code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def a_ ( __lowercase : int = 50 ) -> int: _snake_case = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
686
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring _lowerCamelCase : Union[str, Any] = '''ResNetConfig''' # Base docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[Any] = [1, 2_048, 7, 7] # Image classification docstring _lowerCamelCase : int = '''microsoft/resnet-50''' _lowerCamelCase : Optional[int] = '''tiger cat''' _lowerCamelCase : str = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 3 , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Union[str, Any] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def A ( self : Tuple , lowercase : Tensor ): '''simple docstring''' _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowercase ) _snake_case = self.pooler(lowercase ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int = 2 ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _snake_case = nn.BatchNormad(lowercase ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = self.convolution(lowercase ) _snake_case = self.normalization(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int , lowercase : int , lowercase : int = 1 , lowercase : str = "relu" , lowercase : int = 4 ): '''simple docstring''' super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _snake_case = ACTaFN[activation] def A ( self : Dict , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = hidden_state _snake_case = self.layer(lowercase ) _snake_case = self.shortcut(lowercase ) hidden_state += residual _snake_case = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : ResNetConfig , lowercase : int , lowercase : int , lowercase : int = 2 , lowercase : int = 2 , ): '''simple docstring''' super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , lowercase : Tensor ): '''simple docstring''' _snake_case = input for layer in self.layers: _snake_case = layer(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : ResNetConfig ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def A ( self : str , lowercase : Tensor , lowercase : bool = False , lowercase : bool = True ): '''simple docstring''' _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowercase ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ResNetConfig _UpperCAmelCase : Tuple = "resnet" _UpperCAmelCase : Optional[Any] = "pixel_values" _UpperCAmelCase : Dict = True def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Tuple , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Union[str, Any] , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowercase ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = ResNetModel(lowercase ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowercase ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__(lowercase ) super()._init_backbone(lowercase ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowercase ) _snake_case = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def A ( self : Dict , lowercase : Tensor , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowercase ) _snake_case = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
686
1
'''simple docstring''' from collections.abc import Callable import numpy as np def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: '''simple docstring''' lowerCamelCase_ : Any = int(np.ceil((x_end - xa) / step_size ) ) lowerCamelCase_ : Any = np.zeros((n + 1,) ) lowerCamelCase_ : Any = ya lowerCamelCase_ : Optional[Any] = xa for k in range(_UpperCamelCase ): lowerCamelCase_ : Any = y[k] + step_size * ode_func(_UpperCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' import itertools import math def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase_ ( ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = 2 while True: if is_prime(_lowercase ): yield num num += 1 def lowercase_ ( _lowercase = 10_001 ) -> int: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , _lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
357
0
"""simple docstring""" import math import sys def lowercase (_snake_case ) -> Optional[int]: '''simple docstring''' if number != int(_SCREAMING_SNAKE_CASE ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 __UpperCamelCase = [-1] * (number + 1) __UpperCamelCase = 0 for i in range(1 ,number + 1 ): __UpperCamelCase = sys.maxsize __UpperCamelCase = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) for j in range(1 ,root + 1 ): __UpperCamelCase = 1 + answers[i - (j**2)] __UpperCamelCase = min(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) __UpperCamelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
505
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __UpperCamelCase ( unittest.TestCase ): A_ = JukeboxTokenizer A_ = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def __UpperCAmelCase ( self ): '''simple docstring''' import torch __a : Optional[int] = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) __a : List[str] = tokenizer(**self.metas )['input_ids'] # fmt: off __a : str = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def __UpperCAmelCase ( self ): '''simple docstring''' import torch __a : Union[str, Any] = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) __a : Tuple = tokenizer(**self.metas )['input_ids'] # fmt: off __a : Dict = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
476
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def __A (_SCREAMING_SNAKE_CASE ) ->List[str]: """simple docstring""" lowerCAmelCase__ :str = split_dict._to_yaml_list() assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[Any] = SplitDict._from_yaml_list(_SCREAMING_SNAKE_CASE ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase__ :Optional[int] = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase__ :str = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_SCREAMING_SNAKE_CASE ), SplitInfo(dataset_name='my_dataset' )] ) def __A (_SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :Dict = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
560
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A = """▁""" __A = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :Dict = BigBirdTokenizer __magic_name__ :List[Any] = BigBirdTokenizerFast __magic_name__ :Optional[int] = True __magic_name__ :str = True def snake_case ( self ): '''simple docstring''' super().setUp() lowerCAmelCase__ :List[Any] = self.tokenizer_class(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = '<s>' lowerCAmelCase__ :Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(__UpperCAmelCase ) , 1_0_0_4 ) def snake_case ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def snake_case ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase__ :int = self.get_tokenizer() lowerCAmelCase__ :Dict = self.get_rust_tokenizer() lowerCAmelCase__ :Any = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ :str = tokenizer.tokenize(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.get_rust_tokenizer() lowerCAmelCase__ :Optional[int] = tokenizer.encode(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = BigBirdTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) lowerCAmelCase__ :Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase__ :List[str] = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) lowerCAmelCase__ :List[str] = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def snake_case ( self ): '''simple docstring''' return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = 'Hello World!' lowerCAmelCase__ :Union[str, Any] = [6_5, 1_8_5_3_6, 2_2_6_0, 1_0_1, 6_6] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off lowerCAmelCase__ :List[str] = [6_5, 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, 6_6] # noqa: E231 # fmt: on self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def snake_case ( self ): '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence lowerCAmelCase__ :int = list(self.big_tokenizer.get_vocab().keys() )[:1_0] lowerCAmelCase__ :Dict = ' '.join(__UpperCAmelCase ) lowerCAmelCase__ :Dict = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='pt' , return_token_type_ids=__UpperCAmelCase ) lowerCAmelCase__ :int = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = BigBirdConfig(attention_type='original_full' ) lowerCAmelCase__ :str = BigBirdModel(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) lowerCAmelCase__ :Any = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = {'input_ids': [[6_5, 3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4, 6_6], [6_5, 4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6_5, 4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
560
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""PoolFormerFeatureExtractor"""] UpperCamelCase = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
104
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } UpperCamelCase = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def _lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) A__ = bs[:] A__ = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase_ ) cs.append(2**8 + n ) n += 1 A__ = [chr(UpperCAmelCase_ ) for n in cs] return dict(zip(UpperCAmelCase_, UpperCAmelCase_ ) ) def _lowerCamelCase ( UpperCAmelCase_ : str ) -> List[str]: """simple docstring""" A__ = set() A__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ = char return pairs class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Union[str, Any] = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="replace" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> Tuple: A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as vocab_handle: A__ = json.load(SCREAMING_SNAKE_CASE__ ) A__ = {v: k for k, v in self.encoder.items()} A__ = errors # how to handle errors in decoding A__ = bytes_to_unicode() A__ = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as merges_handle: A__ = merges_handle.read().split("\n" )[1:-1] A__ = [tuple(merge.split() ) for merge in bpe_merges] A__ = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) A__ = {} A__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A__ = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def snake_case__ ( self ) -> List[Any]: return len(self.encoder ) def snake_case__ ( self ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Dict: if token in self.cache: return self.cache[token] A__ = tuple(SCREAMING_SNAKE_CASE__ ) A__ = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: return token while True: A__ = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ = bigram A__ = [] A__ = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: A__ = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ = tuple(SCREAMING_SNAKE_CASE__ ) A__ = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: A__ = get_pairs(SCREAMING_SNAKE_CASE__ ) A__ = " ".join(SCREAMING_SNAKE_CASE__ ) A__ = word return word def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: A__ = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE__ ): A__ = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE__ ).split(" " ) ) return bpe_tokens def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> str: return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Any: return self.decoder.get(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Dict: A__ = "".join(SCREAMING_SNAKE_CASE__ ) A__ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + "\n" ) A__ = 0 with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) A__ = token_index writer.write(" ".join(SCREAMING_SNAKE_CASE__ ) + "\n" ) index += 1 return vocab_file, merge_file def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ ) -> Optional[int]: A__ = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE__ ) > 0 and not text[0].isspace()): A__ = " " + text return (text, kwargs)
104
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = KandinskyVaaInpaintPipeline SCREAMING_SNAKE_CASE_ = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] SCREAMING_SNAKE_CASE_ = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] SCREAMING_SNAKE_CASE_ = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE_ = False @property def __lowerCamelCase( self ): """simple docstring""" return 32 @property def __lowerCamelCase( self ): """simple docstring""" return 32 @property def __lowerCamelCase( self ): """simple docstring""" return self.time_input_dim @property def __lowerCamelCase( self ): """simple docstring""" return self.time_input_dim * 4 @property def __lowerCamelCase( self ): """simple docstring""" return 1_00 @property def __lowerCamelCase( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case : Dict = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _snake_case : Optional[Any] = UNetaDConditionModel(**SCREAMING_SNAKE_CASE__ ) return model @property def __lowerCamelCase( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCamelCase( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCamelCase( self ): """simple docstring""" _snake_case : List[str] = self.dummy_unet _snake_case : Union[str, Any] = self.dummy_movq _snake_case : Tuple = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=SCREAMING_SNAKE_CASE__ , ) _snake_case : Dict = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): """simple docstring""" _snake_case : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) _snake_case : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE__ ) # create init_image _snake_case : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case : Dict = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask _snake_case : Optional[Any] = np.ones((64, 64) , dtype=np.floataa ) _snake_case : List[str] = 0 if str(SCREAMING_SNAKE_CASE__ ).startswith("""mps""" ): _snake_case : Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: _snake_case : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) _snake_case : Any = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[Any] = """cpu""" _snake_case : str = self.get_dummy_components() _snake_case : Dict = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) _snake_case : Dict = output.images _snake_case : str = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) , return_dict=SCREAMING_SNAKE_CASE__ , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) _snake_case : str = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def __lowerCamelCase( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase( self ): """simple docstring""" _snake_case : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) _snake_case : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _snake_case : Union[str, Any] = np.ones((7_68, 7_68) , dtype=np.floataa ) _snake_case : List[Any] = 0 _snake_case : List[Any] = """a hat""" _snake_case : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) _snake_case : Dict = pipeline.to(SCREAMING_SNAKE_CASE__ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) _snake_case : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) _snake_case , _snake_case : str = pipe_prior( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _snake_case : Optional[Any] = pipeline( image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , image_embeds=SCREAMING_SNAKE_CASE__ , negative_image_embeds=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) _snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
519
from collections.abc import Iterable from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar('''_T''') class __SCREAMING_SNAKE_CASE ( Generic[_T] ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ = None ): """simple docstring""" _snake_case : list[_T] = list(iterable or [] ) _snake_case : list[_T] = [] def __len__( self ): """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self ): """simple docstring""" return f'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" self._stacka.append(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[int] = self._stacka.pop _snake_case : Optional[int] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
519
1
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Optional[int] = 16 a_ : Any = 32 def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = 16): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('bert-base-cased') SCREAMING_SNAKE_CASE = load_dataset('glue' , 'mrpc') def tokenize_function(_UpperCAmelCase): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(_UpperCAmelCase): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE = 8 else: SCREAMING_SNAKE_CASE = None return tokenizer.pad( _UpperCAmelCase , padding='longest' , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors='pt' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets['train'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase) SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets['validation'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): # Initialize accelerator SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE = config['lr'] SCREAMING_SNAKE_CASE = int(config['num_epochs']) SCREAMING_SNAKE_CASE = int(config['seed']) SCREAMING_SNAKE_CASE = int(config['batch_size']) SCREAMING_SNAKE_CASE = evaluate.load('glue' , 'mrpc') # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_UpperCAmelCase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE = model.to(accelerator.device) # Instantiate optimizer SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=_UpperCAmelCase) # Instantiate scheduler SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_UpperCAmelCase) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # Now we train the model for epoch in range(_UpperCAmelCase): model.train() for step, batch in enumerate(_UpperCAmelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) SCREAMING_SNAKE_CASE = model(**_UpperCAmelCase) SCREAMING_SNAKE_CASE = outputs.loss SCREAMING_SNAKE_CASE = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCAmelCase) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch['labels'])) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _UpperCAmelCase) def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description='Simple example of training script.') parser.add_argument( '--mixed_precision' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.') SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_UpperCAmelCase , _UpperCAmelCase) if __name__ == "__main__": main()
73
from __future__ import annotations def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_UpperCAmelCase) if n > 1: factors.append(_UpperCAmelCase) return factors if __name__ == "__main__": import doctest doctest.testmod()
73
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets UpperCamelCase__ : int = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" UpperCamelCase__ : Optional[Any] = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" UpperCamelCase__ : int = R"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a (datasets.Metric): """simple docstring""" def UpperCamelCase ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def UpperCamelCase ( self , A__ , A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = 0.0 for i, j in zip(A__ , A__ ): n_correct += 1.0 if math_equivalence.is_equiv(A__ , A__ ) else 0.0 _SCREAMING_SNAKE_CASE = n_correct / len(A__ ) return { "accuracy": accuracy, }
720
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
0
0
'''simple docstring''' import os def lowercase__ ( ): '''simple docstring''' with open(os.path.dirname(__UpperCamelCase ) + """/p022_names.txt""" ) as file: __lowercase = str(file.readlines()[0] ) __lowercase = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() __lowercase = 0 __lowercase = 0 for i, name in enumerate(__UpperCamelCase ): for letter in name: name_score += ord(__UpperCamelCase ) - 64 total_score += (i + 1) * name_score __lowercase = 0 return total_score if __name__ == "__main__": print(solution())
566
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Any = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } snake_case : Union[str, Any] = { 'b0': { 'hidden_dim': 1_280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1_280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1_408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1_536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1_792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2_048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2_304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2_560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowercase__ ( __UpperCamelCase : str ): '''simple docstring''' __lowercase = EfficientNetConfig() __lowercase = CONFIG_MAP[model_name]["""hidden_dim"""] __lowercase = CONFIG_MAP[model_name]["""width_coef"""] __lowercase = CONFIG_MAP[model_name]["""depth_coef"""] __lowercase = CONFIG_MAP[model_name]["""image_size"""] __lowercase = CONFIG_MAP[model_name]["""dropout_rate"""] __lowercase = CONFIG_MAP[model_name]["""dw_padding"""] __lowercase = """huggingface/label-files""" __lowercase = """imagenet-1k-id2label.json""" __lowercase = 1000 __lowercase = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def lowercase__ ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im def lowercase__ ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase = CONFIG_MAP[model_name]["""image_size"""] __lowercase = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=__UpperCamelCase , ) return preprocessor def lowercase__ ( __UpperCamelCase : str ): '''simple docstring''' __lowercase = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __lowercase = sorted(set(__UpperCamelCase ) ) __lowercase = len(__UpperCamelCase ) __lowercase = {b: str(__UpperCamelCase ) for b, i in zip(__UpperCamelCase , range(__UpperCamelCase ) )} __lowercase = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __lowercase = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __lowercase = {} for item in rename_keys: if item[0] in original_param_names: __lowercase = """efficientnet.""" + item[1] __lowercase = """classifier.weight""" __lowercase = """classifier.bias""" return key_mapping def lowercase__ ( __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __lowercase = key_mapping[key] if "_conv" in key and "kernel" in key: __lowercase = torch.from_numpy(__UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __lowercase = torch.from_numpy(__UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __lowercase = torch.from_numpy(np.transpose(__UpperCamelCase ) ) else: __lowercase = torch.from_numpy(__UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__UpperCamelCase ) @torch.no_grad() def lowercase__ ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str ): '''simple docstring''' __lowercase = model_classes[model_name]( include_top=__UpperCamelCase , weights="""imagenet""" , input_tensor=__UpperCamelCase , input_shape=__UpperCamelCase , pooling=__UpperCamelCase , classes=1000 , classifier_activation="""softmax""" , ) __lowercase = original_model.trainable_variables __lowercase = original_model.non_trainable_variables __lowercase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __lowercase = param.numpy() __lowercase = list(tf_params.keys() ) # Load HuggingFace model __lowercase = get_efficientnet_config(__UpperCamelCase ) __lowercase = EfficientNetForImageClassification(__UpperCamelCase ).eval() __lowercase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __lowercase = rename_keys(__UpperCamelCase ) replace_params(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Initialize preprocessor and preprocess input image __lowercase = convert_image_processor(__UpperCamelCase ) __lowercase = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __lowercase = hf_model(**__UpperCamelCase ) __lowercase = outputs.logits.detach().numpy() # Original model inference __lowercase = False __lowercase = CONFIG_MAP[model_name]["""image_size"""] __lowercase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __lowercase = image.img_to_array(__UpperCamelCase ) __lowercase = np.expand_dims(__UpperCamelCase , axis=0 ) __lowercase = original_model.predict(__UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(__UpperCamelCase ): os.mkdir(__UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(__UpperCamelCase ) preprocessor.save_pretrained(__UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) __lowercase = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(__UpperCamelCase ) hf_model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') snake_case : Tuple = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
566
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : Tuple = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'xglm' UpperCamelCase__ = ['past_key_values'] UpperCamelCase__ = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self , snake_case_=25_60_08 , snake_case_=20_48 , snake_case_=10_24 , snake_case_=40_96 , snake_case_=24 , snake_case_=16 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=True , snake_case_=True , snake_case_=2 , snake_case_=1 , snake_case_=0 , snake_case_=2 , **snake_case_ , ): lowercase =vocab_size lowercase =max_position_embeddings lowercase =d_model lowercase =ffn_dim lowercase =num_layers lowercase =attention_heads lowercase =activation_function lowercase =dropout lowercase =attention_dropout lowercase =activation_dropout lowercase =layerdrop lowercase =init_std lowercase =scale_embedding # scale factor will be sqrt(d_model) if True lowercase =use_cache super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , **snake_case_ , )
721
'''simple docstring''' from __future__ import annotations _UpperCAmelCase : str = 10 def UpperCamelCase ( lowercase_ : list[int] ) -> list[int]: '''simple docstring''' lowercase =1 lowercase =max(lowercase_ ) while placement <= max_digit: # declare and initialize empty buckets lowercase =[[] for _ in range(lowercase_ )] # split list_of_ints between the buckets for i in list_of_ints: lowercase =int((i / placement) % RADIX ) buckets[tmp].append(lowercase_ ) # put each buckets' contents into list_of_ints lowercase =0 for b in range(lowercase_ ): for i in buckets[b]: lowercase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
145
0
from manim import * class _A ( UpperCAmelCase_ ): def a ( self : str ): """simple docstring""" __UpperCamelCase : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) __UpperCamelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) __UpperCamelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __UpperCamelCase : Union[str, Any] = [mem.copy() for i in range(6 )] __UpperCamelCase : Union[str, Any] = [mem.copy() for i in range(6 )] __UpperCamelCase : Tuple = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Optional[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Tuple = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Union[str, Any] = Text("""CPU""" , font_size=24 ) __UpperCamelCase : List[Any] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : int = [mem.copy() for i in range(4 )] __UpperCamelCase : str = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Optional[int] = Text("""GPU""" , font_size=24 ) __UpperCamelCase : Dict = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : Any = [mem.copy() for i in range(6 )] __UpperCamelCase : int = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Optional[Any] = Text("""Model""" , font_size=24 ) __UpperCamelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : Dict = [] __UpperCamelCase : Optional[Any] = [] __UpperCamelCase : List[str] = [] for i, rect in enumerate(lowerCamelCase__ ): rect.set_stroke(lowerCamelCase__ ) __UpperCamelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCamelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowerCamelCase__ , buff=0.0 ) self.add(lowerCamelCase__ ) model_cpu_arr.append(lowerCamelCase__ ) self.add(*lowerCamelCase__ , *lowerCamelCase__ , *lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] = [mem.copy() for i in range(6 )] __UpperCamelCase : Any = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : int = Text("""Loaded Checkpoint""" , font_size=24 ) __UpperCamelCase : List[Any] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : Dict = [] __UpperCamelCase : Tuple = [] for i, rect in enumerate(lowerCamelCase__ ): __UpperCamelCase : Tuple = fill.copy().set_fill(lowerCamelCase__ , opacity=0.7 ) target.move_to(lowerCamelCase__ ) ckpt_arr.append(lowerCamelCase__ ) __UpperCamelCase : Tuple = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowerCamelCase__ ) self.add(*lowerCamelCase__ , *lowerCamelCase__ ) __UpperCamelCase : List[str] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCamelCase : Optional[int] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowerCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] = MarkupText( f'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) __UpperCamelCase : Tuple = [meta_mem.copy() for i in range(6 )] __UpperCamelCase : Tuple = [meta_mem.copy() for i in range(6 )] __UpperCamelCase : Optional[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : int = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : List[Any] = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Tuple = Text("""Disk""" , font_size=24 ) __UpperCamelCase : Any = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(lowerCamelCase__ , run_time=3 ) , Write(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) ) __UpperCamelCase : List[str] = [] for i, rect in enumerate(lowerCamelCase__ ): __UpperCamelCase : List[Any] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(FadeOut(lowerCamelCase__ ) ) __UpperCamelCase : List[str] = MarkupText(f'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=3 ) ) self.play( FadeOut(lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ , *lowerCamelCase__ ) , ) self.wait()
269
from collections.abc import Iterable from typing import Generic, TypeVar UpperCamelCase = TypeVar('_T') class _A ( Generic[_T] ): def __init__( self : int , lowerCamelCase__ : Iterable[_T] | None = None ): """simple docstring""" __UpperCamelCase : list[_T] = list(iterable or [] ) __UpperCamelCase : list[_T] = [] def __len__( self : str ): """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self : Dict ): """simple docstring""" return f'Queue({tuple(self._stacka[::-1] + self._stacka )})' def a ( self : Union[str, Any] , lowerCamelCase__ : _T ): """simple docstring""" self._stacka.append(lowerCamelCase__ ) def a ( self : Union[str, Any] ): """simple docstring""" __UpperCamelCase : Any = self._stacka.pop __UpperCamelCase : int = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
269
1
"""simple docstring""" import math def a__ ( snake_case__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( snake_case__ = 0.1 ) -> int: lowerCamelCase = 3 lowerCamelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(snake_case__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
533
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowerCAmelCase : Dict = parser.parse_args() lowerCAmelCase : str = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
533
1
from __future__ import annotations from typing import Generic, TypeVar a : List[Any] = TypeVar('T') class _a ( Generic[T] ): def __init__(self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCAmelCase_: str = data UpperCAmelCase_: int = self UpperCAmelCase_: Any = 0 class _a ( Generic[T] ): def __init__(self ) -> None: # map from node name to the node object UpperCAmelCase_: dict[T, DisjointSetTreeNode[T]] = {} def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> None: # create a new set with x as its member UpperCAmelCase_: str = DisjointSetTreeNode(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCAmelCase_: Union[str, Any] = self.map[data] if elem_ref != elem_ref.parent: UpperCAmelCase_: Union[str, Any] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCAmelCase_: Union[str, Any] = nodea else: UpperCAmelCase_: int = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(SCREAMING_SNAKE_CASE_ ), self.find_set(SCREAMING_SNAKE_CASE_ ) ) class _a ( Generic[T] ): def __init__(self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCAmelCase_: dict[T, dict[T, int]] = {} def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCAmelCase_: Tuple = {} def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: # add an edge with the given weight self.add_node(SCREAMING_SNAKE_CASE_ ) self.add_node(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = weight UpperCAmelCase_: List[Any] = weight def __snake_case (self ) -> GraphUndirectedWeighted[T]: UpperCAmelCase_: str = [] UpperCAmelCase_: Optional[Any] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda SCREAMING_SNAKE_CASE_ : x[2] ) # creating the disjoint set UpperCAmelCase_: str = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(SCREAMING_SNAKE_CASE_ ) # MST generation UpperCAmelCase_: Union[str, Any] = 0 UpperCAmelCase_: str = 0 UpperCAmelCase_: Tuple = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = edges[index] index += 1 UpperCAmelCase_: Dict = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) disjoint_set.union(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return graph
556
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Optional[Any] = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
556
1
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase , __UpperCamelCase=2 , __UpperCamelCase=32 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=4 , __UpperCamelCase=[0, 1, 2, 3] , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0_2 , __UpperCamelCase=3 , __UpperCamelCase=[1, 384, 24, 24] , __UpperCamelCase=True , __UpperCamelCase=None , ): '''simple docstring''' __a : List[str] = parent __a : Tuple = batch_size __a : str = image_size __a : int = patch_size __a : Dict = num_channels __a : int = is_training __a : Dict = use_labels __a : Union[str, Any] = hidden_size __a : Dict = num_hidden_layers __a : Dict = backbone_out_indices __a : Optional[int] = num_attention_heads __a : List[str] = intermediate_size __a : Optional[Any] = hidden_act __a : Dict = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Any = initializer_range __a : Any = num_labels __a : Optional[Any] = backbone_featmap_shape __a : List[Any] = scope __a : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __a : Union[str, Any] = (image_size // patch_size) ** 2 __a : List[str] = num_patches + 1 def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Union[str, Any] = None if self.use_labels: __a : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a : Tuple = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[Any] = DPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[str] = self.num_labels __a : Union[str, Any] = DPTForDepthEstimation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Dict = self.num_labels __a : Tuple = DPTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __a : str = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.prepare_config_and_inputs() __a , __a , __a : Tuple = config_and_inputs __a : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowercase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase__ = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = DPTModelTester(self ) __a : List[Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : str = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Any = model_class(__UpperCamelCase ) __a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : int = [*signature.parameters.keys()] __a : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() __a : List[Any] = True if model_class in get_values(__UpperCamelCase ): continue __a : str = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() __a : Union[str, Any] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : List[Any] = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = False __a : Dict = True if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue __a : Any = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() __a : List[str] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) __a : Dict = model(**__UpperCamelCase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: __a : Any = model_class(config=__UpperCamelCase ) # Skip the check for the backbone __a : Optional[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __a : Optional[int] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCamelCase ( self ): '''simple docstring''' pass @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __a : int = DPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : int = self.model_tester.prepare_config_and_inputs_for_common() __a : Optional[int] = """add""" with self.assertRaises(__UpperCamelCase ): __a : int = DPTForDepthEstimation(__UpperCamelCase ) def _snake_case ( ) -> Any: __a : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : int = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) __a : int = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase ) __a : Union[str, Any] = prepare_img() __a : Any = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __a : Optional[Any] = model(**__UpperCamelCase ) __a : int = outputs.predicted_depth # verify the predicted depth __a : Any = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __UpperCamelCase ) __a : int = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __UpperCamelCase , atol=1E-4 ) )
697
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: for attribute in key.split(""".""" ): __a : str = getattr(lowercase , lowercase ) if weight_type is not None: __a : Dict = getattr(lowercase , lowercase ).shape else: __a : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a : Any = value elif weight_type == "weight_g": __a : int = value elif weight_type == "weight_v": __a : int = value elif weight_type == "bias": __a : List[Any] = value elif weight_type == "running_mean": __a : Union[str, Any] = value elif weight_type == "running_var": __a : Tuple = value elif weight_type == "num_batches_tracked": __a : Optional[int] = value elif weight_type == "inv_freq": __a : List[str] = value else: __a : List[str] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( lowercase , lowercase , lowercase ) -> Dict: __a : Dict = [] __a : Dict = fairseq_model.state_dict() __a : Tuple = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __a : int = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , ) __a : List[Any] = True else: for key, mapped_key in MAPPING.items(): __a : Optional[int] = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __a : str = True if "*" in mapped_key: __a : Optional[int] = name.split(lowercase )[0].split(""".""" )[-2] __a : List[Any] = mapped_key.replace("""*""" , lowercase ) if "pos_bias_u" in name: __a : Union[str, Any] = None elif "pos_bias_v" in name: __a : List[Any] = None elif "weight_g" in name: __a : List[Any] = """weight_g""" elif "weight_v" in name: __a : List[Any] = """weight_v""" elif "bias" in name: __a : Optional[int] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __a : str = """weight""" elif "running_mean" in name: __a : List[str] = """running_mean""" elif "inv_freq" in name: __a : Dict = """inv_freq""" elif "running_var" in name: __a : Union[str, Any] = """running_var""" elif "num_batches_tracked" in name: __a : int = """num_batches_tracked""" else: __a : Optional[int] = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: __a : Optional[Any] = full_name.split("""conv_layers.""" )[-1] __a : Union[str, Any] = name.split(""".""" ) __a : Optional[Any] = int(items[0] ) __a : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __a : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __a : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) @torch.no_grad() def _snake_case ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Optional[Any]: if config_path is not None: __a : Any = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act="""swish""" ) else: __a : Optional[int] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __a : Optional[Any] = """rotary""" if is_finetuned: if dict_path: __a : List[Any] = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __a : int = target_dict.pad_index __a : List[str] = target_dict.bos_index __a : str = target_dict.eos_index __a : Dict = len(target_dict.symbols ) __a : Any = os.path.join(lowercase , """vocab.json""" ) if not os.path.isdir(lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) __a : Dict = target_dict.indices # fairseq has the <pad> and <s> switched __a : Optional[Any] = 0 __a : List[Any] = 1 with open(lowercase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowercase , lowercase ) __a : int = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase , ) __a : Optional[int] = True if config.feat_extract_norm == """layer""" else False __a : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) __a : str = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) __a : List[str] = WavaVecaConformerForCTC(lowercase ) else: __a : Optional[int] = WavaVecaConformerForPreTraining(lowercase ) if is_finetuned: __a , __a , __a : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __a : Optional[int] = argparse.Namespace(task="""audio_pretraining""" ) __a : Tuple = fairseq.tasks.setup_task(lowercase ) __a , __a , __a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase ) __a : Any = model[0].eval() recursively_load_weights(lowercase , lowercase , not is_finetuned ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
697
1
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE_ = {"facebook/bart-base": BartForConditionalGeneration} SCREAMING_SNAKE_CASE_ = {"facebook/bart-base": BartTokenizer} def lowerCAmelCase__ ( ): __a : List[str] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE__ , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE__ , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE__ , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE__ , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='Where to store the final ONNX file.' ) __a : int = parser.parse_args() return args def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="cpu" ): __a : Any = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __a : List[Any] = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ ) if model_name in ["facebook/bart-base"]: __a : Tuple = 0 __a : List[str] = None __a : Optional[int] = 0 return huggingface_model, tokenizer def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): model.eval() __a : Optional[int] = None __a : Optional[int] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE__ ) ) with torch.no_grad(): __a : Union[str, Any] = 'My friends are cool but they eat too many carbs.' __a : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='pt' ).to(model.device ) __a : List[Any] = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , early_stopping=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE__ , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE__ , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE__ , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE__ ) ) __a : Union[str, Any] = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE__ ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE__ ) ) __a : Optional[int] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE__ ) __a : int = ort_sess.run( SCREAMING_SNAKE_CASE__ , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE__ ), 'max_length': np.array(SCREAMING_SNAKE_CASE__ ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def lowerCAmelCase__ ( ): __a : Any = parse_args() __a : Optional[Any] = 5 __a : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() __a : Tuple = torch.device(args.device ) __a , __a : Dict = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE__ ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE__ ) if args.max_length: __a : List[str] = args.max_length if args.num_beams: __a : int = args.num_beams if args.output_file_path: __a : str = args.output_file_path else: __a : Optional[Any] = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
597
'''simple docstring''' import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging SCREAMING_SNAKE_CASE_ = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] SCREAMING_SNAKE_CASE_ = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = " Hello world! cécé herlolip" SCREAMING_SNAKE_CASE_ = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a : Dict = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Dict = dct.pop(SCREAMING_SNAKE_CASE__ ) __a : Dict = val def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a : Dict = torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) __a : Dict = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a , __a : Dict = emb.weight.shape __a : Optional[Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __a : List[Any] = emb.weight.data return lin_layer @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): if not os.path.exists(SCREAMING_SNAKE_CASE__ ): __a : Tuple = torch.hub.load('pytorch/fairseq' , SCREAMING_SNAKE_CASE__ ).eval() else: __a : Optional[int] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: __a : List[str] = checkpoint_path.replace('.' , '-' ) __a : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) __a : List[str] = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( f'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": __a : List[Any] = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) __a : str = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Dict = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __a : Any = bart.predict('mnli' , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about __a : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = state_dict['decoder.embed_tokens.weight'] __a : List[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": __a : Dict = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __a : str = model(SCREAMING_SNAKE_CASE__ ).model[0] else: __a : Optional[Any] = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , 'lm_head' ): __a : Optional[int] = make_linear_from_emb(model.model.shared ) __a : List[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
597
1
def UpperCamelCase_( _A :str )-> str: return "".join(chr(ord(_A ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
185
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowerCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case=13 , snake_case=10 , snake_case=3 , snake_case=2 , snake_case=2 , snake_case=2 , snake_case=True , snake_case=True , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=10 , snake_case=0.02 , snake_case=0.9 , snake_case=None , ): '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = tubelet_size UpperCamelCase__ = num_frames UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = mask_ratio UpperCamelCase__ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos UpperCamelCase__ = int(mask_ratio * self.seq_length ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self ): '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , ) def snake_case__ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = VideoMAEModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase__ = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = VideoMAEForPreTraining(snake_case ) model.to(snake_case ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCamelCase__ = torch.ones((self.num_masks,) ) UpperCamelCase__ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) UpperCamelCase__ = mask.expand(self.batch_size , -1 ).bool() UpperCamelCase__ = model(snake_case , snake_case ) # model only returns predictions for masked patches UpperCamelCase__ = mask.sum().item() UpperCamelCase__ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Optional[Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) _UpperCamelCase : Optional[int] = False _UpperCamelCase : Tuple = False _UpperCamelCase : int = False _UpperCamelCase : Any = False def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = VideoMAEModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def snake_case__ ( self , snake_case , snake_case , snake_case=False ): '''simple docstring''' UpperCamelCase__ = copy.deepcopy(snake_case ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCamelCase__ = torch.ones((self.model_tester.num_masks,) ) UpperCamelCase__ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) UpperCamelCase__ = mask.expand(self.model_tester.batch_size , -1 ).bool() UpperCamelCase__ = bool_masked_pos.to(snake_case ) if return_labels: if model_class in [ *get_values(snake_case ), ]: UpperCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def snake_case__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__, UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__, UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = VideoMAEModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case__ ( self ): '''simple docstring''' if not self.has_attentions: pass else: UpperCamelCase__, UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True for model_class in self.all_model_classes: UpperCamelCase__ = self.model_tester.seq_length - self.model_tester.num_masks UpperCamelCase__ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCamelCase__ = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCamelCase__ = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) UpperCamelCase__ = len(snake_case ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(out_len + 1 , len(snake_case ) ) UpperCamelCase__ = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case__ ( self ): '''simple docstring''' def check_hidden_states_output(snake_case , snake_case , snake_case ): UpperCamelCase__ = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCamelCase__ = outputs.hidden_states UpperCamelCase__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(snake_case ) , snake_case ) UpperCamelCase__ = self.model_tester.seq_length - self.model_tester.num_masks UpperCamelCase__ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCamelCase__, UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ = True check_hidden_states_output(snake_case , snake_case , snake_case ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case__ ( self ): '''simple docstring''' pass def UpperCamelCase_( )-> Union[str, Any]: UpperCamelCase__ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) UpperCamelCase__ = np.load(_A ) return list(_A ) @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self ): '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( snake_case ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_video() UpperCamelCase__ = image_processor(snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**snake_case ) # verify the logits UpperCamelCase__ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , snake_case ) UpperCamelCase__ = torch.tensor([0.3669, -0.0688, -0.2421] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) ) @slow def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(snake_case ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_video() UpperCamelCase__ = image_processor(snake_case , return_tensors="pt" ).to(snake_case ) # add boolean mask, indicating which patches to mask UpperCamelCase__ = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) UpperCamelCase__ = torch.load(snake_case ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**snake_case ) # verify the logits UpperCamelCase__ = torch.Size([1, 1408, 1536] ) UpperCamelCase__ = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=snake_case ) self.assertEqual(outputs.logits.shape , snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , snake_case , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) UpperCamelCase__ = torch.tensor([0.5142] , device=snake_case ) self.assertTrue(torch.allclose(outputs.loss , snake_case , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) UpperCamelCase__ = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=snake_case ).to( snake_case ) with torch.no_grad(): UpperCamelCase__ = model(**snake_case ) UpperCamelCase__ = torch.tensor(torch.tensor([0.6469] ) , device=snake_case ) self.assertTrue(torch.allclose(outputs.loss , snake_case , atol=1E-4 ) )
185
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Optional[int] = 16 A_ : Optional[Any] = 32 def UpperCamelCase__ ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> int: '''simple docstring''' snake_case__ : List[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case__ : Optional[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Dict = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : Dict = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : Union[str, Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Dict = 16 elif accelerator.mixed_precision != "no": snake_case__ : Union[str, Any] = 8 else: snake_case__ : Optional[int] = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. snake_case__ : str = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) snake_case__ : str = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders A_ : Tuple = mocked_dataloaders # noqa: F811 def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : Any ) -> Union[str, Any]: '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": snake_case__ : Optional[Any] = 2 # Initialize accelerator snake_case__ : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : Any = config["""lr"""] snake_case__ : List[str] = int(config["""num_epochs"""] ) snake_case__ : int = int(config["""seed"""] ) snake_case__ : Any = int(config["""batch_size"""] ) snake_case__ : Dict = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation snake_case__ : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case__ : Tuple = batch_size // MAX_GPU_BATCH_SIZE snake_case__ : Optional[Any] = MAX_GPU_BATCH_SIZE set_seed(__magic_name__ ) snake_case__ , snake_case__ : List[Any] = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : str = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : List[Any] = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : List[str] = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler snake_case__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=1_00 , num_training_steps=(len(__magic_name__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case__ : Union[str, Any] = model(**__magic_name__ ) snake_case__ : str = outputs.loss snake_case__ : List[Any] = loss / gradient_accumulation_steps accelerator.backward(__magic_name__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() snake_case__ : Tuple = 0 for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : Optional[int] = model(**__magic_name__ ) snake_case__ : Tuple = outputs.logits.argmax(dim=-1 ) snake_case__ , snake_case__ : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__magic_name__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples snake_case__ : Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) snake_case__ : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , __magic_name__ ) def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) snake_case__ : Optional[Any] = parser.parse_args() snake_case__ : Any = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
38
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A ( pl.LightningModule ): def __init__( self : Dict , __a : List[str] ) -> Tuple: super().__init__() __UpperCAmelCase = model __UpperCAmelCase = 2 __UpperCAmelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def snake_case__ ( self : int ) -> int: pass def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" # load longformer model from model identifier __UpperCAmelCase = LongformerModel.from_pretrained(UpperCamelCase__ ) __UpperCAmelCase = LightningModel(UpperCamelCase__ ) __UpperCAmelCase = torch.load(UpperCamelCase__ , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model __UpperCAmelCase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase__ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : List[str] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
262
0
import logging import os import threading import time try: import warnings except ImportError: _snake_case = None try: import msvcrt except ImportError: _snake_case = None try: import fcntl except ImportError: _snake_case = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _snake_case = OSError # Data # ------------------------------------------------ _snake_case = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] _snake_case = "3.0.12" _snake_case = None def lowerCAmelCase_ ( ): global _logger _A : str = _logger or logging.getLogger(__name__ ) return _logger class lowercase ( UpperCamelCase__ ): def __init__( self , _a ) -> List[str]: _A : int = lock_file return None def __str__( self ) -> str: _A : List[Any] = F'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class lowercase : def __init__( self , _a ) -> Tuple: _A : Optional[int] = lock return None def __enter__( self ) -> List[Any]: return self.lock def __exit__( self , _a , _a , _a ) -> List[Any]: self.lock.release() return None class lowercase : def __init__( self , _a , _a=-1 , _a=None ) -> List[Any]: _A : List[Any] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long _A : int = self.hash_filename_if_too_long(_a , _a ) # The path to the lock file. _A : Optional[int] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _A : Optional[int] = None # The default timeout value. _A : Union[str, Any] = timeout # We use this lock primarily for the lock counter. _A : str = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _A : str = 0 return None @property def a__ ( self ) -> Dict: return self._lock_file @property def a__ ( self ) -> Optional[Any]: return self._timeout @timeout.setter def a__ ( self , _a ) -> Optional[int]: _A : Dict = float(_a ) return None def a__ ( self ) -> Optional[Any]: raise NotImplementedError() def a__ ( self ) -> int: raise NotImplementedError() @property def a__ ( self ) -> Optional[Any]: return self._lock_file_fd is not None def a__ ( self , _a=None , _a=0.05 ) -> Dict: # Use the default timeout, if no timeout is provided. if timeout is None: _A : Tuple = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _A : Optional[int] = id(self ) _A : str = self._lock_file _A : Tuple = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(_a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _A : List[Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def a__ ( self , _a=False ) -> Optional[int]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _A : Optional[Any] = id(self ) _A : str = self._lock_file logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() _A : Tuple = 0 logger().debug(F'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ) -> Any: self.acquire() return self def __exit__( self , _a , _a , _a ) -> int: self.release() return None def __del__( self ) -> List[Any]: self.release(force=_a ) return None def a__ ( self , _a , _a ) -> str: _A : Optional[Any] = os.path.basename(_a ) if len(_a ) > max_length and max_length > 0: _A : Dict = os.path.dirname(_a ) _A : Any = str(hash(_a ) ) _A : Tuple = filename[: max_length - len(_a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(_a , _a ) else: return path class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a=-1 , _a=None ) -> Union[str, Any]: from .file_utils import relative_to_absolute_path super().__init__(_a , timeout=_a , max_filename_length=_a ) _A : Optional[Any] = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def a__ ( self ) -> Union[str, Any]: _A : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _A : Optional[Any] = os.open(self._lock_file , _a ) except OSError: pass else: try: msvcrt.locking(_a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(_a ) else: _A : str = fd return None def a__ ( self ) -> int: _A : str = self._lock_file_fd _A : Any = None msvcrt.locking(_a , msvcrt.LK_UNLCK , 1 ) os.close(_a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a=-1 , _a=None ) -> Optional[int]: _A : List[Any] = os.statvfs(os.path.dirname(_a ) ).f_namemax super().__init__(_a , timeout=_a , max_filename_length=_a ) def a__ ( self ) -> Any: _A : Any = os.O_RDWR | os.O_CREAT | os.O_TRUNC _A : Any = os.open(self._lock_file , _a ) try: fcntl.flock(_a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(_a ) else: _A : Dict = fd return None def a__ ( self ) -> Dict: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _A : Any = self._lock_file_fd _A : Dict = None fcntl.flock(_a , fcntl.LOCK_UN ) os.close(_a ) return None class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Tuple: _A : Dict = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _A : Optional[Any] = os.open(self._lock_file , _a ) except OSError: pass else: _A : str = fd return None def a__ ( self ) -> List[Any]: os.close(self._lock_file_fd ) _A : Dict = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _snake_case = None if msvcrt: _snake_case = WindowsFileLock elif fcntl: _snake_case = UnixFileLock else: _snake_case = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
54
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
1
