have parent imports with open(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , "w" ): pass shutil.move( F'''{directory}/__init__.py''' , F'''{model_dir}/__init__.py''' , ) shutil.move( F'''{directory}/configuration_{lowercase_model_name}.py''' , F'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(a_ ): with open(a_ , "r" ) as f: lowerCAmelCase : Dict = f.readlines() with open(a_ , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(a_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_tf_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_flax_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/{lowercase_model_name}.md''' , F'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( F'''{directory}/tokenization_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(a_ , a_ , a_ ): # Create temp file lowerCAmelCase , lowerCAmelCase : Tuple = mkstemp() lowerCAmelCase : int = False with fdopen(a_ , "w" ) as new_file: with open(a_ ) as old_file: for line in old_file: new_file.write(a_ ) if line_to_copy_below in line: lowerCAmelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(a_ ) if not line_found: raise ValueError(F'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(a_ , a_ ) # Remove original file remove(a_ ) # Move new file move(a_ , a_ ) def skip_units(a_ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(a_ ): with open(a_ ) as datafile: lowerCAmelCase : Dict = [] lowerCAmelCase : Optional[int] = False lowerCAmelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCAmelCase : Optional[int] = line.split("\"" )[1] lowerCAmelCase : Tuple = skip_units(a_ ) elif "# Below: " in line and "##" not in line: lowerCAmelCase : Any = line.split("\"" )[1] lowerCAmelCase : List[str] = skip_units(a_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(a_ , a_ , a_ ) lowerCAmelCase : List[str] = [] elif "# Replace with" in line and "##" not in line: lowerCAmelCase : Any = [] elif "##" not in line: lines_to_copy.append(a_ ) remove(a_ ) replace_in_files(F'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(a_ )
525
0
'''simple docstring''' import os SCREAMING_SNAKE_CASE = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : str =0 lowercase : List[Any] =0 while index < len(__A ) - 1: lowercase : List[Any] =SYMBOLS[numerals[index]] lowercase : Tuple =SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def lowercase_ ( __A : int ) -> str: """simple docstring""" lowercase : Optional[Any] ='''''' lowercase : List[Any] =num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 lowercase : List[Any] =num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 lowercase : int =num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def lowercase_ ( __A : str = "/p089_roman.txt" ) -> int: """simple docstring""" lowercase : List[str] =0 with open(os.path.dirname(__A ) + roman_numerals_filename ) as filea: lowercase : List[Any] =filea.readlines() for line in lines: lowercase : List[Any] =line.strip() lowercase : Optional[int] =parse_roman_numerals(__A ) lowercase : int =generate_roman_numerals(__A ) savings += len(__A ) - len(__A ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
707
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __lowerCamelCase ( __lowerCAmelCase : Optional[int] ) -> List[Any]: if isinstance(__lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class _A : def a ( self : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any ): """simple docstring""" pass def a ( self : Dict ): """simple docstring""" pass def a ( self : Optional[Any] ): """simple docstring""" pass def a ( self : Optional[int] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : float ): """simple docstring""" __UpperCamelCase : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowerCamelCase__ , lowerCamelCase__ , f'Difference between torch and flax is {diff} (>= {tol}).' ) def a ( self : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Dict=None , **lowerCamelCase__ : str ): """simple docstring""" __UpperCamelCase : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase__ ) __UpperCamelCase : Tuple = model(input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def a ( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple=None , **lowerCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : List[Any] = self.get_vision_text_model(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} __UpperCamelCase : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase__ ) __UpperCamelCase : List[Any] = model(input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def a ( self : Dict , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Tuple=None , **lowerCamelCase__ : Tuple ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : List[str] = self.get_vision_text_model(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} __UpperCamelCase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase__ ) __UpperCamelCase : Dict = model(input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __UpperCamelCase : List[str] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : List[str] = model(input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __UpperCamelCase : List[Any] = after_output[0] __UpperCamelCase : Dict = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase__ , 1e-3 ) def a ( self : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple=None , **lowerCamelCase__ : Dict ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : int = self.get_vision_text_model(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Any = {"""vision_model""": vision_model, """text_model""": text_model} __UpperCamelCase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase__ ) __UpperCamelCase : Optional[int] = model( input_ids=lowerCamelCase__ , pixel_values=lowerCamelCase__ , attention_mask=lowerCamelCase__ , output_attentions=lowerCamelCase__ ) __UpperCamelCase : Any = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase : Tuple = to_atuple(vision_model.config.image_size ) __UpperCamelCase : Dict = to_atuple(vision_model.config.patch_size ) __UpperCamelCase : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __UpperCamelCase : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __UpperCamelCase : int = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def a ( self : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any ): """simple docstring""" pt_model.to(lowerCamelCase__ ) pt_model.eval() # prepare inputs __UpperCamelCase : Optional[int] = inputs_dict __UpperCamelCase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __UpperCamelCase : Any = pt_model(**lowerCamelCase__ ).to_tuple() __UpperCamelCase : str = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCamelCase__ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __UpperCamelCase : int = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCamelCase__ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : Any = VisionTextDualEncoderModel.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) pt_model_loaded.to(lowerCamelCase__ ) pt_model_loaded.eval() with torch.no_grad(): __UpperCamelCase : Optional[Any] = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCamelCase__ , pt_output_loaded.numpy() , 4e-2 ) def a ( self : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ): """simple docstring""" __UpperCamelCase : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[Any] = VisionTextDualEncoderModel(lowerCamelCase__ ) __UpperCamelCase : int = FlaxVisionTextDualEncoderModel(lowerCamelCase__ ) __UpperCamelCase : Dict = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) __UpperCamelCase : int = fx_state self.check_pt_flax_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( self : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCamelCase : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple = VisionTextDualEncoderModel(lowerCamelCase__ ) __UpperCamelCase : List[Any] = FlaxVisionTextDualEncoderModel(lowerCamelCase__ ) __UpperCamelCase : str = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) self.check_pt_flax_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( self : Optional[int] ): """simple docstring""" __UpperCamelCase : List[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase__ ) def a ( self : int ): """simple docstring""" __UpperCamelCase : Tuple = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase__ ) def a ( self : Dict ): """simple docstring""" __UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase__ ) def a ( self : Optional[Any] ): """simple docstring""" __UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase__ ) @is_pt_flax_cross_test def a ( self : str ): """simple docstring""" __UpperCamelCase : Any = self.prepare_config_and_inputs() __UpperCamelCase : Tuple = config_inputs_dict.pop("""vision_config""" ) __UpperCamelCase : Optional[Any] = config_inputs_dict.pop("""text_config""" ) __UpperCamelCase : int = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.check_equivalence_flax_to_pt(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @slow def a ( self : Union[str, Any] ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Any = self.get_pretrained_model_and_inputs() __UpperCamelCase : int = model_a(**lowerCamelCase__ ) __UpperCamelCase : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : Tuple = model_a(**lowerCamelCase__ ) __UpperCamelCase : Any = after_outputs[0] __UpperCamelCase : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase__ , 1e-5 ) @require_flax class _A ( UpperCAmelCase_ , unittest.TestCase ): def a ( self : Any ): """simple docstring""" __UpperCamelCase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowerCamelCase__ , text_from_pt=lowerCamelCase__ , ) __UpperCamelCase : str = 13 __UpperCamelCase : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __UpperCamelCase : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __UpperCamelCase : Tuple = random_attention_mask([batch_size, 4] ) __UpperCamelCase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def a ( self : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple ): """simple docstring""" __UpperCamelCase : Union[str, Any] = FlaxViTModel(lowerCamelCase__ ) __UpperCamelCase : int = FlaxBertModel(lowerCamelCase__ ) return vision_model, text_model def a ( self : Optional[int] ): """simple docstring""" __UpperCamelCase : int = FlaxViTModelTester(self ) __UpperCamelCase : Tuple = FlaxBertModelTester(self ) __UpperCamelCase : List[str] = vit_model_tester.prepare_config_and_inputs() __UpperCamelCase : int = bert_model_tester.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase : Union[str, Any] = vision_config_and_inputs __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _A ( UpperCAmelCase_ , unittest.TestCase ): def a ( self : Dict ): """simple docstring""" __UpperCamelCase : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowerCamelCase__ , text_from_pt=lowerCamelCase__ , ) __UpperCamelCase : Any = 13 __UpperCamelCase : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __UpperCamelCase : Union[str, Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __UpperCamelCase : List[str] = random_attention_mask([batch_size, 4] ) __UpperCamelCase : Optional[Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def a ( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCamelCase : Tuple = FlaxCLIPVisionModel(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] = FlaxBertModel(lowerCamelCase__ ) return vision_model, text_model def a ( self : Any ): """simple docstring""" __UpperCamelCase : Union[str, Any] = FlaxCLIPVisionModelTester(self ) __UpperCamelCase : Optional[Any] = FlaxBertModelTester(self ) __UpperCamelCase : Any = clip_model_tester.prepare_config_and_inputs() __UpperCamelCase : Any = bert_model_tester.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase : Optional[int] = vision_config_and_inputs __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _A ( unittest.TestCase ): @slow def a ( self : int ): """simple docstring""" __UpperCamelCase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __UpperCamelCase : Tuple = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __UpperCamelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCamelCase : List[Any] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors="""np""" ) __UpperCamelCase : Optional[int] = model(**lowerCamelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __UpperCamelCase : Tuple = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCamelCase__ , atol=1e-3 ) )