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCAmelCase: """simple docstring""" def __init__( self , snake_case__ , snake_case__=2 , snake_case__=3 , snake_case__=4 , snake_case__=2 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=36 , snake_case__=3 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=6 , snake_case__=6 , snake_case__=3 , snake_case__=4 , snake_case__=None , snake_case__=1000 , ): '''simple docstring''' lowercase__ : Union[str, Any]= parent lowercase__ : Optional[Any]= batch_size lowercase__ : List[str]= num_channels lowercase__ : int= image_size lowercase__ : int= patch_size lowercase__ : Tuple= text_seq_length lowercase__ : Dict= is_training lowercase__ : Union[str, Any]= use_input_mask lowercase__ : Optional[Any]= use_token_type_ids lowercase__ : List[str]= use_labels lowercase__ : Dict= vocab_size lowercase__ : Union[str, Any]= hidden_size lowercase__ : Tuple= num_hidden_layers lowercase__ : int= num_attention_heads lowercase__ : Any= intermediate_size lowercase__ : Union[str, Any]= hidden_act lowercase__ : str= hidden_dropout_prob lowercase__ : Tuple= attention_probs_dropout_prob lowercase__ : List[Any]= max_position_embeddings lowercase__ : Optional[int]= type_vocab_size lowercase__ : Optional[int]= type_sequence_label_size lowercase__ : str= initializer_range lowercase__ : int= coordinate_size lowercase__ : Dict= shape_size lowercase__ : List[Any]= num_labels lowercase__ : int= num_choices lowercase__ : str= scope lowercase__ : Dict= range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase__ : Any= text_seq_length lowercase__ : Union[str, Any]= (image_size // patch_size) ** 2 + 1 lowercase__ : Optional[int]= self.text_seq_length + self.image_seq_length def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowercase__ : str= ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase__ : List[str]= bbox[i, j, 3] lowercase__ : List[str]= bbox[i, j, 1] lowercase__ : Dict= t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase__ : str= bbox[i, j, 2] lowercase__ : Optional[int]= bbox[i, j, 0] lowercase__ : str= t lowercase__ : str= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Any= None if self.use_input_mask: lowercase__ : Dict= random_attention_mask([self.batch_size, self.text_seq_length] ) lowercase__ : Any= None if self.use_token_type_ids: lowercase__ : str= ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowercase__ : Dict= None lowercase__ : List[str]= None if self.use_labels: lowercase__ : List[str]= ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Optional[int]= ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowercase__ : List[Any]= LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Dict= LayoutLMvaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() # text + image lowercase__ : List[Any]= model(snake_case__ , pixel_values=snake_case__ ) lowercase__ : int= model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowercase__ : Any= model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , token_type_ids=snake_case__ ) lowercase__ : Dict= model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowercase__ : Any= model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowercase__ : List[Any]= model(pixel_values=snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : List[Any]= self.num_labels lowercase__ : Optional[Any]= LayoutLMvaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase__ : str= model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : int= self.num_labels lowercase__ : Optional[int]= LayoutLMvaForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase__ : str= model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= LayoutLMvaForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase__ : Tuple= model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) : Dict= config_and_inputs lowercase__ : Dict= { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __lowerCamelCase = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[str]= LayoutLMvaModelTester(self ) lowercase__ : List[str]= ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' lowercase__ : Optional[Any]= copy.deepcopy(snake_case__ ) if model_class in get_values(snake_case__ ): lowercase__ : List[Any]= { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(snake_case__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(snake_case__ ): lowercase__ : str= torch.ones(self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in get_values(snake_case__ ): lowercase__ : Union[str, Any]= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) lowercase__ : str= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: lowercase__ : Optional[int]= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: lowercase__ : Optional[Any]= torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=snake_case__ , ) return inputs_dict def UpperCAmelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : Dict= type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[int]= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @slow def UpperCAmelCase_ ( self ): '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Dict= LayoutLMvaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowercase__() ->Union[str, Any]: """simple docstring""" lowercase__ : str= Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(snake_case__ ) lowercase__ : Dict= self.default_image_processor lowercase__ : Any= prepare_img() lowercase__ : Union[str, Any]= image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ ) lowercase__ : str= torch.tensor([[1, 2]] ) lowercase__ : Any= torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowercase__ : Union[str, Any]= model( input_ids=input_ids.to(snake_case__ ) , bbox=bbox.to(snake_case__ ) , pixel_values=pixel_values.to(snake_case__ ) , ) # verify the logits lowercase__ : Tuple= torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , snake_case__ ) lowercase__ : Dict= torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-4 ) )
218
"""simple docstring""" def lowercase__(A ) ->bool: """simple docstring""" return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def lowercase__(A ) ->bool: """simple docstring""" lowercase__ : str= credit_card_number lowercase__ : Any= 0 lowercase__ : Optional[Any]= len(A ) - 2 for i in range(A , -1 , -2 ): # double the value of every second digit lowercase__ : Union[str, Any]= int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowercase__ : Optional[Any]= cc_number[:i] + str(A ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(A ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowercase__(A ) ->bool: """simple docstring""" lowercase__ : List[str]= f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(A ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(A ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(A ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
218
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _a ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase( self ): __A : List[Any] = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() __A : Any = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __A : Optional[Any] = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } __A : List[Any] = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16_000, "return_attention_mask": False, "do_normalize": True, } __A : int = tempfile.mkdtemp() __A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __A : List[str] = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) # load decoder from hub __A : Dict = "hf-internal-testing/ngram-beam-search-decoder" def __UpperCAmelCase( self , **__UpperCAmelCase ): __A : Tuple = self.add_kwargs_tokens_map.copy() kwargs.update(__UpperCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __UpperCAmelCase( self , **__UpperCAmelCase ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __UpperCAmelCase( self , **__UpperCAmelCase ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__UpperCAmelCase ) def __UpperCAmelCase( self ): shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase( self ): __A : Optional[Any] = self.get_tokenizer() __A : Optional[int] = self.get_feature_extractor() __A : Union[str, Any] = self.get_decoder() __A : int = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __A : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __UpperCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : List[str] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __A : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __UpperCAmelCase( self ): __A : Dict = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(__UpperCAmelCase , "include" ): WavaVecaProcessorWithLM( tokenizer=__UpperCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __UpperCAmelCase( self ): __A : Any = self.get_feature_extractor() __A : List[Any] = self.get_tokenizer() __A : Any = self.get_decoder() __A : Dict = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) __A : Optional[int] = floats_list((3, 1_000) ) __A : List[Any] = feature_extractor(__UpperCAmelCase , return_tensors="np" ) __A : int = processor(__UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase( self ): __A : Tuple = self.get_feature_extractor() __A : Tuple = self.get_tokenizer() __A : Dict = self.get_decoder() __A : int = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) __A : Tuple = "This is a test string" __A : Union[str, Any] = processor(text=__UpperCAmelCase ) __A : Union[str, Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase( self , __UpperCAmelCase=(2, 10, 16) , __UpperCAmelCase=77 ): np.random.seed(__UpperCAmelCase ) return np.random.rand(*__UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Dict = self.get_feature_extractor() __A : Dict = self.get_tokenizer() __A : Tuple = self.get_decoder() __A : Any = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) __A : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __A : str = processor.decode(__UpperCAmelCase ) __A : Dict = decoder.decode_beams(__UpperCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def __UpperCAmelCase( self , __UpperCAmelCase ): __A : int = self.get_feature_extractor() __A : Optional[Any] = self.get_tokenizer() __A : Union[str, Any] = self.get_decoder() __A : List[Any] = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) __A : List[str] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __A : List[Any] = processor.batch_decode(__UpperCAmelCase ) else: with get_context(__UpperCAmelCase ).Pool() as pool: __A : Tuple = processor.batch_decode(__UpperCAmelCase , __UpperCAmelCase ) __A : List[str] = list(__UpperCAmelCase ) with get_context("fork" ).Pool() as p: __A : int = decoder.decode_beams_batch(__UpperCAmelCase , __UpperCAmelCase ) __A , __A , __A : int = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__UpperCAmelCase , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(__UpperCAmelCase , decoded_processor.logit_score ) self.assertListEqual(__UpperCAmelCase , decoded_processor.lm_score ) def __UpperCAmelCase( self ): __A : List[Any] = self.get_feature_extractor() __A : int = self.get_tokenizer() __A : List[Any] = self.get_decoder() __A : int = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) __A : Union[str, Any] = self._get_dummy_logits() __A : Dict = 15 __A : Any = -20.0 __A : Optional[Any] = -4.0 __A : str = processor.batch_decode( __UpperCAmelCase , beam_width=__UpperCAmelCase , beam_prune_logp=__UpperCAmelCase , token_min_logp=__UpperCAmelCase , ) __A : Any = decoded_processor_out.text __A : Dict = list(__UpperCAmelCase ) with get_context("fork" ).Pool() as pool: __A : Optional[int] = decoder.decode_beams_batch( __UpperCAmelCase , __UpperCAmelCase , beam_width=__UpperCAmelCase , beam_prune_logp=__UpperCAmelCase , token_min_logp=__UpperCAmelCase , ) __A : List[Any] = [d[0][0] for d in decoded_decoder_out] __A : Optional[Any] = [d[0][2] for d in decoded_decoder_out] __A : Dict = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , __UpperCAmelCase ) self.assertTrue(np.array_equal(__UpperCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , __UpperCAmelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(__UpperCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , __UpperCAmelCase , atol=1e-3 ) ) def __UpperCAmelCase( self ): __A : Dict = self.get_feature_extractor() __A : int = self.get_tokenizer() __A : Tuple = self.get_decoder() __A : Tuple = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) __A : Any = self._get_dummy_logits() __A : List[Any] = 2.0 __A : Any = 5.0 __A : List[str] = -20.0 __A : Tuple = True __A : str = processor.batch_decode( __UpperCAmelCase , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , unk_score_offset=__UpperCAmelCase , lm_score_boundary=__UpperCAmelCase , ) __A : Optional[int] = decoded_processor_out.text __A : Any = list(__UpperCAmelCase ) decoder.reset_params( alpha=__UpperCAmelCase , beta=__UpperCAmelCase , unk_score_offset=__UpperCAmelCase , lm_score_boundary=__UpperCAmelCase , ) with get_context("fork" ).Pool() as pool: __A : Any = decoder.decode_beams_batch( __UpperCAmelCase , __UpperCAmelCase , ) __A : Any = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , __UpperCAmelCase ) __A : List[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Any = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __A : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __A : Union[str, Any] = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() __A : Union[str, Any] = os.listdir(__UpperCAmelCase ) __A : str = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Union[str, Any] = snapshot_download("hf-internal-testing/processor_with_lm" ) __A : str = WavaVecaProcessorWithLM.from_pretrained(__UpperCAmelCase ) __A : Dict = processor.decoder.model_container[processor.decoder._model_key] __A : int = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() __A : List[str] = os.listdir(__UpperCAmelCase ) __A : Optional[int] = os.listdir(__UpperCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : int = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __A : Tuple = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) __A : Tuple = floats_list((3, 1_000) ) __A : Union[str, Any] = processor_wavaveca(__UpperCAmelCase , return_tensors="np" ) __A : Tuple = processor_auto(__UpperCAmelCase , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __A : Any = self._get_dummy_logits() __A : List[str] = processor_wavaveca.batch_decode(__UpperCAmelCase ) __A : str = processor_auto.batch_decode(__UpperCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __UpperCAmelCase( self ): __A : Tuple = self.get_feature_extractor() __A : str = self.get_tokenizer() __A : Union[str, Any] = self.get_decoder() __A : Dict = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def __UpperCAmelCase( __UpperCAmelCase , __UpperCAmelCase ): __A : int = [d[key] for d in offsets] return retrieved_list def __UpperCAmelCase( self ): __A : Any = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __A : List[str] = self._get_dummy_logits()[0] __A : List[str] = processor.decode(__UpperCAmelCase , output_word_offsets=__UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def __UpperCAmelCase( self ): __A : str = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __A : Tuple = self._get_dummy_logits() __A : Any = processor.batch_decode(__UpperCAmelCase , output_word_offsets=__UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertListEqual( [" ".join(self.get_from_offsets(__UpperCAmelCase , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __UpperCAmelCase( self ): import torch __A : int = load_dataset("common_voice" , "en" , split="train" , streaming=__UpperCAmelCase ) __A : Optional[int] = ds.cast_column("audio" , datasets.Audio(sampling_rate=16_000 ) ) __A : int = iter(__UpperCAmelCase ) __A : List[Any] = next(__UpperCAmelCase ) __A : int = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) __A : Tuple = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __A : Dict = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): __A : Optional[Any] = model(__UpperCAmelCase ).logits.cpu().numpy() __A : Union[str, Any] = processor.decode(logits[0] , output_word_offsets=__UpperCAmelCase ) __A : List[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __A : Union[str, Any] = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] __A : Union[str, Any] = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(__UpperCAmelCase , "word" ) ) , __UpperCAmelCase ) self.assertEqual(" ".join(self.get_from_offsets(__UpperCAmelCase , "word" ) ) , output.text ) # output times __A : Optional[int] = torch.tensor(self.get_from_offsets(__UpperCAmelCase , "start_time" ) ) __A : Optional[Any] = torch.tensor(self.get_from_offsets(__UpperCAmelCase , "end_time" ) ) # fmt: off __A : Union[str, Any] = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) __A : List[Any] = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=0.01 ) )
387
from __future__ import annotations def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase ) -> float: if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , ) -> float: if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , ) -> float: if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( _lowercase , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
387
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> str: __lowerCamelCase : int = len(UpperCAmelCase_ ) __lowerCamelCase : int = len(UpperCAmelCase_ ) __lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) __lowerCamelCase : list = [] for char_count in range(UpperCAmelCase_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(UpperCAmelCase_ ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
13
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a ( __snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE : Optional[int] = DebertaTokenizer SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : Any = DebertaTokenizerFast def UpperCamelCase ( self : Optional[Any] ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] lowerCamelCase_ = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) lowerCamelCase_ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase_ = {'unk_token': '[UNK]'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__SCREAMING_SNAKE_CASE ) ) def UpperCamelCase ( self : Tuple , **__SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Any ) -> Dict: lowerCamelCase_ = 'lower newer' lowerCamelCase_ = 'lower newer' return input_text, output_text def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = 'lower newer' lowerCamelCase_ = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowerCamelCase_ = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = tokenizer('Hello' , 'World' ) lowerCamelCase_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , __SCREAMING_SNAKE_CASE ) @slow def UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowerCamelCase_ = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) lowerCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.encode( 'sequence builders' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: lowerCamelCase_ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase_ = tokenizer_class.from_pretrained('microsoft/deberta-base' ) lowerCamelCase_ = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] lowerCamelCase_ = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['input_ids']] # fmt: off lowerCamelCase_ = { 'input_ids': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase_ = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
549
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=False ) -> Dict: _snake_case : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _snake_case : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str=False ) -> Optional[int]: for i in range(config.num_hidden_layers ): if base_model: _snake_case : List[Any] = """""" else: _snake_case : str = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case : Union[str, Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _snake_case : int = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case : Any = in_proj_weight[ : config.hidden_size, : ] _snake_case : Optional[Any] = in_proj_bias[: config.hidden_size] _snake_case : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case : Dict = in_proj_weight[ -config.hidden_size :, : ] _snake_case : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Dict: _snake_case : Dict = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]: _snake_case : Optional[int] = dct.pop(_snake_case ) _snake_case : int = val def lowercase ( ) -> Union[str, Any]: _snake_case : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _snake_case : Optional[int] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict ) -> Dict: _snake_case : Any = ViTConfig() _snake_case : Optional[int] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _snake_case : List[str] = True _snake_case : Union[str, Any] = int(vit_name[-12:-10] ) _snake_case : Dict = int(vit_name[-9:-6] ) else: _snake_case : int = 1_000 _snake_case : Optional[int] = """huggingface/label-files""" _snake_case : Optional[int] = """imagenet-1k-id2label.json""" _snake_case : Union[str, Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="""dataset""" ) , """r""" ) ) _snake_case : List[Any] = {int(_snake_case ): v for k, v in idalabel.items()} _snake_case : Union[str, Any] = idalabel _snake_case : Tuple = {v: k for k, v in idalabel.items()} _snake_case : Tuple = int(vit_name[-6:-4] ) _snake_case : Any = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): _snake_case : List[Any] = 192 _snake_case : List[str] = 768 _snake_case : List[str] = 12 _snake_case : Any = 3 elif vit_name[9:].startswith("""small""" ): _snake_case : Optional[int] = 384 _snake_case : Optional[Any] = 1_536 _snake_case : Optional[int] = 12 _snake_case : Union[str, Any] = 6 else: pass else: if vit_name[4:].startswith("""small""" ): _snake_case : Optional[Any] = 768 _snake_case : Dict = 2_304 _snake_case : Dict = 8 _snake_case : Optional[Any] = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): _snake_case : str = 1_024 _snake_case : str = 4_096 _snake_case : List[str] = 24 _snake_case : Tuple = 16 elif vit_name[4:].startswith("""huge""" ): _snake_case : Union[str, Any] = 1_280 _snake_case : Optional[int] = 5_120 _snake_case : int = 32 _snake_case : Tuple = 16 # load original model from timm _snake_case : Dict = timm.create_model(_snake_case , pretrained=_snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys _snake_case : Dict = timm_model.state_dict() if base_model: remove_classification_head_(_snake_case ) _snake_case : List[Any] = create_rename_keys(_snake_case , _snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) read_in_q_k_v(_snake_case , _snake_case , _snake_case ) # load HuggingFace model if vit_name[-5:] == "in21k": _snake_case : Optional[Any] = ViTModel(_snake_case ).eval() else: _snake_case : str = ViTForImageClassification(_snake_case ).eval() model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _snake_case : Optional[int] = DeiTImageProcessor(size=config.image_size ) else: _snake_case : Dict = ViTImageProcessor(size=config.image_size ) _snake_case : Any = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : List[str] = encoding["""pixel_values"""] _snake_case : Optional[int] = model(_snake_case ) if base_model: _snake_case : Dict = timm_model.forward_features(_snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_snake_case , outputs.pooler_output , atol=1e-3 ) else: _snake_case : Tuple = timm_model(_snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_snake_case , outputs.logits , atol=1e-3 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
711
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
198
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) UpperCAmelCase = '''hf-internal-testing/tiny-random-bert''' UpperCAmelCase = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') UpperCAmelCase = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = cached_file(UpperCAmelCase__ , UpperCAmelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) ) with open(os.path.join(UpperCAmelCase__ , 'refs' , 'main' ) ) as f: lowercase = f.read() self.assertEqual(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , 'snapshots' , UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertTrue(os.path.isfile(UpperCAmelCase__ ) ) # File is cached at the same place the second time. lowercase = cached_file(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # Using a specific revision to test the full commit hash. lowercase = cached_file(UpperCAmelCase__ , UpperCAmelCase__ , revision='9b8c223' ) self.assertEqual(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , 'snapshots' , UpperCAmelCase__ , UpperCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ): with self.assertRaisesRegex(UpperCAmelCase__ , 'is not a valid model identifier' ): lowercase = cached_file('tiny-random-bert' , UpperCAmelCase__ ) with self.assertRaisesRegex(UpperCAmelCase__ , 'is not a valid git identifier' ): lowercase = cached_file(UpperCAmelCase__ , UpperCAmelCase__ , revision='aaaa' ) with self.assertRaisesRegex(UpperCAmelCase__ , 'does not appear to have a file named' ): lowercase = cached_file(UpperCAmelCase__ , 'conf' ) def SCREAMING_SNAKE_CASE__ ( self ): with self.assertRaisesRegex(UpperCAmelCase__ , 'does not appear to have a file named' ): lowercase = cached_file(UpperCAmelCase__ , 'conf' ) with open(os.path.join(UpperCAmelCase__ , 'refs' , 'main' ) ) as f: lowercase = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase__ , '.no_exist' , UpperCAmelCase__ , 'conf' ) ) ) lowercase = cached_file(UpperCAmelCase__ , 'conf' , _raise_exceptions_for_missing_entries=UpperCAmelCase__ ) self.assertIsNone(UpperCAmelCase__ ) lowercase = cached_file(UpperCAmelCase__ , 'conf' , local_files_only=UpperCAmelCase__ , _raise_exceptions_for_missing_entries=UpperCAmelCase__ ) self.assertIsNone(UpperCAmelCase__ ) lowercase = mock.Mock() lowercase = 500 lowercase = {} lowercase = HTTPError lowercase = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=UpperCAmelCase__ ) as mock_head: lowercase = cached_file(UpperCAmelCase__ , 'conf' , _raise_exceptions_for_connection_errors=UpperCAmelCase__ ) self.assertIsNone(UpperCAmelCase__ ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ): self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , UpperCAmelCase__ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , UpperCAmelCase__ ) ) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , UpperCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase__ , 'is not a valid model identifier' ): get_file_from_repo('bert-base-case' , UpperCAmelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase__ , 'is not a valid git identifier' ): get_file_from_repo('bert-base-cased' , UpperCAmelCase__ , revision='ahaha' ) lowercase = get_file_from_repo('bert-base-cased' , UpperCAmelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase = json.loads(open(UpperCAmelCase__ , 'r' ).read() ) self.assertEqual(config['hidden_size'] , 768 ) def SCREAMING_SNAKE_CASE__ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase = Path(UpperCAmelCase__ ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase__ , 'a.txt' ) , str(UpperCAmelCase__ ) ) self.assertIsNone(get_file_from_repo(UpperCAmelCase__ , 'b.txt' ) )
84
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="resnet50" , UpperCAmelCase__=3 , UpperCAmelCase__=32 , UpperCAmelCase__=3 , UpperCAmelCase__=True , UpperCAmelCase__=True , ) -> Optional[Any]: a_ = parent a_ = out_indices if out_indices is not None else [4] a_ = stage_names a_ = out_features a_ = backbone a_ = batch_size a_ = image_size a_ = num_channels a_ = use_pretrained_backbone a_ = is_training def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: a_ = TimmBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): a_ = model(UpperCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ = config_and_inputs a_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" _UpperCamelCase = (TimmBackbone,) if is_torch_available() else () _UpperCamelCase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a_ = TimmBackboneModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ = 'resnet18' a_ = 'microsoft/resnet-18' a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , use_timm_backbone=UpperCAmelCase__ , out_indices=[1, 2, 3] ) a_ = AutoBackbone.from_pretrained(UpperCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip('Safetensors is not supported by timm.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True a_ = self.has_attentions # no need to test all models as different heads yield the same functionality a_ = self.all_model_classes[0] a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) a_ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) a_ = model(**UpperCAmelCase__ ) a_ = outputs[0][-1] # Encoder-/Decoder-only models a_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = None a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights a_ = copy.deepcopy(UpperCAmelCase__ ) a_ = False a_ = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() a_ = model(**UpperCAmelCase__ )
697
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCamelCase : dict , lowerCamelCase : str): A_ , A_ : List[Any] = set(lowerCamelCase), [start] while stack: A_ : Optional[Any] = stack.pop() explored.add(lowerCamelCase) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v]): if adj not in explored: stack.append(lowerCamelCase) return explored __magic_name__ = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
27
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[Any]=7 ,_a : Optional[Any]=True ,_a : Any=True ,_a : Optional[int]=True ,_a : Union[str, Any]=99 ,_a : Union[str, Any]=32 ,_a : List[str]=5 ,_a : List[str]=4 ,_a : Dict=37 ,_a : List[Any]="gelu" ,_a : int=0.1 ,_a : Optional[int]=0.1 ,_a : Tuple=512 ,_a : Union[str, Any]=16 ,_a : Optional[Any]=2 ,_a : Optional[Any]=0.02 ,_a : Optional[int]=3 ,_a : str=4 ,_a : Optional[Any]=None ,): '''simple docstring''' A_ : Optional[Any] = parent A_ : str = batch_size A_ : int = seq_length A_ : Union[str, Any] = is_training A_ : Optional[Any] = use_token_type_ids A_ : int = use_labels A_ : Dict = vocab_size A_ : List[Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : int = intermediate_size A_ : Tuple = hidden_act A_ : int = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Tuple = type_sequence_label_size A_ : int = initializer_range A_ : Optional[Any] = num_labels A_ : str = num_choices A_ : Optional[Any] = scope A_ : List[Any] = self.vocab_size - 1 def _a ( self : Any ): '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : List[Any] = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : int = None A_ : str = None A_ : Union[str, Any] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Any = ids_tensor([self.batch_size] ,self.num_choices ) A_ : List[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) A_ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self : Optional[int] ,_a : List[str] ,_a : str ,_a : int ,_a : int ,*_a : Union[str, Any] ): '''simple docstring''' A_ : Optional[Any] = OpenAIGPTModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,head_mask=_a ) A_ : str = model(_a ,token_type_ids=_a ) A_ : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Dict ,_a : Optional[int] ,_a : Union[str, Any] ,_a : Dict ,_a : List[str] ,*_a : str ): '''simple docstring''' A_ : str = OpenAIGPTLMHeadModel(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any ,_a : Dict ,_a : List[Any] ,_a : Dict ,_a : Union[str, Any] ,*_a : str ): '''simple docstring''' A_ : Any = OpenAIGPTDoubleHeadsModel(_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] ,_a : str ,_a : Tuple ,_a : Dict ,_a : Tuple ,*_a : Dict ): '''simple docstring''' A_ : List[str] = self.num_labels A_ : int = OpenAIGPTForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Optional[Any] = model(_a ,token_type_ids=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _a ( self : Tuple ): '''simple docstring''' A_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : str = config_and_inputs A_ : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a_ = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _a ( self : Tuple ,_a : Optional[int] ,_a : str ,_a : List[str] ,_a : List[str] ,_a : Any ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _a ( self : Optional[int] ,_a : str ,_a : Dict ,_a : Optional[int]=False ): '''simple docstring''' A_ : Any = super()._prepare_for_class(_a ,_a ,return_labels=_a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=_a ,) A_ : Any = inputs_dict["""labels"""] A_ : Any = inputs_dict["""labels"""] A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=_a ,) A_ : int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_a ) return inputs_dict def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Tuple = OpenAIGPTModelTester(self ) A_ : Optional[int] = ConfigTester(self ,config_class=_a ,n_embd=37 ) def _a ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_a ) def _a ( self : Tuple ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_a ) def _a ( self : List[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_a ) def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_a ) @slow def _a ( self : List[Any] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a ( self : List[str] ): '''simple docstring''' A_ : Dict = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_a ) A_ : Dict = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=_a ) # the president is A_ : Dict = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : int = model.generate(_a ,do_sample=_a ) self.assertListEqual(output_ids[0].tolist() ,_a )
27
1
"""simple docstring""" __snake_case = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __snake_case = frozenset(['prompt', 'negative_prompt']) __snake_case = frozenset([]) __snake_case = frozenset(['image']) __snake_case = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) __snake_case = frozenset(['image']) __snake_case = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __snake_case = frozenset(['prompt', 'image', 'negative_prompt']) __snake_case = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __snake_case = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) __snake_case = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __snake_case = frozenset(['image', 'mask_image']) __snake_case = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __snake_case = frozenset(['example_image', 'image', 'mask_image']) __snake_case = frozenset(['class_labels']) __snake_case = frozenset(['class_labels']) __snake_case = frozenset(['batch_size']) __snake_case = frozenset([]) __snake_case = frozenset(['batch_size']) __snake_case = frozenset([]) __snake_case = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __snake_case = frozenset(['prompt', 'negative_prompt']) __snake_case = frozenset(['input_tokens']) __snake_case = frozenset(['input_tokens'])
200
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __snake_case = get_tests_dir('fixtures/dummy_feature_extractor_config.json') __snake_case = get_tests_dir('fixtures/vocab.json') __snake_case = get_tests_dir('fixtures') class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" _a : int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def UpperCAmelCase__( self ) -> Any: lowercase__ : Tuple = 0 def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : List[str] = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : str = WavaVecaConfig() lowercase__ : int = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) lowercase__ : Optional[Any] = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowerCamelCase__ , os.path.join(lowerCamelCase__ , lowerCamelCase__ ) ) copyfile(lowerCamelCase__ , os.path.join(lowerCamelCase__ , """vocab.json""" ) ) lowercase__ : Tuple = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Any = WavaVecaFeatureExtractor() lowercase__ : Dict = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase__ : int = WavaVecaProcessor(lowerCamelCase__ , lowerCamelCase__ ) # save in new folder processor.save_pretrained(lowerCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , """r""" ) as f: lowercase__ : str = json.load(lowerCamelCase__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , """w""" ) as f: f.write(json.dumps(lowerCamelCase__ ) ) lowercase__ : Dict = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Dict = WavaVecaFeatureExtractor() lowercase__ : int = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase__ : List[Any] = WavaVecaProcessor(lowerCamelCase__ , lowerCamelCase__ ) # save in new folder processor.save_pretrained(lowerCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , """r""" ) as f: lowercase__ : List[str] = json.load(lowerCamelCase__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , """w""" ) as f: f.write(json.dumps(lowerCamelCase__ ) ) lowercase__ : int = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : List[Any] = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(lowerCamelCase__ ) # copy relevant files copyfile(lowerCamelCase__ , os.path.join(lowerCamelCase__ , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , """w""" ) as f: f.write("""{}""" ) lowercase__ : Union[str, Any] = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): lowercase__ : Optional[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): lowercase__ : Any = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowerCamelCase__ ) lowercase__ : str = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowerCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) lowercase__ : Dict = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) lowercase__ : int = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowercase__ : str = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowerCamelCase__ , use_fast=lowerCamelCase__ ) lowercase__ : Tuple = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def UpperCAmelCase__( self ) -> str: try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) AutoTokenizer.register(lowerCamelCase__ , slow_tokenizer_class=lowerCamelCase__ ) AutoProcessor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoProcessor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase__ : Union[str, Any] = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Any = os.path.join(lowerCamelCase__ , """vocab.txt""" ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase__ : Tuple = CustomTokenizer(lowerCamelCase__ ) lowercase__ : Dict = CustomProcessor(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowerCamelCase__ ) lowercase__ : str = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase__( self ) -> Dict: class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : int = False class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : Union[str, Any] = False class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : Union[str, Any] = '''AutoFeatureExtractor''' _a : List[str] = '''AutoTokenizer''' _a : Optional[Any] = False try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) AutoTokenizer.register(lowerCamelCase__ , slow_tokenizer_class=lowerCamelCase__ ) AutoProcessor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local classes. lowercase__ : Union[str, Any] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase__ : Tuple = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase__ : Any = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase__( self ) -> int: lowercase__ : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def UpperCAmelCase__( self ) -> Any: lowercase__ : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" _a : int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def UpperCAmelCase__( cls ) -> int: lowercase__ : str = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def UpperCAmelCase__( cls ) -> Dict: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def UpperCAmelCase__( self ) -> int: lowercase__ : List[str] = WavaVecaProcessor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCamelCase__ , """test-processor""" ) , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) lowercase__ : Optional[Any] = WavaVecaProcessor.from_pretrained(F'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase__ , getattr(new_processor.feature_extractor , lowerCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCAmelCase__( self ) -> Optional[Any]: lowercase__ : int = WavaVecaProcessor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCamelCase__ , """test-processor-org""" ) , push_to_hub=lowerCamelCase__ , use_auth_token=self._token , organization="""valid_org""" , ) lowercase__ : Optional[Any] = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase__ , getattr(new_processor.feature_extractor , lowerCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCAmelCase__( self ) -> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase__ : List[str] = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Tuple = os.path.join(lowerCamelCase__ , """vocab.txt""" ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase__ : Optional[int] = CustomTokenizer(lowerCamelCase__ ) lowercase__ : List[Any] = CustomProcessor(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'''{USER}/test-dynamic-processor''' , token=self._token ) lowercase__ : Tuple = Repository(lowerCamelCase__ , clone_from=F'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(lowerCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowerCamelCase__ , """tokenizer_config.json""" ) ) as f: lowercase__ : List[Any] = json.load(lowerCamelCase__ ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase__ , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase__ , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase__ , """custom_processing.py""" ) ) ) repo.push_to_hub() lowercase__ : int = AutoProcessor.from_pretrained(F'''{USER}/test-dynamic-processor''' , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
200
1
"""simple docstring""" import math def A__ ( _UpperCAmelCase : int ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): snake_case__ : List[Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCAmelCase ) if number < 1: snake_case__ : Any = F"""Input value of [number={number}] must be > 0""" raise ValueError(_UpperCAmelCase ) elif number == 1: return 3 elif number == 2: return 5 else: snake_case__ : int = int(math.log(number // 3 , 2 ) ) + 2 snake_case__ : Tuple = [3, 5] snake_case__ : Any = 2 snake_case__ : Optional[int] = 3 for block in range(1 , _UpperCAmelCase ): for _ in range(_UpperCAmelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowercase = 0 try: lowercase = proth(number) except ValueError: print(f"ValueError: there is no {number}th Proth number") continue print(f"The {number}th Proth number: {value}")
150
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Union[str, Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[int] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) def A__ ( *_UpperCAmelCase : str , **_UpperCAmelCase : List[str] ) -> str: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Union[str, Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[int] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"])
150
1
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "tf_padding" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "depth_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Optional[int]=8 , _UpperCAmelCase : Union[str, Any]=8 , _UpperCAmelCase : Tuple=6 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : int="relu6" , _UpperCAmelCase : Optional[int]=1280 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]=10 , _UpperCAmelCase : Optional[Any]=None , ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = depth_divisible_by UpperCAmelCase_ = min_depth UpperCAmelCase_ = expand_ratio UpperCAmelCase_ = tf_padding UpperCAmelCase_ = output_stride UpperCAmelCase_ = first_layer_is_expansion UpperCAmelCase_ = finegrained_output UpperCAmelCase_ = hidden_act UpperCAmelCase_ = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = MobileNetVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowercase__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileNetVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileNetVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = MobileNetVaModelTester(self ) UpperCAmelCase_ = MobileNetVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds" ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings" ) def lowercase__ ( self : str ) -> int: '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not output attentions" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 16 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileNetVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224" ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([0.2445, -1.1993, 0.1905] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
82
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase = logging.get_logger(__name__) class snake_case__ ( _UpperCamelCase ): _SCREAMING_SNAKE_CASE : str = ["pixel_values"] def __init__( self : List[Any] , A__ : bool = True , A__ : Optional[Dict[str, int]] = None , A__ : PILImageResampling = PILImageResampling.BILINEAR , A__ : bool = True , A__ : Dict[str, int] = None , A__ : bool = True , A__ : Union[int, float] = 1 / 2_55 , A__ : bool = True , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[float, List[float]]] = None , **A__ : int , ) -> None: '''simple docstring''' super().__init__(**A__ ) snake_case_ : Optional[int] = size if size is not None else {"shortest_edge": 2_56} snake_case_ : Dict = get_size_dict(A__ , default_to_square=A__ ) snake_case_ : List[str] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} snake_case_ : Any = get_size_dict(A__ , param_name="crop_size" ) snake_case_ : int = do_resize snake_case_ : Optional[Any] = size snake_case_ : Optional[Any] = resample snake_case_ : Optional[int] = do_center_crop snake_case_ : List[Any] = crop_size snake_case_ : List[Any] = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : Optional[Any] = do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self : List[str] , A__ : np.ndarray , A__ : Dict[str, int] , A__ : PILImageResampling = PILImageResampling.BICUBIC , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : str , ) -> np.ndarray: '''simple docstring''' snake_case_ : Optional[Any] = get_size_dict(A__ , default_to_square=A__ ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) snake_case_ : Any = get_resize_output_image_size(A__ , size=size["shortest_edge"] , default_to_square=A__ ) return resize(A__ , size=A__ , resample=A__ , data_format=A__ , **A__ ) def UpperCAmelCase__ ( self : int , A__ : np.ndarray , A__ : Dict[str, int] , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' snake_case_ : Tuple = get_size_dict(A__ ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(A__ , size=(size["height"], size["width"]) , data_format=A__ , **A__ ) def UpperCAmelCase__ ( self : List[str] , A__ : np.ndarray , A__ : float , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Tuple ) -> np.ndarray: '''simple docstring''' return rescale(A__ , scale=A__ , data_format=A__ , **A__ ) def UpperCAmelCase__ ( self : Tuple , A__ : np.ndarray , A__ : Union[float, List[float]] , A__ : Union[float, List[float]] , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Dict , ) -> np.ndarray: '''simple docstring''' return normalize(A__ , mean=A__ , std=A__ , data_format=A__ , **A__ ) def UpperCAmelCase__ ( self : Union[str, Any] , A__ : ImageInput , A__ : Optional[bool] = None , A__ : Dict[str, int] = None , A__ : PILImageResampling = None , A__ : bool = None , A__ : Dict[str, int] = None , A__ : Optional[bool] = None , A__ : Optional[float] = None , A__ : Optional[bool] = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[str, TensorType]] = None , A__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A__ : Union[str, Any] , ) -> Optional[int]: '''simple docstring''' snake_case_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case_ : Dict = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(A__ , default_to_square=A__ ) snake_case_ : Tuple = resample if resample is not None else self.resample snake_case_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = crop_size if crop_size is not None else self.crop_size snake_case_ : Tuple = get_size_dict(A__ , param_name="crop_size" ) snake_case_ : Dict = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Any = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : List[str] = image_std if image_std is not None else self.image_std snake_case_ : Dict = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case_ : Tuple = [to_numpy_array(A__ ) for image in images] if do_resize: snake_case_ : Any = [self.resize(image=A__ , size=A__ , resample=A__ ) for image in images] if do_center_crop: snake_case_ : List[str] = [self.center_crop(image=A__ , size=A__ ) for image in images] if do_rescale: snake_case_ : Any = [self.rescale(image=A__ , scale=A__ ) for image in images] if do_normalize: snake_case_ : Union[str, Any] = [self.normalize(image=A__ , mean=A__ , std=A__ ) for image in images] snake_case_ : Optional[Any] = [to_channel_dimension_format(A__ , A__ ) for image in images] snake_case_ : Any = {"pixel_values": images} return BatchFeature(data=A__ , tensor_type=A__ ) def UpperCAmelCase__ ( self : List[str] , A__ : Dict , A__ : List[Tuple] = None ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A__ ) != len(A__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(A__ ): snake_case_ : Dict = target_sizes.numpy() snake_case_ : int = [] for idx in range(len(A__ ) ): snake_case_ : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=A__ ) snake_case_ : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A__ ) else: snake_case_ : List[Any] = logits.argmax(dim=1 ) snake_case_ : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
666
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
190
"""simple docstring""" def lowercase ( ) -> int: return 1 def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__UpperCamelCase ) def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__UpperCamelCase ) def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__UpperCamelCase ) def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__UpperCamelCase ) def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(__UpperCamelCase ) def lowercase ( __UpperCamelCase ) -> int: return 0 if x < 0 else two_pound(x - 200 ) + one_pound(__UpperCamelCase ) def lowercase ( __UpperCamelCase = 200 ) -> int: return two_pound(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
190
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , __a : List[str] , __a : Optional[int]=13 , __a : Any=7 , __a : List[str]=True , __a : Dict=True , __a : str=True , __a : Optional[int]=True , __a : Union[str, Any]=99 , __a : Dict=32 , __a : str=5 , __a : str=4 , __a : List[Any]=37 , __a : str="gelu" , __a : str=0.1 , __a : List[Any]=0.1 , __a : Dict=512 , __a : List[str]=16 , __a : Optional[int]=2 , __a : Union[str, Any]=0.02 , __a : Union[str, Any]=4 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = parent __lowercase : List[Any] = batch_size __lowercase : str = seq_length __lowercase : Union[str, Any] = is_training __lowercase : List[Any] = use_attention_mask __lowercase : Union[str, Any] = use_token_type_ids __lowercase : Union[str, Any] = use_labels __lowercase : Dict = vocab_size __lowercase : str = hidden_size __lowercase : Dict = num_hidden_layers __lowercase : Optional[Any] = num_attention_heads __lowercase : Any = intermediate_size __lowercase : str = hidden_act __lowercase : List[str] = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : Union[str, Any] = max_position_embeddings __lowercase : List[Any] = type_vocab_size __lowercase : Any = type_sequence_label_size __lowercase : Any = initializer_range __lowercase : Optional[int] = num_choices def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : str = None if self.use_attention_mask: __lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() __lowercase : str = config_and_inputs __lowercase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase : Optional[int] = model_class_name.from_pretrained("""albert-base-v2""" ) __lowercase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : Optional[Any] = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) __lowercase : Dict = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __lowercase : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowercase : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] __lowercase : Dict = (1, 11, 768) self.assertEqual(output.shape , _lowerCamelCase ) __lowercase : List[Any] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1E-4 ) )
149
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case__ ( UpperCamelCase_ ): def __init__( self : int , _lowerCamelCase : str , _lowerCamelCase : Tuple ): super().__init__() # make sure scheduler can always be converted to DDIM snake_case__ : List[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self : Optional[int] , _lowerCamelCase : int = 1 , _lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCamelCase : float = 0.0 , _lowerCamelCase : int = 5_0 , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[str] = "pil" , _lowerCamelCase : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , _lowerCamelCase ): snake_case__ : Optional[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: snake_case__ : Any = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case__ : int = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case__ : Optional[int] = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case__ : int = self.scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , eta=_lowerCamelCase , use_clipped_model_output=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample snake_case__ : int = (image / 2 + 0.5).clamp(0 , 1 ) snake_case__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case__ : Union[str, Any] = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
170
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __a : List[str] = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def _SCREAMING_SNAKE_CASE ( __lowercase : List[Any] , __lowercase : List[str] , __lowercase : str=None , __lowercase : Any=None , __lowercase : Optional[Any]=None , __lowercase : List[str]=None , __lowercase : Tuple=None , __lowercase : Tuple=None , ) -> List[str]: """simple docstring""" if attention_mask is None: __A = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __A = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __A = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __A = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __A = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __lowercase : '''simple docstring''' def __init__( self : str , UpperCamelCase_ : Dict , UpperCamelCase_ : str=13 , UpperCamelCase_ : Optional[int]=7 , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Any=False , UpperCamelCase_ : Any=99 , UpperCamelCase_ : List[str]=16 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Optional[Any]=4 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Tuple="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Optional[int]=32 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : int=1 , UpperCamelCase_ : str=0 , UpperCamelCase_ : Any=0.02 , ): """simple docstring""" __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = eos_token_id __A = pad_token_id __A = bos_token_id __A = initializer_range def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __A = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __A = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) __A = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCamelCase_ , ) __A = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCAmelCase_ ( self : str ): """simple docstring""" __A , __A = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase_ ( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict ): """simple docstring""" __A = 20 __A = model_class_name(UpperCamelCase_ ) __A = model.encode(inputs_dict["""input_ids"""] ) __A , __A = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __A = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) __A = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __A = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __A = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) __A = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __A = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) __A = model.decode(UpperCamelCase_ , UpperCamelCase_ ) __A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def lowerCAmelCase_ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any ): """simple docstring""" __A = 20 __A = model_class_name(UpperCamelCase_ ) __A = model.encode(inputs_dict["""input_ids"""] ) __A , __A = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __A = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __A = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) __A = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __A = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) __A = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __A = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) __A = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) __A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) @require_flax class __lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = 99 def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __A = input_ids.shape[0] __A = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCAmelCase_ ( self : str ): """simple docstring""" __A , __A , __A = self._get_config_and_data() __A = FlaxBlenderbotSmallForConditionalGeneration(UpperCamelCase_ ) __A = lm_model(input_ids=UpperCamelCase_ ) __A = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCamelCase_ ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" __A = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __A = FlaxBlenderbotSmallForConditionalGeneration(UpperCamelCase_ ) __A = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __A = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __A = lm_model(input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ) __A = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __A = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) __A = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() __A = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCamelCase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __lowercase ( lowercase_ , unittest.TestCase , lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = FlaxBlenderbotSmallModelTester(self ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A , __A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" __A , __A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __A = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __A = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Union[str, Any] ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __A = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __A = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __A = model_class(UpperCamelCase_ ) __A = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __A = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest("""JIT Enabled""" ): __A = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __A = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" for model_class_name in self.all_model_classes: __A = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __A = np.ones((1, 1) ) * model.config.eos_token_id __A = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ )
199
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( __lowercase : Any ) -> Optional[int]: """simple docstring""" return EnvironmentCommand() class __lowercase ( lowercase_ ): '''simple docstring''' @staticmethod def lowerCAmelCase_ ( UpperCamelCase_ : ArgumentParser ): """simple docstring""" __A = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase_ ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = huggingface_hub.__version__ __A = """not installed""" __A = """NA""" if is_torch_available(): import torch __A = torch.__version__ __A = torch.cuda.is_available() __A = """not installed""" if is_transformers_available(): import transformers __A = transformers.__version__ __A = """not installed""" if is_accelerate_available(): import accelerate __A = accelerate.__version__ __A = """not installed""" if is_xformers_available(): import xformers __A = xformers.__version__ __A = { """`diffusers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """Huggingface_hub version""": hub_version, """Transformers version""": transformers_version, """Accelerate version""": accelerate_version, """xFormers version""": xformers_version, """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase_ ) ) return info @staticmethod def lowerCAmelCase_ ( UpperCamelCase_ : str ): """simple docstring""" return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
199
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowercase : Optional[Any] =subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __lowercase : List[str] =subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() __lowercase : Optional[Any] ="""|""".join(sys.argv[1:]) __lowercase : str =re.compile(Rf"""^({joined_dirs}).*?\.py$""") __lowercase : Dict =[x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
54
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets A__ = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ A__ = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ A__ = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def snake_case ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def snake_case ( self : List[str] , __snake_case : Any , __snake_case : Any , __snake_case : Tuple=None , __snake_case : Optional[Any]=None , __snake_case : List[Any]=None , __snake_case : int=None , __snake_case : Any="auto" , __snake_case : List[Any]=-1 , __snake_case : Tuple=0.9 , __snake_case : Dict=5 , __snake_case : Union[str, Any]=500 , __snake_case : Optional[Any]="gpt2-large" , __snake_case : Union[str, Any]=-1 , __snake_case : str=1024 , __snake_case : List[str]=25 , __snake_case : int=5 , __snake_case : int=True , __snake_case : List[Any]=25 , ): lowerCamelCase :Optional[int] = compute_mauve( p_text=__snake_case , q_text=__snake_case , p_features=__snake_case , q_features=__snake_case , p_tokens=__snake_case , q_tokens=__snake_case , num_buckets=__snake_case , pca_max_data=__snake_case , kmeans_explained_var=__snake_case , kmeans_num_redo=__snake_case , kmeans_max_iter=__snake_case , featurize_model_name=__snake_case , device_id=__snake_case , max_text_length=__snake_case , divergence_curve_discretization_size=__snake_case , mauve_scaling_factor=__snake_case , verbose=__snake_case , seed=__snake_case , ) return out
166
0
from __future__ import annotations import os from typing import Any import requests UpperCamelCase = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCamelCase = BASE_URL + "/user" # https://github.com/settings/tokens UpperCamelCase = os.environ.get("USER_TOKEN", "") def A ( lowercase__ : str ) -> dict[Any, Any]: UpperCamelCase__ :Dict = { """Authorization""": f"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(lowercase__ , headers=lowercase__ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError("'USER_TOKEN' field cannot be empty.")
700
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def __a ( cls :Optional[int] ): UpperCamelCase__ :Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def __a ( cls :List[str] ): try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def __a ( self :Any ): UpperCamelCase__ :Any = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase__ :int = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) UpperCamelCase__ :Optional[Any] = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) UpperCamelCase__ :str = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ :Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ :Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ , repo_id="""test-model-flax""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ :Any = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) UpperCamelCase__ :List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ :Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ :Optional[int] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=f"""{key} not identical""" ) def __a ( self :List[Any] ): UpperCamelCase__ :Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCamelCase__ :int = FlaxBertModel(lowerCamelCase__ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) UpperCamelCase__ :List[str] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCamelCase__ :int = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ :Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ :int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCamelCase__ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCamelCase__ :List[str] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCamelCase__ :Optional[int] = flatten_dict(unfreeze(model.params ) ) UpperCamelCase__ :List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCamelCase__ :Optional[int] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCamelCase__ , 1e-3 , msg=f"""{key} not identical""" ) def A ( lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> Union[str, Any]: UpperCamelCase__ :List[str] = True UpperCamelCase__ :Tuple = flatten_dict(modela.params ) UpperCamelCase__ :int = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCamelCase__ :Tuple = False return models_are_equal @require_flax class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase__ :List[str] = FlaxBertModel(lowerCamelCase__ ) UpperCamelCase__ :int = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) ) with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[str] = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Tuple = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__ , lowerCamelCase__ ) ) def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase__ :Union[str, Any] = FlaxBertModel(lowerCamelCase__ ) UpperCamelCase__ :Any = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , max_shard_size="""10KB""" ) with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Tuple = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertTrue(check_models_equal(lowerCamelCase__ , lowerCamelCase__ ) ) def __a ( self :Optional[Any] ): UpperCamelCase__ :Any = """bert""" UpperCamelCase__ :int = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :str = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :int = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = """bert""" UpperCamelCase__ :int = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[int] = FlaxBertModel.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = FlaxBertModel.from_pretrained(lowerCamelCase__ , subfolder=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
383
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets a_ :Tuple = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" a_ :str = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" a_ :Optional[Any] = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowercase_ (A : Optional[int] ): def remove_articles(A : int ): snake_case__ : Optional[int] = re.compile(r'\b(a|an|the)\b' , re.UNICODE ) return re.sub(__SCREAMING_SNAKE_CASE , ' ' , __SCREAMING_SNAKE_CASE ) def white_space_fix(A : Any ): return " ".join(text.split() ) def remove_punc(A : Optional[Any] ): snake_case__ : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A : int ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__SCREAMING_SNAKE_CASE ) ) ) ) def lowercase_ (A : Any , A : Dict ): return int(normalize_answer(__SCREAMING_SNAKE_CASE ) == normalize_answer(__SCREAMING_SNAKE_CASE ) ) def lowercase_ (A : Optional[Any] , A : Any ): snake_case__ : int = [any(compute_exact(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] return (sum(__SCREAMING_SNAKE_CASE ) / len(__SCREAMING_SNAKE_CASE )) * 1_0_0 def lowercase_ (A : Union[str, Any] , A : Union[str, Any] , A : Optional[Any] , A : Union[str, Any] ): snake_case__ : Any = [rgram for rgrams in rgramslist for rgram in rgrams] snake_case__ : str = Counter(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = Counter(__SCREAMING_SNAKE_CASE ) snake_case__ : int = Counter() for sgram, scount in sgramcounter.items(): snake_case__ : Optional[Any] = scount * numref snake_case__ : int = Counter(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = Counter() for cgram, ccount in cgramcounter.items(): snake_case__ : List[Any] = ccount * numref # KEEP snake_case__ : Any = sgramcounter_rep & cgramcounter_rep snake_case__ : str = keepgramcounter_rep & rgramcounter snake_case__ : Any = sgramcounter_rep & rgramcounter snake_case__ : Tuple = 0 snake_case__ : Optional[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ : Tuple = 1 snake_case__ : Optional[int] = 1 if len(__SCREAMING_SNAKE_CASE ) > 0: snake_case__ : Any = keeptmpscorea / len(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) snake_case__ : Any = keeptmpscorea / sum(keepgramcounterall_rep.values() ) snake_case__ : List[str] = 0 if keepscore_precision > 0 or keepscore_recall > 0: snake_case__ : Optional[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION snake_case__ : Any = sgramcounter_rep - cgramcounter_rep snake_case__ : Any = delgramcounter_rep - rgramcounter snake_case__ : Union[str, Any] = sgramcounter_rep - rgramcounter snake_case__ : int = 0 snake_case__ : Tuple = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ : Optional[int] = 1 if len(__SCREAMING_SNAKE_CASE ) > 0: snake_case__ : List[Any] = deltmpscorea / len(__SCREAMING_SNAKE_CASE ) # ADDITION snake_case__ : int = set(__SCREAMING_SNAKE_CASE ) - set(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = set(__SCREAMING_SNAKE_CASE ) & set(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = set(__SCREAMING_SNAKE_CASE ) - set(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ : Optional[int] = 1 snake_case__ : Optional[int] = 1 if len(__SCREAMING_SNAKE_CASE ) > 0: snake_case__ : Dict = addtmpscore / len(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: snake_case__ : int = addtmpscore / len(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = 0 if addscore_precision > 0 or addscore_recall > 0: snake_case__ : Optional[Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase_ (A : Optional[int] , A : List[str] , A : Optional[int] ): snake_case__ : Any = len(__SCREAMING_SNAKE_CASE ) snake_case__ : int = ssent.split(' ' ) snake_case__ : Union[str, Any] = csent.split(' ' ) snake_case__ : List[Any] = [] snake_case__ : Any = [] snake_case__ : int = [] snake_case__ : List[Any] = [] snake_case__ : Tuple = [] snake_case__ : Optional[int] = [] snake_case__ : Union[str, Any] = [] snake_case__ : List[Any] = [] snake_case__ : Union[str, Any] = [] snake_case__ : Optional[int] = [] for rsent in rsents: snake_case__ : int = rsent.split(' ' ) snake_case__ : Dict = [] snake_case__ : Optional[Any] = [] snake_case__ : Any = [] ragramslist.append(__SCREAMING_SNAKE_CASE ) for i in range(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ): if i < len(__SCREAMING_SNAKE_CASE ) - 1: snake_case__ : Dict = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(__SCREAMING_SNAKE_CASE ) if i < len(__SCREAMING_SNAKE_CASE ) - 2: snake_case__ : Dict = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(__SCREAMING_SNAKE_CASE ) if i < len(__SCREAMING_SNAKE_CASE ) - 3: snake_case__ : Any = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(__SCREAMING_SNAKE_CASE ) ragramslist.append(__SCREAMING_SNAKE_CASE ) ragramslist.append(__SCREAMING_SNAKE_CASE ) ragramslist.append(__SCREAMING_SNAKE_CASE ) for i in range(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ): if i < len(__SCREAMING_SNAKE_CASE ) - 1: snake_case__ : int = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(__SCREAMING_SNAKE_CASE ) if i < len(__SCREAMING_SNAKE_CASE ) - 2: snake_case__ : Dict = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(__SCREAMING_SNAKE_CASE ) if i < len(__SCREAMING_SNAKE_CASE ) - 3: snake_case__ : Optional[Any] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(__SCREAMING_SNAKE_CASE ) for i in range(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ): if i < len(__SCREAMING_SNAKE_CASE ) - 1: snake_case__ : Optional[Any] = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(__SCREAMING_SNAKE_CASE ) if i < len(__SCREAMING_SNAKE_CASE ) - 2: snake_case__ : Any = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(__SCREAMING_SNAKE_CASE ) if i < len(__SCREAMING_SNAKE_CASE ) - 3: snake_case__ : Union[str, Any] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(__SCREAMING_SNAKE_CASE ) ((snake_case__) , (snake_case__) , (snake_case__)) : Any = SARIngram(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ((snake_case__) , (snake_case__) , (snake_case__)) : str = SARIngram(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ((snake_case__) , (snake_case__) , (snake_case__)) : List[str] = SARIngram(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ((snake_case__) , (snake_case__) , (snake_case__)) : Tuple = SARIngram(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 snake_case__ : Dict = sum([delascore, delascore, delascore, delascore] ) / 4 snake_case__ : int = sum([addascore, addascore, addascore, addascore] ) / 4 snake_case__ : str = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase_ (A : Optional[int] , A : Any = True , A : List[str] = "13a" , A : int = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: snake_case__ : Optional[int] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: snake_case__ : Optional[Any] = sacrebleu.metrics.bleu._get_tokenizer(__SCREAMING_SNAKE_CASE )()(__SCREAMING_SNAKE_CASE ) else: snake_case__ : Union[str, Any] = sacrebleu.TOKENIZERS[tokenizer]()(__SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": snake_case__ : Optional[Any] = sacremoses.MosesTokenizer().tokenize(__SCREAMING_SNAKE_CASE , return_str=__SCREAMING_SNAKE_CASE , escape=__SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": snake_case__ : Dict = sacremoses.MosesTokenizer().penn_tokenize(__SCREAMING_SNAKE_CASE , return_str=__SCREAMING_SNAKE_CASE ) else: snake_case__ : List[str] = sentence if not return_str: snake_case__ : Any = normalized_sent.split() return normalized_sent def lowercase_ (A : int , A : str , A : Optional[int] ): if not (len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE )): raise ValueError('Sources length must match predictions and references lengths.' ) snake_case__ : List[str] = 0 for src, pred, refs in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(__SCREAMING_SNAKE_CASE ) , normalize(__SCREAMING_SNAKE_CASE ) , [normalize(__SCREAMING_SNAKE_CASE ) for sent in refs] ) snake_case__ : Union[str, Any] = sari_score / len(__SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def lowercase_ (A : List[Any] , A : List[Any] , A : Tuple="exp" , A : List[str]=None , A : Optional[Any]=False , A : Dict=False , A : List[str]=False , ): snake_case__ : List[str] = len(references[0] ) if any(len(__SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) snake_case__ : Optional[int] = [[refs[i] for refs in references] for i in range(__SCREAMING_SNAKE_CASE )] snake_case__ : List[Any] = sacrebleu.corpus_bleu( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , smooth_method=__SCREAMING_SNAKE_CASE , smooth_value=__SCREAMING_SNAKE_CASE , force=__SCREAMING_SNAKE_CASE , lowercase=__SCREAMING_SNAKE_CASE , use_effective_order=__SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : Union[str, Any] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence' ), 'references': datasets.Sequence(datasets.Value('string', id='sequence' ), id='references' ), } ), codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ], reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ], ) def lowercase_ ( self : Tuple, _snake_case : List[Any], _snake_case : Union[str, Any], _snake_case : Union[str, Any] ) ->List[Any]: snake_case__ : Tuple = {} result.update({'sari': compute_sari(sources=_snake_case, predictions=_snake_case, references=_snake_case )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=_snake_case, references=_snake_case )} ) result.update({'exact': compute_em(predictions=_snake_case, references=_snake_case )} ) return result
478
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset SCREAMING_SNAKE_CASE = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase ): super().__init__() UpperCAmelCase_ = torchvision.models.resnetaaa(pretrained=lowerCAmelCase ) UpperCAmelCase_ = list(model.children() )[:-2] UpperCAmelCase_ = nn.Sequential(*lowerCAmelCase ) UpperCAmelCase_ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def A__ ( self , lowerCAmelCase ): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 UpperCAmelCase_ = self.pool(self.model(lowerCAmelCase ) ) UpperCAmelCase_ = torch.flatten(lowerCAmelCase , start_dim=2 ) UpperCAmelCase_ = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = [json.loads(lowerCAmelCase ) for l in open(lowerCAmelCase )] UpperCAmelCase_ = os.path.dirname(lowerCAmelCase ) UpperCAmelCase_ = tokenizer UpperCAmelCase_ = labels UpperCAmelCase_ = len(lowerCAmelCase ) UpperCAmelCase_ = max_seq_length UpperCAmelCase_ = transforms def __len__( self ): return len(self.data ) def __getitem__( self , lowerCAmelCase ): UpperCAmelCase_ = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=lowerCAmelCase ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = sentence[0], sentence[1:-1], sentence[-1] UpperCAmelCase_ = sentence[: self.max_seq_length] UpperCAmelCase_ = torch.zeros(self.n_classes ) UpperCAmelCase_ = 1 UpperCAmelCase_ = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) UpperCAmelCase_ = self.transforms(lowerCAmelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def A__ ( self ): UpperCAmelCase_ = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [len(row["sentence"] ) for row in batch] UpperCAmelCase_ , UpperCAmelCase_ = len(__SCREAMING_SNAKE_CASE ), max(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = torch.zeros(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=torch.long ) UpperCAmelCase_ = torch.zeros(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ = input_row["sentence"] UpperCAmelCase_ = 1 UpperCAmelCase_ = torch.stack([row["image"] for row in batch] ) UpperCAmelCase_ = torch.stack([row["label"] for row in batch] ) UpperCAmelCase_ = torch.stack([row["image_start_token"] for row in batch] ) UpperCAmelCase_ = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def snake_case__ ( ) -> int: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def snake_case__ ( ) -> Optional[int]: return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
579
0
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 UpperCAmelCase_ : Tuple = data_utils.TransfoXLTokenizer UpperCAmelCase_ : Any = data_utils.TransfoXLCorpus UpperCAmelCase_ : Union[str, Any] = data_utils UpperCAmelCase_ : int = data_utils def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[str] ): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowerCAmelCase , "rb" ) as fp: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _lowerCamelCase : Union[str, Any] = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) _lowerCamelCase : Any = corpus.vocab.__dict__ torch.save(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , _lowerCAmelCase ) _lowerCamelCase : Tuple = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _lowerCamelCase : Union[str, Any] = os.path.abspath(_lowerCAmelCase ) _lowerCamelCase : Any = os.path.abspath(_lowerCAmelCase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": _lowerCamelCase : List[Any] = TransfoXLConfig() else: _lowerCamelCase : List[str] = TransfoXLConfig.from_json_file(_lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) _lowerCamelCase : List[str] = TransfoXLLMHeadModel(_lowerCAmelCase ) _lowerCamelCase : List[str] = load_tf_weights_in_transfo_xl(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) print(F'Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}' ) torch.save(model.state_dict() , _lowerCAmelCase ) print(F'Save configuration file to {os.path.abspath(_lowerCAmelCase )}' ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) UpperCAmelCase_ : int = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
704
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
0
A : Optional[Any] = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } A : Optional[int] = {value: key for key, value in encode_dict.items()} def __lowerCAmelCase ( a__ ) -> str: __a = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def __lowerCAmelCase ( a__ ) -> str: if set(_lowerCamelCase ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) __a = """""" for word in coded.split(): while len(_lowerCamelCase ) != 0: decoded += decode_dict[word[:5]] __a = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
219
"""simple docstring""" from __future__ import annotations from collections import deque class __A : def __init__( self , a__ ): _lowerCAmelCase : list[dict] = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(a__ ) self.set_fail_transitions() def __A ( self , a__ , a__ ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = 0 for character in keyword: _lowerCAmelCase : str = self.find_next_state(a__ , a__ ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _lowerCAmelCase : List[str] = len(self.adlist ) - 1 else: _lowerCAmelCase : Any = next_state self.adlist[current_state]["output"].append(a__ ) def __A ( self ): _lowerCAmelCase : deque = deque() for node in self.adlist[0]["next_states"]: q.append(a__ ) _lowerCAmelCase : str = 0 while q: _lowerCAmelCase : Optional[Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(a__ ) _lowerCAmelCase : Tuple = self.adlist[r]["""fail_state"""] while ( self.find_next_state(a__ , self.adlist[child]["""value"""] ) is None and state != 0 ): _lowerCAmelCase : List[Any] = self.adlist[state]["""fail_state"""] _lowerCAmelCase : Optional[int] = self.find_next_state( a__ , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: _lowerCAmelCase : int = 0 _lowerCAmelCase : str = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def __A ( self , a__ ): _lowerCAmelCase : dict = {} # returns a dict with keywords and list of its occurrences _lowerCAmelCase : Any = 0 for i in range(len(a__ ) ): while ( self.find_next_state(a__ , string[i] ) is None and current_state != 0 ): _lowerCAmelCase : Any = self.adlist[current_state]["""fail_state"""] _lowerCAmelCase : List[Any] = self.find_next_state(a__ , string[i] ) if next_state is None: _lowerCAmelCase : Optional[Any] = 0 else: _lowerCAmelCase : Optional[int] = next_state for key in self.adlist[current_state]["output"]: if key not in result: _lowerCAmelCase : List[Any] = [] result[key].append(i - len(a__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
213
0
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __A ( a_ : Dict ,a_ : Optional[int] ,a_ : Union[str, Any] ,a_ : List[Any] ,a_ : List[Any] ): # load base model lowerCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained(a_ ,torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase : Any = load_file(a_ ) lowerCAmelCase : Optional[Any] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase : int = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" ) lowerCAmelCase : List[Any] = pipeline.text_encoder else: lowerCAmelCase : str = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" ) lowerCAmelCase : List[Any] = pipeline.unet # find the target layer lowerCAmelCase : Optional[int] = layer_infos.pop(0 ) while len(a_ ) > -1: try: lowerCAmelCase : Tuple = curr_layer.__getattr__(a_ ) if len(a_ ) > 0: lowerCAmelCase : Dict = layer_infos.pop(0 ) elif len(a_ ) == 0: break except Exception: if len(a_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase : int = layer_infos.pop(0 ) lowerCAmelCase : List[Any] = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down" ,"lora_up" ) ) pair_keys.append(a_ ) else: pair_keys.append(a_ ) pair_keys.append(key.replace("lora_up" ,"lora_down" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase : Optional[int] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase : Optional[int] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ ,a_ ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase : int = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase : Tuple = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a_ ,a_ ) # update visited list for item in pair_keys: visited.append(a_ ) return pipeline if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowerCAmelCase = parser.parse_args() lowerCAmelCase = args.base_model_path lowerCAmelCase = args.checkpoint_path lowerCAmelCase = args.dump_path lowerCAmelCase = args.lora_prefix_unet lowerCAmelCase = args.lora_prefix_text_encoder lowerCAmelCase = args.alpha lowerCAmelCase = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCAmelCase = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
719
'''simple docstring''' def __A ( a_ : int ): if not isinstance(a_ ,a_ ): lowerCAmelCase : Dict = f'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 0: return False lowerCAmelCase : Dict = number * number while number > 0: if number % 1_0 != number_square % 1_0: return False number //= 1_0 number_square //= 1_0 return True if __name__ == "__main__": import doctest doctest.testmod()
551
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def A__ (snake_case : List[str] ) -> Optional[int]: __UpperCamelCase : Tuple = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) def A__ (snake_case : Optional[Any] ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase : Any = emb.weight.shape __UpperCamelCase : List[str] = nn.Linear(snake_case , snake_case , bias=snake_case ) __UpperCamelCase : Union[str, Any] = emb.weight.data return lin_layer def A__ (snake_case : Union[str, Any] ) -> Union[str, Any]: __UpperCamelCase : List[str] = torch.load(snake_case , map_location="""cpu""" ) __UpperCamelCase : Optional[int] = Namespace(**checkpoint["""cfg"""]["""model"""] ) __UpperCamelCase : Union[str, Any] = checkpoint["""model"""] remove_ignore_keys_(snake_case ) __UpperCamelCase : Optional[int] = state_dict["""decoder.embed_tokens.weight"""].shape[0] __UpperCamelCase : Optional[int] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} __UpperCamelCase : List[Any] = XGLMConfig( vocab_size=snake_case , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) __UpperCamelCase : List[Any] = XGLMForCausalLM(snake_case ) __UpperCamelCase : str = model.load_state_dict(snake_case , strict=snake_case ) print(snake_case ) __UpperCamelCase : Tuple = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ = parser.parse_args() a__ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
279
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": a__ = pd.read_csv('''sample_data.csv''', header=None) a__ = df.shape[:1][0] # If you're using some other dataset input the target column a__ = df.iloc[:, 1:2] a__ = actual_data.values.reshape(len_data, 1) a__ = MinMaxScaler().fit_transform(actual_data) a__ = 10 a__ = 5 a__ = 20 a__ = len_data - periods * look_back a__ = actual_data[:division] a__ = actual_data[division - look_back :] a__ , a__ = [], [] a__ , a__ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) a__ = np.array(train_x) a__ = np.array(test_x) a__ = np.array([list(i.ravel()) for i in train_y]) a__ = np.array([list(i.ravel()) for i in test_y]) a__ = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') a__ = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) a__ = model.predict(x_test)
279
1
"""simple docstring""" def lowerCamelCase ( _snake_case ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence UpperCAmelCase__ : List[Any] = gray_code_sequence_string(_snake_case ) # # convert them to integers for i in range(len(_snake_case ) ): UpperCAmelCase__ : str = int(sequence[i] ,2 ) return sequence def lowerCamelCase ( _snake_case ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase__ : Any = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase__ : Optional[Any] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase__ : List[str] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase__ : List[Any] = '0' + smaller_sequence[i] sequence.append(_snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase__ : str = '1' + smaller_sequence[i] sequence.append(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
254
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCamelCase ( _snake_case ): return ConvertCommand( args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name ) UpperCamelCase__ = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class a ( lowercase ): @staticmethod def __snake_case ( UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=UpperCamelCase_ , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=UpperCamelCase_ , default=UpperCamelCase_ , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , ): UpperCAmelCase__ : Dict = logging.get_logger('transformers-cli/converting' ) self._logger.info(F'''Loading model {model_type}''' ) UpperCAmelCase__ : Dict = model_type UpperCAmelCase__ : Optional[Any] = tf_checkpoint UpperCAmelCase__ : Dict = pytorch_dump_output UpperCAmelCase__ : List[Any] = config UpperCAmelCase__ : List[str] = finetuning_task_name def __snake_case ( self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(UpperCamelCase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase_ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase__ : Any = self._tf_checkpoint UpperCAmelCase__ : List[str] = '' else: UpperCAmelCase__ : str = self._tf_checkpoint UpperCAmelCase__ : List[Any] = '' convert_transfo_xl_checkpoint_to_pytorch( UpperCamelCase_ , self._config , self._pytorch_dump_output , UpperCamelCase_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
254
1
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a_ = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } a_ = {"""facebook/blenderbot-3B""": 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCAmelCase_ ( ): '''simple docstring''' _lowerCamelCase : Dict = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _lowerCamelCase : List[str] = bs[:] _lowerCamelCase : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__a ) cs.append(2**8 + n ) n += 1 _lowerCamelCase : Dict = [chr(__a ) for n in cs] return dict(zip(__a , __a ) ) def UpperCAmelCase_ ( __a : int ): '''simple docstring''' _lowerCamelCase : List[Any] = set() _lowerCamelCase : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCamelCase : Optional[int] = char return pairs class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : Tuple = VOCAB_FILES_NAMES a_ : List[str] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , **A , ): _lowerCamelCase : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token _lowerCamelCase : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token _lowerCamelCase : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token _lowerCamelCase : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token _lowerCamelCase : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token _lowerCamelCase : Optional[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase : Optional[int] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( errors=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , add_prefix_space=A , **A , ) with open(A , encoding='utf-8' ) as vocab_handle: _lowerCamelCase : Tuple = json.load(A ) _lowerCamelCase : List[str] = {v: k for k, v in self.encoder.items()} _lowerCamelCase : str = errors # how to handle errors in decoding _lowerCamelCase : int = bytes_to_unicode() _lowerCamelCase : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(A , encoding='utf-8' ) as merges_handle: _lowerCamelCase : List[Any] = merges_handle.read().split('\n' )[1:-1] _lowerCamelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] _lowerCamelCase : Optional[int] = dict(zip(A , range(len(A ) ) ) ) _lowerCamelCase : Dict = {} _lowerCamelCase : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCamelCase : Union[str, Any] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCAmelCase ( self ): return len(self.encoder ) def _lowerCAmelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase ( self , A ): if token in self.cache: return self.cache[token] _lowerCamelCase : Dict = tuple(A ) _lowerCamelCase : Tuple = get_pairs(A ) if not pairs: return token while True: _lowerCamelCase : Union[str, Any] = min(A , key=lambda A : self.bpe_ranks.get(A , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCamelCase , _lowerCamelCase : Tuple = bigram _lowerCamelCase : List[str] = [] _lowerCamelCase : Tuple = 0 while i < len(A ): try: _lowerCamelCase : Any = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCamelCase : List[str] = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCamelCase : Union[str, Any] = tuple(A ) _lowerCamelCase : Optional[Any] = new_word if len(A ) == 1: break else: _lowerCamelCase : int = get_pairs(A ) _lowerCamelCase : str = ' '.join(A ) _lowerCamelCase : Union[str, Any] = word return word def _lowerCAmelCase ( self , A ): _lowerCamelCase : Tuple = [] for token in re.findall(self.pat , A ): _lowerCamelCase : Any = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(' ' ) ) return bpe_tokens def _lowerCAmelCase ( self , A ): return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self , A ): return self.decoder.get(A ) def _lowerCAmelCase ( self , A ): _lowerCamelCase : List[str] = ''.join(A ) _lowerCamelCase : str = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def _lowerCAmelCase ( self , A , A = None ): if not os.path.isdir(A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCamelCase : Dict = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : List[str] = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + '\n' ) _lowerCamelCase : Any = 0 with open(A , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) _lowerCamelCase : Optional[Any] = token_index writer.write(' '.join(A ) + '\n' ) index += 1 return vocab_file, merge_file def _lowerCAmelCase ( self , A , A = None , A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _lowerCAmelCase ( self , A , A = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self , A , A=False , **A ): _lowerCamelCase : List[str] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): _lowerCamelCase : Optional[int] = ' ' + text return (text, kwargs) def _lowerCAmelCase ( self , A , A = None ): return token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self , A ): _lowerCamelCase : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A ) _lowerCamelCase : List[Any] = ' '.join(A ) _lowerCamelCase : Tuple = self.encode(A ) if len(A ) > self.model_max_length: _lowerCamelCase : Any = input_ids[-self.model_max_length :] logger.warning(F"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
437
"""simple docstring""" def UpperCAmelCase_ ( __a : int ): '''simple docstring''' _lowerCamelCase : Optional[Any] = int(__a ) if decimal in (0, 1): # Exit cases for the recursion return str(__a ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = divmod(__a , 2 ) return binary_recursive(__a ) + str(__a ) def UpperCAmelCase_ ( __a : str ): '''simple docstring''' _lowerCamelCase : int = str(__a ).strip() if not number: raise ValueError('No input value was provided' ) _lowerCamelCase : Tuple = '-' if number.startswith('-' ) else '' _lowerCamelCase : List[Any] = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return f"{negative}0b{binary_recursive(int(__a ) )}" if __name__ == "__main__": from doctest import testmod testmod()
437
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
711
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowercase_ = logging.get_logger(__name__) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = R'''\w+[.]\d+''' __SCREAMING_SNAKE_CASE : Optional[int] = re.findall(snake_case , snake_case ) for pat in pats: __SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(snake_case , '''_'''.join(pat.split('''.''' ) ) ) return key def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __SCREAMING_SNAKE_CASE : str = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE : Any = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE : List[str] = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": __SCREAMING_SNAKE_CASE : Dict = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __SCREAMING_SNAKE_CASE : int = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __SCREAMING_SNAKE_CASE : str = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( snake_case , snake_case , snake_case=42 ): """simple docstring""" # Step 1: Convert pytorch tensor to numpy __SCREAMING_SNAKE_CASE : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __SCREAMING_SNAKE_CASE : Dict = flax_model.init_weights(PRNGKey(snake_case ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = flatten_dict(snake_case ) __SCREAMING_SNAKE_CASE : Dict = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __SCREAMING_SNAKE_CASE : int = rename_key(snake_case ) __SCREAMING_SNAKE_CASE : Dict = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = rename_key_and_reshape_tensor(snake_case , snake_case , snake_case ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown __SCREAMING_SNAKE_CASE : Any = jnp.asarray(snake_case ) return unflatten_dict(snake_case )
131
0
'''simple docstring''' from __future__ import annotations class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[int] , snake_case_ : str , snake_case_ : str ): snake_case__ , snake_case__ : Optional[int] = text, pattern snake_case__ , snake_case__ : List[str] = len(snake_case_ ), len(snake_case_ ) def lowerCamelCase ( self : str , snake_case_ : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowerCamelCase ( self : int , snake_case_ : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCamelCase ( self : Tuple ): # searches pattern in text and returns index positions snake_case__ : int = [] for i in range(self.textLen - self.patLen + 1 ): snake_case__ : Optional[int] = self.mismatch_in_text(snake_case_ ) if mismatch_index == -1: positions.append(snake_case_ ) else: snake_case__ : str = self.match_in_pattern(self.text[mismatch_index] ) snake_case__ : List[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __a = "ABAABA" __a = "AB" __a = BoyerMooreSearch(text, pattern) __a = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
374
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __a = None __a = logging.get_logger(__name__) __a = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } __a = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off __a = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ["input_ids", "attention_mask"] lowercase = NllbTokenizer lowercase = [] lowercase = [] def __init__( self : List[str] , snake_case_ : int=None , snake_case_ : Optional[int]=None , snake_case_ : Dict="<s>" , snake_case_ : Optional[Any]="</s>" , snake_case_ : Union[str, Any]="</s>" , snake_case_ : Optional[int]="<s>" , snake_case_ : Any="<unk>" , snake_case_ : Tuple="<pad>" , snake_case_ : Any="<mask>" , snake_case_ : Union[str, Any]=None , snake_case_ : Tuple=None , snake_case_ : Union[str, Any]=None , snake_case_ : Optional[int]=False , **snake_case_ : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it snake_case__ : Any = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token snake_case__ : str = legacy_behaviour super().__init__( vocab_file=snake_case_ , tokenizer_file=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , additional_special_tokens=snake_case_ , legacy_behaviour=snake_case_ , **snake_case_ , ) snake_case__ : Optional[Any] = vocab_file snake_case__ : str = False if not self.vocab_file else True snake_case__ : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case__ : Optional[int] = { lang_code: self.convert_tokens_to_ids(snake_case_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case__ : Any = src_lang if src_lang is not None else """eng_Latn""" snake_case__ : Optional[int] = self.convert_tokens_to_ids(self._src_lang ) snake_case__ : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase ( self : str ): return self._src_lang @src_lang.setter def lowerCamelCase ( self : str , snake_case_ : str ): snake_case__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase ( self : int , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase ( self : Any , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self : List[str] , snake_case_ : str , snake_case_ : str , snake_case_ : Optional[str] , snake_case_ : Optional[str] , **snake_case_ : List[Any] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case__ : Any = src_lang snake_case__ : str = self(snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) snake_case__ : Dict = self.convert_tokens_to_ids(snake_case_ ) snake_case__ : str = tgt_lang_id return inputs def lowerCamelCase ( self : int , snake_case_ : List[str] , snake_case_ : str = "eng_Latn" , snake_case_ : Optional[List[str]] = None , snake_case_ : str = "fra_Latn" , **snake_case_ : str , ): snake_case__ : str = src_lang snake_case__ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def lowerCamelCase ( self : List[str] ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase ( self : Any ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase ( self : Optional[Any] , snake_case_ : List[str] ): snake_case__ : List[Any] = self.convert_tokens_to_ids(snake_case_ ) if self.legacy_behaviour: snake_case__ : Tuple = [] snake_case__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: snake_case__ : Tuple = [self.cur_lang_code] snake_case__ : int = [self.eos_token_id] snake_case__ : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case__ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case__ : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase ( self : int , snake_case_ : str ): snake_case__ : List[str] = self.convert_tokens_to_ids(snake_case_ ) if self.legacy_behaviour: snake_case__ : int = [] snake_case__ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] else: snake_case__ : Dict = [self.cur_lang_code] snake_case__ : Dict = [self.eos_token_id] snake_case__ : Dict = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case__ : Any = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case__ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase ( self : str , snake_case_ : str , snake_case_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(snake_case_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory." ) return snake_case__ : Dict = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
374
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure)
128
"""simple docstring""" import heapq def _lowerCamelCase ( lowerCamelCase__ : dict ): lowercase__ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase__ : Any = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase__ : Optional[Any] = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase__ : List[Any] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __snake_case = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}")
128
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __snake_case : int | float | str, __snake_case : int | float | str ) -> list[str]: """simple docstring""" if nth_term == "": return [""] A__ : Any =int(__snake_case ) A__ : int =int(__snake_case ) A__ : list[str] =[] for temp in range(int(__snake_case ) ): series.append(f"1 / {pow(temp + 1, int(__snake_case ) )}" if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Any = int(input('Enter the last number (nth term) of the P-Series')) __snake_case : Optional[Any] = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
215
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __snake_case : List[str] = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
215
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__:Optional[Any] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:int = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Union[str, Any] = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:List[str] = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__:Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : _snake_case : torch.Tensor # [batch_size x 3] _snake_case : torch.Tensor # [batch_size x 3] _snake_case : torch.Tensor # [batch_size x 3] _snake_case : torch.Tensor # [batch_size x 3] _snake_case : int _snake_case : int _snake_case : float _snake_case : float _snake_case : Tuple[int] def a__ ( self ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def a__ ( self ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def a__ ( self ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def a__ ( self ): __a = torch.arange(self.height * self.width ) __a = torch.stack( [ pixel_indices % self.width, torch.div(lowerCamelCase , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def a__ ( self ): __a , *__a = self.shape __a = int(np.prod(lowerCamelCase ) ) __a = self.get_image_coords() __a = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __a = self.get_camera_rays(lowerCamelCase ) __a = rays.view(lowerCamelCase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def a__ ( self , lowerCamelCase ): __a , *__a , __a = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __a = coords.view(lowerCamelCase , -1 , 2 ) __a = self.resolution() __a = self.fov() __a = (flat.float() / (res - 1)) * 2 - 1 __a = fracs * torch.tan(fov / 2 ) __a = fracs.view(lowerCamelCase , -1 , 2 ) __a = ( self.z.view(lowerCamelCase , 1 , 3 ) + self.x.view(lowerCamelCase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowerCamelCase , 1 , 3 ) * fracs[:, :, 1:] ) __a = directions / directions.norm(dim=-1 , keepdim=lowerCamelCase ) __a = torch.stack( [ torch.broadcast_to(self.origin.view(lowerCamelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowerCamelCase , *lowerCamelCase , 2 , 3 ) def a__ ( self , lowerCamelCase , lowerCamelCase ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCamelCase , height=lowerCamelCase , x_fov=self.x_fov , y_fov=self.y_fov , ) def _lowerCamelCase( a ): __a = [] __a = [] __a = [] __a = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): __a = np.array([np.sin(a ), np.cos(a ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __a = -z * 4 __a = np.array([np.cos(a ), -np.sin(a ), 0.0] ) __a = np.cross(a , a ) origins.append(a ) xs.append(a ) ys.append(a ) zs.append(a ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(a , axis=0 ) ).float() , x=torch.from_numpy(np.stack(a , axis=0 ) ).float() , y=torch.from_numpy(np.stack(a , axis=0 ) ).float() , z=torch.from_numpy(np.stack(a , axis=0 ) ).float() , width=a , height=a , x_fov=0.7 , y_fov=0.7 , shape=(1, len(a )) , )
67
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): A_ : int = ['input_features', 'attention_mask'] def __init__( self : List[Any] , UpperCamelCase_ : Optional[int]=80 , UpperCamelCase_ : List[Any]=1_60_00 , UpperCamelCase_ : List[str]=0.0 , UpperCamelCase_ : List[str]=10 , UpperCamelCase_ : str=25 , UpperCamelCase_ : Dict="hamming_window" , UpperCamelCase_ : Dict=3_2768.0 , UpperCamelCase_ : Union[str, Any]=0.97 , UpperCamelCase_ : List[Any]=1.0 , UpperCamelCase_ : int=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=False , **UpperCamelCase_ : int , ) -> List[str]: super().__init__(feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , **UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = feature_size SCREAMING_SNAKE_CASE__ :Any = sampling_rate SCREAMING_SNAKE_CASE__ :Union[str, Any] = padding_value SCREAMING_SNAKE_CASE__ :Tuple = hop_length SCREAMING_SNAKE_CASE__ :Any = win_length SCREAMING_SNAKE_CASE__ :Optional[Any] = frame_signal_scale SCREAMING_SNAKE_CASE__ :Union[str, Any] = preemphasis_coeff SCREAMING_SNAKE_CASE__ :List[Any] = mel_floor SCREAMING_SNAKE_CASE__ :Optional[int] = normalize_means SCREAMING_SNAKE_CASE__ :Dict = normalize_vars SCREAMING_SNAKE_CASE__ :str = win_function SCREAMING_SNAKE_CASE__ :List[Any] = return_attention_mask SCREAMING_SNAKE_CASE__ :str = win_length * sampling_rate // 10_00 SCREAMING_SNAKE_CASE__ :Optional[int] = hop_length * sampling_rate // 10_00 SCREAMING_SNAKE_CASE__ :Any = optimal_fft_length(self.sample_size ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = (self.n_fft // 2) + 1 def __lowerCamelCase ( self : List[Any] , UpperCamelCase_ : np.array ) -> np.ndarray: if self.win_function == "hamming_window": SCREAMING_SNAKE_CASE__ :Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ :Optional[int] = window_function(window_length=self.sample_size , name=self.win_function ) SCREAMING_SNAKE_CASE__ :Dict = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) SCREAMING_SNAKE_CASE__ :Optional[Any] = spectrogram( one_waveform * self.frame_signal_scale , window=UpperCamelCase_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=UpperCamelCase_ , preemphasis=self.preemphasis_coeff , mel_filters=UpperCamelCase_ , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def __lowerCamelCase ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> int: # make sure we normalize float32 arrays if self.normalize_means: SCREAMING_SNAKE_CASE__ :List[str] = x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE__ :Tuple = np.subtract(UpperCamelCase_ , UpperCamelCase_ ) if self.normalize_vars: SCREAMING_SNAKE_CASE__ :Optional[Any] = x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE__ :Any = np.divide(UpperCamelCase_ , UpperCamelCase_ ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE__ :List[Any] = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE__ :List[Any] = x.astype(np.floataa ) return x def __lowerCamelCase ( self : Tuple , UpperCamelCase_ : List[np.ndarray] , UpperCamelCase_ : Optional[np.ndarray] = None ) -> List[np.ndarray]: SCREAMING_SNAKE_CASE__ :Any = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(UpperCamelCase_ , UpperCamelCase_ , self.padding_value ) for x, n in zip(UpperCamelCase_ , UpperCamelCase_ )] def __call__( self : Optional[Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : List[Any] , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE__ :int = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE__ :Dict = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE__ :Any = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): SCREAMING_SNAKE_CASE__ :Optional[int] = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE__ :str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE__ :List[str] = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE__ :List[Any] = [self._extract_mfsc_features(UpperCamelCase_ ) for one_waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE__ :Union[str, Any] = BatchFeature({'input_features': features} ) SCREAMING_SNAKE_CASE__ :List[Any] = self.pad( UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) # make sure list is in array format SCREAMING_SNAKE_CASE__ :Union[str, Any] = padded_inputs.get('input_features' ) if isinstance(input_features[0] , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ :List[str] = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE__ :Union[str, Any] = padded_inputs.get('attention_mask' ) if attention_mask is not None: SCREAMING_SNAKE_CASE__ :str = [np.asarray(UpperCamelCase_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: SCREAMING_SNAKE_CASE__ :Optional[Any] = ( np.array(UpperCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase_ , max_length=UpperCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) SCREAMING_SNAKE_CASE__ :List[Any] = self.normalize( padded_inputs['input_features'] , attention_mask=UpperCamelCase_ ) if return_tensors is not None: SCREAMING_SNAKE_CASE__ :Dict = padded_inputs.convert_to_tensors(UpperCamelCase_ ) return padded_inputs