269
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase = logging.get_logger(__name__) def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> List[str]: __UpperCamelCase : List[str] = R"""\w+[.]\d+""" __UpperCamelCase : Optional[int] = re.findall(__lowerCAmelCase , __lowerCAmelCase ) for pat in pats: __UpperCamelCase : str = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) ) return key def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ) -> str: __UpperCamelCase : Dict = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __UpperCamelCase : List[Any] = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __UpperCamelCase : Dict = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __UpperCamelCase : Any = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer __UpperCamelCase : List[Any] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __UpperCamelCase : Dict = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __UpperCamelCase : Union[str, Any] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": __UpperCamelCase : int = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __UpperCamelCase : List[Any] = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __UpperCamelCase : Tuple = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int]=42 ) -> int: # Step 1: Convert pytorch tensor to numpy __UpperCamelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __UpperCamelCase : str = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) ) __UpperCamelCase : Union[str, Any] = flatten_dict(__lowerCAmelCase ) __UpperCamelCase : List[str] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __UpperCamelCase : str = rename_key(__lowerCAmelCase ) __UpperCamelCase : Any = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters __UpperCamelCase , __UpperCamelCase : Tuple = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown __UpperCamelCase : Any = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase )
269
1
'''simple docstring''' _lowercase = { """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
715
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowerCamelCase__ ( ): __snake_case = torch.nn.Linear(2 , 4 ) __snake_case = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case = torch.optim.lr_scheduler.OneCycleLR(a , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowerCamelCase__ ( a ): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowerCamelCase__ ( a ): __snake_case = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(a ) class a_ ( UpperCAmelCase__ ): @require_cuda def lowercase__ ( self : List[str] ): __snake_case = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__lowerCAmelCase ): __snake_case = Accelerator(cpu=__lowerCAmelCase ) def lowercase__ ( self : Optional[int] ): __snake_case = Accelerator() __snake_case = GradientState() assert state.num_steps == 1 __snake_case = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case = False assert state.sync_gradients is False GradientState._reset_state() def lowercase__ ( self : Optional[Any] ): __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def lowercase__ ( self : Optional[int] ): __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def lowercase__ ( self : Union[str, Any] ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__lowerCAmelCase : List[str] , **__lowerCAmelCase : Any ): pass with patch('torch.cuda.set_device' , __lowerCAmelCase ), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64' ): __snake_case = Accelerator() self.assertEqual(str(accelerator.state.device ) , 'cuda:64' ) def lowercase__ ( self : List[str] ): __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case = get_signature(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowerCAmelCase ) # make sure random weights don't match load_random_weights(__lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(__lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase ) ) < 1E-3 ) def lowercase__ ( self : List[str] ): __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case = get_signature(__lowerCAmelCase ) # saving hook def save_config(__lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str ): __snake_case = {'class_name': models[0].__class__.__name__} with open(os.path.join(__lowerCAmelCase , 'data.json' ) , 'w' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # loading hook def load_config(__lowerCAmelCase : int , __lowerCAmelCase : str ): with open(os.path.join(__lowerCAmelCase , 'data.json' ) , 'r' ) as f: __snake_case = json.load(__lowerCAmelCase ) __snake_case = config['class_name'] __snake_case = accelerator.register_save_state_pre_hook(__lowerCAmelCase ) __snake_case = accelerator.register_load_state_pre_hook(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowerCAmelCase ) # make sure random weights don't match with hooks load_random_weights(__lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case = 'random' # make sure loaded weights match with hooks accelerator.load_state(__lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowerCAmelCase ) # make sure random weights don't match with hooks removed load_random_weights(__lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case = 'random' # make sure loaded weights match with hooks removed accelerator.load_state(__lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def lowercase__ ( self : Union[str, Any] ): __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() __snake_case = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertTrue(dummy_obj is None ) def lowercase__ ( self : List[str] ): __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() __snake_case = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertEqual( getattr(__lowerCAmelCase , '_is_accelerate_prepared' , __lowerCAmelCase ) , __lowerCAmelCase , 'Dummy object should have `_is_accelerate_prepared` set to `True`' , ) self.assertEqual( getattr(__lowerCAmelCase , '_is_accelerate_prepared' , __lowerCAmelCase ) , __lowerCAmelCase , 'Model is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__lowerCAmelCase , '_is_accelerate_prepared' , __lowerCAmelCase ) , __lowerCAmelCase , 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__lowerCAmelCase , '_is_accelerate_prepared' , __lowerCAmelCase ) , __lowerCAmelCase , 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__lowerCAmelCase , '_is_accelerate_prepared' , __lowerCAmelCase ) , __lowerCAmelCase , 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__lowerCAmelCase , '_is_accelerate_prepared' , __lowerCAmelCase ) , __lowerCAmelCase , 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) @slow @require_bnb def lowercase__ ( self : Optional[int] ): from transformers import AutoModelForCausalLM __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=__lowerCAmelCase , device_map={'': 0} , ) __snake_case = Accelerator() # This should work __snake_case = accelerator.prepare(__lowerCAmelCase ) @slow @require_bnb def lowercase__ ( self : List[Any] ): from transformers import AutoModelForCausalLM __snake_case = Accelerator() with init_empty_weights(): __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() __snake_case = infer_auto_device_map(__lowerCAmelCase ) __snake_case = 'cpu' __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , device_map=__lowerCAmelCase , load_in_abit=__lowerCAmelCase , llm_inta_enable_fpaa_cpu_offload=__lowerCAmelCase ) # This should not work and get value error with self.assertRaises(__lowerCAmelCase ): __snake_case = accelerator.prepare(__lowerCAmelCase ) @slow @require_bnb @require_multi_gpu def lowercase__ ( self : Any ): from transformers import AutoModelForCausalLM __snake_case = {'distributed_type': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() __snake_case = infer_auto_device_map(__lowerCAmelCase ) __snake_case = 1 __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=__lowerCAmelCase , device_map=__lowerCAmelCase , ) __snake_case = Accelerator() # This should not work and get value error with self.assertRaises(__lowerCAmelCase ): __snake_case = accelerator.prepare(__lowerCAmelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def lowercase__ ( self : Any ): from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) __snake_case = infer_auto_device_map(__lowerCAmelCase ) __snake_case = 1 __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=__lowerCAmelCase , device_map=__lowerCAmelCase , ) __snake_case = Accelerator() # This should work __snake_case = accelerator.prepare(__lowerCAmelCase ) @require_cuda def lowercase__ ( self : str ): __snake_case = torch.nn.Linear(1_0 , 1_0 ) __snake_case = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case = Accelerator(cpu=__lowerCAmelCase ) __snake_case = accelerator.prepare(__lowerCAmelCase )
427
0
"""simple docstring""" import math def __UpperCAmelCase ( __UpperCamelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase ( __UpperCamelCase = 1_00_01 ): try: __lowercase : Optional[int] = int(__UpperCamelCase ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) __lowercase : list[int] = [] __lowercase : Optional[int] = 2 while len(__UpperCamelCase ) < nth: if is_prime(__UpperCamelCase ): primes.append(__UpperCamelCase ) num += 1 else: num += 1 return primes[len(__UpperCamelCase ) - 1] if __name__ == "__main__": print(F"{solution() = }")
76
"""simple docstring""" def A ( __snake_case: str ) -> list: """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("""doctest""").testmod()
545
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class snake_case__ ( lowercase_): '''simple docstring''' def __init__( self , *a__ , **a__ ) -> List[Any]: '''simple docstring''' warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
716
import os def UpperCamelCase ( ): '''simple docstring''' __snake_case :List[str] = os.path.dirname(os.path.realpath(snake_case__ ) ) __snake_case :Union[str, Any] = os.path.join(snake_case__ ,"""triangle.txt""" ) with open(snake_case__ ) as f: __snake_case :int = f.readlines() __snake_case :int = [] for line in triangle: __snake_case :List[Any] = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(snake_case__ ) ) a.append(snake_case__ ) for i in range(1 ,len(snake_case__ ) ): for j in range(len(a[i] ) ): __snake_case :Union[str, Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 __snake_case :Dict = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(snake_case__ ,snake_case__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
291