209
'''simple docstring''' import numpy as np import qiskit def lowerCamelCase ( UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : int | None = None ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = np.random.default_rng(seed=UpperCAmelCase__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. SCREAMING_SNAKE_CASE__ :Optional[int] = 6 * key_len # Measurement basis for Alice's qubits. SCREAMING_SNAKE_CASE__ :Union[str, Any] = rng.integers(2 , size=UpperCAmelCase__ ) # The set of states Alice will prepare. SCREAMING_SNAKE_CASE__ :List[Any] = rng.integers(2 , size=UpperCAmelCase__ ) # Measurement basis for Bob's qubits. SCREAMING_SNAKE_CASE__ :str = rng.integers(2 , size=UpperCAmelCase__ ) # Quantum Circuit to simulate BB84 SCREAMING_SNAKE_CASE__ :int = qiskit.QuantumCircuit(UpperCAmelCase__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(UpperCAmelCase__ ): if alice_state[index] == 1: bbaa_circ.x(UpperCAmelCase__ ) if alice_basis[index] == 1: bbaa_circ.h(UpperCAmelCase__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(UpperCAmelCase__ ): if bob_basis[index] == 1: bbaa_circ.h(UpperCAmelCase__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. SCREAMING_SNAKE_CASE__ :str = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. SCREAMING_SNAKE_CASE__ :int = qiskit.execute(UpperCAmelCase__ , UpperCAmelCase__ , shots=1 , seed_simulator=UpperCAmelCase__ ) # Returns the result of measurement. SCREAMING_SNAKE_CASE__ :List[Any] = job.result().get_counts(UpperCAmelCase__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. SCREAMING_SNAKE_CASE__ :Any = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. SCREAMING_SNAKE_CASE__ :Optional[Any] = gen_key[:key_len] if len(UpperCAmelCase__ ) >= key_len else gen_key.ljust(UpperCAmelCase__ , '0' ) return key if __name__ == "__main__": print(f"The generated key is : {bbaa(8, seed=0)}") from doctest import testmod testmod()
209
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __lowerCAmelCase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __lowerCAmelCase = {'''facebook/blenderbot-3B''': 1_28} class __a ( __UpperCamelCase ): __lowercase : List[Any] = VOCAB_FILES_NAMES __lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = ['input_ids', 'attention_mask'] __lowercase : Optional[Any] = BlenderbotTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> Dict: '''simple docstring''' super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__: Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase__ ) != add_prefix_space: lowercase__: int = getattr(lowerCAmelCase__ , pre_tok_state.pop('type' ) ) lowercase__: Dict = add_prefix_space lowercase__: Dict = pre_tok_class(**lowerCAmelCase__ ) lowercase__: Any = add_prefix_space lowercase__: Tuple = 'post_processor' lowercase__: Optional[Any] = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) if tokenizer_component_instance: lowercase__: Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__: List[Any] = tuple(state['sep'] ) if "cls" in state: lowercase__: List[str] = tuple(state['cls'] ) lowercase__: Any = False if state.get('add_prefix_space' , lowerCAmelCase__ ) != add_prefix_space: lowercase__: Dict = add_prefix_space lowercase__: int = True if state.get('trim_offsets' , lowerCAmelCase__ ) != trim_offsets: lowercase__: List[Any] = trim_offsets lowercase__: List[str] = True if changes_to_apply: lowercase__: Optional[int] = getattr(lowerCAmelCase__ , state.pop('type' ) ) lowercase__: Union[str, Any] = component_class(**lowerCAmelCase__ ) setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value lowercase__: Tuple = value def SCREAMING_SNAKE_CASE__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__: Optional[Any] = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__: int = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' lowercase__: Dict = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: Union[str, Any] = [self.sep_token_id] lowercase__: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple: '''simple docstring''' return token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[int]: '''simple docstring''' lowercase__: List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase__ ) lowercase__: Any = ' '.join(lowerCAmelCase__ ) lowercase__: int = self.encode(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > self.model_max_length: lowercase__: Any = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
335
from __future__ import annotations from dataclasses import dataclass @dataclass class __a : __lowercase : float __lowercase : TreeNode | None = None __lowercase : TreeNode | None = None def snake_case_ ( snake_case ) -> bool: # Validation def is_valid_tree(snake_case ) -> bool: if node is None: return True if not isinstance(snake_case , snake_case ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(snake_case ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( snake_case , snake_case , snake_case ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , snake_case , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , snake_case ) ) return is_binary_search_tree_recursive_check(snake_case , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
335
1
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE ( a ): """simple docstring""" a_ : Any =["image_processor", "tokenizer"] a_ : List[str] ="AutoImageProcessor" a_ : Dict ="AutoTokenizer" def __init__( self : Optional[int] , _snake_case : int=None , _snake_case : Union[str, Any]=None , **_snake_case : List[Any] ) -> Dict: '''simple docstring''' a__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _snake_case , ) a__ = kwargs.pop('feature_extractor' ) a__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_snake_case , _snake_case ) a__ = self.image_processor a__ = False def __call__( self : int , *_snake_case : Union[str, Any] , **_snake_case : Tuple ) -> List[Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_snake_case , **_snake_case ) a__ = kwargs.pop('images' , _snake_case ) a__ = kwargs.pop('text' , _snake_case ) if len(_snake_case ) > 0: a__ = args[0] a__ = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: a__ = self.image_processor(_snake_case , *_snake_case , **_snake_case ) if text is not None: a__ = self.tokenizer(_snake_case , **_snake_case ) if text is None: return inputs elif images is None: return encodings else: a__ = encodings['input_ids'] return inputs def _lowerCAmelCase ( self : Dict , *_snake_case : Dict , **_snake_case : str ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def _lowerCAmelCase ( self : List[str] , *_snake_case : Tuple , **_snake_case : Optional[int] ) -> int: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @contextmanager def _lowerCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) a__ = True a__ = self.tokenizer yield a__ = self.image_processor a__ = False def _lowerCAmelCase ( self : Tuple , _snake_case : Optional[int] , _snake_case : List[str]=False , _snake_case : int=None ) -> List[Any]: '''simple docstring''' if added_vocab is None: a__ = self.tokenizer.get_added_vocab() a__ = {} while tokens: a__ = re.search(R'<s_(.*?)>' , _snake_case , re.IGNORECASE ) if start_token is None: break a__ = start_token.group(1 ) a__ = re.search(RF'''</s_{key}>''' , _snake_case , re.IGNORECASE ) a__ = start_token.group() if end_token is None: a__ = tokens.replace(_snake_case , '' ) else: a__ = end_token.group() a__ = re.escape(_snake_case ) a__ = re.escape(_snake_case ) a__ = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''' , _snake_case , re.IGNORECASE ) if content is not None: a__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node a__ = self.tokenajson(_snake_case , is_inner_value=_snake_case , added_vocab=_snake_case ) if value: if len(_snake_case ) == 1: a__ = value[0] a__ = value else: # leaf nodes a__ = [] for leaf in content.split(R'<sep/>' ): a__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": a__ = leaf[1:-2] # for categorical special tokens output[key].append(_snake_case ) if len(output[key] ) == 1: a__ = output[key][0] a__ = tokens[tokens.find(_snake_case ) + len(_snake_case ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_snake_case , added_vocab=_snake_case ) if len(_snake_case ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _snake_case , ) return self.image_processor_class @property def _lowerCAmelCase ( self : Any ) -> Any: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _snake_case , ) return self.image_processor
232
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __magic_name__ = logging.get_logger(__name__) def _lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' a__ = os.getenv('SM_HP_MP_PARAMETERS','{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. a__ = json.loads(UpperCAmelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. a__ = os.getenv('SM_FRAMEWORK_PARAMS','{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". a__ = json.loads(UpperCAmelCase__ ) if not mpi_options.get('sagemaker_mpi_enabled',UpperCAmelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class SCREAMING_SNAKE_CASE ( a ): """simple docstring""" a_ : str =field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , _snake_case , ) @cached_property def _lowerCAmelCase ( self : Optional[Any] ) -> "torch.device": '''simple docstring''' logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: a__ = torch.device('cpu' ) a__ = 0 elif is_sagemaker_model_parallel_available(): a__ = smp.local_rank() a__ = torch.device('cuda' , _snake_case ) a__ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) a__ = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) a__ = torch.device('cuda' , self.local_rank ) a__ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 a__ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. a__ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) a__ = torch.device('cuda' , self.local_rank ) a__ = 1 if device.type == "cuda": torch.cuda.set_device(_snake_case ) return device @property def _lowerCAmelCase ( self : str ) -> Tuple: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def _lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' return False
232
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def UpperCamelCase ( UpperCAmelCase ) ->list[list[float]]: """simple docstring""" a_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix a_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements a_ = [[0.0, 0.0], [0.0, 0.0]] a_ , a_ = matrix[1][1], matrix[0][0] a_ , a_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule a_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix a_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] a_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) a_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) a_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) a_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) a_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) a_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) a_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) a_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) a_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) a_ = array(UpperCAmelCase ) for i in range(3 ): for j in range(3 ): a_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix a_ = array(UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
210
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" if digit_amount > 0: return round(number - int(UpperCAmelCase ) , UpperCAmelCase ) return number - int(UpperCAmelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
210
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase :Any = logging.get_logger(__name__) _lowerCAmelCase :Dict = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class UpperCAmelCase ( snake_case_ ): '''simple docstring''' snake_case__ : Union[str, Any] = "transfo-xl" snake_case__ : List[Any] = ["mems"] snake_case__ : int = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase__=267_735 , lowercase__=[20_000, 40_000, 200_000] , lowercase__=1_024 , lowercase__=1_024 , lowercase__=16 , lowercase__=64 , lowercase__=4_096 , lowercase__=4 , lowercase__=False , lowercase__=18 , lowercase__=1_600 , lowercase__=1_000 , lowercase__=True , lowercase__=True , lowercase__=0 , lowercase__=-1 , lowercase__=True , lowercase__=0.1 , lowercase__=0.0 , lowercase__=True , lowercase__="normal" , lowercase__=0.0_1 , lowercase__=0.0_1 , lowercase__=0.0_2 , lowercase__=1E-5 , lowercase__=0 , **lowercase__ , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = [] self.cutoffs.extend(lowercase__ ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE : str = [False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE : Optional[Any] = [False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Optional[Any] = d_embed SCREAMING_SNAKE_CASE : Any = d_head SCREAMING_SNAKE_CASE : str = d_inner SCREAMING_SNAKE_CASE : Optional[int] = div_val SCREAMING_SNAKE_CASE : List[str] = pre_lnorm SCREAMING_SNAKE_CASE : Optional[Any] = n_layer SCREAMING_SNAKE_CASE : List[str] = n_head SCREAMING_SNAKE_CASE : Any = mem_len SCREAMING_SNAKE_CASE : Optional[Any] = same_length SCREAMING_SNAKE_CASE : List[str] = attn_type SCREAMING_SNAKE_CASE : int = clamp_len SCREAMING_SNAKE_CASE : Optional[int] = sample_softmax SCREAMING_SNAKE_CASE : Union[str, Any] = adaptive SCREAMING_SNAKE_CASE : Dict = dropout SCREAMING_SNAKE_CASE : Any = dropatt SCREAMING_SNAKE_CASE : Any = untie_r SCREAMING_SNAKE_CASE : List[str] = init SCREAMING_SNAKE_CASE : List[Any] = init_range SCREAMING_SNAKE_CASE : Union[str, Any] = proj_init_std SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : Dict = layer_norm_epsilon super().__init__(eos_token_id=lowercase__ , **lowercase__ ) @property def _UpperCamelCase ( self ) -> int: # Message copied from Transformer-XL documentation logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _UpperCamelCase ( self , lowercase__ ) -> List[str]: # Message copied from Transformer-XL documentation raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
251
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING lowerCAmelCase = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def _UpperCamelCase ( self , a , a , a ) -> Union[str, Any]: snake_case_ = AudioClassificationPipeline(model=a , feature_extractor=a ) # test with a raw waveform snake_case_ = np.zeros((3_40_00,) ) snake_case_ = np.zeros((1_40_00,) ) return audio_classifier, [audioa, audio] def _UpperCamelCase ( self , a , a ) -> Tuple: snake_case_ , snake_case_ = examples snake_case_ = audio_classifier(a ) # by default a model is initialized with num_labels=2 self.assertEqual( a , [ {'score': ANY(a ), 'label': ANY(a )}, {'score': ANY(a ), 'label': ANY(a )}, ] , ) snake_case_ = audio_classifier(a , top_k=1 ) self.assertEqual( a , [ {'score': ANY(a ), 'label': ANY(a )}, ] , ) self.run_torchaudio(a ) @require_torchaudio def _UpperCamelCase ( self , a ) -> List[str]: import datasets # test with a local file snake_case_ = datasets.load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) snake_case_ = dataset[0]['audio']['array'] snake_case_ = audio_classifier(a ) self.assertEqual( a , [ {'score': ANY(a ), 'label': ANY(a )}, {'score': ANY(a ), 'label': ANY(a )}, ] , ) @require_torch def _UpperCamelCase ( self ) -> Dict: snake_case_ = 'anton-l/wav2vec2-random-tiny-classifier' snake_case_ = pipeline('audio-classification' , model=a ) snake_case_ = np.ones((80_00,) ) snake_case_ = audio_classifier(a , top_k=4 ) snake_case_ = [ {'score': 0.0_842, 'label': 'no'}, {'score': 0.0_838, 'label': 'up'}, {'score': 0.0_837, 'label': 'go'}, {'score': 0.0_834, 'label': 'right'}, ] snake_case_ = [ {'score': 0.0_845, 'label': 'stop'}, {'score': 0.0_844, 'label': 'on'}, {'score': 0.0_841, 'label': 'right'}, {'score': 0.0_834, 'label': 'left'}, ] self.assertIn(nested_simplify(a , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) snake_case_ = {'array': np.ones((80_00,) ), 'sampling_rate': audio_classifier.feature_extractor.sampling_rate} snake_case_ = audio_classifier(a , top_k=4 ) self.assertIn(nested_simplify(a , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def _UpperCamelCase ( self ) -> str: import datasets snake_case_ = 'superb/wav2vec2-base-superb-ks' snake_case_ = pipeline('audio-classification' , model=a ) snake_case_ = datasets.load_dataset('anton-l/superb_dummy' , 'ks' , split='test' ) snake_case_ = np.array(dataset[3]['speech'] , dtype=np.floataa ) snake_case_ = audio_classifier(a , top_k=4 ) self.assertEqual( nested_simplify(a , decimals=3 ) , [ {'score': 0.981, 'label': 'go'}, {'score': 0.007, 'label': 'up'}, {'score': 0.006, 'label': '_unknown_'}, {'score': 0.001, 'label': 'down'}, ] , ) @require_tf @unittest.skip('Audio classification is not implemented for TF' ) def _UpperCamelCase ( self ) -> Optional[int]: pass
198
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): @slow def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowerCAmelCase__ : int = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained("""xlm-roberta-base""" ) lowerCAmelCase__ : Optional[Any] = """The dog is cute and lives in the garden house""" lowerCAmelCase__ : Optional[Any] = jnp.array([tokenizer.encode(__a )] ) lowerCAmelCase__ : Tuple = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase__ : List[str] = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowerCAmelCase__ : List[Any] = model(__a )["""last_hidden_state"""] self.assertEqual(output.shape , __a ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __a , atol=1E-3 ) )
720
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowercase_ ( __UpperCAmelCase ) -> Tuple: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowercase_ ( __UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Optional[int] = create_tensor(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = gather(__UpperCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowercase_ ( __UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : Any = [state.process_index] lowerCAmelCase__ : Dict = gather_object(__UpperCAmelCase ) assert len(__UpperCAmelCase ) == state.num_processes, f"""{gathered_obj}, {len(__UpperCAmelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), f"""{gathered_obj} != {list(range(state.num_processes ) )}""" def lowercase_ ( __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Union[str, Any] = create_tensor(__UpperCAmelCase ) lowerCAmelCase__ : Any = broadcast(__UpperCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowercase_ ( __UpperCAmelCase ) -> Union[str, Any]: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: lowerCAmelCase__ : int = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowerCAmelCase__ : Optional[Any] = torch.arange(state.num_processes ).to(state.device ) lowerCAmelCase__ : Any = pad_across_processes(__UpperCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowercase_ ( __UpperCAmelCase ) -> Optional[Any]: # For now runs on only two processes if state.num_processes != 2: return lowerCAmelCase__ : Union[str, Any] = create_tensor(__UpperCAmelCase ) lowerCAmelCase__ : Any = reduce(__UpperCAmelCase , """sum""" ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), f"""{reduced_tensor} != {truth_tensor}""" def lowercase_ ( __UpperCAmelCase ) -> List[str]: # For now runs on only two processes if state.num_processes != 2: return lowerCAmelCase__ : List[str] = create_tensor(__UpperCAmelCase ) lowerCAmelCase__ : Any = reduce(__UpperCAmelCase , """mean""" ) lowerCAmelCase__ : str = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), f"""{reduced_tensor} != {truth_tensor}""" def lowercase_ ( __UpperCAmelCase ) -> Dict: # For xla_spawn (TPUs) main() def lowercase_ ( ) -> Optional[int]: lowerCAmelCase__ : str = PartialState() state.print(f"""State: {state}""" ) state.print("""testing gather""" ) test_gather(__UpperCAmelCase ) state.print("""testing gather_object""" ) test_gather_object(__UpperCAmelCase ) state.print("""testing broadcast""" ) test_broadcast(__UpperCAmelCase ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__UpperCAmelCase ) state.print("""testing reduce_sum""" ) test_reduce_sum(__UpperCAmelCase ) state.print("""testing reduce_mean""" ) test_reduce_mean(__UpperCAmelCase ) if __name__ == "__main__": main()
507
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase ="▁" _lowerCamelCase =get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class A__ ( a_ , unittest.TestCase): _UpperCAmelCase : List[Any] = BertGenerationTokenizer _UpperCAmelCase : int = False _UpperCAmelCase : Optional[int] = True def UpperCamelCase__ ( self ): super().setUp() lowerCamelCase : int = BertGenerationTokenizer(__magic_name__ , keep_accents=__magic_name__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ): lowerCamelCase : Optional[Any] = """<s>""" lowerCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(__magic_name__ ) , 1_0_0_2 ) def UpperCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def UpperCamelCase__ ( self ): lowerCamelCase : Optional[Any] = BertGenerationTokenizer(__magic_name__ , keep_accents=__magic_name__ ) lowerCamelCase : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) lowerCamelCase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual( __magic_name__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) lowerCamelCase : str = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCamelCase__ ( self ): return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def UpperCamelCase__ ( self ): lowerCamelCase : int = """Hello World!""" lowerCamelCase : Tuple = [1_8_5_3_6, 2_2_6_0, 1_0_1] self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) ) @slow def UpperCamelCase__ ( self ): lowerCamelCase : Dict = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCamelCase : List[Any] = [ 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, ] self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) ) @require_torch @slow def UpperCamelCase__ ( self ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase : Any = list(self.big_tokenizer.get_vocab().keys() )[:1_0] lowerCamelCase : Optional[int] = """ """.join(__magic_name__ ) lowerCamelCase : str = self.big_tokenizer.encode_plus(__magic_name__ , return_tensors="""pt""" , return_token_type_ids=__magic_name__ ) lowerCamelCase : Any = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=__magic_name__ ) lowerCamelCase : List[str] = BertGenerationConfig() lowerCamelCase : Tuple = BertGenerationEncoder(__magic_name__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__magic_name__ ) model(**__magic_name__ ) @slow def UpperCamelCase__ ( self ): lowerCamelCase : Any = {"""input_ids""": [[3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4], [4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
681
UpperCAmelCase : Any = [0, 2, 4, 6, 8] UpperCAmelCase : Optional[Any] = [1, 3, 5, 7, 9] def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowerCamelCase = 0 for digit in range(10 ): lowerCamelCase = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowerCamelCase__ , lowerCamelCase__ ) return result lowerCamelCase = 0 for digita in range(10 ): lowerCamelCase = digita if (remainder + digita) % 2 == 0: lowerCamelCase = ODD_DIGITS else: lowerCamelCase = EVEN_DIGITS for digita in other_parity_digits: lowerCamelCase = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowerCamelCase__ , lowerCamelCase__ , ) return result def __lowerCamelCase ( lowerCamelCase__ : int = 9 ): '''simple docstring''' lowerCamelCase = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowerCamelCase__ , 0 , [0] * length , lowerCamelCase__ ) return result if __name__ == "__main__": print(f"""{solution() = }""")
457
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __magic_name__ ( unittest.TestCase ): def _A( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A( self ): lowercase =1 lowercase =3 lowercase =(32, 32) lowercase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case_ ) return image @property def _A( self ): torch.manual_seed(0 ) lowercase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=snake_case_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _A( self ): torch.manual_seed(0 ) lowercase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _A( self ): torch.manual_seed(0 ) lowercase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) return CLIPTextModel(snake_case_ ) def _A( self ): lowercase ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase =self.dummy_cond_unet_upscale lowercase =DDPMScheduler() lowercase =DDIMScheduler(prediction_type='''v_prediction''' ) lowercase =self.dummy_vae lowercase =self.dummy_text_encoder lowercase =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase =Image.fromarray(np.uinta(snake_case_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowercase =StableDiffusionUpscalePipeline( unet=snake_case_ , low_res_scheduler=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , max_noise_level=3_50 , ) lowercase =sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) lowercase ='''A painting of a squirrel eating a burger''' lowercase =torch.Generator(device=snake_case_ ).manual_seed(0 ) lowercase =sd_pipe( [prompt] , image=snake_case_ , generator=snake_case_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowercase =output.images lowercase =torch.Generator(device=snake_case_ ).manual_seed(0 ) lowercase =sd_pipe( [prompt] , image=snake_case_ , generator=snake_case_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=snake_case_ , )[0] lowercase =image[0, -3:, -3:, -1] lowercase =image_from_tuple[0, -3:, -3:, -1] lowercase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowercase =np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _A( self ): lowercase ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase =self.dummy_cond_unet_upscale lowercase =DDPMScheduler() lowercase =DDIMScheduler(prediction_type='''v_prediction''' ) lowercase =self.dummy_vae lowercase =self.dummy_text_encoder lowercase =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase =Image.fromarray(np.uinta(snake_case_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowercase =StableDiffusionUpscalePipeline( unet=snake_case_ , low_res_scheduler=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , max_noise_level=3_50 , ) lowercase =sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) lowercase ='''A painting of a squirrel eating a burger''' lowercase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowercase =output.images assert image.shape[0] == 2 lowercase =torch.Generator(device=snake_case_ ).manual_seed(0 ) lowercase =sd_pipe( [prompt] , image=snake_case_ , generator=snake_case_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) lowercase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _A( self ): lowercase =self.dummy_cond_unet_upscale lowercase =DDPMScheduler() lowercase =DDIMScheduler(prediction_type='''v_prediction''' ) lowercase =self.dummy_vae lowercase =self.dummy_text_encoder lowercase =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase =Image.fromarray(np.uinta(snake_case_ ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowercase =unet.half() lowercase =text_encoder.half() # make sure here that pndm scheduler skips prk lowercase =StableDiffusionUpscalePipeline( unet=snake_case_ , low_res_scheduler=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , max_noise_level=3_50 , ) lowercase =sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) lowercase ='''A painting of a squirrel eating a burger''' lowercase =torch.manual_seed(0 ) lowercase =sd_pipe( [prompt] , image=snake_case_ , generator=snake_case_ , num_inference_steps=2 , output_type='''np''' , ).images lowercase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def _A( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A( self ): lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowercase =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) lowercase ='''stabilityai/stable-diffusion-x4-upscaler''' lowercase =StableDiffusionUpscalePipeline.from_pretrained(snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() lowercase ='''a cat sitting on a park bench''' lowercase =torch.manual_seed(0 ) lowercase =pipe( prompt=snake_case_ , image=snake_case_ , generator=snake_case_ , output_type='''np''' , ) lowercase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _A( self ): lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowercase =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) lowercase ='''stabilityai/stable-diffusion-x4-upscaler''' lowercase =StableDiffusionUpscalePipeline.from_pretrained( snake_case_ , torch_dtype=torch.floataa , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() lowercase ='''a cat sitting on a park bench''' lowercase =torch.manual_seed(0 ) lowercase =pipe( prompt=snake_case_ , image=snake_case_ , generator=snake_case_ , output_type='''np''' , ) lowercase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _A( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) lowercase ='''stabilityai/stable-diffusion-x4-upscaler''' lowercase =StableDiffusionUpscalePipeline.from_pretrained( snake_case_ , torch_dtype=torch.floataa , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase ='''a cat sitting on a park bench''' lowercase =torch.manual_seed(0 ) lowercase =pipe( prompt=snake_case_ , image=snake_case_ , generator=snake_case_ , num_inference_steps=5 , output_type='''np''' , ) lowercase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
145
'''simple docstring''' _UpperCAmelCase : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase =input('''Enter message: ''' ) lowercase =input('''Enter key [alphanumeric]: ''' ) lowercase =input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowercase ='''encrypt''' lowercase =encrypt_message(lowercase_ , lowercase_ ) elif mode.lower().startswith('''d''' ): lowercase ='''decrypt''' lowercase =decrypt_message(lowercase_ , lowercase_ ) print(f'\n{mode.title()}ed message:' ) print(lowercase_ ) def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> str: '''simple docstring''' return translate_message(lowercase_ , lowercase_ , '''encrypt''' ) def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> str: '''simple docstring''' return translate_message(lowercase_ , lowercase_ , '''decrypt''' ) def UpperCamelCase ( lowercase_ : str , lowercase_ : str , lowercase_ : str ) -> str: '''simple docstring''' lowercase =[] lowercase =0 lowercase =key.upper() for symbol in message: lowercase =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowercase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowercase_ ): lowercase =0 else: translated.append(lowercase_ ) return "".join(lowercase_ ) if __name__ == "__main__": main()
145
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a_ :Optional[int] = logging.get_logger(__name__) a_ :List[Any] = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def a ( A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE__ : List[Any] = getattr(A__ , A__ ) if weight_type is not None: SCREAMING_SNAKE_CASE__ : str = getattr(A__ , A__ ).shape else: SCREAMING_SNAKE_CASE__ : Dict = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ : Dict = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ : Union[str, Any] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ : Union[str, Any] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ : Dict = value else: SCREAMING_SNAKE_CASE__ : Any = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a ( A__ , A__ , A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : int = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ : List[Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ : Tuple = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE__ : List[str] = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE__ : Optional[int] = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE__ : int = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ : Optional[Any] = name.split(A__ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE__ : Any = mapped_key.replace('''*''' , A__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ : List[str] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE__ : int = '''weight_v''' elif "weight" in name: SCREAMING_SNAKE_CASE__ : Any = '''weight''' elif "bias" in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''bias''' else: SCREAMING_SNAKE_CASE__ : Dict = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a ( A__ , A__ , A__ , A__ , A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE__ : int = name.split('''.''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(items[0] ) SCREAMING_SNAKE_CASE__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) SCREAMING_SNAKE_CASE__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A__ ) def a ( A__ , A__ ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = SEWConfig() if is_finetuned: SCREAMING_SNAKE_CASE__ : Any = model.wav_encoder.wav_model.cfg else: SCREAMING_SNAKE_CASE__ : Any = model.cfg SCREAMING_SNAKE_CASE__ : str = fs_config.conv_bias SCREAMING_SNAKE_CASE__ : str = eval(fs_config.conv_feature_layers ) SCREAMING_SNAKE_CASE__ : Optional[int] = [x[0] for x in conv_layers] SCREAMING_SNAKE_CASE__ : int = [x[1] for x in conv_layers] SCREAMING_SNAKE_CASE__ : Tuple = [x[2] for x in conv_layers] SCREAMING_SNAKE_CASE__ : int = '''gelu''' SCREAMING_SNAKE_CASE__ : Any = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' SCREAMING_SNAKE_CASE__ : Optional[Any] = 0.0 SCREAMING_SNAKE_CASE__ : List[Any] = fs_config.activation_fn.name SCREAMING_SNAKE_CASE__ : Any = fs_config.encoder_embed_dim SCREAMING_SNAKE_CASE__ : str = 0.0_2 SCREAMING_SNAKE_CASE__ : Any = fs_config.encoder_ffn_embed_dim SCREAMING_SNAKE_CASE__ : Optional[int] = 1e-5 SCREAMING_SNAKE_CASE__ : str = fs_config.encoder_layerdrop SCREAMING_SNAKE_CASE__ : Union[str, Any] = fs_config.encoder_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = fs_config.conv_pos_groups SCREAMING_SNAKE_CASE__ : List[str] = fs_config.conv_pos SCREAMING_SNAKE_CASE__ : Optional[int] = len(A__ ) SCREAMING_SNAKE_CASE__ : Tuple = fs_config.encoder_layers SCREAMING_SNAKE_CASE__ : str = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: SCREAMING_SNAKE_CASE__ : List[str] = model.cfg SCREAMING_SNAKE_CASE__ : Union[str, Any] = fs_config.final_dropout SCREAMING_SNAKE_CASE__ : str = fs_config.layerdrop SCREAMING_SNAKE_CASE__ : str = fs_config.activation_dropout SCREAMING_SNAKE_CASE__ : List[Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 SCREAMING_SNAKE_CASE__ : Optional[int] = fs_config.attention_dropout SCREAMING_SNAKE_CASE__ : Optional[Any] = fs_config.dropout_input SCREAMING_SNAKE_CASE__ : List[str] = fs_config.dropout SCREAMING_SNAKE_CASE__ : Optional[int] = fs_config.mask_channel_length SCREAMING_SNAKE_CASE__ : Tuple = fs_config.mask_channel_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = fs_config.mask_length SCREAMING_SNAKE_CASE__ : List[str] = fs_config.mask_prob SCREAMING_SNAKE_CASE__ : List[Any] = '''Wav2Vec2FeatureExtractor''' SCREAMING_SNAKE_CASE__ : List[Any] = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def a ( A__ , A__ , A__=None , A__=None , A__=True ) -> Dict: '''simple docstring''' if is_finetuned: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = SEWConfig.from_pretrained(A__ ) else: SCREAMING_SNAKE_CASE__ : List[str] = convert_config(model[0] , A__ ) SCREAMING_SNAKE_CASE__ : List[Any] = model[0].eval() SCREAMING_SNAKE_CASE__ : Dict = True if config.feat_extract_norm == '''layer''' else False SCREAMING_SNAKE_CASE__ : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , ) if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE__ : List[Any] = Dictionary.load(A__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE__ : Any = target_dict.pad_index SCREAMING_SNAKE_CASE__ : int = target_dict.bos_index SCREAMING_SNAKE_CASE__ : Optional[int] = target_dict.pad_index SCREAMING_SNAKE_CASE__ : Optional[Any] = target_dict.bos_index SCREAMING_SNAKE_CASE__ : str = target_dict.eos_index SCREAMING_SNAKE_CASE__ : Optional[Any] = len(target_dict.symbols ) SCREAMING_SNAKE_CASE__ : str = os.path.join(A__ , '''vocab.json''' ) if not os.path.isdir(A__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(A__ ) ) return os.makedirs(A__ , exist_ok=A__ ) with open(A__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , A__ ) SCREAMING_SNAKE_CASE__ : List[Any] = WavaVecaCTCTokenizer( A__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=A__ , ) SCREAMING_SNAKE_CASE__ : int = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) processor.save_pretrained(A__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = SEWForCTC(A__ ) else: SCREAMING_SNAKE_CASE__ : List[Any] = SEWModel(A__ ) feature_extractor.save_pretrained(A__ ) recursively_load_weights(A__ , A__ , A__ ) hf_model.save_pretrained(A__ ) if __name__ == "__main__": a_ :Tuple = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) a_ :Union[str, Any] = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
35
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# UpperCAmelCase : Tuple = [ # (stable-diffusion, HF Diffusers) ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias"), ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), ("out.0.weight", "conv_norm_out.weight"), ("out.0.bias", "conv_norm_out.bias"), ("out.2.weight", "conv_out.weight"), ("out.2.bias", "conv_out.bias"), ] UpperCAmelCase : Any = [ # (stable-diffusion, HF Diffusers) ("in_layers.0", "norm1"), ("in_layers.2", "conv1"), ("out_layers.0", "norm2"), ("out_layers.3", "conv2"), ("emb_layers.1", "time_emb_proj"), ("skip_connection", "conv_shortcut"), ] UpperCAmelCase : int = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks UpperCAmelCase : Any = f"""down_blocks.{i}.resnets.{j}.""" UpperCAmelCase : Dict = f"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 UpperCAmelCase : List[Any] = f"""down_blocks.{i}.attentions.{j}.""" UpperCAmelCase : Optional[int] = f"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks UpperCAmelCase : List[Any] = f"""up_blocks.{i}.resnets.{j}.""" UpperCAmelCase : int = f"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 UpperCAmelCase : Optional[Any] = f"""up_blocks.{i}.attentions.{j}.""" UpperCAmelCase : Tuple = f"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 UpperCAmelCase : int = f"""down_blocks.{i}.downsamplers.0.conv.""" UpperCAmelCase : Union[str, Any] = f"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 UpperCAmelCase : Optional[Any] = f"""up_blocks.{i}.upsamplers.0.""" UpperCAmelCase : str = f"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) UpperCAmelCase : str = "mid_block.attentions.0." UpperCAmelCase : int = "middle_block.1." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): UpperCAmelCase : int = f"""mid_block.resnets.{j}.""" UpperCAmelCase : List[str] = f"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' lowerCamelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowerCamelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowerCamelCase = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowerCamelCase = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = v lowerCamelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# UpperCAmelCase : int = [ # (stable-diffusion, HF Diffusers) ("nin_shortcut", "conv_shortcut"), ("norm_out", "conv_norm_out"), ("mid.attn_1.", "mid_block.attentions.0."), ] for i in range(4): # down_blocks have two resnets for j in range(2): UpperCAmelCase : List[Any] = f"""encoder.down_blocks.{i}.resnets.{j}.""" UpperCAmelCase : int = f"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: UpperCAmelCase : Any = f"""down_blocks.{i}.downsamplers.0.""" UpperCAmelCase : Tuple = f"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) UpperCAmelCase : List[Any] = f"""up_blocks.{i}.upsamplers.0.""" UpperCAmelCase : List[str] = f"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): UpperCAmelCase : Any = f"""decoder.up_blocks.{i}.resnets.{j}.""" UpperCAmelCase : str = f"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): UpperCAmelCase : Dict = f"""mid_block.resnets.{i}.""" UpperCAmelCase : Union[str, Any] = f"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) UpperCAmelCase : Tuple = [ # (stable-diffusion, HF Diffusers) ("norm.", "group_norm."), ("q.", "query."), ("k.", "key."), ("v.", "value."), ("proj_out.", "proj_attn."), ] def __lowerCamelCase ( lowerCamelCase__ : Optional[int] ): '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowerCamelCase = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowerCamelCase = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = v lowerCamelCase = {v: vae_state_dict[k] for k, v in mapping.items()} lowerCamelCase = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f'mid.attn_1.{weight_name}.weight' in k: print(f'Reshaping {k} for SD format' ) lowerCamelCase = reshape_weight_for_sd(lowerCamelCase__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# UpperCAmelCase : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ("resblocks.", "text_model.encoder.layers."), ("ln_1", "layer_norm1"), ("ln_2", "layer_norm2"), (".c_fc.", ".fc1."), (".c_proj.", ".fc2."), (".attn", ".self_attn"), ("ln_final.", "transformer.text_model.final_layer_norm."), ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), ] UpperCAmelCase : str = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} UpperCAmelCase : List[Any] = re.compile("|".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp UpperCAmelCase : int = {"q": 0, "k": 1, "v": 2} def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = {} lowerCamelCase = {} lowerCamelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): lowerCamelCase = k[: -len(""".q_proj.weight""" )] lowerCamelCase = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: lowerCamelCase = [None, None, None] lowerCamelCase = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): lowerCamelCase = k[: -len(""".q_proj.bias""" )] lowerCamelCase = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: lowerCamelCase = [None, None, None] lowerCamelCase = v continue lowerCamelCase = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowerCamelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCamelCase = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowerCamelCase = torch.cat(lowerCamelCase__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCamelCase = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowerCamelCase = torch.cat(lowerCamelCase__ ) return new_state_dict def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt." ) UpperCAmelCase : List[str] = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors UpperCAmelCase : int = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors") UpperCAmelCase : Dict = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors") UpperCAmelCase : Dict = osp.join(args.model_path, "text_encoder", "model.safetensors") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): UpperCAmelCase : Tuple = load_file(unet_path, device="cpu") else: UpperCAmelCase : Tuple = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin") UpperCAmelCase : List[Any] = torch.load(unet_path, map_location="cpu") if osp.exists(vae_path): UpperCAmelCase : Any = load_file(vae_path, device="cpu") else: UpperCAmelCase : Dict = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin") UpperCAmelCase : Dict = torch.load(vae_path, map_location="cpu") if osp.exists(text_enc_path): UpperCAmelCase : str = load_file(text_enc_path, device="cpu") else: UpperCAmelCase : Optional[int] = osp.join(args.model_path, "text_encoder", "pytorch_model.bin") UpperCAmelCase : str = torch.load(text_enc_path, map_location="cpu") # Convert the UNet model UpperCAmelCase : List[str] = convert_unet_state_dict(unet_state_dict) UpperCAmelCase : List[str] = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} # Convert the VAE model UpperCAmelCase : Optional[Any] = convert_vae_state_dict(vae_state_dict) UpperCAmelCase : Union[str, Any] = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper UpperCAmelCase : str = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm UpperCAmelCase : Optional[Any] = {"transformer." + k: v for k, v in text_enc_dict.items()} UpperCAmelCase : List[str] = convert_text_enc_state_dict_vaa(text_enc_dict) UpperCAmelCase : Optional[Any] = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} else: UpperCAmelCase : int = convert_text_enc_state_dict(text_enc_dict) UpperCAmelCase : Optional[Any] = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint UpperCAmelCase : Dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: UpperCAmelCase : List[Any] = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: UpperCAmelCase : Union[str, Any] = {"state_dict": state_dict} torch.save(state_dict, args.checkpoint_path)
457
0
'''simple docstring''' from __future__ import annotations lowerCAmelCase : int = [True] * 1_00_00_01 lowerCAmelCase : int = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): lowerCAmelCase : Any = False i += 1 def A_( A : int): return seive[n] def A_( A : int): return any(digit in '02468' for digit in str(A)) def A_( A : int = 100_0000): UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2): if is_prime(A) and not contains_an_even_digit(A): UpperCamelCase = str(A) UpperCamelCase = [int(str_num[j:] + str_num[:j]) for j in range(len(A))] if all(is_prime(A) for i in list_nums): result.append(A) return result def A_( ): return len(find_circular_primes()) if __name__ == "__main__": print(f"""{len(find_circular_primes()) = }""")
715
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : int = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
432
0
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL A_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): def constraint_to_multiple_of(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ): lowerCamelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCamelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCamelCase_ = math.ceil(val / multiple ) * multiple return x lowerCamelCase_ = (output_size, output_size) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else output_size lowerCamelCase_ , lowerCamelCase_ = get_image_size(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = output_size # determine new height and width lowerCamelCase_ = output_height / input_height lowerCamelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCamelCase_ = scale_width else: # fit height lowerCamelCase_ = scale_height lowerCamelCase_ = constraint_to_multiple_of(scale_height * input_height ,multiple=lowerCAmelCase__ ) lowerCamelCase_ = constraint_to_multiple_of(scale_width * input_width ,multiple=lowerCAmelCase__ ) return (new_height, new_width) class __lowerCamelCase ( lowerCAmelCase ): a__: int = ['pixel_values'] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = False , UpperCAmelCase = 1 , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): super().__init__(**UpperCAmelCase ) lowerCamelCase_ = size if size is not None else {'''height''': 384, '''width''': 384} lowerCamelCase_ = get_size_dict(UpperCAmelCase ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = keep_aspect_ratio lowerCamelCase_ = ensure_multiple_of lowerCamelCase_ = resample lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = 1 , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ): lowerCamelCase_ = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) lowerCamelCase_ = get_resize_output_image_size( UpperCAmelCase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=UpperCAmelCase , multiple=UpperCAmelCase , ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ): lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(UpperCAmelCase ) lowerCamelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCamelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ = image_std if image_std is not None else self.image_std lowerCamelCase_ = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowerCamelCase_ = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowerCamelCase_ = {'''pixel_values''': images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): lowerCamelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(UpperCAmelCase ): lowerCamelCase_ = target_sizes.numpy() lowerCamelCase_ = [] for idx in range(len(UpperCAmelCase ) ): lowerCamelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCAmelCase ) lowerCamelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase ) else: lowerCamelCase_ = logits.argmax(dim=1 ) lowerCamelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