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : Union[str, Any] = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class SCREAMING_SNAKE_CASE ( snake_case_ ): __magic_name__ : Optional[int] = '''sew-d''' def __init__( self : str , lowercase__ : Tuple=32 , lowercase__ : Optional[Any]=768 , lowercase__ : Any=12 , lowercase__ : Optional[int]=12 , lowercase__ : int=3072 , lowercase__ : int=2 , lowercase__ : str=512 , lowercase__ : Tuple=256 , lowercase__ : Tuple=True , lowercase__ : List[Any]=True , lowercase__ : Optional[int]=("p2c", "c2p") , lowercase__ : Union[str, Any]="layer_norm" , lowercase__ : Tuple="gelu_python" , lowercase__ : Optional[int]=0.1 , lowercase__ : str=0.1 , lowercase__ : Dict=0.1 , lowercase__ : Optional[int]=0.0 , lowercase__ : Optional[int]=0.1 , lowercase__ : Union[str, Any]=0.02 , lowercase__ : List[Any]=1e-7 , lowercase__ : str=1e-5 , lowercase__ : Union[str, Any]="group" , lowercase__ : List[str]="gelu" , lowercase__ : Optional[Any]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__ : Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__ : Union[str, Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__ : List[Any]=False , lowercase__ : Tuple=128 , lowercase__ : Optional[Any]=16 , lowercase__ : int=True , lowercase__ : Optional[int]=0.05 , lowercase__ : Optional[Any]=10 , lowercase__ : List[Any]=2 , lowercase__ : Dict=0.0 , lowercase__ : Any=10 , lowercase__ : Union[str, Any]=0 , lowercase__ : Dict="mean" , lowercase__ : Union[str, Any]=False , lowercase__ : Any=False , lowercase__ : Optional[Any]=256 , lowercase__ : Optional[Any]=0 , lowercase__ : str=1 , lowercase__ : Union[str, Any]=2 , **lowercase__ : List[str] , ): '''simple docstring''' super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) a_ : Union[str, Any] = hidden_size a_ : Optional[Any] = feat_extract_norm a_ : Union[str, Any] = feat_extract_activation a_ : Optional[int] = list(lowercase__ ) a_ : Tuple = list(lowercase__ ) a_ : Dict = list(lowercase__ ) a_ : Any = conv_bias a_ : Union[str, Any] = num_conv_pos_embeddings a_ : Any = num_conv_pos_embedding_groups a_ : Tuple = len(self.conv_dim ) a_ : int = num_hidden_layers a_ : Any = intermediate_size a_ : Tuple = squeeze_factor a_ : int = max_position_embeddings a_ : List[Any] = position_buckets a_ : List[Any] = share_att_key a_ : List[str] = relative_attention a_ : List[str] = norm_rel_ebd a_ : Optional[Any] = list(lowercase__ ) a_ : str = hidden_act a_ : Any = num_attention_heads a_ : Optional[int] = hidden_dropout a_ : Optional[Any] = attention_dropout a_ : Optional[int] = activation_dropout a_ : Any = feat_proj_dropout a_ : Any = final_dropout a_ : Dict = layer_norm_eps a_ : List[str] = feature_layer_norm_eps a_ : Optional[Any] = initializer_range a_ : List[Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a_ : Any = apply_spec_augment a_ : Dict = mask_time_prob a_ : Dict = mask_time_length a_ : Optional[int] = mask_time_min_masks a_ : Optional[int] = mask_feature_prob a_ : Dict = mask_feature_length a_ : List[Any] = mask_feature_min_masks # ctc loss a_ : str = ctc_loss_reduction a_ : Tuple = ctc_zero_infinity # sequence classification a_ : Any = use_weighted_layer_sum a_ : Any = classifier_proj_size @property def lowercase_ ( self : str ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
442
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : Optional[int] ): """simple docstring""" a_ : List[Any] = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: a_ : str = 1024 a_ : List[str] = 4096 a_ : int = 24 a_ : int = 16 a_ : Optional[Any] = [5, 11, 17, 23] a_ : Optional[int] = [256, 512, 1024, 1024] a_ : Union[str, Any] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: a_ : Dict = 768 a_ : str = [1, 1, 1, 0.5] a_ : Dict = [256, 512, 768, 768] a_ : int = 150 a_ : Any = 16 a_ : Optional[int] = (1, 384, 384) a_ : Optional[Any] = False a_ : Dict = """project""" if "ade" in checkpoint_url: a_ : int = True a_ : int = 768 a_ : Optional[int] = [1, 1, 1, 0.5] a_ : Dict = 150 a_ : Any = 16 a_ : Optional[int] = """huggingface/label-files""" a_ : Optional[int] = """ade20k-id2label.json""" a_ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) ) , """r""" ) ) a_ : str = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} a_ : Optional[int] = idalabel a_ : Optional[Any] = {v: k for k, v in idalabel.items()} a_ : int = [1, 150, 480, 480] return config, expected_shape def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : Optional[int] ): """simple docstring""" a_ : Dict = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : str ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): a_ : List[str] = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: a_ : Union[str, Any] = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: a_ : Optional[int] = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: a_ : List[str] = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: a_ : Any = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: a_ : Dict = name.replace("""proj""" , """projection""" ) if "blocks" in name: a_ : Union[str, Any] = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: a_ : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: a_ : Any = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: a_ : List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: a_ : int = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: a_ : Tuple = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: a_ : str = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: a_ : Optional[Any] = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: a_ : Dict = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: a_ : Tuple = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: a_ : str = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: a_ : List[Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 a_ : List[str] = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: a_ : Union[str, Any] = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: a_ : Any = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: a_ : List[str] = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: a_ : str = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: a_ : Dict = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: a_ : str = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: a_ : int = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: a_ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: a_ : List[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: a_ : List[Any] = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: a_ : List[Any] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: a_ : str = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: a_ : Optional[int] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: a_ : Optional[Any] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: a_ : List[Any] = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: a_ : Optional[Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: a_ : int = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: a_ : Any = name.replace("""bn""" , """batch_norm""" ) if "head" in name: a_ : int = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: a_ : Any = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: a_ : Union[str, Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: a_ : Any = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: a_ : Any = name.replace("""..""" , """.""" ) if "stem.conv" in name: a_ : Optional[int] = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: a_ : Dict = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: a_ : str = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: a_ : Any = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: a_ : Dict = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: a_ : List[str] = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: a_ : int = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a_ : List[str] = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) a_ : Optional[Any] = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict a_ : Any = in_proj_weight[: config.hidden_size, :] a_ : int = in_proj_bias[: config.hidden_size] a_ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a_ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] a_ : str = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" a_ : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" a_ : Union[str, Any] = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any ): """simple docstring""" a_ , a_ : Optional[Any] = get_dpt_config(UpperCamelCase__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") a_ : int = torch.load(UpperCamelCase__ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(UpperCamelCase__ ) # rename keys for key in state_dict.copy().keys(): a_ : Any = state_dict.pop(UpperCamelCase__ ) a_ : Tuple = val # read in qkv matrices read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # load HuggingFace model a_ : Any = DPTForSemanticSegmentation(UpperCamelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # Check outputs on an image a_ : str = 480 if """ade""" in checkpoint_url else 384 a_ : Optional[int] = DPTImageProcessor(size=UpperCamelCase__ ) a_ : Dict = prepare_img() a_ : Any = image_processor(UpperCamelCase__ , return_tensors="""pt""" ) # forward pass a_ : Dict = model(**UpperCamelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCamelCase__ ).predicted_depth if show_prediction: a_ : Any = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=UpperCamelCase__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
442
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( lowerCamelCase ): a__ = (UniPCMultistepScheduler,) a__ = (('''num_inference_steps''', 25),) def A ( self , **__lowerCAmelCase ): """simple docstring""" __magic_name__ :Union[str, Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**__lowerCAmelCase ) return config def A ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = dict(self.forward_default_kwargs ) __magic_name__ :Optional[int] = kwargs.pop('''num_inference_steps''' , __lowerCAmelCase ) __magic_name__ :Optional[Any] = self.dummy_sample __magic_name__ :Any = 0.1 * sample __magic_name__ :List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __magic_name__ :Optional[Any] = self.get_scheduler_config(**__lowerCAmelCase ) __magic_name__ :Tuple = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals __magic_name__ :str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) __magic_name__ :Optional[Any] = scheduler_class.from_pretrained(__lowerCAmelCase ) new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals __magic_name__ :Any = dummy_past_residuals[: new_scheduler.config.solver_order] __magic_name__ :Any = sample, sample for t in range(__lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): __magic_name__ :str = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample __magic_name__ :Union[str, Any] = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = dict(self.forward_default_kwargs ) __magic_name__ :List[Any] = kwargs.pop('''num_inference_steps''' , __lowerCAmelCase ) __magic_name__ :Tuple = self.dummy_sample __magic_name__ :Optional[int] = 0.1 * sample __magic_name__ :List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __magic_name__ :List[str] = self.get_scheduler_config() __magic_name__ :Optional[int] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __magic_name__ :Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) __magic_name__ :Tuple = scheduler_class.from_pretrained(__lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __magic_name__ :int = dummy_past_residuals[: new_scheduler.config.solver_order] __magic_name__ :Optional[Any] = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample __magic_name__ :str = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" if scheduler is None: __magic_name__ :Tuple = self.scheduler_classes[0] __magic_name__ :int = self.get_scheduler_config(**__lowerCAmelCase ) __magic_name__ :Union[str, Any] = scheduler_class(**__lowerCAmelCase ) __magic_name__ :int = self.scheduler_classes[0] __magic_name__ :Dict = self.get_scheduler_config(**__lowerCAmelCase ) __magic_name__ :Union[str, Any] = scheduler_class(**__lowerCAmelCase ) __magic_name__ :int = 1_0 __magic_name__ :Optional[Any] = self.dummy_model() __magic_name__ :Tuple = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ :int = model(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :List[Any] = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample return sample def A ( self ): """simple docstring""" __magic_name__ :List[str] = dict(self.forward_default_kwargs ) __magic_name__ :Optional[Any] = kwargs.pop('''num_inference_steps''' , __lowerCAmelCase ) for scheduler_class in self.scheduler_classes: __magic_name__ :Optional[int] = self.get_scheduler_config() __magic_name__ :Dict = scheduler_class(**__lowerCAmelCase ) __magic_name__ :Union[str, Any] = self.dummy_sample __magic_name__ :Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCAmelCase , '''set_timesteps''' ): scheduler.set_timesteps(__lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(__lowerCAmelCase , '''set_timesteps''' ): __magic_name__ :Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __magic_name__ :List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] __magic_name__ :Tuple = dummy_past_residuals[: scheduler.config.solver_order] __magic_name__ :str = scheduler.timesteps[5] __magic_name__ :Dict = scheduler.timesteps[6] __magic_name__ :List[Any] = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample __magic_name__ :str = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A ( self ): """simple docstring""" __magic_name__ :List[Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) __magic_name__ :str = self.full_loop(scheduler=__lowerCAmelCase ) __magic_name__ :Any = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 __magic_name__ :Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __magic_name__ :str = DEISMultistepScheduler.from_config(scheduler.config ) __magic_name__ :int = DPMSolverMultistepScheduler.from_config(scheduler.config ) __magic_name__ :Optional[int] = UniPCMultistepScheduler.from_config(scheduler.config ) __magic_name__ :str = self.full_loop(scheduler=__lowerCAmelCase ) __magic_name__ :Any = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def A ( self ): """simple docstring""" for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def A ( self ): """simple docstring""" self.check_over_configs(thresholding=__lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCAmelCase , prediction_type=__lowerCAmelCase , sample_max_value=__lowerCAmelCase , solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , ) def A ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def A ( self ): """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , ) __magic_name__ :List[Any] = self.full_loop( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , ) assert not torch.isnan(__lowerCAmelCase ).any(), "Samples have nan numbers" def A ( self ): """simple docstring""" self.check_over_configs(lower_order_final=__lowerCAmelCase ) self.check_over_configs(lower_order_final=__lowerCAmelCase ) def A ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=__lowerCAmelCase , time_step=0 ) def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.full_loop() __magic_name__ :Any = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.full_loop(prediction_type='''v_prediction''' ) __magic_name__ :Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1014 ) < 1E-3 def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = self.scheduler_classes[0] __magic_name__ :int = self.get_scheduler_config(thresholding=__lowerCAmelCase , dynamic_thresholding_ratio=0 ) __magic_name__ :List[str] = scheduler_class(**__lowerCAmelCase ) __magic_name__ :Any = 1_0 __magic_name__ :Tuple = self.dummy_model() __magic_name__ :Optional[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ :Union[str, Any] = model(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :Tuple = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa def A ( self , **__lowerCAmelCase ): """simple docstring""" for scheduler_class in self.scheduler_classes: __magic_name__ :int = self.get_scheduler_config(**__lowerCAmelCase ) __magic_name__ :str = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
711
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): @property def A ( self ): """simple docstring""" torch.manual_seed(0 ) __magic_name__ :Dict = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def A ( self ): """simple docstring""" torch.manual_seed(0 ) __magic_name__ :List[str] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def A ( self ): """simple docstring""" torch.manual_seed(0 ) __magic_name__ :int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.dummy_uncond_unet __magic_name__ :Optional[int] = DDIMScheduler() __magic_name__ :List[str] = self.dummy_vq_model __magic_name__ :Tuple = LDMPipeline(unet=__lowerCAmelCase , vqvae=__lowerCAmelCase , scheduler=__lowerCAmelCase ) ldm.to(__lowerCAmelCase ) ldm.set_progress_bar_config(disable=__lowerCAmelCase ) __magic_name__ :List[Any] = torch.manual_seed(0 ) __magic_name__ :List[str] = ldm(generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''numpy''' ).images __magic_name__ :List[Any] = torch.manual_seed(0 ) __magic_name__ :Any = ldm(generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''numpy''' , return_dict=__lowerCAmelCase )[0] __magic_name__ :Any = image[0, -3:, -3:, -1] __magic_name__ :Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __magic_name__ :Union[str, Any] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) __magic_name__ :Any = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowerCamelCase_ ( unittest.TestCase ): def A ( self ): """simple docstring""" __magic_name__ :Tuple = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(__lowerCAmelCase ) ldm.set_progress_bar_config(disable=__lowerCAmelCase ) __magic_name__ :Optional[Any] = torch.manual_seed(0 ) __magic_name__ :Optional[int] = ldm(generator=__lowerCAmelCase , num_inference_steps=5 , output_type='''numpy''' ).images __magic_name__ :Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __magic_name__ :List[str] = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447] ) __magic_name__ :Tuple = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
180
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowercase_ , lowercase_ , lowercase_ = False, False, False @dataclass class __a : lowerCamelCase : Optional[int] =None lowerCamelCase : bool =True lowerCamelCase : bool =True lowerCamelCase : Optional[str] =None # Automatically constructed lowerCamelCase : ClassVar[str] ="dict" lowerCamelCase : ClassVar[Any] =pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCamelCase : str =field(default='Audio' , init=__snake_case , repr=__snake_case ) def __call__( self ): '''simple docstring''' return self.pa_type def lowerCamelCase_ ( self , UpperCAmelCase ): '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(UpperCAmelCase , UpperCAmelCase ): return {"bytes": None, "path": value} elif isinstance(UpperCAmelCase , UpperCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCAmelCase_ = BytesIO() sf.write(UpperCAmelCase , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: lowerCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_2767 lowerCAmelCase_ = BytesIO(bytes() ) sf.write(UpperCAmelCase , UpperCAmelCase , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) lowerCAmelCase_ , lowerCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err lowerCAmelCase_ = xsplitext(UpperCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: lowerCAmelCase_ = token_per_repo_id or {} lowerCAmelCase_ = path.split('''::''' )[-1] try: lowerCAmelCase_ = string_to_dict(UpperCAmelCase , config.HUB_DATASETS_URL )['''repo_id'''] lowerCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCAmelCase_ = None with xopen(UpperCAmelCase , '''rb''' , use_auth_token=UpperCAmelCase ) as f: lowerCAmelCase_ , lowerCAmelCase_ = sf.read(UpperCAmelCase ) else: lowerCAmelCase_ , lowerCAmelCase_ = sf.read(UpperCAmelCase ) lowerCAmelCase_ = array.T if self.mono: lowerCAmelCase_ = librosa.to_mono(UpperCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCAmelCase_ = librosa.resample(UpperCAmelCase , orig_sr=UpperCAmelCase , target_sr=self.sampling_rate ) lowerCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self ): '''simple docstring''' from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def lowerCamelCase_ ( self , UpperCAmelCase ): '''simple docstring''' if pa.types.is_string(storage.type ): lowerCAmelCase_ = pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() ) lowerCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCAmelCase_ = pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) lowerCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): lowerCAmelCase_ = pa.array([Audio().encode_example(UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: lowerCAmelCase_ = storage.field('''bytes''' ) else: lowerCAmelCase_ = pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: lowerCAmelCase_ = storage.field('''path''' ) else: lowerCAmelCase_ = pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) lowerCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(UpperCAmelCase , self.pa_type ) def lowerCamelCase_ ( self , UpperCAmelCase ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase ): with xopen(UpperCAmelCase , '''rb''' ) as f: lowerCAmelCase_ = f.read() return bytes_ lowerCAmelCase_ = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase_ = pa.array( [os.path.basename(UpperCAmelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) lowerCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase , self.pa_type )
552
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
552
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/config.json', # See all XGLM models at https://huggingface.co/models?filter=xglm } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """xglm""" a_ : Optional[int] = ["""past_key_values"""] a_ : List[Any] = { """num_attention_heads""": """attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """num_layers""", } def __init__( self , __UpperCAmelCase=25_60_08 , __UpperCAmelCase=20_48 , __UpperCAmelCase=10_24 , __UpperCAmelCase=40_96 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) ->Union[str, Any]: a_ = vocab_size a_ = max_position_embeddings a_ = d_model a_ = ffn_dim a_ = num_layers a_ = attention_heads a_ = activation_function a_ = dropout a_ = attention_dropout a_ = activation_dropout a_ = layerdrop a_ = init_std a_ = scale_embedding # scale factor will be sqrt(d_model) if True a_ = use_cache super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
210
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """realm""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=1_28 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=8 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=2_56 , __UpperCAmelCase=10 , __UpperCAmelCase=1E-3 , __UpperCAmelCase=5 , __UpperCAmelCase=3_20 , __UpperCAmelCase=13_35_37_18 , __UpperCAmelCase=50_00 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) ->Tuple: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) # Common config a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = retriever_proj_size a_ = num_hidden_layers a_ = num_attention_heads a_ = num_candidates a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = type_vocab_size a_ = layer_norm_eps # Reader config a_ = span_hidden_size a_ = max_span_width a_ = reader_layer_norm_eps a_ = reader_beam_size a_ = reader_seq_len # Retrieval config a_ = num_block_records a_ = searcher_beam_size
210
1