29
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def UpperCamelCase ( snake_case__ : List[Any] ,snake_case__ : List[str] ): '''simple docstring''' __snake_case :int = [] for part_id in partition_order: __snake_case :int = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case__ ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase ( ): '''simple docstring''' __snake_case :List[str] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __snake_case :Any = spark.range(100 ).repartition(1 ) __snake_case :int = Spark(snake_case__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase ( ): '''simple docstring''' __snake_case :Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __snake_case :int = spark.range(10 ).repartition(2 ) __snake_case :str = [1, 0] __snake_case :List[Any] = _generate_iterable_examples(snake_case__ ,snake_case__ ) # Reverse the partitions. __snake_case :Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ ,snake_case__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __snake_case , __snake_case :Union[str, Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase ( ): '''simple docstring''' __snake_case :Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __snake_case :Tuple = spark.range(10 ).repartition(1 ) __snake_case :Dict = SparkExamplesIterable(snake_case__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case__ ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase ( ): '''simple docstring''' __snake_case :List[str] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __snake_case :Union[str, Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: __snake_case :Dict = lambda snake_case__ : x.reverse() __snake_case :int = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ ,[2, 1, 0] ) __snake_case :Dict = SparkExamplesIterable(snake_case__ ).shuffle_data_sources(snake_case__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case__ ): __snake_case , __snake_case :List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase ( ): '''simple docstring''' __snake_case :Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __snake_case :Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __snake_case :List[Any] = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=0 ,num_workers=2 ) assert shard_it_a.n_shards == 2 __snake_case :Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ ,[0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case__ ): __snake_case , __snake_case :Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __snake_case :str = SparkExamplesIterable(snake_case__ ).shard_data_sources(worker_id=1 ,num_workers=2 ) assert shard_it_a.n_shards == 2 __snake_case :Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case__ ,[1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case__ ): __snake_case , __snake_case :Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def UpperCamelCase ( ): '''simple docstring''' __snake_case :Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __snake_case :Tuple = spark.range(100 ).repartition(1 ) __snake_case :Dict = Spark(snake_case__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
455
0
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase__ = logging.getLogger() def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("-f" ) _UpperCamelCase : Tuple = parser.parse_args() return args.f def lowercase__ ( lowercase_ ,lowercase_="eval" ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Dict = os.path.join(lowercase_ ,F'''{split}_results.json''' ) if os.path.exists(lowercase_ ): with open(lowercase_ ,"r" ) as f: return json.load(lowercase_ ) raise ValueError(F'''can\'t find {path}''' ) lowerCamelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: _UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() _UpperCamelCase : Tuple = F''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(__a , "argv" , __a ): run_flax_glue.main() _UpperCamelCase : Tuple = get_results(__a ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() _UpperCamelCase : List[str] = F''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(__a , "argv" , __a ): run_clm_flax.main() _UpperCamelCase : Tuple = get_results(__a ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() _UpperCamelCase : Any = F''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(__a , "argv" , __a ): run_summarization_flax.main() _UpperCamelCase : Tuple = get_results(__a , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: _UpperCamelCase : int = self.get_auto_remove_tmp_dir() _UpperCamelCase : Optional[Any] = F''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(__a , "argv" , __a ): run_mlm_flax.main() _UpperCamelCase : List[str] = get_results(__a ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: _UpperCamelCase : str = self.get_auto_remove_tmp_dir() _UpperCamelCase : Any = F''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(__a , "argv" , __a ): run_ta_mlm_flax.main() _UpperCamelCase : Optional[Any] = get_results(__a ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _UpperCamelCase : Tuple = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase : int = self.get_auto_remove_tmp_dir() _UpperCamelCase : Optional[int] = F''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(__a , "argv" , __a ): run_flax_ner.main() _UpperCamelCase : List[str] = get_results(__a ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _UpperCamelCase : List[str] = F''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(__a , "argv" , __a ): run_qa.main() _UpperCamelCase : List[Any] = get_results(__a ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
51
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : str = 5 # Realm tok _UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) _UpperCamelCase : Optional[Any] = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def __SCREAMING_SNAKE_CASE ( self : int ) -> int: _UpperCamelCase : Any = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase : int = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=__a , ) return block_records def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : Tuple = self.get_config() _UpperCamelCase : int = self.get_dummy_retriever() _UpperCamelCase : Tuple = retriever.tokenizer _UpperCamelCase : List[str] = np.array([0, 3] , dtype="long" ) _UpperCamelCase : Union[str, Any] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : List[str] = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : str = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Any = self.get_config() _UpperCamelCase : Dict = self.get_dummy_retriever() _UpperCamelCase : Dict = retriever.tokenizer _UpperCamelCase : List[Any] = np.array([0, 3, 5] , dtype="long" ) _UpperCamelCase : Optional[int] = tokenizer(["Test question"] ).input_ids _UpperCamelCase : str = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _UpperCamelCase : Union[str, Any] = config.reader_seq_len _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCamelCase : List[Any] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCamelCase : int = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
51
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Namespace ) -> List[str]: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _lowercase = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class lowercase_ ( A ): @staticmethod def _snake_case ( __A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Optional[int] =parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=__A , required=__A , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=__A , required=__A , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=__A , required=__A , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=__A , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=__A , default=__A , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=__A ) def __init__( self , __A , __A , __A , __A , __A , *__A , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F'Loading model {model_type}' ) SCREAMING_SNAKE_CASE_ : List[str] =model_type SCREAMING_SNAKE_CASE_ : Optional[int] =tf_checkpoint SCREAMING_SNAKE_CASE_ : str =pytorch_dump_output SCREAMING_SNAKE_CASE_ : Dict =config SCREAMING_SNAKE_CASE_ : List[Any] =finetuning_task_name def _snake_case ( self ) -> Optional[int]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__A ) if "ckpt" in self._tf_checkpoint.lower(): SCREAMING_SNAKE_CASE_ : str =self._tf_checkpoint SCREAMING_SNAKE_CASE_ : Tuple ='''''' else: SCREAMING_SNAKE_CASE_ : Union[str, Any] =self._tf_checkpoint SCREAMING_SNAKE_CASE_ : Optional[Any] ='''''' convert_transfo_xl_checkpoint_to_pytorch( __A , self._config , self._pytorch_dump_output , __A ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__A ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__A ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
443
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class lowercase_ ( A , unittest.TestCase ): __lowerCamelCase = PriorTransformer __lowerCamelCase = "hidden_states" @property def _snake_case ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ : List[str] =4 SCREAMING_SNAKE_CASE_ : Optional[int] =8 SCREAMING_SNAKE_CASE_ : Optional[Any] =7 SCREAMING_SNAKE_CASE_ : Dict =floats_tensor((batch_size, embedding_dim) ).to(__A ) SCREAMING_SNAKE_CASE_ : Dict =floats_tensor((batch_size, embedding_dim) ).to(__A ) SCREAMING_SNAKE_CASE_ : Dict =floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(__A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _snake_case ( self , __A=0 ) -> int: torch.manual_seed(__A ) SCREAMING_SNAKE_CASE_ : str =4 SCREAMING_SNAKE_CASE_ : Union[str, Any] =8 SCREAMING_SNAKE_CASE_ : List[Any] =7 SCREAMING_SNAKE_CASE_ : Tuple =torch.randn((batch_size, embedding_dim) ).to(__A ) SCREAMING_SNAKE_CASE_ : int =torch.randn((batch_size, embedding_dim) ).to(__A ) SCREAMING_SNAKE_CASE_ : List[Any] =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(__A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _snake_case ( self ) -> Union[str, Any]: return (4, 8) @property def _snake_case ( self ) -> int: return (4, 8) def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : List[Any] ={ '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.dummy_input return init_dict, inputs_dict def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any =PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' , output_loading_info=__A ) self.assertIsNotNone(__A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__A ) SCREAMING_SNAKE_CASE_ : Optional[int] =model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _snake_case ( self ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] =self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] =self.model_class(**__A ) SCREAMING_SNAKE_CASE_ : List[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Union[str, Any] =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Optional[int] =['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] , __A ) def _snake_case ( self ) -> Dict: SCREAMING_SNAKE_CASE_ : Dict =PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =model.to(__A ) if hasattr(__A , '''set_default_attn_processor''' ): model.set_default_attn_processor() SCREAMING_SNAKE_CASE_ : List[Any] =self.get_dummy_seed_input() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : str =model(**__A )[0] SCREAMING_SNAKE_CASE_ : Any =output[0, :5].flatten().cpu() print(__A ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. SCREAMING_SNAKE_CASE_ : int =torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(__A , __A , rtol=1e-2 ) ) @slow class lowercase_ ( unittest.TestCase ): def _snake_case ( self , __A=1 , __A=768 , __A=77 , __A=0 ) -> str: torch.manual_seed(__A ) SCREAMING_SNAKE_CASE_ : Dict =batch_size SCREAMING_SNAKE_CASE_ : List[str] =embedding_dim SCREAMING_SNAKE_CASE_ : Optional[int] =num_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.randn((batch_size, embedding_dim) ).to(__A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.randn((batch_size, embedding_dim) ).to(__A ) SCREAMING_SNAKE_CASE_ : List[str] =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(__A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def _snake_case ( self , __A , __A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Dict =PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' , subfolder='''prior''' ) model.to(__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =self.get_dummy_seed_input(seed=__A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict =model(**__A )[0] assert list(sample.shape ) == [1, 768] SCREAMING_SNAKE_CASE_ : Dict =sample[0, :8].flatten().cpu() print(__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.tensor(__A ) assert torch_all_close(__A , __A , atol=1e-3 )
443
1
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _snake_case ( lowercase=None , lowercase=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=lowercase ) @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = field( metadata={"help": "The csv file to plot."} , ) lowercase__ = field( default=__UpperCamelCase , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) lowercase__ = field( default=__UpperCamelCase , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) lowercase__ = field( default=__UpperCamelCase , metadata={"help": "Disable logarithmic scale when plotting"} , ) lowercase__ = field( default=__UpperCamelCase , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) lowercase__ = field( default=__UpperCamelCase , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) lowercase__ = list_field( default=__UpperCamelCase , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def _snake_case ( lowercase ) -> Dict: try: int(lowercase ) return True except ValueError: return False def _snake_case ( lowercase ) -> int: try: float(lowercase ) return True except ValueError: return False class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCamelCase ): '''simple docstring''' __a : int = args __a : Optional[Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: __a : Optional[int] = csv.DictReader(__UpperCamelCase ) for row in reader: __a : Optional[int] = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None __a : str = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None __a : List[str] = float(row["""result"""] ) def __lowerCamelCase ( self ): '''simple docstring''' __a , __a : int = plt.subplots() __a : Any = """Time usage""" if self.args.is_time else """Memory usage""" __a : int = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __a : Union[str, Any] = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) __a : Union[str, Any] = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) __a : Dict = self.result_dict[model_name]["""result"""] ((__a) , (__a)) : str = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __a : List[str] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __a : List[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__UpperCamelCase , ) else: __a : List[str] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__a) , (__a)) : Optional[Any] = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) __a : List[Any] = np.asarray(__UpperCamelCase , __UpperCamelCase )[: len(__UpperCamelCase )] plt.scatter( __UpperCamelCase , __UpperCamelCase , label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(__UpperCamelCase , __UpperCamelCase , """--""" ) title_str += f""" {label_model_name} vs.""" __a : Tuple = title_str[:-4] __a : List[str] = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(__UpperCamelCase ) plt.xlabel(__UpperCamelCase ) plt.ylabel(__UpperCamelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _snake_case ( ) -> Dict: __a : Optional[Any] = HfArgumentParser(lowercase ) __a : Union[str, Any] = parser.parse_args_into_dataclasses()[0] __a : Any = Plot(args=lowercase ) plot.plot() if __name__ == "__main__": main()
697
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Any = params __a : Optional[Any] = np.array(__UpperCamelCase ) __a : Union[str, Any] = np.array([len(__UpperCamelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __UpperCamelCase ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ): '''simple docstring''' return len(self.lengths ) def __lowerCamelCase ( self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self.params.max_model_input_size __a : Union[str, Any] = self.lengths > max_len logger.info(f"""Splitting {sum(__UpperCamelCase )} too long sequences.""" ) def divide_chunks(__UpperCamelCase , __UpperCamelCase ): return [l[i : i + n] for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase )] __a : int = [] __a : Union[str, Any] = [] if self.params.mlm: __a , __a : Any = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: __a , __a : str = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __a : Any = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __a : int = np.insert(__UpperCamelCase , 0 , __UpperCamelCase ) if sub_s[-1] != sep_id: __a : str = np.insert(__UpperCamelCase , len(__UpperCamelCase ) , __UpperCamelCase ) assert len(__UpperCamelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__UpperCamelCase ) new_tok_ids.extend(__UpperCamelCase ) new_lengths.extend([len(__UpperCamelCase ) for l in sub_seqs] ) __a : Dict = np.array(__UpperCamelCase ) __a : Tuple = np.array(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = len(self ) __a : List[str] = self.lengths > 11 __a : int = self.token_ids[indices] __a : Union[str, Any] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def __lowerCamelCase ( self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: __a : List[str] = self.params.special_tok_ids["""unk_token"""] __a : str = len(self ) __a : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __a : Optional[Any] = (unk_occs / self.lengths) < 0.5 __a : List[str] = self.token_ids[indices] __a : Optional[int] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : List[str] = [t[0] for t in batch] __a : str = [t[1] for t in batch] assert len(__UpperCamelCase ) == len(__UpperCamelCase ) # Max for paddings __a : Optional[int] = max(__UpperCamelCase ) # Pad token ids if self.params.mlm: __a : int = self.params.special_tok_ids["""pad_token"""] else: __a : Tuple = self.params.special_tok_ids["""unk_token"""] __a : Any = [list(t.astype(__UpperCamelCase ) ) + [pad_idx] * (max_seq_len_ - len(__UpperCamelCase )) for t in token_ids] assert len(tk_ ) == len(__UpperCamelCase ) assert all(len(__UpperCamelCase ) == max_seq_len_ for t in tk_ ) __a : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) __a : Optional[Any] = torch.tensor(__UpperCamelCase ) # (bs) return tk_t, lg_t
697
1
'''simple docstring''' from manim import * class A_ ( lowerCAmelCase_ ): def lowercase ( self : Dict ): _UpperCAmelCase = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase = Rectangle(height=0.2_5 , width=0.2_5 ) _UpperCAmelCase = [mem.copy() for i in range(6 )] _UpperCAmelCase = [mem.copy() for i in range(6 )] _UpperCAmelCase = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) _UpperCAmelCase = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) _UpperCAmelCase = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) _UpperCAmelCase = Text("CPU" , font_size=2_4 ) _UpperCAmelCase = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) _UpperCAmelCase = [mem.copy() for i in range(4 )] _UpperCAmelCase = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) _UpperCAmelCase = Text("GPU" , font_size=2_4 ) _UpperCAmelCase = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.move_to([-1, -1, 0] ) self.add(snake_case_ ) _UpperCAmelCase = [mem.copy() for i in range(6 )] _UpperCAmelCase = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) _UpperCAmelCase = Text("Model" , font_size=2_4 ) _UpperCAmelCase = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.add(snake_case_ ) _UpperCAmelCase = [] _UpperCAmelCase = [] for i, rect in enumerate(snake_case_ ): _UpperCAmelCase = fill.copy().set_fill(snake_case_ , opacity=0.8 ) target.move_to(snake_case_ ) model_arr.append(snake_case_ ) _UpperCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(snake_case_ ) self.add(*snake_case_ , *snake_case_ ) _UpperCAmelCase = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) _UpperCAmelCase = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) _UpperCAmelCase = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) _UpperCAmelCase = Text("Disk" , font_size=2_4 ) _UpperCAmelCase = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) disk.move_to([-4, -1.2_5, 0] ) self.add(snake_case_ , snake_case_ ) _UpperCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(snake_case_ , snake_case_ ) _UpperCAmelCase = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=1_8 , ) blue_text.next_to(snake_case_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(snake_case_ ) _UpperCAmelCase = MarkupText( f'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ ) ) _UpperCAmelCase = Square(0.3 ) input.set_fill(snake_case_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , snake_case_ , buff=0.5 ) self.play(Write(snake_case_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=snake_case_ , buff=0.0_2 ) self.play(MoveToTarget(snake_case_ ) ) self.play(FadeOut(snake_case_ ) ) _UpperCAmelCase = Arrow(start=snake_case_ , end=snake_case_ , color=snake_case_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , snake_case_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _UpperCAmelCase = MarkupText( f'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=3 ) ) _UpperCAmelCase = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.0_2} self.play( Write(snake_case_ ) , Circumscribe(model_arr[0] , color=snake_case_ , **snake_case_ ) , Circumscribe(model_cpu_arr[0] , color=snake_case_ , **snake_case_ ) , Circumscribe(gpu_rect[0] , color=snake_case_ , **snake_case_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _UpperCAmelCase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , snake_case_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) _UpperCAmelCase = AnimationGroup( FadeOut(snake_case_ , run_time=0.5 ) , MoveToTarget(snake_case_ , run_time=0.5 ) , FadeIn(snake_case_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(snake_case_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _UpperCAmelCase = 0.7 self.play( Circumscribe(model_arr[i] , **snake_case_ ) , Circumscribe(cpu_left_col_base[i] , **snake_case_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=snake_case_ , **snake_case_ ) , Circumscribe(gpu_rect[0] , color=snake_case_ , **snake_case_ ) , Circumscribe(model_arr[i + 1] , color=snake_case_ , **snake_case_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=snake_case_ , **snake_case_ ) , Circumscribe(cpu_left_col_base[-1] , color=snake_case_ , **snake_case_ ) , Circumscribe(gpu_rect[0] , color=snake_case_ , **snake_case_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _UpperCAmelCase = a_c _UpperCAmelCase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(snake_case_ ) , FadeOut(snake_case_ , run_time=0.5 ) , ) _UpperCAmelCase = MarkupText(f'Inference on a model too large for GPU memory\nis successfully completed.' , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=3 ) , MoveToTarget(snake_case_ ) ) self.wait()
236
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __SCREAMING_SNAKE_CASE :int = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE :Union[str, Any] = 50 # max width of layer names __SCREAMING_SNAKE_CASE :int = 70 # max width of quantizer names def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=__lowercase , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=__lowercase , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=__lowercase , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=__lowercase , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=__lowercase , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=__lowercase , type=__lowercase , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=__lowercase , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def UpperCAmelCase_ ( __lowercase : List[str] ) -> int: '''simple docstring''' if args.calibrator == "max": _UpperCAmelCase = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) _UpperCAmelCase = "histogram" elif args.calibrator == "mse": _UpperCAmelCase = "histogram" else: raise ValueError(f'Invalid calibrator {args.calibrator}' ) _UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__lowercase ) _UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowercase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowercase ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : int , __lowercase : Optional[int]=False , __lowercase : Optional[Any]=False ) -> Dict: '''simple docstring''' logger.info("Configuring Model for Quantization" ) logger.info(f'using quantization package {pytorch_quantization.__file__}' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowercase , ["embeddings"] , which="weight" , _disabled=__lowercase ) if args.quant_disable: set_quantizer_by_name(__lowercase , [""] , _disabled=__lowercase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowercase , args.quant_disable_keyword , _disabled=__lowercase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowercase , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__lowercase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowercase , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__lowercase ) if args.recalibrate_weights: recalibrate_weights(__lowercase ) if args.fuse_qkv: fuse_qkv(__lowercase , __lowercase ) if args.clip_gelu: clip_gelu(__lowercase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowercase ) def UpperCAmelCase_ ( __lowercase : str ) -> Optional[Any]: '''simple docstring''' logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'{name:80}: {module}' ) def UpperCAmelCase_ ( __lowercase : Tuple , __lowercase : Dict ) -> Optional[Any]: '''simple docstring''' logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowercase ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Dict ) -> Union[str, Any]: '''simple docstring''' def fusea(__lowercase : Tuple , __lowercase : Optional[int] , __lowercase : str ): for mod in [qq, qk, qv]: if not hasattr(__lowercase , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return _UpperCAmelCase = qq._amax.detach().item() _UpperCAmelCase = qk._amax.detach().item() _UpperCAmelCase = qv._amax.detach().item() _UpperCAmelCase = max(__lowercase , __lowercase , __lowercase ) qq._amax.fill_(__lowercase ) qk._amax.fill_(__lowercase ) qv._amax.fill_(__lowercase ) logger.info(f' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}' ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(f'FUSE_QKV: {name:{name_width}}' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Union[str, Any] ) -> List[Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): _UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowercase ) _UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() logger.info(f'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}' ) def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> List[Any]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__lowercase , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: _UpperCAmelCase = mod.weight.shape[0] _UpperCAmelCase = mod._weight_quantizer._amax.detach() _UpperCAmelCase = torch.ones(__lowercase , dtype=amax.dtype , device=amax.device ) * amax print(f'expanding {name} {amax} -> {mod._weight_quantizer._amax}' ) def UpperCAmelCase_ ( __lowercase : List[str] ) -> str: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__lowercase , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set _UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowercase , keepdims=__lowercase ).detach() logger.info(f'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}' ) _UpperCAmelCase = amax def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Optional[int]=25 , __lowercase : List[Any]=180 , __lowercase : Optional[Any]=None ) -> Optional[Any]: '''simple docstring''' if ignore is None: _UpperCAmelCase = [] elif not isinstance(__lowercase , __lowercase ): _UpperCAmelCase = [ignore] _UpperCAmelCase = 0 for name, mod in model.named_modules(): if not hasattr(__lowercase , "weight" ): continue _UpperCAmelCase = max(__lowercase , len(__lowercase ) ) for name, mod in model.named_modules(): _UpperCAmelCase = getattr(__lowercase , "_input_quantizer" , __lowercase ) _UpperCAmelCase = getattr(__lowercase , "_weight_quantizer" , __lowercase ) if not hasattr(__lowercase , "weight" ): continue if type(__lowercase ) in ignore: continue if [True for s in ignore if type(__lowercase ) is str and s in name]: continue _UpperCAmelCase = f'Act:{input_q.extra_repr()}' _UpperCAmelCase = f'Wgt:{weight_q.extra_repr()}' _UpperCAmelCase = f'{name:{name_width}} {act_str} {wgt_str}' if len(__lowercase ) <= line_width: logger.info(__lowercase ) else: logger.info(f'{name:{name_width}} {act_str}' ) logger.info(f'{" ":{name_width}} {wgt_str}' ) def UpperCAmelCase_ ( __lowercase : Dict ) -> Any: '''simple docstring''' _UpperCAmelCase = 0 for name, mod in model.named_modules(): if isinstance(__lowercase , pytorch_quantization.nn.TensorQuantizer ): print(f'{name:80} {mod}' ) count += 1 print(f'{count} TensorQuantizers found in model' ) def UpperCAmelCase_ ( __lowercase : Union[str, Any] , __lowercase : Optional[int] , __lowercase : str , __lowercase : List[str] , __lowercase : Optional[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = getattr(__lowercase , __lowercase , __lowercase ) if quantizer_mod is not None: assert hasattr(__lowercase , __lowercase ) setattr(__lowercase , __lowercase , __lowercase ) else: logger.warning(f'{name} has no {quantizer}' ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Tuple="both" , **__lowercase : Optional[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = f'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += f' {k}={v}' if which in ["input", "both"]: set_quantizer(__lowercase , __lowercase , "_input_quantizer" , __lowercase , __lowercase ) if which in ["weight", "both"]: set_quantizer(__lowercase , __lowercase , "_weight_quantizer" , __lowercase , __lowercase ) logger.info(__lowercase ) def UpperCAmelCase_ ( __lowercase : Union[str, Any] , __lowercase : str , **__lowercase : Optional[int] ) -> Optional[int]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__lowercase , "_input_quantizer" ) or hasattr(__lowercase , "_weight_quantizer" ): for n in names: if re.search(__lowercase , __lowercase ): set_quantizers(__lowercase , __lowercase , **__lowercase ) elif name.endswith("_quantizer" ): for n in names: if re.search(__lowercase , __lowercase ): _UpperCAmelCase = f'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += f' {k}={v}' setattr(__lowercase , __lowercase , __lowercase ) logger.info(__lowercase )
236
1
from __future__ import annotations from collections.abc import MutableSequence class _lowerCAmelCase : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if len(__SCREAMING_SNAKE_CASE ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) snake_case__ : list[float] =list(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =degree def __add__( self , __SCREAMING_SNAKE_CASE ) -> Polynomial: """simple docstring""" if self.degree > polynomial_a.degree: snake_case__ : Tuple =self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __SCREAMING_SNAKE_CASE ) else: snake_case__ : Dict =polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __SCREAMING_SNAKE_CASE ) def __sub__( self , __SCREAMING_SNAKE_CASE ) -> Polynomial: """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> Polynomial: """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , __SCREAMING_SNAKE_CASE ) -> Polynomial: """simple docstring""" snake_case__ : list[float] =[0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> int | float: """simple docstring""" snake_case__ : int | float =0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> str: """simple docstring""" snake_case__ : Optional[int] ='''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__SCREAMING_SNAKE_CASE ) return polynomial def __repr__( self ) -> str: """simple docstring""" return self.__str__() def UpperCAmelCase ( self ) -> Polynomial: """simple docstring""" snake_case__ : list[float] =[0] * self.degree for i in range(self.degree ): snake_case__ : Optional[int] =self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE = 0 ) -> Polynomial: """simple docstring""" snake_case__ : list[float] =[0] * (self.degree + 2) snake_case__ : str =constant for i in range(self.degree + 1 ): snake_case__ : Optional[int] =self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __SCREAMING_SNAKE_CASE ) def __eq__( self , __SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , __SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return not self.__eq__(__SCREAMING_SNAKE_CASE )
408
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowercase_ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" snake_case__ : Union[str, Any] =checkpoint snake_case__ : Tuple ={} snake_case__ : List[str] =vae_state_dict['''encoder.conv_in.weight'''] snake_case__ : List[Any] =vae_state_dict['''encoder.conv_in.bias'''] snake_case__ : Any =vae_state_dict['''encoder.conv_out.weight'''] snake_case__ : List[str] =vae_state_dict['''encoder.conv_out.bias'''] snake_case__ : Union[str, Any] =vae_state_dict['''encoder.norm_out.weight'''] snake_case__ : Dict =vae_state_dict['''encoder.norm_out.bias'''] snake_case__ : int =vae_state_dict['''decoder.conv_in.weight'''] snake_case__ : List[Any] =vae_state_dict['''decoder.conv_in.bias'''] snake_case__ : Any =vae_state_dict['''decoder.conv_out.weight'''] snake_case__ : Any =vae_state_dict['''decoder.conv_out.bias'''] snake_case__ : List[Any] =vae_state_dict['''decoder.norm_out.weight'''] snake_case__ : Optional[Any] =vae_state_dict['''decoder.norm_out.bias'''] snake_case__ : Union[str, Any] =vae_state_dict['''quant_conv.weight'''] snake_case__ : Tuple =vae_state_dict['''quant_conv.bias'''] snake_case__ : Dict =vae_state_dict['''post_quant_conv.weight'''] snake_case__ : str =vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only snake_case__ : List[Any] =len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) snake_case__ : Optional[Any] ={ layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the decoder up blocks only snake_case__ : str =len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) snake_case__ : Tuple ={ layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(SCREAMING_SNAKE_CASE ) } for i in range(SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] =[key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key] if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: snake_case__ : Dict =vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.weight''' ) snake_case__ : Optional[int] =vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.bias''' ) snake_case__ : Optional[Any] =renew_vae_resnet_paths(SCREAMING_SNAKE_CASE ) snake_case__ : Any ={'''old''': F'''down.{i}.block''', '''new''': F'''down_blocks.{i}.resnets'''} assign_to_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =[key for key in vae_state_dict if '''encoder.mid.block''' in key] snake_case__ : List[str] =2 for i in range(1 , num_mid_res_blocks + 1 ): snake_case__ : str =[key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key] snake_case__ : Tuple =renew_vae_resnet_paths(SCREAMING_SNAKE_CASE ) snake_case__ : Dict ={'''old''': F'''mid.block_{i}''', '''new''': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =[key for key in vae_state_dict if '''encoder.mid.attn''' in key] snake_case__ : List[Any] =renew_vae_attention_paths(SCREAMING_SNAKE_CASE ) snake_case__ : str ={'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE ) conv_attn_to_linear(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] =num_up_blocks - 1 - i snake_case__ : Any =[ key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key ] if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: snake_case__ : Union[str, Any] =vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.weight''' ] snake_case__ : Tuple =vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.bias''' ] snake_case__ : int =renew_vae_resnet_paths(SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] ={'''old''': F'''up.{block_id}.block''', '''new''': F'''up_blocks.{i}.resnets'''} assign_to_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE ) snake_case__ : Dict =[key for key in vae_state_dict if '''decoder.mid.block''' in key] snake_case__ : str =2 for i in range(1 , num_mid_res_blocks + 1 ): snake_case__ : Tuple =[key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key] snake_case__ : List[Any] =renew_vae_resnet_paths(SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] ={'''old''': F'''mid.block_{i}''', '''new''': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =[key for key in vae_state_dict if '''decoder.mid.attn''' in key] snake_case__ : int =renew_vae_attention_paths(SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] ={'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE ) conv_attn_to_linear(SCREAMING_SNAKE_CASE ) return new_checkpoint def lowercase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , ): """simple docstring""" # Only support V1 snake_case__ : Optional[Any] =requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) snake_case__ : Dict =io.BytesIO(r.content ) snake_case__ : Optional[int] =OmegaConf.load(SCREAMING_SNAKE_CASE ) snake_case__ : int =5_12 snake_case__ : List[Any] ='''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open snake_case__ : int ={} with safe_open(SCREAMING_SNAKE_CASE , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): snake_case__ : List[str] =f.get_tensor(SCREAMING_SNAKE_CASE ) else: snake_case__ : List[str] =torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE )['''state_dict'''] # Convert the VAE model. snake_case__ : Dict =create_vae_diffusers_config(SCREAMING_SNAKE_CASE , image_size=SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =custom_convert_ldm_vae_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case__ : Any =AutoencoderKL(**SCREAMING_SNAKE_CASE ) vae.load_state_dict(SCREAMING_SNAKE_CASE ) vae.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
408
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Optional[Any] = logging.get_logger(__name__) a_ : List[str] = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Union[str, Any] ='openai-gpt' lowercase : List[Any] ={ 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, lowerCAmelCase=40_478, lowerCAmelCase=512, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=1e-5, lowerCAmelCase=0.0_2, lowerCAmelCase="cls_index", lowerCAmelCase=True, lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase=0.1, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =vocab_size lowerCamelCase_ =n_positions lowerCamelCase_ =n_embd lowerCamelCase_ =n_layer lowerCamelCase_ =n_head lowerCamelCase_ =afn lowerCamelCase_ =resid_pdrop lowerCamelCase_ =embd_pdrop lowerCamelCase_ =attn_pdrop lowerCamelCase_ =layer_norm_epsilon lowerCamelCase_ =initializer_range lowerCamelCase_ =summary_type lowerCamelCase_ =summary_use_proj lowerCamelCase_ =summary_activation lowerCamelCase_ =summary_first_dropout lowerCamelCase_ =summary_proj_to_labels super().__init__(**lowerCAmelCase )
676
'''simple docstring''' def a_ ( __snake_case : int , __snake_case : int ) -> str: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__snake_case , __snake_case ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowerCamelCase_ ='''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__snake_case ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
676
1
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class lowerCAmelCase ( nn.Module ): def __init__( self ): super().__init__() _UpperCAmelCase = nn.Linear(3 , 4 ) _UpperCAmelCase = nn.BatchNormad(4 ) _UpperCAmelCase = nn.Linear(4 , 5 ) def __A ( self , a__ ): return self.lineara(self.batchnorm(self.lineara(a__ ) ) ) class lowerCAmelCase ( unittest.TestCase ): def __A ( self ): _UpperCAmelCase = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(a__ , model.state_dict() ) _UpperCAmelCase = os.path.join(a__ , 'index.json' ) self.assertTrue(os.path.isfile(a__ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: _UpperCAmelCase = os.path.join(a__ , f"""{key}.dat""" ) self.assertTrue(os.path.isfile(a__ ) ) # TODO: add tests on the fact weights are properly loaded def __A ( self ): _UpperCAmelCase = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: _UpperCAmelCase = torch.randn(2 , 3 , dtype=a__ ) with TemporaryDirectory() as tmp_dir: _UpperCAmelCase = offload_weight(a__ , 'weight' , a__ , {} ) _UpperCAmelCase = os.path.join(a__ , 'weight.dat' ) self.assertTrue(os.path.isfile(a__ ) ) self.assertDictEqual(a__ , {'weight': {'shape': [2, 3], 'dtype': str(a__ ).split('.' )[1]}} ) _UpperCAmelCase = load_offloaded_weight(a__ , index['weight'] ) self.assertTrue(torch.equal(a__ , a__ ) ) def __A ( self ): _UpperCAmelCase = ModelForTest() _UpperCAmelCase = model.state_dict() _UpperCAmelCase = {k: v for k, v in state_dict.items() if 'linear2' not in k} _UpperCAmelCase = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a__ , a__ ) _UpperCAmelCase = OffloadedWeightsLoader(state_dict=a__ , save_folder=a__ ) # Every key is there with the right value self.assertEqual(sorted(a__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a__ , weight_map[key] ) ) _UpperCAmelCase = {k: v for k, v in state_dict.items() if 'weight' in k} _UpperCAmelCase = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(a__ , a__ ) _UpperCAmelCase = OffloadedWeightsLoader(state_dict=a__ , save_folder=a__ ) # Every key is there with the right value self.assertEqual(sorted(a__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a__ , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(a__ , a__ ) # Duplicates are removed _UpperCAmelCase = OffloadedWeightsLoader(state_dict=a__ , save_folder=a__ ) # Every key is there with the right value self.assertEqual(sorted(a__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(a__ , weight_map[key] ) ) def __A ( self ): _UpperCAmelCase = {'a.1': 0, 'a.10': 1, 'a.2': 2} _UpperCAmelCase = extract_submodules_state_dict(a__ , ['a.1', 'a.2'] ) self.assertDictEqual(a__ , {'a.1': 0, 'a.2': 2} ) _UpperCAmelCase = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} _UpperCAmelCase = extract_submodules_state_dict(a__ , ['a.1', 'a.2'] ) self.assertDictEqual(a__ , {'a.1.a': 0, 'a.2.a': 2} )
494
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase ( unittest.TestCase ): @slow def __A ( self ): _UpperCAmelCase = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' ) _UpperCAmelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) _UpperCAmelCase = tokenizer('Hello there' , return_tensors='np' ).input_ids _UpperCAmelCase = tokenizer('Hi I am' , return_tensors='np' ).input_ids _UpperCAmelCase = shift_tokens_right(a__ , model.config.pad_token_id , model.config.decoder_start_token_id ) _UpperCAmelCase = model(a__ , decoder_input_ids=a__ ).logits _UpperCAmelCase = optax.softmax_cross_entropy(a__ , onehot(a__ , logits.shape[-1] ) ).mean() _UpperCAmelCase = -(labels.shape[-1] * loss.item()) _UpperCAmelCase = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
494
1
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) __lowerCAmelCase : List[str] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
504
import numpy class snake_case_ : def __init__( self : List[str] , _snake_case : numpy.ndarray , _snake_case : numpy.ndarray )->None: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __lowerCAmelCase : Tuple = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __lowerCAmelCase : Union[str, Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __lowerCAmelCase : Dict = numpy.random.rand(3 , 1 ) # Real output values provided. __lowerCAmelCase : Optional[int] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __lowerCAmelCase : Tuple = numpy.zeros(output_array.shape ) def UpperCAmelCase__ ( self : int )->numpy.ndarray: '''simple docstring''' __lowerCAmelCase : List[Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __lowerCAmelCase : str = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __lowerCAmelCase : Any = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ ( self : int )->None: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __lowerCAmelCase : Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __lowerCAmelCase : Dict = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ ( self : Any , _snake_case : numpy.ndarray , _snake_case : int , _snake_case : bool )->None: '''simple docstring''' for iteration in range(1 , iterations + 1 ): __lowerCAmelCase : Tuple = self.feedforward() self.back_propagation() if give_loss: __lowerCAmelCase : List[Any] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def UpperCAmelCase__ ( self : Optional[int] , _snake_case : numpy.ndarray )->int: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = input_arr __lowerCAmelCase : str = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __lowerCAmelCase : List[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __lowerCAmelCase : Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :numpy.ndarray ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :numpy.ndarray ) -> numpy.ndarray: return (value) * (1 - (value)) def _SCREAMING_SNAKE_CASE ( ) -> int: __lowerCAmelCase : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __lowerCAmelCase : Optional[Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __lowerCAmelCase : Union[str, Any] = TwoHiddenLayerNeuralNetwork( input_array=SCREAMING_SNAKE_CASE , output_array=SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=SCREAMING_SNAKE_CASE , iterations=10 , give_loss=SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
504
1
from collections import defaultdict def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: __lowerCamelCase : Optional[int] = first_str.lower().strip() __lowerCamelCase : Dict = second_str.lower().strip() # Remove whitespace __lowerCamelCase : int = first_str.replace(' ' , '' ) __lowerCamelCase : str = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): return False # Default values for count should be 0 __lowerCamelCase : defaultdict[str, int] = defaultdict(lowerCamelCase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowerCamelCase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() a =input("""Enter the first string """).strip() a =input("""Enter the second string """).strip() a =check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {'' if status else 'not '}anagrams.""")
337
from ..utils import DummyObject, requires_backends class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[Any] = ['''sentencepiece'''] def __init__( self : Any ,*SCREAMING_SNAKE_CASE__ : List[str] ,**SCREAMING_SNAKE_CASE__ : str): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Tuple = ['''sentencepiece'''] def __init__( self : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : List[str]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : str = ['''sentencepiece'''] def __init__( self : List[str] ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Union[str, Any]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = ['''sentencepiece'''] def __init__( self : List[str] ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Optional[int]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[str] = ['''sentencepiece'''] def __init__( self : str ,*SCREAMING_SNAKE_CASE__ : str ,**SCREAMING_SNAKE_CASE__ : List[str]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = ['''sentencepiece'''] def __init__( self : int ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Optional[int]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Dict = ['''sentencepiece'''] def __init__( self : Union[str, Any] ,*SCREAMING_SNAKE_CASE__ : List[Any] ,**SCREAMING_SNAKE_CASE__ : Dict): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Dict = ['''sentencepiece'''] def __init__( self : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Tuple): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Dict = ['''sentencepiece'''] def __init__( self : Any ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Union[str, Any]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Union[str, Any] = ['''sentencepiece'''] def __init__( self : List[str] ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Optional[int]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = ['''sentencepiece'''] def __init__( self : Dict ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Union[str, Any]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : str = ['''sentencepiece'''] def __init__( self : Union[str, Any] ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Optional[int]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Dict = ['''sentencepiece'''] def __init__( self : Tuple ,*SCREAMING_SNAKE_CASE__ : Optional[Any] ,**SCREAMING_SNAKE_CASE__ : int): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Any = ['''sentencepiece'''] def __init__( self : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : int): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[int] = ['''sentencepiece'''] def __init__( self : Union[str, Any] ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Optional[Any]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[int] = ['''sentencepiece'''] def __init__( self : Tuple ,*SCREAMING_SNAKE_CASE__ : List[str] ,**SCREAMING_SNAKE_CASE__ : List[str]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : str = ['''sentencepiece'''] def __init__( self : Dict ,*SCREAMING_SNAKE_CASE__ : List[Any] ,**SCREAMING_SNAKE_CASE__ : List[Any]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Any = ['''sentencepiece'''] def __init__( self : str ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : int): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[int] = ['''sentencepiece'''] def __init__( self : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : str ,**SCREAMING_SNAKE_CASE__ : Dict): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[Any] = ['''sentencepiece'''] def __init__( self : Union[str, Any] ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Optional[Any]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : str = ['''sentencepiece'''] def __init__( self : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : Any ,**SCREAMING_SNAKE_CASE__ : Any): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Tuple = ['''sentencepiece'''] def __init__( self : List[Any] ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : str): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Tuple = ['''sentencepiece'''] def __init__( self : Tuple ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : str): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Union[str, Any] = ['''sentencepiece'''] def __init__( self : Dict ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Optional[int]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[str] = ['''sentencepiece'''] def __init__( self : Optional[Any] ,*SCREAMING_SNAKE_CASE__ : Optional[Any] ,**SCREAMING_SNAKE_CASE__ : Tuple): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = ['''sentencepiece'''] def __init__( self : Optional[int] ,*SCREAMING_SNAKE_CASE__ : str ,**SCREAMING_SNAKE_CASE__ : Optional[Any]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[Any] = ['''sentencepiece'''] def __init__( self : Any ,*SCREAMING_SNAKE_CASE__ : Optional[int] ,**SCREAMING_SNAKE_CASE__ : int): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Any = ['''sentencepiece'''] def __init__( self : str ,*SCREAMING_SNAKE_CASE__ : Any ,**SCREAMING_SNAKE_CASE__ : Dict): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[Any] = ['''sentencepiece'''] def __init__( self : Dict ,*SCREAMING_SNAKE_CASE__ : Tuple ,**SCREAMING_SNAKE_CASE__ : Optional[Any]): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Union[str, Any] = ['''sentencepiece'''] def __init__( self : Any ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : int): requires_backends(self ,['sentencepiece']) class A_ ( metaclass=SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Any = ['''sentencepiece'''] def __init__( self : Optional[int] ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : List[str]): requires_backends(self ,['sentencepiece'])
337
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_ = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] SCREAMING_SNAKE_CASE_ = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] SCREAMING_SNAKE_CASE_ = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): SCREAMING_SNAKE_CASE_ = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Dict = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
450
from __future__ import annotations import math def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if num <= 0: SCREAMING_SNAKE_CASE = f"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = [True] * (num + 1) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: SCREAMING_SNAKE_CASE = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
450
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = """lilt""" def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.02 , lowercase__=1E-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=None , lowercase__=4 , lowercase__=1_0_2_4 , **lowercase__ , ): '''simple docstring''' super().__init__(pad_token_id=lowercase__ , **lowercase__ ) __A =vocab_size __A =hidden_size __A =num_hidden_layers __A =num_attention_heads __A =hidden_act __A =intermediate_size __A =hidden_dropout_prob __A =attention_probs_dropout_prob __A =max_position_embeddings __A =type_vocab_size __A =initializer_range __A =layer_norm_eps __A =position_embedding_type __A =classifier_dropout __A =channel_shrink_ratio __A =max_ad_position_embeddings
184
from __future__ import annotations from statistics import mean def a ( A__ : list[int] , A__ : list[int] , A__ : int ) -> list[int]: """simple docstring""" _lowercase =[0] * no_of_processes _lowercase =[0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(A__ ): _lowercase =burst_time[i] _lowercase =[] _lowercase =0 _lowercase =0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _lowercase =[] _lowercase =-1 for i in range(A__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(A__ ) if len(A__ ) > 0: _lowercase =ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _lowercase =i total_time += burst_time[target_process] completed += 1 _lowercase =0 _lowercase =( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a ( A__ : list[int] , A__ : int , A__ : list[int] ) -> list[int]: """simple docstring""" _lowercase =[0] * no_of_processes for i in range(A__ ): _lowercase =burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') lowercase_ = 4 lowercase_ = [2, 5, 3, 7] lowercase_ = [0, 0, 0, 0] lowercase_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowercase_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( f"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" f"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(f"\nAverage waiting time = {mean(waiting_time):.5f}") print(f"Average turnaround time = {mean(turn_around_time):.5f}")
291
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = inspect.getfile(accelerate.test_utils ) lowerCamelCase_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase_ = test_metrics @require_cpu def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _lowerCAmelCase ( self ) -> str: '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def _lowerCAmelCase ( self ) -> Dict: '''simple docstring''' self.test_metrics.main() @require_multi_gpu def _lowerCAmelCase ( self ) -> str: '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) lowerCamelCase_ = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() )
716
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __lowercase :Tuple = FlaxAutoencoderKL @property def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = 4 lowerCamelCase_ = 3 lowerCamelCase_ = (32, 32) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = jax.random.uniform(UpperCamelCase__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _lowerCAmelCase ( self ) -> int: '''simple docstring''' lowerCamelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } lowerCamelCase_ = self.dummy_input return init_dict, inputs_dict
66
0
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase ( __lowerCAmelCase ): pass class lowerCAmelCase : def __init__( self : Any , __lowercase : List[str] ): """simple docstring""" __lowercase =data __lowercase =None def __iter__( self : int ): """simple docstring""" __lowercase =self __lowercase =[] while node: if node in visited: raise ContainsLoopError visited.append(lowerCAmelCase_ ) yield node.data __lowercase =node.next_node @property def snake_case ( self : List[Any] ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCAmelCase = Node(1) UpperCAmelCase = Node(2) UpperCAmelCase = Node(3) UpperCAmelCase = Node(4) print(root_node.has_loop) # False UpperCAmelCase = root_node.next_node print(root_node.has_loop) # True UpperCAmelCase = Node(5) UpperCAmelCase = Node(6) UpperCAmelCase = Node(5) UpperCAmelCase = Node(6) print(root_node.has_loop) # False UpperCAmelCase = Node(1) print(root_node.has_loop) # False
119
def snake_case ( snake_case__ :int = 1_000) -> int: _A = -1 _A = 0 for a in range(1 , n // 3): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _A = (n * n - 2 * a * n) // (2 * n - 2 * a) _A = n - a - b if c * c == (a * a + b * b): _A = a * b * c if candidate >= product: _A = candidate return product if __name__ == "__main__": print(F'''{solution() = }''')
401
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class _lowercase ( unittest.TestCase ): def snake_case ( self ): A : Optional[int] = tempfile.mkdtemp() A : Optional[Any] = SamImageProcessor() A : List[str] = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case ( self , **_UpperCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): A : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A : Any = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): A : Tuple = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : List[str] = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) A : List[str] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def snake_case ( self ): A : Union[str, Any] = self.get_image_processor() A : Optional[Any] = SamProcessor(image_processor=_UpperCAmelCase ) A : List[str] = self.prepare_image_inputs() A : Optional[Any] = image_processor(_UpperCAmelCase , return_tensors='''np''' ) A : Tuple = processor(images=_UpperCAmelCase , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def snake_case ( self ): A : int = self.get_image_processor() A : int = SamProcessor(image_processor=_UpperCAmelCase ) A : str = [torch.ones((1, 3, 5, 5) )] A : str = [[1_764, 2_646]] A : Optional[Any] = [[683, 1_024]] A : Dict = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) A : int = processor.post_process_masks( _UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np A : Optional[Any] = [np.ones((1, 3, 5, 5) )] A : Any = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) A : Dict = [[1, 0], [0, 1]] with self.assertRaises(_UpperCAmelCase ): A : Optional[Any] = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) @require_vision @require_tf class _lowercase ( unittest.TestCase ): def snake_case ( self ): A : List[Any] = tempfile.mkdtemp() A : str = SamImageProcessor() A : Optional[Any] = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case ( self , **_UpperCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A : Union[str, Any] = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): A : Dict = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : Dict = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) A : List[str] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def snake_case ( self ): A : Any = self.get_image_processor() A : str = SamProcessor(image_processor=_UpperCAmelCase ) A : Any = self.prepare_image_inputs() A : Optional[int] = image_processor(_UpperCAmelCase , return_tensors='''np''' ) A : Tuple = processor(images=_UpperCAmelCase , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def snake_case ( self ): A : Any = self.get_image_processor() A : Any = SamProcessor(image_processor=_UpperCAmelCase ) A : str = [tf.ones((1, 3, 5, 5) )] A : Dict = [[1_764, 2_646]] A : str = [[683, 1_024]] A : Union[str, Any] = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) A : Optional[Any] = processor.post_process_masks( _UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np A : int = [np.ones((1, 3, 5, 5) )] A : Union[str, Any] = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) A : Optional[int] = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): A : List[str] = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='''tf''' ) @require_vision @require_torchvision class _lowercase ( unittest.TestCase ): def snake_case ( self ): A : Tuple = tempfile.mkdtemp() A : Optional[Any] = SamImageProcessor() A : Optional[int] = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case ( self , **_UpperCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): A : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A : int = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def snake_case ( self ): A : str = self.get_image_processor() A : Optional[Any] = SamProcessor(image_processor=_UpperCAmelCase ) A : List[str] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) A : List[str] = [tf.convert_to_tensor(_UpperCAmelCase )] A : Union[str, Any] = [torch.tensor(_UpperCAmelCase )] A : Optional[int] = [[1_764, 2_646]] A : List[str] = [[683, 1_024]] A : Optional[Any] = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='''tf''' ) A : str = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def snake_case ( self ): A : int = self.get_image_processor() A : Dict = SamProcessor(image_processor=_UpperCAmelCase ) A : Optional[int] = self.prepare_image_inputs() A : List[Any] = image_processor(_UpperCAmelCase , return_tensors='''pt''' )['''pixel_values'''].numpy() A : List[str] = processor(images=_UpperCAmelCase , return_tensors='''pt''' )['''pixel_values'''].numpy() A : Optional[Any] = image_processor(_UpperCAmelCase , return_tensors='''tf''' )['''pixel_values'''].numpy() A : List[str] = processor(images=_UpperCAmelCase , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
718
'''simple docstring''' from __future__ import annotations class _lowercase : def __init__( self , _UpperCAmelCase ): A : str = data A : Node | None = None A : Node | None = None def _lowerCamelCase( UpperCamelCase__ : Node | None ) -> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _lowerCamelCase( UpperCamelCase__ : Node | None ) -> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _lowerCamelCase( UpperCamelCase__ : Node ) -> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _lowerCamelCase( ) -> None: # Main function for testing. A : Optional[int] = Node(1 ) A : Tuple = Node(2 ) A : Dict = Node(3 ) A : List[str] = Node(4 ) A : Union[str, Any] = Node(5 ) A : str = Node(6 ) A : Any = Node(7 ) A : str = Node(8 ) A : Optional[int] = Node(9 ) print(is_full_binary_tree(UpperCamelCase__ ) ) print(depth_of_tree(UpperCamelCase__ ) ) print('''Tree is: ''' ) display(UpperCamelCase__ ) if __name__ == "__main__": main()
537
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : str=13 , lowerCamelCase : Union[str, Any]=30 , lowerCamelCase : Optional[Any]=2 , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Any=True , lowerCamelCase : List[str]=32 , lowerCamelCase : Optional[int]=5 , lowerCamelCase : Any=4 , lowerCamelCase : Optional[int]=37 , lowerCamelCase : Optional[Any]="gelu" , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : List[str]=10 , lowerCamelCase : Any=0.02 , lowerCamelCase : List[Any]=3 , lowerCamelCase : Dict=None , lowerCamelCase : Tuple=2 , ) -> Any: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = scope _UpperCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 2 def lowerCamelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase ( self : Any , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase = DeiTModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self : int , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase = DeiTForMaskedImageModeling(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = DeiTForMaskedImageModeling(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase ( self : Any , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = DeiTForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = DeiTForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = DeiTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def lowerCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" pass def lowerCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowerCamelCase ( self : List[str] ) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase ) def lowerCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : Optional[Any]=False ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase ( self : List[str] ) -> Dict: """simple docstring""" if not self.model_tester.is_training: return _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _UpperCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() _UpperCAmelCase = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) _UpperCAmelCase = model(**lowerCamelCase ).loss loss.backward() def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _UpperCAmelCase = False _UpperCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _UpperCAmelCase = model_class(lowerCamelCase ) model.gradient_checkpointing_enable() model.to(lowerCamelCase ) model.train() _UpperCAmelCase = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) _UpperCAmelCase = model(**lowerCamelCase ).loss loss.backward() def lowerCamelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase ), *get_values(lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): _UpperCAmelCase = problem_type["""title"""] _UpperCAmelCase = problem_type["""num_labels"""] _UpperCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() _UpperCAmelCase = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if problem_type["num_labels"] > 1: _UpperCAmelCase = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) _UpperCAmelCase = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase ) as warning_list: _UpperCAmelCase = model(**lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowerCamelCase ( self : Tuple ) -> int: """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = DeiTModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def lowerCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( lowerCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**lowerCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) _UpperCAmelCase = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _UpperCAmelCase = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""pt""" ) _UpperCAmelCase = inputs.pixel_values.to(lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCAmelCase = model(lowerCamelCase )
108
"""simple docstring""" import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap _a : int = 'Usage of script: script_name <size_of_canvas:int>' _a : List[Any] = [0] * 100 + [1] * 10 random.shuffle(choice) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> list[list[bool]]: _lowerCAmelCase : Optional[int] = [[False for i in range(_lowerCamelCase )] for j in range(_lowerCamelCase )] return canvas def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[bool]] ) -> None: for i, row in enumerate(_lowerCamelCase ): for j, _ in enumerate(_lowerCamelCase ): _lowerCAmelCase : List[Any] = bool(random.getrandbits(1 ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[bool]] ) -> list[list[bool]]: _lowerCAmelCase : Optional[int] = np.array(_lowerCamelCase ) _lowerCAmelCase : int = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(_lowerCamelCase ): for c, pt in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = __judge_point( _lowerCamelCase ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _lowerCAmelCase : Any = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _lowerCAmelCase : list[list[bool]] = current_canvas.tolist() return return_canvas def SCREAMING_SNAKE_CASE ( _lowerCamelCase : bool ,_lowerCamelCase : list[list[bool]] ) -> bool: _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _lowerCAmelCase : Optional[int] = pt if pt: if alive < 2: _lowerCAmelCase : Union[str, Any] = False elif alive == 2 or alive == 3: _lowerCAmelCase : Any = True elif alive > 3: _lowerCAmelCase : Any = False else: if alive == 3: _lowerCAmelCase : List[Any] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) _a : Union[str, Any] = int(sys.argv[1]) # main working structure of this module. _a : Optional[int] = create_canvas(canvas_size) seed(c) _a , _a : int = plt.subplots() fig.show() _a : Any = ListedColormap(['w', 'k']) try: while True: _a : List[Any] = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
213
0
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class a ( A_ ): '''simple docstring''' A_ : List[str] = '''EncodecFeatureExtractor''' A_ : str = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ) -> int: super().__init__(lowerCamelCase_ , lowerCamelCase_ ) __a = self.feature_extractor __a = False def lowerCAmelCase_ ( self : List[str] , lowerCamelCase_ : Any=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Union[str, Any]=True ) -> Any: return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase_ , language=lowerCamelCase_ , no_timestamps=lowerCamelCase_ ) def __call__( self : Tuple , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[int] ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_ , **lowerCamelCase_ ) __a = kwargs.pop("""audio""" , lowerCamelCase_ ) __a = kwargs.pop("""sampling_rate""" , lowerCamelCase_ ) __a = kwargs.pop("""text""" , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: __a = args[0] __a = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __a = self.tokenizer(lowerCamelCase_ , **lowerCamelCase_ ) if audio is not None: __a = self.feature_extractor(lowerCamelCase_ , *lowerCamelCase_ , sampling_rate=lowerCamelCase_ , **lowerCamelCase_ ) if audio is None: return inputs elif text is None: return audio_inputs else: __a = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __a = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : Optional[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ) -> Any: __a = kwargs.pop("""audio""" , lowerCamelCase_ ) __a = kwargs.pop("""padding_mask""" , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: __a = args[0] __a = args[1:] if audio_values is not None: return self._decode_audio(lowerCamelCase_ , padding_mask=lowerCamelCase_ ) else: return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def lowerCAmelCase_ ( self : Any , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Union[str, Any] ) -> Tuple: return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) def lowerCAmelCase_ ( self : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional = None ) -> List[np.ndarray]: __a = to_numpy(lowerCamelCase_ ) __a , __a , __a = audio_values.shape if padding_mask is None: return list(lowerCamelCase_ ) __a = to_numpy(lowerCamelCase_ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __a = seq_len - padding_mask.shape[-1] __a = 1 - self.feature_extractor.padding_value __a = np.pad(lowerCamelCase_ , ((0, 0), (0, difference)) , """constant""" , constant_values=lowerCamelCase_ ) __a = audio_values.tolist() for i in range(lowerCamelCase_ ): __a = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __a = sliced_audio.reshape(lowerCamelCase_ , -1 ) return audio_values
714
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class a ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any]=7 , lowerCamelCase_ : Optional[Any]=3 , lowerCamelCase_ : int=30 , lowerCamelCase_ : Union[str, Any]=4_00 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : int=None , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[str]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[Any]=1 / 2_55 , lowerCamelCase_ : int=True , ) -> str: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __a = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} __a = parent __a = batch_size __a = num_channels __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_normalize __a = image_mean __a = image_std __a = do_rescale __a = rescale_factor __a = do_pad def lowerCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : int=False ) -> List[str]: if not batched: __a = image_inputs[0] if isinstance(lowerCamelCase_ , Image.Image ): __a , __a = image.size else: __a , __a = image.shape[1], image.shape[2] if w < h: __a = int(self.size["""shortest_edge"""] * h / w ) __a = self.size["""shortest_edge"""] elif w > h: __a = self.size["""shortest_edge"""] __a = int(self.size["""shortest_edge"""] * w / h ) else: __a = self.size["""shortest_edge"""] __a = self.size["""shortest_edge"""] else: __a = [] for image in image_inputs: __a , __a = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a = max(lowerCamelCase_ , key=lambda lowerCamelCase_ : item[0] )[0] __a = max(lowerCamelCase_ , key=lambda lowerCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( A_ , unittest.TestCase ): A_ : Optional[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Dict ) -> Tuple: __a = ConditionalDetrImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : Any ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) def lowerCAmelCase_ ( self : Optional[int] ) -> List[str]: __a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , lowerCamelCase_ ) __a = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowerCamelCase_ ) def lowerCAmelCase_ ( self : Tuple ) -> Tuple: pass def lowerCAmelCase_ ( self : Optional[Any] ) -> List[Any]: # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a = self.image_processor_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_ ) __a = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ) -> Tuple: # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : str ) -> List[Any]: # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a = image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Optional[int] ) -> Tuple: # prepare image and target __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __a = json.loads(f.read() ) __a = {"""image_id""": 3_97_69, """annotations""": target} # encode them __a = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) __a = image_processing(images=lowerCamelCase_ , annotations=lowerCamelCase_ , return_tensors="""pt""" ) # verify pixel values __a = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCamelCase_ ) __a = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCamelCase_ , atol=1E-4 ) ) # verify area __a = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCamelCase_ ) ) # verify boxes __a = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCamelCase_ ) __a = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCamelCase_ , atol=1E-3 ) ) # verify image_id __a = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCamelCase_ ) ) # verify is_crowd __a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCamelCase_ ) ) # verify class_labels __a = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCamelCase_ ) ) # verify orig_size __a = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCamelCase_ ) ) # verify size __a = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCamelCase_ ) ) @slow def lowerCAmelCase_ ( self : str ) -> str: # prepare image, target and masks_path __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __a = json.loads(f.read() ) __a = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} __a = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __a = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) __a = image_processing(images=lowerCamelCase_ , annotations=lowerCamelCase_ , masks_path=lowerCamelCase_ , return_tensors="""pt""" ) # verify pixel values __a = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCamelCase_ ) __a = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCamelCase_ , atol=1E-4 ) ) # verify area __a = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCamelCase_ ) ) # verify boxes __a = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCamelCase_ ) __a = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCamelCase_ , atol=1E-3 ) ) # verify image_id __a = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCamelCase_ ) ) # verify is_crowd __a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCamelCase_ ) ) # verify class_labels __a = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCamelCase_ ) ) # verify masks __a = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCamelCase_ ) # verify orig_size __a = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCamelCase_ ) ) # verify size __a = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCamelCase_ ) )
173
0
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Optional[Any] = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """gptj""" __lowercase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase_=5_04_00 , lowerCAmelCase_=20_48 , lowerCAmelCase_=40_96 , lowerCAmelCase_=28 , lowerCAmelCase_=16 , lowerCAmelCase_=64 , lowerCAmelCase_=None , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=0.02 , lowerCAmelCase_=True , lowerCAmelCase_=5_02_56 , lowerCAmelCase_=5_02_56 , lowerCAmelCase_=False , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = vocab_size _snake_case = n_positions _snake_case = n_embd _snake_case = n_layer _snake_case = n_head _snake_case = n_inner _snake_case = rotary_dim _snake_case = activation_function _snake_case = resid_pdrop _snake_case = embd_pdrop _snake_case = attn_pdrop _snake_case = layer_norm_epsilon _snake_case = initializer_range _snake_case = use_cache _snake_case = bos_token_id _snake_case = eos_token_id super().__init__( bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , tie_word_embeddings=lowerCAmelCase_ , **lowerCAmelCase_ ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = "default" , lowerCAmelCase_ = None , lowerCAmelCase_ = False , ): """simple docstring""" super().__init__(lowerCAmelCase_ , task=lowerCAmelCase_ , patching_specs=lowerCAmelCase_ , use_past=lowerCAmelCase_ ) if not getattr(self._config , 'pad_token_id' , lowerCAmelCase_ ): # TODO: how to do that better? _snake_case = 0 @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) _snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowerCamelCase ( self ): """simple docstring""" return self._config.n_layer @property def lowerCamelCase ( self ): """simple docstring""" return self._config.n_head def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case = super(lowerCAmelCase_ , self ).generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) # We need to order the input in the way they appears in the forward() _snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(self.num_layers ) ] _snake_case = common_inputs['attention_mask'] if self.use_past: _snake_case = ordered_inputs['attention_mask'].dtype _snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCamelCase ( self ): """simple docstring""" return 13
495
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = """▁""" SCREAMING_SNAKE_CASE_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } SCREAMING_SNAKE_CASE_ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } SCREAMING_SNAKE_CASE_ = { """facebook/m2m100_418M""": 10_24, } # fmt: off SCREAMING_SNAKE_CASE_ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class snake_case_ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = ["input_ids", "attention_mask"] __lowerCAmelCase = [] __lowerCAmelCase = [] def __init__( self , a_ , a_ , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<pad>" , a_="<unk>" , a_="m2m100" , a_ = None , a_=8 , **a_ , ): a_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs a_ : List[Any] = language_codes a_ : Dict = FAIRSEQ_LANGUAGE_CODES[language_codes] a_ : Dict = {lang_code: F"""__{lang_code}__""" for lang_code in fairseq_language_code} a_ : Tuple = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(a_ ) for lang_code in fairseq_language_code if self.get_lang_token(a_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=a_ , tgt_lang=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , unk_token=a_ , pad_token=a_ , language_codes=a_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=a_ , **a_ , ) a_ : Dict = vocab_file a_ : List[str] = load_json(a_ ) a_ : Any = {v: k for k, v in self.encoder.items()} a_ : Dict = spm_file a_ : Dict = load_spm(a_ , self.sp_model_kwargs ) a_ : Optional[Any] = len(self.encoder ) a_ : Optional[int] = { self.get_lang_token(a_ ): self.encoder_size + i for i, lang_code in enumerate(a_ ) } a_ : int = {lang_code: self.encoder_size + i for i, lang_code in enumerate(a_ )} a_ : List[Any] = {v: k for k, v in self.lang_token_to_id.items()} a_ : List[str] = src_lang if src_lang is not None else "en" a_ : Tuple = tgt_lang a_ : Any = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) a_ : str = num_madeup_words @property def snake_case_ ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def snake_case_ ( self ): return self._src_lang @src_lang.setter def snake_case_ ( self , a_ ): a_ : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case_ ( self , a_ ): return self.sp_model.encode(a_ , out_type=a_ ) def snake_case_ ( self , a_ ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(a_ , self.encoder[self.unk_token] ) def snake_case_ ( self , a_ ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(a_ , self.unk_token ) def snake_case_ ( self , a_ ): a_ : int = [] a_ : List[str] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token a_ : int = [] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def snake_case_ ( self , a_ , a_ = None , a_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) a_ : Optional[Any] = [1] * len(self.prefix_tokens ) a_ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(a_ )) + suffix_ones return prefix_ones + ([0] * len(a_ )) + ([0] * len(a_ )) + suffix_ones def snake_case_ ( self , a_ , a_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case_ ( self ): a_ : List[Any] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): a_ : Any = self.__dict__.copy() a_ : Union[str, Any] = None return state def __setstate__( self , a_ ): a_ : Tuple = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a_ : Union[str, Any] = {} a_ : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def snake_case_ ( self , a_ , a_ = None ): a_ : Optional[Any] = Path(a_ ) if not save_dir.is_dir(): raise OSError(F"""{save_directory} should be a directory""" ) a_ : str = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) a_ : str = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , a_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(a_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , a_ ) elif not os.path.isfile(self.spm_file ): with open(a_ , "wb" ) as fi: a_ : List[str] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (str(a_ ), str(a_ )) def snake_case_ ( self , a_ , a_ = "en" , a_ = None , a_ = "ro" , **a_ , ): a_ : Union[str, Any] = src_lang a_ : List[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def snake_case_ ( self , a_ , a_ , a_ , **a_ ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) a_ : Optional[Any] = src_lang a_ : List[Any] = self(a_ , add_special_tokens=a_ , **a_ ) a_ : Optional[int] = self.get_lang_id(a_ ) a_ : Any = tgt_lang_id return inputs def snake_case_ ( self ): self.set_src_lang_special_tokens(self.src_lang ) def snake_case_ ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case_ ( self , a_ ): a_ : Union[str, Any] = self.get_lang_token(a_ ) a_ : List[Any] = self.lang_token_to_id[lang_token] a_ : List[Any] = [self.cur_lang_id] a_ : Dict = [self.eos_token_id] def snake_case_ ( self , a_ ): a_ : Any = self.get_lang_token(a_ ) a_ : str = self.lang_token_to_id[lang_token] a_ : Dict = [self.cur_lang_id] a_ : Tuple = [self.eos_token_id] def snake_case_ ( self , a_ ): return self.lang_code_to_token[lang] def snake_case_ ( self , a_ ): a_ : Any = self.get_lang_token(a_ ) return self.lang_token_to_id[lang_token] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> sentencepiece.SentencePieceProcessor: a_ : Any = sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Union[Dict, List]: with open(SCREAMING_SNAKE_CASE__, "r" ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> None: with open(SCREAMING_SNAKE_CASE__, "w" ) as f: json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, indent=2 )
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : str = _symbol_database.Default() _a : str = _descriptor_pool.Default().AddSerializedFile( B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) _a : List[Any] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : Union[str, Any] = None _a : Any = B"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : List[Any] = 45 _a : int = 1581 _a : List[str] = 1517 _a : int = 1570 _a : str = 1584 _a : Tuple = 1793 _a : str = 1795 _a : Dict = 1916 _a : Any = 1864 _a : str = 1905 _a : int = 1919 _a : Any = 2429 _a : List[str] = 2208 _a : Tuple = 2418 _a : List[Any] = 2323 _a : List[str] = 2407 # @@protoc_insertion_point(module_scope)
168
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _lowercase ( lowerCamelCase__=32 , lowerCamelCase__=10 , lowerCamelCase__=100 , lowerCamelCase__=1026 , lowerCamelCase__=True , lowerCamelCase__="data/tokenized_stories_train_wikitext103.jbl" , lowerCamelCase__="igf_context_pairs.jbl" , ) -> str: """simple docstring""" set_seed(3 ) # generate train_data and objective_set __UpperCAmelCase , __UpperCAmelCase : Tuple = generate_datasets( lowerCamelCase__ , lowerCamelCase__ , number=lowerCamelCase__ , min_len=1026 , trim=lowerCamelCase__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __UpperCAmelCase : Optional[Any] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model __UpperCAmelCase : Optional[int] = load_gpta("gpt2" ).to(lowerCamelCase__ ) print("computing perplexity on objective set" ) __UpperCAmelCase : str = compute_perplexity(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).item() print("perplexity on objective set:" , lowerCamelCase__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _lowercase ( lowerCamelCase__ , lowerCamelCase__=15 , lowerCamelCase__=128 , lowerCamelCase__=100 , lowerCamelCase__="igf_model.pt" , ) -> int: """simple docstring""" set_seed(42 ) # Load pre-trained model __UpperCAmelCase : Tuple = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model __UpperCAmelCase : Dict = SecondaryLearner(lowerCamelCase__ ) # Train secondary learner __UpperCAmelCase : Optional[int] = train_secondary_learner( lowerCamelCase__ , lowerCamelCase__ , max_epochs=lowerCamelCase__ , batch_size=lowerCamelCase__ , eval_freq=100 , igf_model_path=lowerCamelCase__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=32 , lowerCamelCase__=1000 , lowerCamelCase__=16 , lowerCamelCase__=1.0 , lowerCamelCase__=recopy_gpta , lowerCamelCase__=None , lowerCamelCase__=10 , lowerCamelCase__="gpt2_finetuned.pt" , ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) __UpperCAmelCase : Optional[int] = RandomSampler(lowerCamelCase__ ) __UpperCAmelCase : List[str] = DataLoader(lowerCamelCase__ , sampler=lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = max_steps // (len(lowerCamelCase__ )) + 1 __UpperCAmelCase : Any = 0 __UpperCAmelCase : Optional[int] = torch.zeros((1, context_len) , dtype=torch.long , device=lowerCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = recopy_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) model.train() if secondary_learner is not None: secondary_learner.to(lowerCamelCase__ ) secondary_learner.eval() __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Any = 0 __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = [] # Compute the performance of the transformer model at the beginning __UpperCAmelCase : Union[str, Any] = compute_perplexity(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) test_perps.append(lowerCamelCase__ ) print("Test perplexity, step" , lowerCamelCase__ , ":" , lowerCamelCase__ ) for epoch in range(int(lowerCamelCase__ ) ): for step, example in enumerate(lowerCamelCase__ ): torch.cuda.empty_cache() __UpperCAmelCase : Optional[Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) __UpperCAmelCase : Union[str, Any] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __UpperCAmelCase : int = model(lowerCamelCase__ , labels=lowerCamelCase__ ) __UpperCAmelCase : List[str] = True if secondary_learner is not None: __UpperCAmelCase : Dict = secondary_learner.forward( torch.tensor(lowerCamelCase__ , dtype=torch.long , device=lowerCamelCase__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(lowerCamelCase__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __UpperCAmelCase : str = -1 if predicted_q < threshold: __UpperCAmelCase : Dict = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __UpperCAmelCase : Optional[Any] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __UpperCAmelCase : List[Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __UpperCAmelCase : List[str] = compute_perplexity(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) test_perps.append(lowerCamelCase__ ) print("Test perplexity, step" , lowerCamelCase__ , ":" , lowerCamelCase__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , lowerCamelCase__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _lowercase ( ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Tuple = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=lowerCamelCase__ , default=lowerCamelCase__ , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=lowerCamelCase__ , default=lowerCamelCase__ , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=lowerCamelCase__ , type=lowerCamelCase__ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=lowerCamelCase__ , default=lowerCamelCase__ , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=lowerCamelCase__ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=100 , type=lowerCamelCase__ , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=100 , type=lowerCamelCase__ , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=1000 , type=lowerCamelCase__ , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=128 , type=lowerCamelCase__ , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=lowerCamelCase__ , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=lowerCamelCase__ , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=100 , type=lowerCamelCase__ , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=1026 , type=lowerCamelCase__ , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=lowerCamelCase__ , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=lowerCamelCase__ , type=lowerCamelCase__ , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=lowerCamelCase__ , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=lowerCamelCase__ , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=lowerCamelCase__ , type=lowerCamelCase__ , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=lowerCamelCase__ , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner __UpperCAmelCase : Dict = joblib.load("data/IGF_values.jbl" ) # Train secondary learner __UpperCAmelCase : Dict = training_secondary_learner( lowerCamelCase__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model __UpperCAmelCase : str = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1026 , trim=lowerCamelCase__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=lowerCamelCase__ , secondary_learner=lowerCamelCase__ , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
168
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a : Optional[Any] = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[str] = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[int] = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[Any] = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): a__ = OmegaConf.load(lowerCamelCase_) a__ = torch.load(lowerCamelCase_ , map_location='''cpu''')['''model'''] a__ = list(state_dict.keys()) # extract state_dict for VQVAE a__ = {} a__ = '''first_stage_model.''' for key in keys: if key.startswith(lowerCamelCase_): a__ = state_dict[key] # extract state_dict for UNetLDM a__ = {} a__ = '''model.diffusion_model.''' for key in keys: if key.startswith(lowerCamelCase_): a__ = state_dict[key] a__ = config.model.params.first_stage_config.params a__ = config.model.params.unet_config.params a__ = VQModel(**lowerCamelCase_).eval() vqvae.load_state_dict(lowerCamelCase_) a__ = UNetLDMModel(**lowerCamelCase_).eval() unet.load_state_dict(lowerCamelCase_) a__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=lowerCamelCase_ , ) a__ = LDMPipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) pipeline.save_pretrained(lowerCamelCase_) if __name__ == "__main__": __a : Tuple = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) __a : Optional[int] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
200
0
import os from collections.abc import Iterator def _lowerCAmelCase ( A__ = "." ): for dir_path, dir_names, filenames in os.walk(A__ ): lowercase__ = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(A__ )[1] in (".py", ".ipynb"): yield os.path.join(A__ , A__ ).lstrip('./' ) def _lowerCAmelCase ( A__ ): return F'''{i * ' '}*''' if i else "\n##" def _lowerCAmelCase ( A__ , A__ ): lowercase__ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(A__ ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(A__ )} {new_part.replace('_' , ' ' ).title()}''' ) return new_path def _lowerCAmelCase ( A__ = "." ): lowercase__ = '' for filepath in sorted(good_file_paths(A__ ) ): lowercase__, lowercase__ = os.path.split(A__ ) if filepath != old_path: lowercase__ = print_path(A__ , A__ ) lowercase__ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase__ = F'''{filepath}/{filename}'''.replace(' ' , '%20' ) lowercase__ = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'''{md_prefix(A__ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
622
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _lowerCAmelCase ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(A__ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def _lowerCAmelCase ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def _lowerCAmelCase ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(A__ ): http_head('https://huggingface.co' )
622
1
from __future__ import annotations from functools import lru_cache from math import ceil __lowercase :Tuple = 100 __lowercase :Optional[int] = set(range(3, NUM_PRIMES, 2)) primes.add(2) __lowercase :int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} SCREAMING_SNAKE_CASE__ : set[int] = set() SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCAmelCase ( _lowerCamelCase : int = 5_000 ): '''simple docstring''' for number_to_partition in range(1 , _lowerCamelCase ): if len(partition(_lowerCamelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"{solution() = }")
720
from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : str = 11 SCREAMING_SNAKE_CASE__ : Any = int("1" + "0" * digit_len ) for num in range(_lowerCamelCase , _lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCamelCase , _lowerCamelCase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 SCREAMING_SNAKE_CASE__ : str = 10 return solutions def UpperCAmelCase ( _lowerCamelCase : int = 2 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = 1.0 for fraction in fraction_list(_lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Any = Fraction(_lowerCamelCase ) result *= frac.denominator / frac.numerator return int(_lowerCamelCase ) if __name__ == "__main__": print(solution())
26
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __magic_name__ : __A : str = field( metadata={"help": "The output directory where the model will be written."} , ) __A : str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } , ) __A : str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } , ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def lowerCamelCase () -> Tuple: lowercase :Tuple = HfArgumentParser((ModelArguments,)) ((lowercase) , ) :Any = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase :Tuple = AutoConfig.from_pretrained(model_args.encoder_config_name) # Use pretrained encoder model's config else: lowercase :List[Any] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase :List[Any] = AutoConfig.from_pretrained(model_args.decoder_config_name) # Use pretrained decoder model's config else: lowercase :Optional[int] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase :Optional[Any] = True lowercase :Dict = True lowercase :Union[str, Any] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=a_ , decoder_config=a_ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase :Dict = decoder_config.decoder_start_token_id lowercase :Union[str, Any] = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase :List[Any] = decoder_config.bos_token_id if pad_token_id is None: lowercase :Union[str, Any] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase :Dict = decoder_config.eos_token_id lowercase :Optional[Any] = decoder_start_token_id lowercase :str = pad_token_id lowercase :Optional[Any] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path) lowercase :str = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path) lowercase :int = tokenizer.convert_ids_to_tokens(model.config.pad_token_id) model.save_pretrained(model_args.output_dir) image_processor.save_pretrained(model_args.output_dir) tokenizer.save_pretrained(model_args.output_dir) if __name__ == "__main__": main()
677
"""simple docstring""" def lowerCamelCase (a_ :int = 100) -> int: lowercase :Union[str, Any] = set() lowercase :List[Any] = 0 lowercase :Dict = n + 1 # maximum limit for a in range(2 , a_): for b in range(2 , a_): lowercase :Tuple = a**b # calculates the current power collect_powers.add(a_) # adds the result to the set return len(a_) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
677
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(__A ) class _lowerCAmelCase ( __A ): '''simple docstring''' def __init__( self : Union[str, Any] , **UpperCamelCase_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , '''vision''' ) self.check_model_type(UpperCamelCase_ ) def __call__( self : Any , UpperCamelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCamelCase_ : Union[str, List[str]] = None , **UpperCamelCase_ : Optional[int] , ) -> Tuple: '''simple docstring''' if "text_queries" in kwargs: _lowercase : List[str] = kwargs.pop('''text_queries''' ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): _lowercase : Dict = {'''image''': image, '''candidate_labels''': candidate_labels} else: _lowercase : Dict = image _lowercase : Dict = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def __lowercase ( self : Union[str, Any] , **UpperCamelCase_ : int ) -> Tuple: '''simple docstring''' _lowercase : Any = {} if "threshold" in kwargs: _lowercase : Any = kwargs['''threshold'''] if "top_k" in kwargs: _lowercase : Optional[int] = kwargs['''top_k'''] return {}, {}, postprocess_params def __lowercase ( self : int , UpperCamelCase_ : Optional[int] ) -> Any: '''simple docstring''' _lowercase : Tuple = load_image(inputs['''image'''] ) _lowercase : List[Any] = inputs['''candidate_labels'''] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : Tuple = candidate_labels.split(''',''' ) _lowercase : List[Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): _lowercase : Any = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) _lowercase : Union[str, Any] = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __lowercase ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] ) -> int: '''simple docstring''' _lowercase : Optional[int] = model_inputs.pop('''target_size''' ) _lowercase : Optional[int] = model_inputs.pop('''candidate_label''' ) _lowercase : Any = model_inputs.pop('''is_last''' ) _lowercase : List[str] = self.model(**UpperCamelCase_ ) _lowercase : Any = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def __lowercase ( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : List[Any]=None ) -> Optional[int]: '''simple docstring''' _lowercase : Union[str, Any] = [] for model_output in model_outputs: _lowercase : str = model_output['''candidate_label'''] _lowercase : int = BaseModelOutput(UpperCamelCase_ ) _lowercase : Any = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): _lowercase : Union[str, Any] = outputs['''scores'''][index].item() _lowercase : int = self._get_bounding_box(outputs['''boxes'''][index][0] ) _lowercase : Union[str, Any] = {'''score''': score, '''label''': label, '''box''': box} results.append(UpperCamelCase_ ) _lowercase : Any = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k: _lowercase : str = results[:top_k] return results def __lowercase ( self : Any , UpperCamelCase_ : "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) _lowercase , _lowercase , _lowercase , _lowercase : str = box.int().tolist() _lowercase : Union[str, Any] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
411
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowercase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : str = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) _lowercase : List[str] = { '''input_ids''': tf.convert_to_tensor([[0, 2_646, 10_269, 83, 99_942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } _lowercase : Any = model(UpperCamelCase_ )['''last_hidden_state'''] _lowercase : List[Any] = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice. _lowercase : Optional[int] = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
411
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') UpperCAmelCase = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} UpperCAmelCase = '''>>zh<<''' UpperCAmelCase = '''Helsinki-NLP/''' if is_torch_available(): UpperCAmelCase = '''pt''' elif is_tf_available(): UpperCAmelCase = '''tf''' else: UpperCAmelCase = '''jax''' @require_sentencepiece class A_ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : List[Any] = MarianTokenizer _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Optional[int] = True def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() lowercase = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] lowercase = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowercase = Path(self.tmpdirname ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) lowercase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return MarianTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = "</s>" lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(snake_case__ ) , 9 ) def SCREAMING_SNAKE_CASE__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = MarianTokenizer.from_pretrained(F'''{ORG_NAME}opus-mt-en-de''' ) lowercase = en_de_tokenizer(['I am a small frog'] , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowercase = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(snake_case__ , batch.input_ids[0] ) lowercase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(snake_case__ ) lowercase = [x.name for x in Path(snake_case__ ).glob('*' )] self.assertIn('source.spm' , snake_case__ ) MarianTokenizer.from_pretrained(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_tokenizer() lowercase = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=snake_case__ , truncation=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_tokenizer() lowercase = tok(['I am a tiny frog', 'I am a small frog'] , padding=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = {"input_ids": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) lowercase = "Tämä on testi" lowercase = "This is a test" lowercase = [76, 7, 2047, 2] lowercase = [69, 12, 11, 940, 2] lowercase = tokenizer(snake_case__ ).input_ids self.assertListEqual(snake_case__ , snake_case__ ) lowercase = tokenizer(text_target=snake_case__ ).input_ids self.assertListEqual(snake_case__ , snake_case__ ) lowercase = tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ )
84
"""simple docstring""" from string import ascii_uppercase lowerCAmelCase__ = {str(ord(c) - 55): c for c in ascii_uppercase} def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 3_6: raise ValueError("base must be <= 36" ) lowerCAmelCase : Any = "" lowerCAmelCase : Dict = 0 lowerCAmelCase : Tuple = 0 while div != 1: lowerCAmelCase , lowerCAmelCase : List[Any] = divmod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if base >= 1_1 and 9 < mod < 3_6: lowerCAmelCase : Any = ALPHABET_VALUES[str(SCREAMING_SNAKE_CASE )] else: lowerCAmelCase : Dict = str(SCREAMING_SNAKE_CASE ) new_value += actual_value lowerCAmelCase : Dict = num // base lowerCAmelCase : str = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
645
0
"""simple docstring""" import argparse from collections import defaultdict import yaml __lowerCamelCase = "docs/source/en/_toctree.yml" def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = defaultdict(_lowerCamelCase ) A__ = [] A__ = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(_lowerCamelCase ) A__ = new_doc_list A__ = [key for key, value in counts.items() if value > 1] A__ = [] for duplicate_key in duplicates: A__ = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(_lowerCamelCase ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) A__ = sorted(_lowerCamelCase , key=lambda UpperCamelCase__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_lowerCamelCase ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(_lowerCamelCase ) # Sort return overview_doc def UpperCAmelCase ( UpperCamelCase__=False ): """simple docstring""" with open(_lowerCamelCase , encoding='utf-8' ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]["sections"] # Then to the model doc A__ = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 A__ = api_doc[scheduler_idx]["sections"] A__ = clean_doc_toc(_lowerCamelCase ) A__ = False if new_scheduler_doc != scheduler_doc: A__ = True if overwrite: A__ = new_scheduler_doc if diff: if overwrite: A__ = api_doc with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_lowerCamelCase , allow_unicode=_lowerCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def UpperCAmelCase ( UpperCamelCase__=False ): """simple docstring""" with open(_lowerCamelCase , encoding='utf-8' ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]["sections"] # Then to the model doc A__ = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 A__ = False A__ = api_doc[pipeline_idx]["sections"] A__ = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: A__ = pipeline_doc["section"] A__ = clean_doc_toc(_lowerCamelCase ) if overwrite: A__ = new_sub_pipeline_doc new_pipeline_docs.append(_lowerCamelCase ) # sort overall pipeline doc A__ = clean_doc_toc(_lowerCamelCase ) if new_pipeline_docs != pipeline_docs: A__ = True if overwrite: A__ = new_pipeline_docs if diff: if overwrite: A__ = api_doc with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_lowerCamelCase , allow_unicode=_lowerCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __lowerCamelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
717
"""simple docstring""" from manim import * class UpperCamelCase__( __A ): def snake_case__ ( self ) -> List[str]: A__ = Rectangle(height=0.5 ,width=0.5 ) A__ = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0 ) A__ = Rectangle(height=0.2_5 ,width=0.2_5 ) A__ = [mem.copy() for i in range(6 )] A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase ,buff=0 ) A__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase ,buff=0 ) A__ = VGroup(__UpperCAmelCase ,__UpperCAmelCase ).arrange(__UpperCAmelCase ,buff=0 ) A__ = Text('CPU' ,font_size=24 ) A__ = Group(__UpperCAmelCase ,__UpperCAmelCase ).arrange(__UpperCAmelCase ,buff=0.5 ,aligned_edge=__UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCAmelCase ) A__ = [mem.copy() for i in range(4 )] A__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase ,buff=0 ) A__ = Text('GPU' ,font_size=24 ) A__ = Group(__UpperCAmelCase ,__UpperCAmelCase ).arrange(__UpperCAmelCase ,buff=0.5 ,aligned_edge=__UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCAmelCase ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase ,buff=0 ) A__ = Text('Model' ,font_size=24 ) A__ = Group(__UpperCAmelCase ,__UpperCAmelCase ).arrange(__UpperCAmelCase ,buff=0.5 ,aligned_edge=__UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCAmelCase ) A__ = [] A__ = [] for i, rect in enumerate(__UpperCAmelCase ): A__ = fill.copy().set_fill(__UpperCAmelCase ,opacity=0.8 ) target.move_to(__UpperCAmelCase ) model_arr.append(__UpperCAmelCase ) A__ = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0.0 ).set_fill(__UpperCAmelCase ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__UpperCAmelCase ) self.add(*__UpperCAmelCase ,*__UpperCAmelCase ) A__ = [meta_mem.copy() for i in range(6 )] A__ = [meta_mem.copy() for i in range(6 )] A__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase ,buff=0 ) A__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase ,buff=0 ) A__ = VGroup(__UpperCAmelCase ,__UpperCAmelCase ).arrange(__UpperCAmelCase ,buff=0 ) A__ = Text('Disk' ,font_size=24 ) A__ = Group(__UpperCAmelCase ,__UpperCAmelCase ).arrange(__UpperCAmelCase ,buff=0.5 ,aligned_edge=__UpperCAmelCase ) disk.move_to([-4, -1.2_5, 0] ) self.add(__UpperCAmelCase ,__UpperCAmelCase ) A__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A__ = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCAmelCase ,__UpperCAmelCase ) A__ = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' ,font_size=18 ,) blue_text.next_to(__UpperCAmelCase ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__UpperCAmelCase ) A__ = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase ) ) A__ = Square(0.3 ) input.set_fill(__UpperCAmelCase ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__UpperCAmelCase ,buff=0.5 ) self.play(Write(__UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__UpperCAmelCase ,buff=0.0_2 ) self.play(MoveToTarget(__UpperCAmelCase ) ) self.play(FadeOut(__UpperCAmelCase ) ) A__ = Arrow(start=__UpperCAmelCase ,end=__UpperCAmelCase ,color=__UpperCAmelCase ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__UpperCAmelCase ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) A__ = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase ,run_time=3 ) ) A__ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.0_2} self.play( Write(__UpperCAmelCase ) ,Circumscribe(model_arr[0] ,color=__UpperCAmelCase ,**__UpperCAmelCase ) ,Circumscribe(model_cpu_arr[0] ,color=__UpperCAmelCase ,**__UpperCAmelCase ) ,Circumscribe(gpu_rect[0] ,color=__UpperCAmelCase ,**__UpperCAmelCase ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) A__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 ,__UpperCAmelCase ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) A__ = AnimationGroup( FadeOut(__UpperCAmelCase ,run_time=0.5 ) ,MoveToTarget(__UpperCAmelCase ,run_time=0.5 ) ,FadeIn(__UpperCAmelCase ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: A__ = 0.7 self.play( Circumscribe(model_arr[i] ,**__UpperCAmelCase ) ,Circumscribe(cpu_left_col_base[i] ,**__UpperCAmelCase ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__UpperCAmelCase ,**__UpperCAmelCase ) ,Circumscribe(gpu_rect[0] ,color=__UpperCAmelCase ,**__UpperCAmelCase ) ,Circumscribe(model_arr[i + 1] ,color=__UpperCAmelCase ,**__UpperCAmelCase ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.0_2 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__UpperCAmelCase ,**__UpperCAmelCase ) ,Circumscribe(cpu_left_col_base[-1] ,color=__UpperCAmelCase ,**__UpperCAmelCase ) ,Circumscribe(gpu_rect[0] ,color=__UpperCAmelCase ,**__UpperCAmelCase ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) A__ = a_c A__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.0_2 ,buff=0.5 ) self.play( FadeOut(__UpperCAmelCase ) ,FadeOut(__UpperCAmelCase ,run_time=0.5 ) ,) A__ = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase ,run_time=3 ) ,MoveToTarget(__UpperCAmelCase ) ) self.wait()
536
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _A ( unittest.TestCase ): __a = MODEL_FOR_CAUSAL_LM_MAPPING __a = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCAmelCase ( self ): _UpperCAmelCase = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output _UpperCAmelCase = text_generator("""This is a test""" , do_sample=_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) _UpperCAmelCase = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) _UpperCAmelCase = text_generator("""This is a test""" , do_sample=_SCREAMING_SNAKE_CASE , num_return_sequences=2 , return_tensors=_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {"""generated_token_ids""": ANY(_SCREAMING_SNAKE_CASE )}, {"""generated_token_ids""": ANY(_SCREAMING_SNAKE_CASE )}, ] , ) _UpperCAmelCase = text_generator.model.config.eos_token_id _UpperCAmelCase = """<pad>""" _UpperCAmelCase = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=_SCREAMING_SNAKE_CASE , num_return_sequences=2 , batch_size=2 , return_tensors=_SCREAMING_SNAKE_CASE , ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [ {"""generated_token_ids""": ANY(_SCREAMING_SNAKE_CASE )}, {"""generated_token_ids""": ANY(_SCREAMING_SNAKE_CASE )}, ], [ {"""generated_token_ids""": ANY(_SCREAMING_SNAKE_CASE )}, {"""generated_token_ids""": ANY(_SCREAMING_SNAKE_CASE )}, ], ] , ) @require_tf def UpperCAmelCase ( self ): _UpperCAmelCase = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output _UpperCAmelCase = text_generator("""This is a test""" , do_sample=_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) _UpperCAmelCase = text_generator(["""This is a test""", """This is a second test"""] , do_sample=_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = TextGenerationPipeline(model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) return text_generator, ["This is a test", "Another test"] def UpperCAmelCase ( self ): _UpperCAmelCase = """Hello I believe in""" _UpperCAmelCase = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) _UpperCAmelCase = text_generator(_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) _UpperCAmelCase = text_generator(_SCREAMING_SNAKE_CASE , stop_sequence=""" fe""" ) self.assertEqual(_SCREAMING_SNAKE_CASE , [{"""generated_text""": """Hello I believe in fe"""}] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = text_generator.model _UpperCAmelCase = text_generator.tokenizer _UpperCAmelCase = text_generator("""This is a test""" ) self.assertEqual(_SCREAMING_SNAKE_CASE , [{"""generated_text""": ANY(_SCREAMING_SNAKE_CASE )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) _UpperCAmelCase = text_generator("""This is a test""" , return_full_text=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , [{"""generated_text""": ANY(_SCREAMING_SNAKE_CASE )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) _UpperCAmelCase = pipeline(task="""text-generation""" , model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , return_full_text=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = text_generator("""This is a test""" ) self.assertEqual(_SCREAMING_SNAKE_CASE , [{"""generated_text""": ANY(_SCREAMING_SNAKE_CASE )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) _UpperCAmelCase = text_generator("""This is a test""" , return_full_text=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , [{"""generated_text""": ANY(_SCREAMING_SNAKE_CASE )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) _UpperCAmelCase = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [{"""generated_text""": ANY(_SCREAMING_SNAKE_CASE )}, {"""generated_text""": ANY(_SCREAMING_SNAKE_CASE )}], [{"""generated_text""": ANY(_SCREAMING_SNAKE_CASE )}, {"""generated_text""": ANY(_SCREAMING_SNAKE_CASE )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCAmelCase = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [{"""generated_text""": ANY(_SCREAMING_SNAKE_CASE )}, {"""generated_text""": ANY(_SCREAMING_SNAKE_CASE )}], [{"""generated_text""": ANY(_SCREAMING_SNAKE_CASE )}, {"""generated_text""": ANY(_SCREAMING_SNAKE_CASE )}], ] , ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = text_generator("""test""" , return_full_text=_SCREAMING_SNAKE_CASE , return_text=_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = text_generator("""test""" , return_full_text=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = text_generator("""test""" , return_text=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCAmelCase = text_generator("""""" ) self.assertEqual(_SCREAMING_SNAKE_CASE , [{"""generated_text""": ANY(_SCREAMING_SNAKE_CASE )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCAmelCase = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCAmelCase = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 500 , max_new_tokens=20 ) _UpperCAmelCase = text_generator("""This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_SCREAMING_SNAKE_CASE ): text_generator( """This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCAmelCase ( self ): import torch # Classic `model_kwargs` _UpperCAmelCase = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCAmelCase = pipe("""This is a test""" ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCAmelCase = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCAmelCase = pipe("""This is a test""" ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCAmelCase = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCAmelCase = pipe("""This is a test""" ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def UpperCAmelCase ( self ): import torch _UpperCAmelCase = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def UpperCAmelCase ( self ): import torch _UpperCAmelCase = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=_SCREAMING_SNAKE_CASE , top_p=0.5 ) def UpperCAmelCase ( self ): _UpperCAmelCase = """Hello world""" _UpperCAmelCase = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": _UpperCAmelCase = logging.get_logger("""transformers.generation.tf_utils""" ) else: _UpperCAmelCase = logging.get_logger("""transformers.generation.utils""" ) _UpperCAmelCase = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_SCREAMING_SNAKE_CASE ) as cl: _UpperCAmelCase = text_generator(_SCREAMING_SNAKE_CASE , max_length=10 , max_new_tokens=1 ) self.assertIn(_SCREAMING_SNAKE_CASE , cl.out ) # The user only sets one -> no warning with CaptureLogger(_SCREAMING_SNAKE_CASE ) as cl: _UpperCAmelCase = text_generator(_SCREAMING_SNAKE_CASE , max_new_tokens=1 ) self.assertNotIn(_SCREAMING_SNAKE_CASE , cl.out ) with CaptureLogger(_SCREAMING_SNAKE_CASE ) as cl: _UpperCAmelCase = text_generator(_SCREAMING_SNAKE_CASE , max_length=10 ) self.assertNotIn(_SCREAMING_SNAKE_CASE , cl.out )
518
import glob import os import random from string import ascii_lowercase, digits import cva a = "" a = "" a = "" a = 1 # (0 is vertical, 1 is horizontal) def _SCREAMING_SNAKE_CASE ( ) -> None: _UpperCAmelCase , _UpperCAmelCase = get_dataset(snake_case , snake_case ) print("""Processing...""" ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = update_image_and_anno(snake_case , snake_case , snake_case ) for index, image in enumerate(snake_case ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _UpperCAmelCase = random_chars(3_2 ) _UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] _UpperCAmelCase = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(f"/{file_root}.jpg" , snake_case , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"Success {index+1}/{len(snake_case )} with {file_name}" ) _UpperCAmelCase = [] for anno in new_annos[index]: _UpperCAmelCase = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(snake_case ) with open(f"/{file_root}.txt" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> tuple[list, list]: _UpperCAmelCase = [] _UpperCAmelCase = [] for label_file in glob.glob(os.path.join(snake_case , """*.txt""" ) ): _UpperCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(snake_case ) as in_file: _UpperCAmelCase = in_file.readlines() _UpperCAmelCase = os.path.join(snake_case , f"{label_name}.jpg" ) _UpperCAmelCase = [] for obj_list in obj_lists: _UpperCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(snake_case ) labels.append(snake_case ) return img_paths, labels def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case = 1 ) -> tuple[list, list, list]: _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for idx in range(len(snake_case ) ): _UpperCAmelCase = [] _UpperCAmelCase = img_list[idx] path_list.append(snake_case ) _UpperCAmelCase = anno_list[idx] _UpperCAmelCase = cva.imread(snake_case ) if flip_type == 1: _UpperCAmelCase = cva.flip(snake_case , snake_case ) for bbox in img_annos: _UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _UpperCAmelCase = cva.flip(snake_case , snake_case ) for bbox in img_annos: _UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(snake_case ) new_imgs_list.append(snake_case ) return new_imgs_list, new_annos_lists, path_list def _SCREAMING_SNAKE_CASE ( snake_case = 3_2 ) -> str: assert number_char > 1, "The number of character should greater than 1" _UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(snake_case ) for _ in range(snake_case ) ) if __name__ == "__main__": main() print("DONE ✅")
518
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
702
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ = None ): if components is None: __snake_case = [] __snake_case = list(SCREAMING_SNAKE_CASE_ ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(SCREAMING_SNAKE_CASE_ , self.__components ) ) + ")" def __add__( self , SCREAMING_SNAKE_CASE_ ): __snake_case = len(self ) if size == len(SCREAMING_SNAKE_CASE_ ): __snake_case = [self.__components[i] + other.component(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ )] return Vector(SCREAMING_SNAKE_CASE_ ) else: raise Exception('must have the same size' ) def __sub__( self , SCREAMING_SNAKE_CASE_ ): __snake_case = len(self ) if size == len(SCREAMING_SNAKE_CASE_ ): __snake_case = [self.__components[i] - other.component(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ )] return Vector(SCREAMING_SNAKE_CASE_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , SCREAMING_SNAKE_CASE_ ): ... @overload def __mul__( self , SCREAMING_SNAKE_CASE_ ): ... def __mul__( self , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (float, int) ): __snake_case = [c * other for c in self.__components] return Vector(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(self ) == len(SCREAMING_SNAKE_CASE_ ): __snake_case = len(self ) __snake_case = [self.__components[i] * other.component(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ )] return sum(SCREAMING_SNAKE_CASE_ ) else: # error case raise Exception('invalid operand!' ) def __lowerCamelCase ( self ): return Vector(self.__components ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert -len(self.__components ) <= pos < len(self.__components ) __snake_case = value def __lowerCamelCase ( self ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) __snake_case = [c**2 for c in self.__components] return math.sqrt(sum(SCREAMING_SNAKE_CASE_ ) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ): __snake_case = self * other __snake_case = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __lowercase( __snake_case : int ) -> Vector: assert isinstance(__snake_case ,__snake_case ) return Vector([0] * dimension ) def __lowercase( __snake_case : int ,__snake_case : int ) -> Vector: assert isinstance(__snake_case ,__snake_case ) and (isinstance(__snake_case ,__snake_case )) __snake_case = [0] * dimension __snake_case = 1 return Vector(__snake_case ) def __lowercase( __snake_case : float ,__snake_case : Vector ,__snake_case : Vector ) -> Vector: assert ( isinstance(__snake_case ,__snake_case ) and isinstance(__snake_case ,__snake_case ) and (isinstance(__snake_case ,(int, float) )) ) return x * scalar + y def __lowercase( __snake_case : int ,__snake_case : int ,__snake_case : int ) -> Vector: random.seed(__snake_case ) __snake_case = [random.randint(__snake_case ,__snake_case ) for _ in range(__snake_case )] return Vector(__snake_case ) class _lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = matrix __snake_case = w __snake_case = h def __str__( self ): __snake_case = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , SCREAMING_SNAKE_CASE_ ): if self.__width == other.width() and self.__height == other.height(): __snake_case = [] for i in range(self.__height ): __snake_case = [ self.__matrix[i][j] + other.component(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE_ ) return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , SCREAMING_SNAKE_CASE_ ): if self.__width == other.width() and self.__height == other.height(): __snake_case = [] for i in range(self.__height ): __snake_case = [ self.__matrix[i][j] - other.component(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE_ ) return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , SCREAMING_SNAKE_CASE_ ): ... @overload def __mul__( self , SCREAMING_SNAKE_CASE_ ): ... def __mul__( self , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # matrix-vector if len(SCREAMING_SNAKE_CASE_ ) == self.__width: __snake_case = zero_vector(self.__height ) for i in range(self.__height ): __snake_case = [ self.__matrix[i][j] * other.component(SCREAMING_SNAKE_CASE_ ) for j in range(self.__width ) ] ans.change_component(SCREAMING_SNAKE_CASE_ , sum(SCREAMING_SNAKE_CASE_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ): # matrix-scalar __snake_case = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height ) return None def __lowerCamelCase ( self ): return self.__height def __lowerCamelCase ( self ): return self.__width def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if 0 <= x < self.__height and 0 <= y < self.__width: __snake_case = value else: raise Exception('change_component: indices out of bounds' ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if self.__height != self.__width: raise Exception('Matrix is not square' ) __snake_case = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): __snake_case = minor[i][:y] + minor[i][y + 1 :] return Matrix(SCREAMING_SNAKE_CASE_ , self.__width - 1 , self.__height - 1 ).determinant() def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: raise Exception('Indices out of bounds' ) def __lowerCamelCase ( self ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __snake_case = [ self.__matrix[0][y] * self.cofactor(0 , SCREAMING_SNAKE_CASE_ ) for y in range(self.__width ) ] return sum(SCREAMING_SNAKE_CASE_ ) def __lowercase( __snake_case : int ) -> Matrix: __snake_case = [[0] * n for _ in range(__snake_case )] return Matrix(__snake_case ,__snake_case ,__snake_case ) def __lowercase( __snake_case : int ,__snake_case : int ,__snake_case : int ,__snake_case : int ) -> Matrix: random.seed(__snake_case ) __snake_case = [ [random.randint(__snake_case ,__snake_case ) for _ in range(__snake_case )] for _ in range(__snake_case ) ] return Matrix(__snake_case ,__snake_case ,__snake_case )
345
0
"""simple docstring""" def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : str = len(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: UpperCamelCase , UpperCamelCase : List[str] = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ : Union[str, Any] = list(range(1_0, 0, -1)) print(f'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
102
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ = 16 ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCAmelCase : Any = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : Optional[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase : Optional[int] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase : Optional[int] = 16 elif accelerator.mixed_precision != "no": _lowerCAmelCase : Any = 8 else: _lowerCAmelCase : int = None return tokenizer.pad( lowerCAmelCase__ , padding="longest" , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors="pt" , ) # Instantiate dataloaders. _lowerCAmelCase : Tuple = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) _lowerCAmelCase : str = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase__ ) == "1": _lowerCAmelCase : Dict = 2 # New Code # _lowerCAmelCase : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator _lowerCAmelCase : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCAmelCase__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : Tuple = config["lr"] _lowerCAmelCase : Dict = int(config["num_epochs"] ) _lowerCAmelCase : Optional[Any] = int(config["seed"] ) _lowerCAmelCase : Tuple = int(config["batch_size"] ) _lowerCAmelCase : Union[str, Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowerCAmelCase__ ) _lowerCAmelCase , _lowerCAmelCase : Tuple = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : Any = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase : Dict = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase : Optional[int] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler _lowerCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCAmelCase__ ): _lowerCAmelCase : Any = model(**lowerCAmelCase__ ) _lowerCAmelCase : str = output.loss accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : Any = model(**lowerCAmelCase__ ) _lowerCAmelCase : Dict = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase : str = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) _lowerCAmelCase : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowerCAmelCase__ ) def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowerCAmelCase__ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _lowerCAmelCase : int = parser.parse_args() _lowerCAmelCase : List[str] = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
424
0
"""simple docstring""" def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : str ): """simple docstring""" if not (isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase )): raise ValueError('''longest_common_substring() takes two strings for inputs''' ) lowerCamelCase__ : Any =len(__lowerCamelCase ) lowerCamelCase__ : Any =len(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =[[0] * (texta_length + 1) for _ in range(texta_length + 1 )] lowerCamelCase__ : Dict =0 lowerCamelCase__ : Dict =0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: lowerCamelCase__ : str =1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: lowerCamelCase__ : Optional[Any] =i lowerCamelCase__ : Union[str, Any] =dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
625
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["CLIPFeatureExtractor"] _lowercase : int = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
625
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase__ : Any = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } lowerCAmelCase__ : Union[str, Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def _a ( __lowerCAmelCase : Any ): """simple docstring""" snake_case__ : str = {} with open(__lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(__lowerCAmelCase ): snake_case__ : Any = line.strip() if line: snake_case__ : Optional[Any] = line.split() snake_case__ : List[str] = line_number snake_case__ : int = words[0] snake_case__ : str = value return result def _a ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : str ): """simple docstring""" for attribute in key.split('''.''' ): snake_case__ : Optional[Any] = getattr(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCAmelCase ): snake_case__ : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] snake_case__ : str = '''param''' if weight_type is not None and weight_type != "param": snake_case__ : Optional[int] = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": snake_case__ : Optional[int] = hf_pointer for attribute in hf_param_name.split('''.''' ): snake_case__ : Optional[Any] = getattr(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Any = shape_pointer.shape # let's reduce dimension snake_case__ : Union[str, Any] = value[0] else: snake_case__ : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case__ : int = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : List[Any] = value elif weight_type == "bias": snake_case__ : Tuple = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): snake_case__ : Optional[int] = getattr(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Any = value else: snake_case__ : List[str] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _a ( __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ): """simple docstring""" snake_case__ : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCAmelCase ): snake_case__ : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] snake_case__ : List[str] = '''param''' if weight_type is not None and weight_type != "param": snake_case__ : List[Any] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": snake_case__ : List[Any] = '''.'''.join([key, hf_param_name] ) else: snake_case__ : List[Any] = key snake_case__ : Dict = value if '''lm_head''' in full_key else value[0] lowerCAmelCase__ : Optional[int] = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def _a ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any=None , __lowerCAmelCase : int=None ): """simple docstring""" snake_case__ : Union[str, Any] = False for key, mapped_key in MAPPING.items(): snake_case__ : Any = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: snake_case__ : List[Any] = True if "*" in mapped_key: snake_case__ : List[str] = name.split(__lowerCAmelCase )[0].split('''.''' )[-2] snake_case__ : int = mapped_key.replace('''*''' , __lowerCAmelCase ) if "weight_g" in name: snake_case__ : List[str] = '''weight_g''' elif "weight_v" in name: snake_case__ : Dict = '''weight_v''' elif "bias" in name: snake_case__ : Union[str, Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = '''weight''' else: snake_case__ : int = None if hf_dict is not None: rename_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return is_used return is_used def _a ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict ): """simple docstring""" snake_case__ : Optional[Any] = [] snake_case__ : List[str] = fairseq_model.state_dict() snake_case__ : Tuple = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) snake_case__ : Union[str, Any] = True else: snake_case__ : List[str] = load_wavaveca_layer(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _a ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] ): """simple docstring""" snake_case__ : List[Any] = full_name.split('''conv_layers.''' )[-1] snake_case__ : List[Any] = name.split('''.''' ) snake_case__ : str = int(items[0] ) snake_case__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case__ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case__ : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case__ : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case__ : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def _a ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Optional[Any]=False ): """simple docstring""" if config_path is not None: snake_case__ : str = WavaVecaConfig.from_pretrained(__lowerCAmelCase ) else: snake_case__ : Optional[int] = WavaVecaConfig() if is_seq_class: snake_case__ : str = read_txt_into_dict(__lowerCAmelCase ) snake_case__ : List[str] = idalabel snake_case__ : List[Any] = WavaVecaForSequenceClassification(__lowerCAmelCase ) snake_case__ : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) feature_extractor.save_pretrained(__lowerCAmelCase ) elif is_finetuned: if dict_path: snake_case__ : List[str] = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case__ : List[str] = target_dict.pad_index snake_case__ : Optional[int] = target_dict.bos_index snake_case__ : int = target_dict.eos_index snake_case__ : List[str] = len(target_dict.symbols ) snake_case__ : List[str] = os.path.join(__lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) snake_case__ : int = target_dict.indices # fairseq has the <pad> and <s> switched snake_case__ : Union[str, Any] = 0 snake_case__ : Tuple = 1 with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Union[str, Any] = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__lowerCAmelCase , ) snake_case__ : Union[str, Any] = True if config.feat_extract_norm == '''layer''' else False snake_case__ : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case__ : Any = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case__ : Union[str, Any] = WavaVecaForCTC(__lowerCAmelCase ) else: snake_case__ : List[Any] = WavaVecaForPreTraining(__lowerCAmelCase ) if is_finetuned or is_seq_class: snake_case__ , snake_case__ , snake_case__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: snake_case__ : Union[str, Any] = argparse.Namespace(task='''audio_pretraining''' ) snake_case__ : Dict = fairseq.tasks.setup_task(__lowerCAmelCase ) snake_case__ , snake_case__ , snake_case__ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCAmelCase ) snake_case__ : Any = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) lowerCAmelCase__ : Tuple = parser.parse_args() lowerCAmelCase__ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
347
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a : """simple docstring""" def __init__( self : Optional[Any] , snake_case_ : List[str]=2 , snake_case_ : Optional[int]=3 , snake_case_ : Union[str, Any]=6_4 , snake_case_ : Optional[Any]=None ): '''simple docstring''' snake_case__ : List[str] = np.random.default_rng(snake_case_ ) snake_case__ : int = length snake_case__ : Tuple = rng.normal(size=(length,) ).astype(np.floataa ) snake_case__ : Optional[Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ): '''simple docstring''' return self.length def __getitem__( self : List[str] , snake_case_ : int ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class a ( torch.nn.Module ): """simple docstring""" def __init__( self : int , snake_case_ : str=0 , snake_case_ : Optional[Any]=0 , snake_case_ : Tuple=False ): '''simple docstring''' super().__init__() snake_case__ : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case__ : Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case__ : int = True def __magic_name__ ( self : int , snake_case_ : str=None ): '''simple docstring''' if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case__ : str = False return x * self.a[0] + self.b[0] class a ( torch.nn.Module ): """simple docstring""" def __init__( self : List[str] , snake_case_ : Tuple=0 , snake_case_ : int=0 , snake_case_ : int=False ): '''simple docstring''' super().__init__() snake_case__ : Tuple = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) snake_case__ : int = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) snake_case__ : Union[str, Any] = True def __magic_name__ ( self : Union[str, Any] , snake_case_ : List[str]=None ): '''simple docstring''' if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case__ : List[Any] = False return x * self.a + self.b def _a ( __lowerCAmelCase : Any , __lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer snake_case__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case__ : Optional[int] = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} snake_case__ : List[Any] = load_dataset('''csv''' , data_files=__lowerCAmelCase ) snake_case__ : Union[str, Any] = datasets['''train'''].unique('''label''' ) snake_case__ : Optional[Any] = {v: i for i, v in enumerate(__lowerCAmelCase )} def tokenize_function(__lowerCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Union[str, Any] = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) if "label" in examples: snake_case__ : List[Any] = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ : List[Any] = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__lowerCAmelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCAmelCase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(__lowerCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. snake_case__ : str = DataLoader(tokenized_datasets['''train'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=2 ) snake_case__ : List[Any] = DataLoader(tokenized_datasets['''validation'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
347
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class A__ : def __init__( self , A_ , A_=2 , A_=32 , A_=16 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=[0, 1, 2, 3] , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.02 , A_=3 , A_=[1, 384, 24, 24] , A_=True , A_=None , ): '''simple docstring''' UpperCamelCase : Dict = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : Tuple = image_size UpperCamelCase : Optional[int] = patch_size UpperCamelCase : str = num_channels UpperCamelCase : Tuple = is_training UpperCamelCase : Dict = use_labels UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : Optional[int] = num_hidden_layers UpperCamelCase : str = backbone_out_indices UpperCamelCase : Tuple = num_attention_heads UpperCamelCase : int = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : Dict = initializer_range UpperCamelCase : Dict = num_labels UpperCamelCase : Union[str, Any] = backbone_featmap_shape UpperCamelCase : Dict = scope UpperCamelCase : Any = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase : Any = (image_size // patch_size) ** 2 UpperCamelCase : Optional[int] = num_patches + 1 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Optional[int] = None if self.use_labels: UpperCamelCase : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase : Tuple = self.get_config() return config, pixel_values, labels def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=A_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : str = DPTModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : List[Any] = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : int = self.num_labels UpperCamelCase : Dict = DPTForDepthEstimation(A_ ) model.to(A_ ) model.eval() UpperCamelCase : Dict = model(A_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Tuple = self.num_labels UpperCamelCase : int = DPTForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase : Dict = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = config_and_inputs UpperCamelCase : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :Tuple = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _UpperCAmelCase :List[str] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :str = False _UpperCAmelCase :Dict = False def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = DPTModelTester(self ) UpperCamelCase : str = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __UpperCamelCase( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def __UpperCamelCase( self ): '''simple docstring''' pass def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Tuple = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Optional[int] = model_class(A_ ) UpperCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Optional[Any] = [*signature.parameters.keys()] UpperCamelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase , UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[Any] = True if model_class in get_values(A_ ): continue UpperCamelCase : Optional[int] = model_class(A_ ) model.to(A_ ) model.train() UpperCamelCase : Optional[int] = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase : Optional[int] = model(**A_ ).loss loss.backward() def __UpperCamelCase( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Any = False UpperCamelCase : Optional[int] = True if model_class in get_values(A_ ) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase : str = model_class(A_ ) model.to(A_ ) model.gradient_checkpointing_enable() model.train() UpperCamelCase : Any = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase : Any = model(**A_ ).loss loss.backward() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[Any] = _config_zero_init(A_ ) for model_class in self.all_model_classes: UpperCamelCase : List[str] = model_class(config=A_ ) # Skip the check for the backbone UpperCamelCase : List[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase : Optional[Any] = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCamelCase( self ): '''simple docstring''' pass @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase : Dict = DPTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Dict = "add" with self.assertRaises(A_ ): UpperCamelCase : Optional[int] = DPTForDepthEstimation(A_ ) def A_ ( ) -> Optional[Any]: UpperCamelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) UpperCamelCase : Optional[Any] = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(A_ ) UpperCamelCase : int = prepare_img() UpperCamelCase : Tuple = image_processor(images=A_ , return_tensors="pt" ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase : List[str] = model(**A_ ) UpperCamelCase : int = outputs.predicted_depth # verify the predicted depth UpperCamelCase : str = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , A_ ) UpperCamelCase : str = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , A_ , atol=1e-4 ) )
38
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A_ ( ) -> Dict: UpperCamelCase : Tuple = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=_lowerCAmelCase , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=_lowerCAmelCase , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=_lowerCAmelCase ) return parser.parse_args() def A_ ( ) -> Optional[int]: UpperCamelCase : Tuple = parse_args() # Import training_script as a module. UpperCamelCase : Union[str, Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCamelCase : List[Any] = script_fpath.stem UpperCamelCase : Optional[Any] = importlib.import_module(_lowerCAmelCase ) # Patch sys.argv UpperCamelCase : List[Any] = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
38
1
'''simple docstring''' import os def UpperCAmelCase_ ( ): """simple docstring""" with open(os.path.dirname(lowerCAmelCase_ ) + "/grid.txt" ) as f: lowercase = [] # noqa: E741 for _ in range(20 ): l.append([int(lowerCAmelCase_ ) for x in f.readline().split()] ) lowercase = 0 # right for i in range(20 ): for j in range(17 ): lowercase = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowercase = temp # down for i in range(17 ): for j in range(20 ): lowercase = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowercase = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowercase = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowercase = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowercase = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowercase = temp return maximum if __name__ == "__main__": print(solution())
310
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__(self : Tuple , A__ : int , A__ : Any=7 , A__ : str=3 , A__ : Dict=1_8 , A__ : Union[str, Any]=3_0 , A__ : List[Any]=4_0_0 , A__ : Dict=True , A__ : Union[str, Any]=None , A__ : Dict=True , A__ : int=None , A__ : int=True , A__ : Union[str, Any]=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , A__ : Optional[int]=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , A__ : int=True , ) -> List[str]: lowercase = size if size is not None else {"height": 2_2_4, "width": 2_2_4} lowercase = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_center_crop lowercase = crop_size lowercase = do_normalize lowercase = image_mean lowercase = image_std lowercase = do_convert_rgb def UpperCAmelCase__ (self : str ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCAmelCase__ (self : Any , A__ : List[str]=False , A__ : Union[str, Any]=False , A__ : int=False ) -> str: assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowercase = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowercase = [] for i in range(self.batch_size ): lowercase , lowercase = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowercase = [Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) for x in image_inputs] if torchify: lowercase = [torch.from_numpy(A__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class UpperCAmelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ (self : Tuple ) -> Any: lowercase = ChineseCLIPImageProcessingTester(self , do_center_crop=A__ ) @property def UpperCAmelCase__ (self : Union[str, Any] ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ (self : List[str] ) -> Dict: lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , "do_resize" ) ) self.assertTrue(hasattr(A__ , "size" ) ) self.assertTrue(hasattr(A__ , "do_center_crop" ) ) self.assertTrue(hasattr(A__ , "center_crop" ) ) self.assertTrue(hasattr(A__ , "do_normalize" ) ) self.assertTrue(hasattr(A__ , "image_mean" ) ) self.assertTrue(hasattr(A__ , "image_std" ) ) self.assertTrue(hasattr(A__ , "do_convert_rgb" ) ) def UpperCAmelCase__ (self : Optional[int] ) -> Any: lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 2_2_4, "width": 2_2_4} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def UpperCAmelCase__ (self : str ) -> Union[str, Any]: pass def UpperCAmelCase__ (self : int ) -> Optional[int]: # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = self.image_processor_tester.prepare_inputs(equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase = image_processing(A__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCAmelCase__ (self : Optional[int] ) -> Optional[int]: # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = self.image_processor_tester.prepare_inputs(equal_resolution=A__ , numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase = image_processing(A__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCAmelCase__ (self : Tuple ) -> Tuple: # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = self.image_processor_tester.prepare_inputs(equal_resolution=A__ , torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase = image_processing(A__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class UpperCAmelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase : Dict = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ (self : Union[str, Any] ) -> Any: lowercase = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=A__ ) lowercase = 3 @property def UpperCAmelCase__ (self : Any ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ (self : List[str] ) -> Tuple: lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , "do_resize" ) ) self.assertTrue(hasattr(A__ , "size" ) ) self.assertTrue(hasattr(A__ , "do_center_crop" ) ) self.assertTrue(hasattr(A__ , "center_crop" ) ) self.assertTrue(hasattr(A__ , "do_normalize" ) ) self.assertTrue(hasattr(A__ , "image_mean" ) ) self.assertTrue(hasattr(A__ , "image_std" ) ) self.assertTrue(hasattr(A__ , "do_convert_rgb" ) ) def UpperCAmelCase__ (self : List[Any] ) -> str: pass def UpperCAmelCase__ (self : Dict ) -> Tuple: # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = self.image_processor_tester.prepare_inputs(equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase = image_processing(A__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
310
1
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase__ ( a , unittest.TestCase ): '''simple docstring''' _snake_case = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def snake_case ( self , SCREAMING_SNAKE_CASE=0 ) -> Any: __lowerCAmelCase : Dict = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : str = np.random.RandomState(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.7_5, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case ( self ) -> List[Any]: __lowerCAmelCase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = self.get_dummy_inputs() __lowerCAmelCase : List[Any] = pipe(**SCREAMING_SNAKE_CASE ).images __lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) __lowerCAmelCase : str = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def snake_case ( self ) -> Optional[int]: __lowerCAmelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCAmelCase : Any = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = self.get_dummy_inputs() __lowerCAmelCase : Tuple = pipe(**SCREAMING_SNAKE_CASE ).images __lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCAmelCase : Optional[int] = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case ( self ) -> Union[str, Any]: __lowerCAmelCase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCAmelCase : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) # warmup pass to apply optimizations __lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs() ) __lowerCAmelCase : List[str] = self.get_dummy_inputs() __lowerCAmelCase : List[Any] = pipe(**SCREAMING_SNAKE_CASE ).images __lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCAmelCase : List[str] = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case ( self ) -> Optional[int]: __lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCAmelCase : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = self.get_dummy_inputs() __lowerCAmelCase : List[str] = pipe(**SCREAMING_SNAKE_CASE ).images __lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCAmelCase : List[str] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case ( self ) -> Dict: __lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCAmelCase : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = self.get_dummy_inputs() __lowerCAmelCase : Dict = pipe(**SCREAMING_SNAKE_CASE ).images __lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCAmelCase : Optional[Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case ( self ) -> Tuple: __lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCAmelCase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = self.get_dummy_inputs() __lowerCAmelCase : Optional[Any] = pipe(**SCREAMING_SNAKE_CASE ).images __lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCAmelCase : Dict = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @property def snake_case ( self ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case ( self ) -> Any: __lowerCAmelCase : Union[str, Any] = ort.SessionOptions() __lowerCAmelCase : int = False return options def snake_case ( self ) -> str: __lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCAmelCase : Any = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default __lowerCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = 'A fantasy landscape, trending on artstation' __lowerCAmelCase : str = np.random.RandomState(0 ) __lowerCAmelCase : Union[str, Any] = pipe( prompt=SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE , output_type='np' , ) __lowerCAmelCase : Optional[Any] = output.images __lowerCAmelCase : Optional[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) __lowerCAmelCase : Optional[int] = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def snake_case ( self ) -> str: __lowerCAmelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCAmelCase : str = init_image.resize((7_68, 5_12) ) __lowerCAmelCase : int = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = 'A fantasy landscape, trending on artstation' __lowerCAmelCase : str = np.random.RandomState(0 ) __lowerCAmelCase : Union[str, Any] = pipe( prompt=SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE , output_type='np' , ) __lowerCAmelCase : List[str] = output.images __lowerCAmelCase : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) __lowerCAmelCase : Optional[Any] = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
123
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCamelCase__ ( a , unittest.TestCase ): '''simple docstring''' _snake_case = FlaxAutoencoderKL @property def snake_case ( self ) -> str: __lowerCAmelCase : Union[str, Any] = 4 __lowerCAmelCase : Tuple = 3 __lowerCAmelCase : str = (32, 32) __lowerCAmelCase : Dict = jax.random.PRNGKey(0 ) __lowerCAmelCase : List[str] = jax.random.uniform(SCREAMING_SNAKE_CASE , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def snake_case ( self ) -> int: __lowerCAmelCase : List[Any] = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __lowerCAmelCase : List[str] = self.dummy_input return init_dict, inputs_dict
123
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[int] ): return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Optional[int] ,_UpperCamelCase : int ,_UpperCamelCase : List[str]="attention" ): __lowerCamelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) __lowerCamelCase = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) __lowerCamelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) __lowerCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) __lowerCamelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) __lowerCamelCase = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) __lowerCamelCase = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) __lowerCamelCase = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : List[Any] ,_UpperCamelCase : Any=False ): if split_mlp_wi: __lowerCamelCase = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] __lowerCamelCase = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] __lowerCamelCase = (wi_a, wi_a) else: __lowerCamelCase = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] __lowerCamelCase = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : str ): return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def a__ ( _UpperCamelCase : dict ,*, _UpperCamelCase : int ,_UpperCamelCase : bool ,_UpperCamelCase : bool = False ): __lowerCamelCase = traverse_util.flatten_dict(variables['''target'''] ) __lowerCamelCase = {'''/'''.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowerCamelCase = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,__a ) __lowerCamelCase = collections.OrderedDict() # Shared embeddings. __lowerCamelCase = old['''token_embedder/embedding'''] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). __lowerCamelCase = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_attention_layer_norm''' ) __lowerCamelCase = tax_attention_lookup(__a ,__a ,'''encoder''' ,'''attention''' ) __lowerCamelCase = layer_norm __lowerCamelCase = k.T __lowerCamelCase = o.T __lowerCamelCase = q.T __lowerCamelCase = v.T # Block i, layer 1 (MLP). __lowerCamelCase = tax_layer_norm_lookup(__a ,__a ,'''encoder''' ,'''pre_mlp_layer_norm''' ) __lowerCamelCase = tax_mlp_lookup(__a ,__a ,'''encoder''' ,__a ) __lowerCamelCase = layer_norm if split_mlp_wi: __lowerCamelCase = wi[0].T __lowerCamelCase = wi[1].T else: __lowerCamelCase = wi.T __lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCamelCase = tax_relpos_bias_lookup( __a ,__a ,'''encoder''' ).T __lowerCamelCase = old['''encoder/encoder_norm/scale'''] if not scalable_attention: __lowerCamelCase = tax_relpos_bias_lookup( __a ,0 ,'''encoder''' ).T __lowerCamelCase = tax_relpos_bias_lookup( __a ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). __lowerCamelCase = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) __lowerCamelCase = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''self_attention''' ) __lowerCamelCase = layer_norm __lowerCamelCase = k.T __lowerCamelCase = o.T __lowerCamelCase = q.T __lowerCamelCase = v.T # Block i, layer 1 (Cross Attention). __lowerCamelCase = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) __lowerCamelCase = tax_attention_lookup(__a ,__a ,'''decoder''' ,'''encoder_decoder_attention''' ) __lowerCamelCase = layer_norm __lowerCamelCase = k.T __lowerCamelCase = o.T __lowerCamelCase = q.T __lowerCamelCase = v.T # Block i, layer 2 (MLP). __lowerCamelCase = tax_layer_norm_lookup(__a ,__a ,'''decoder''' ,'''pre_mlp_layer_norm''' ) __lowerCamelCase = tax_mlp_lookup(__a ,__a ,'''decoder''' ,__a ) __lowerCamelCase = layer_norm if split_mlp_wi: __lowerCamelCase = wi[0].T __lowerCamelCase = wi[1].T else: __lowerCamelCase = wi.T __lowerCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCamelCase = tax_relpos_bias_lookup(__a ,__a ,'''decoder''' ).T __lowerCamelCase = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowerCamelCase = old['''decoder/logits_dense/kernel'''].T return new def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : bool ): __lowerCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowerCamelCase = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowerCamelCase = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) __lowerCamelCase = state_dict['''shared.weight'''] return state_dict def a__ ( _UpperCamelCase : List[str] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : List[Any] ): __lowerCamelCase = checkpoints.load_tax_checkpoint(__a ) __lowerCamelCase = convert_tax_to_pytorch( __a ,num_layers=config.num_layers ,is_encoder_only=__a ,scalable_attention=__a ) __lowerCamelCase = make_state_dict(__a ,__a ) model.load_state_dict(__a ,strict=__a ) def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Any ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : bool = False ,_UpperCamelCase : bool = False ,): __lowerCamelCase = MTaConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowerCamelCase = UMTaEncoderModel(__a ) else: __lowerCamelCase = UMTaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a ,__a ,__a ,__a ,__a ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) a_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
175
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
0
"""simple docstring""" import math SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 7 SCREAMING_SNAKE_CASE_ = BALLS_PER_COLOUR * NUM_COLOURS def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ = 20 ) -> Dict: a_ : Tuple = math.comb(_lowerCamelCase, _lowerCamelCase ) a_ : Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, _lowerCamelCase ) a_ : Optional[int] = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
700
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class snake_case_ ( a_ ): __lowerCAmelCase = "realm" def __init__( self , a_=3_0_5_2_2 , a_=7_6_8 , a_=1_2_8 , a_=1_2 , a_=1_2 , a_=8 , a_=3_0_7_2 , a_="gelu_new" , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=2 , a_=0.02 , a_=1e-12 , a_=2_5_6 , a_=1_0 , a_=1e-3 , a_=5 , a_=3_2_0 , a_=1_3_3_5_3_7_1_8 , a_=5_0_0_0 , a_=1 , a_=0 , a_=2 , **a_ , ): super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) # Common config a_ : Optional[int] = vocab_size a_ : List[Any] = max_position_embeddings a_ : Optional[Any] = hidden_size a_ : Optional[Any] = retriever_proj_size a_ : List[str] = num_hidden_layers a_ : List[Any] = num_attention_heads a_ : Tuple = num_candidates a_ : str = intermediate_size a_ : Optional[int] = hidden_act a_ : List[str] = hidden_dropout_prob a_ : List[str] = attention_probs_dropout_prob a_ : Tuple = initializer_range a_ : Tuple = type_vocab_size a_ : str = layer_norm_eps # Reader config a_ : str = span_hidden_size a_ : Union[str, Any] = max_span_width a_ : Tuple = reader_layer_norm_eps a_ : List[Any] = reader_beam_size a_ : str = reader_seq_len # Retrieval config a_ : str = num_block_records a_ : int = searcher_beam_size
370
0
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCAmelCase__ ) , "Tatoeba directory does not exist." ) class A__ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self :Tuple ) -> int: '''simple docstring''' _a : List[Any] =tempfile.mkdtemp() return TatoebaConverter(save_dir=SCREAMING_SNAKE_CASE ) @slow def __UpperCAmelCase ( self :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.resolver.convert_models(["""heb-eng"""] ) @slow def __UpperCAmelCase ( self :Optional[Any] ) -> Dict: '''simple docstring''' _a , _a : List[str] =self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=SCREAMING_SNAKE_CASE ) assert mmeta["long_pair"] == "heb-eng"
694
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class A__ ( unittest.TestCase ): def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Any=1_3 , SCREAMING_SNAKE_CASE :Any=7 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Optional[Any]=9_9 , SCREAMING_SNAKE_CASE :Tuple=3_2 , SCREAMING_SNAKE_CASE :Union[str, Any]=5 , SCREAMING_SNAKE_CASE :List[str]=4 , SCREAMING_SNAKE_CASE :int=3_7 , SCREAMING_SNAKE_CASE :Optional[Any]="gelu" , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :Dict=5_1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=2 , SCREAMING_SNAKE_CASE :List[Any]=0.02 , SCREAMING_SNAKE_CASE :int=4 , ) -> Tuple: '''simple docstring''' _a : Optional[Any] =parent _a : List[str] =batch_size _a : List[str] =seq_length _a : List[Any] =is_training _a : Optional[int] =use_attention_mask _a : List[Any] =use_token_type_ids _a : List[Any] =use_labels _a : Optional[Any] =vocab_size _a : str =hidden_size _a : List[Any] =num_hidden_layers _a : List[Any] =num_attention_heads _a : Union[str, Any] =intermediate_size _a : int =hidden_act _a : List[str] =hidden_dropout_prob _a : Optional[int] =attention_probs_dropout_prob _a : Dict =max_position_embeddings _a : Any =type_vocab_size _a : str =type_sequence_label_size _a : str =initializer_range _a : List[str] =num_choices def __UpperCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' _a : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Dict =None if self.use_attention_mask: _a : Any =random_attention_mask([self.batch_size, self.seq_length] ) _a : Optional[int] =None if self.use_token_type_ids: _a : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Union[str, Any] =RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self :Optional[Any] ) -> int: '''simple docstring''' _a : Tuple =self.prepare_config_and_inputs() _a , _a , _a , _a : List[Any] =config_and_inputs _a : Optional[int] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def __UpperCAmelCase ( self :int ) -> str: '''simple docstring''' _a : List[Any] =self.prepare_config_and_inputs() _a , _a , _a , _a : Optional[int] =config_and_inputs _a : Tuple =True _a : Optional[Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class A__ ( UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : Dict = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' _a : Union[str, Any] =FlaxRobertaPreLayerNormModelTester(self ) @slow def __UpperCAmelCase ( self :str ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _a : Optional[int] =model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : Dict =model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_flax class A__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self :Any ) -> str: '''simple docstring''' _a : str =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : List[Any] =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _a : Dict =model(SCREAMING_SNAKE_CASE )[0] _a : List[Any] =[1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. _a : Any =np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def __UpperCAmelCase ( self :int ) -> int: '''simple docstring''' _a : Union[str, Any] =FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=SCREAMING_SNAKE_CASE ) _a : Any =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) _a : Optional[int] =model(SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. _a : str =np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
694
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
716
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
0
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class A__ ( unittest.TestCase ): def __init__( self : List[Any] , _a : Any , _a : Optional[int]=13 , _a : int=7 , _a : List[Any]=True , _a : Optional[Any]=True , _a : int=True , _a : List[str]=True , _a : Any=99 , _a : int=32 , _a : Union[str, Any]=5 , _a : Optional[Any]=4 , _a : Any=37 , _a : str="gelu" , _a : List[Any]=0.1 , _a : Dict=0.1 , _a : Union[str, Any]=512 , _a : Optional[int]=16 , _a : List[str]=2 , _a : Union[str, Any]=0.02 , _a : List[Any]=4 , ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =seq_length _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_attention_mask _SCREAMING_SNAKE_CASE =use_token_type_ids _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =num_choices def A ( self : Any ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE =None if self.use_attention_mask: _SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_a , ) return config, input_ids, attention_mask def A ( self : int ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =config_and_inputs _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A__ ( A__ , unittest.TestCase ): A__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def A ( self : str ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =FlaxDistilBertModelTester(self ) @slow def A ( self : str ) -> Any: '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class_name.from_pretrained('distilbert-base-uncased' ) _SCREAMING_SNAKE_CASE =model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class A__ ( unittest.TestCase ): @slow def A ( self : Any ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) _SCREAMING_SNAKE_CASE =np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _SCREAMING_SNAKE_CASE =np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a )[0] _SCREAMING_SNAKE_CASE =(1, 11, 768) self.assertEqual(output.shape , _a ) _SCREAMING_SNAKE_CASE =np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _a , atol=1e-4 ) )
405
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Dict = "▁" lowerCamelCase : Union[str, Any] = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } lowerCamelCase : Union[str, Any] = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } lowerCamelCase : List[str] = { "facebook/s2t-small-librispeech-asr": 1_0_2_4, } lowerCamelCase : str = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] lowerCamelCase : List[Any] = {"mustc": MUSTC_LANGS} class A__ ( A__ ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = MAX_MODEL_INPUT_SIZES A__ = ['input_ids', 'attention_mask'] A__ = [] def __init__( self : List[str] , _a : Tuple , _a : Optional[Any] , _a : Tuple="<s>" , _a : List[Any]="</s>" , _a : Union[str, Any]="<pad>" , _a : List[Any]="<unk>" , _a : Optional[int]=False , _a : Optional[Any]=False , _a : List[str]=None , _a : Any=None , _a : Optional[Dict[str, Any]] = None , **_a : str , ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , pad_token=_a , do_upper_case=_a , do_lower_case=_a , tgt_lang=_a , lang_codes=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _SCREAMING_SNAKE_CASE =do_upper_case _SCREAMING_SNAKE_CASE =do_lower_case _SCREAMING_SNAKE_CASE =load_json(_a ) _SCREAMING_SNAKE_CASE ={v: k for k, v in self.encoder.items()} _SCREAMING_SNAKE_CASE =spm_file _SCREAMING_SNAKE_CASE =load_spm(_a , self.sp_model_kwargs ) if lang_codes is not None: _SCREAMING_SNAKE_CASE =lang_codes _SCREAMING_SNAKE_CASE =LANGUAGES[lang_codes] _SCREAMING_SNAKE_CASE =[f"<lang:{lang}>" for lang in self.langs] _SCREAMING_SNAKE_CASE ={lang: self.sp_model.PieceToId(f"<lang:{lang}>" ) for lang in self.langs} _SCREAMING_SNAKE_CASE =self.lang_tokens _SCREAMING_SNAKE_CASE =tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _SCREAMING_SNAKE_CASE ={} @property def A ( self : Union[str, Any] ) -> int: '''simple docstring''' return len(self.encoder ) @property def A ( self : str ) -> str: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def A ( self : Dict , _a : Optional[int] ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =new_tgt_lang self.set_tgt_lang_special_tokens(_a ) def A ( self : Any , _a : str ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.lang_code_to_id[tgt_lang] _SCREAMING_SNAKE_CASE =[lang_code_id] def A ( self : Any , _a : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_a , out_type=_a ) def A ( self : List[str] , _a : Optional[Any] ) -> Dict: '''simple docstring''' return self.encoder.get(_a , self.encoder[self.unk_token] ) def A ( self : str , _a : int ) -> str: '''simple docstring''' return self.decoder.get(_a , self.unk_token ) def A ( self : Any , _a : List[str] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _SCREAMING_SNAKE_CASE =self.sp_model.decode(_a ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _SCREAMING_SNAKE_CASE =[] else: current_sub_tokens.append(_a ) _SCREAMING_SNAKE_CASE =self.sp_model.decode(_a ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def A ( self : Union[str, Any] , _a : List[Any] , _a : List[str]=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def A ( self : Dict , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) _SCREAMING_SNAKE_CASE =[1] * len(self.prefix_tokens ) _SCREAMING_SNAKE_CASE =[1] if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def A ( self : str ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.__dict__.copy() _SCREAMING_SNAKE_CASE =None return state def __setstate__( self : List[Any] , _a : Dict ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =load_spm(self.spm_file , self.sp_model_kwargs ) def A ( self : Any , _a : str , _a : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =Path(_a ) assert save_dir.is_dir(), f"{save_directory} should be a directory" _SCREAMING_SNAKE_CASE =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) _SCREAMING_SNAKE_CASE =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _a ) if os.path.abspath(self.spm_file ) != os.path.abspath(_a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _a ) elif not os.path.isfile(self.spm_file ): with open(_a , 'wb' ) as fi: _SCREAMING_SNAKE_CASE =self.sp_model.serialized_model_proto() fi.write(_a ) return (str(_a ), str(_a )) def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" _SCREAMING_SNAKE_CASE =sentencepiece.SentencePieceProcessor(**_UpperCamelCase ) spm.Load(str(_UpperCamelCase ) ) return spm def _lowerCAmelCase ( _UpperCamelCase : str ) -> Union[Dict, List]: """simple docstring""" with open(_UpperCamelCase , 'r' ) as f: return json.load(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : str ) -> None: """simple docstring""" with open(_UpperCamelCase , 'w' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase , indent=2 )
405
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase,unittest.TestCase ): _A = FlaxAutoencoderKL @property def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = 3 SCREAMING_SNAKE_CASE_ : Union[str, Any] = (32, 32) SCREAMING_SNAKE_CASE_ : List[str] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_ : Tuple = jax.random.uniform(lowercase__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_input return init_dict, inputs_dict
68
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __lowerCamelCase ( ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.nn.Linear(2 , 4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) SCREAMING_SNAKE_CASE_ : Any = torch.optim.lr_scheduler.OneCycleLR(SCREAMING_SNAKE_CASE_ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) SCREAMING_SNAKE_CASE_ : Dict = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) SCREAMING_SNAKE_CASE_ : Tuple = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): @require_cuda def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowercase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = Accelerator(cpu=lowercase__ ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = Accelerator() SCREAMING_SNAKE_CASE_ : Any = GradientState() assert state.num_steps == 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True SCREAMING_SNAKE_CASE_ : Optional[int] = False assert state.sync_gradients is False GradientState._reset_state() def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = create_components() ( ( SCREAMING_SNAKE_CASE_ ), ( SCREAMING_SNAKE_CASE_ ), ( SCREAMING_SNAKE_CASE_ ), ( SCREAMING_SNAKE_CASE_ ), ( SCREAMING_SNAKE_CASE_ ), ) : Optional[Any] = accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = create_components() accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __lowerCamelCase ( self ): """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowercase__ , **lowercase__ ): pass with patch("torch.cuda.set_device" , lowercase__ ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): SCREAMING_SNAKE_CASE_ : List[str] = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = create_components() accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = get_signature(lowercase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase__ ) # make sure random weights don't match load_random_weights(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) < 1e-3 ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = create_components() accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_signature(lowercase__ ) # saving hook def save_config(lowercase__ , lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = {"class_name": models[0].__class__.__name__} with open(os.path.join(lowercase__ , "data.json" ) , "w" ) as f: json.dump(lowercase__ , lowercase__ ) # loading hook def load_config(lowercase__ , lowercase__ ): with open(os.path.join(lowercase__ , "data.json" ) , "r" ) as f: SCREAMING_SNAKE_CASE_ : Any = json.load(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = config["class_name"] SCREAMING_SNAKE_CASE_ : Dict = accelerator.register_save_state_pre_hook(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = accelerator.register_load_state_pre_hook(lowercase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase__ ) # make sure random weights don't match with hooks load_random_weights(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) > 1e-3 ) # random class name to verify correct one is loaded SCREAMING_SNAKE_CASE_ : Union[str, Any] = "random" # make sure loaded weights match with hooks accelerator.load_state(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase__ ) # make sure random weights don't match with hooks removed load_random_weights(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) > 1e-3 ) # random class name to verify correct one is loaded SCREAMING_SNAKE_CASE_ : Tuple = "random" # make sure loaded weights match with hooks removed accelerator.load_state(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = create_components() SCREAMING_SNAKE_CASE_ : Union[str, Any] = None # This should work SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.assertTrue(dummy_obj is None ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = create_components() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 2, 3] # This should work SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : int = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def __lowerCamelCase ( self ): """simple docstring""" from transformers import AutoModelForCausalLM SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase__ , device_map={"": 0} , ) SCREAMING_SNAKE_CASE_ : Optional[int] = Accelerator() # This should work SCREAMING_SNAKE_CASE_ : List[Any] = accelerator.prepare(lowercase__ ) @slow @require_bnb def __lowerCamelCase ( self ): """simple docstring""" from transformers import AutoModelForCausalLM SCREAMING_SNAKE_CASE_ : Optional[Any] = Accelerator() with init_empty_weights(): SCREAMING_SNAKE_CASE_ : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() SCREAMING_SNAKE_CASE_ : Optional[Any] = infer_auto_device_map(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=lowercase__ , load_in_abit=lowercase__ , llm_inta_enable_fpaa_cpu_offload=lowercase__ ) # This should not work and get value error with self.assertRaises(lowercase__ ): SCREAMING_SNAKE_CASE_ : str = accelerator.prepare(lowercase__ ) @slow @require_bnb @require_multi_gpu def __lowerCamelCase ( self ): """simple docstring""" from transformers import AutoModelForCausalLM SCREAMING_SNAKE_CASE_ : str = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() SCREAMING_SNAKE_CASE_ : str = infer_auto_device_map(lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = 1 SCREAMING_SNAKE_CASE_ : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase__ , device_map=lowercase__ , ) SCREAMING_SNAKE_CASE_ : Any = Accelerator() # This should not work and get value error with self.assertRaises(lowercase__ ): SCREAMING_SNAKE_CASE_ : Tuple = accelerator.prepare(lowercase__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __lowerCamelCase ( self ): """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = infer_auto_device_map(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase__ , device_map=lowercase__ , ) SCREAMING_SNAKE_CASE_ : Any = Accelerator() # This should work SCREAMING_SNAKE_CASE_ : Optional[int] = accelerator.prepare(lowercase__ ) @require_cuda def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = torch.nn.Linear(10 , 10 ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.optim.SGD(model.parameters() , lr=0.01 ) SCREAMING_SNAKE_CASE_ : Tuple = Accelerator(cpu=lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = accelerator.prepare(lowercase__ )
68
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float ) -> float: return 10 - x * x def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(__UpperCamelCase ) * equation(__UpperCamelCase ) >= 0: raise ValueError('''Wrong space!''' ) UpperCAmelCase_ = a while (b - a) >= 0.01: # Find middle point UpperCAmelCase_ = (a + b) / 2 # Check if middle point is root if equation(__UpperCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__UpperCamelCase ) * equation(__UpperCamelCase ) < 0: UpperCAmelCase_ = c else: UpperCAmelCase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
144
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ = [], [] while len(__UpperCamelCase ) > 1: UpperCAmelCase_ , UpperCAmelCase_ = min(__UpperCamelCase ), max(__UpperCamelCase ) start.append(__UpperCamelCase ) end.append(__UpperCamelCase ) collection.remove(__UpperCamelCase ) collection.remove(__UpperCamelCase ) end.reverse() return start + collection + end if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
144
1
import datasets A__ = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" A__ = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" A__ = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n" def _lowercase ( a_ : int ,a_ : int ) -> Any: '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def _SCREAMING_SNAKE_CASE ( self: Dict , __UpperCamelCase: List[Any] , __UpperCamelCase: Optional[Any] ): '''simple docstring''' return {"accuracy": simple_accuracy(lowerCamelCase__ , lowerCamelCase__ )}
718
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Tuple = LayoutLMTokenizer _lowercase : List[str] = LayoutLMTokenizerFast _lowercase : List[Any] = True _lowercase : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' super().setUp() __magic_name__ = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , **__UpperCamelCase: Union[str, Any] ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Tuple , __UpperCamelCase: List[str] ): '''simple docstring''' __magic_name__ = 'UNwant\u00E9d,running' __magic_name__ = 'unwanted, running' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__ = self.tokenizer_class(self.vocab_file ) __magic_name__ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__UpperCamelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' pass
184
0
import gc import threading import time import psutil import torch class A__: """simple docstring""" def __init__( self ) -> List[str]: a_ : Any = psutil.Process() a_ : Optional[int] = False def UpperCamelCase__ ( self ) -> List[str]: a_ : Optional[Any] = -1 while True: a_ : Optional[int] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self ) -> Optional[int]: a_ : str = True a_ : Dict = threading.Thread(target=self.peak_monitor ) a_ : Dict = True self.thread.start() def UpperCamelCase__ ( self ) -> Any: a_ : Optional[int] = False self.thread.join() return self.cpu_memory_peak __snake_case : str = PeakCPUMemory() def _UpperCAmelCase ( ): '''simple docstring''' a_ : Dict = {"""time""": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem a_ : List[Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count()): a_ : int = torch.cuda.memory_allocated(a__) torch.cuda.reset_peak_memory_stats() return measures def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Union[str, Any] = {"""time""": time.time() - start_measures["""time"""]} gc.collect() torch.cuda.empty_cache() # CPU mem a_ : Tuple = (psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**2_0 a_ : Union[str, Any] = (cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**2_0 # GPU mem for i in range(torch.cuda.device_count()): a_ : List[str] = (torch.cuda.memory_allocated(a__) - start_measures[str(a__)]) / 2**2_0 a_ : int = (torch.cuda.max_memory_allocated(a__) - start_measures[str(a__)]) / 2**2_0 return measures def _UpperCAmelCase ( a__ , a__): '''simple docstring''' print(f'''{description}:''') print(f'''- Time: {measures["time"]:.2f}s''') for i in range(torch.cuda.device_count()): print(f'''- GPU {i} allocated: {measures[str(a__)]:.2f}MiB''') a_ : Tuple = measures[f'''{i}-peak'''] print(f'''- GPU {i} peak: {peak:.2f}MiB''') print(f'''- CPU RAM allocated: {measures["cpu"]:.2f}MiB''') print(f'''- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB''')
540
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__(a_, a_, unittest.TestCase ): """simple docstring""" _A : Optional[Any] = StableDiffusionSAGPipeline _A : Any = TEXT_TO_IMAGE_PARAMS _A : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _A : int = TEXT_TO_IMAGE_IMAGE_PARAMS _A : Optional[int] = False def UpperCamelCase__ ( self ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) a_ : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) a_ : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) a_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) a_ : Union[str, Any] = CLIPTextModel(_lowercase ) a_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a_ : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase__ ( self , _lowercase , _lowercase=0 ) -> Dict: if str(_lowercase ).startswith("""mps""" ): a_ : Optional[int] = torch.manual_seed(_lowercase ) else: a_ : str = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Tuple = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Tuple = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) a_ : List[str] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : Optional[int] = """.""" a_ : int = torch.manual_seed(0 ) a_ : Any = sag_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) a_ : Any = output.images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a_ : str = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCamelCase__ ( self ) -> List[Any]: a_ : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) a_ : List[str] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : int = """.""" a_ : Dict = torch.manual_seed(0 ) a_ : Union[str, Any] = sag_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) a_ : Optional[Any] = output.images a_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a_ : Dict = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCamelCase__ ( self ) -> Any: a_ : int = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) a_ : Optional[Any] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[Any] = """.""" a_ : str = torch.manual_seed(0 ) a_ : int = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) a_ : Any = output.images assert image.shape == (1, 512, 768, 3)
540
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A__ = logging.get_logger(__name__) class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : Tuple = ["pixel_values"] def __init__( self: Optional[Any] , __UpperCamelCase: bool = True , __UpperCamelCase: Dict[str, int] = None , __UpperCamelCase: int = 0.9 , __UpperCamelCase: PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase: bool = True , __UpperCamelCase: Dict[str, int] = None , __UpperCamelCase: Union[int, float] = 1 / 2_55 , __UpperCamelCase: bool = True , __UpperCamelCase: bool = True , __UpperCamelCase: Optional[Union[float, List[float]]] = None , __UpperCamelCase: Optional[Union[float, List[float]]] = None , **__UpperCamelCase: List[str] , ): '''simple docstring''' super().__init__(**__UpperCamelCase ) __magic_name__ = size if size is not None else {'shortest_edge': 2_24} __magic_name__ = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) __magic_name__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} __magic_name__ = get_size_dict(__UpperCamelCase , param_name='crop_size' ) __magic_name__ = do_resize __magic_name__ = size __magic_name__ = crop_pct __magic_name__ = resample __magic_name__ = do_center_crop __magic_name__ = crop_size __magic_name__ = do_rescale __magic_name__ = rescale_factor __magic_name__ = do_normalize __magic_name__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __magic_name__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _SCREAMING_SNAKE_CASE ( self: List[Any] , __UpperCamelCase: np.ndarray , __UpperCamelCase: Dict[str, int] , __UpperCamelCase: Optional[float] = None , __UpperCamelCase: PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase: Optional[Any] , ): '''simple docstring''' __magic_name__ = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: __magic_name__ = int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __magic_name__ = int(size['height'] / crop_pct ) else: __magic_name__ = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(__UpperCamelCase ) ) __magic_name__ = get_resize_output_image_size(__UpperCamelCase , size=__UpperCamelCase , default_to_square=__UpperCamelCase ) else: if "shortest_edge" in size: __magic_name__ = get_resize_output_image_size(__UpperCamelCase , size=size['shortest_edge'] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: __magic_name__ = (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(__UpperCamelCase ) ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Any , __UpperCamelCase: np.ndarray , __UpperCamelCase: Dict[str, int] , __UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase: List[str] , ): '''simple docstring''' __magic_name__ = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCamelCase , size=(size['height'], size['width']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[Any] , __UpperCamelCase: np.ndarray , __UpperCamelCase: Union[int, float] , __UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase: Optional[Any] , ): '''simple docstring''' return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Dict , __UpperCamelCase: np.ndarray , __UpperCamelCase: Union[float, List[float]] , __UpperCamelCase: Union[float, List[float]] , __UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase: Optional[int] , ): '''simple docstring''' return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , __UpperCamelCase: ImageInput , __UpperCamelCase: bool = None , __UpperCamelCase: Dict[str, int] = None , __UpperCamelCase: int = None , __UpperCamelCase: PILImageResampling = None , __UpperCamelCase: bool = None , __UpperCamelCase: Dict[str, int] = None , __UpperCamelCase: bool = None , __UpperCamelCase: float = None , __UpperCamelCase: bool = None , __UpperCamelCase: Optional[Union[float, List[float]]] = None , __UpperCamelCase: Optional[Union[float, List[float]]] = None , __UpperCamelCase: Optional[Union[str, TensorType]] = None , __UpperCamelCase: ChannelDimension = ChannelDimension.FIRST , **__UpperCamelCase: Any , ): '''simple docstring''' __magic_name__ = do_resize if do_resize is not None else self.do_resize __magic_name__ = crop_pct if crop_pct is not None else self.crop_pct __magic_name__ = resample if resample is not None else self.resample __magic_name__ = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ = image_mean if image_mean is not None else self.image_mean __magic_name__ = image_std if image_std is not None else self.image_std __magic_name__ = size if size is not None else self.size __magic_name__ = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) __magic_name__ = crop_size if crop_size is not None else self.crop_size __magic_name__ = get_size_dict(__UpperCamelCase , param_name='crop_size' ) __magic_name__ = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: __magic_name__ = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , crop_pct=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: __magic_name__ = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: __magic_name__ = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: __magic_name__ = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] __magic_name__ = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] __magic_name__ = {'pixel_values': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
184
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _lowercase ( a_ : str ,a_ : str ,a_ : str ,a_ : Path ,a_ : str = None ,a_ : str = None ,a_ : str = None ,) -> Tuple: '''simple docstring''' if config_name_or_path is None: __magic_name__ = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: __magic_name__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __magic_name__ = question_encoder_name_or_path __magic_name__ = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. __magic_name__ = RagConfig.from_pretrained(a_ ) __magic_name__ = AutoConfig.from_pretrained(a_ ) __magic_name__ = AutoConfig.from_pretrained(a_ ) __magic_name__ = gen_config __magic_name__ = question_encoder_config __magic_name__ = model_class.from_pretrained_question_encoder_generator( a_ ,a_ ,config=a_ ) rag_model.save_pretrained(a_ ) # Sanity check. model_class.from_pretrained(a_ ) # Save tokenizers. __magic_name__ = AutoTokenizer.from_pretrained(a_ ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) __magic_name__ = AutoTokenizer.from_pretrained(a_ ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) A__ = parser.parse_args() A__ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
184
1