code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE ="\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def lowercase__( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str=8 ): lowercase_ : List[Any] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowercase_ : int = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class UpperCamelCase ( lowercase_ ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules( text_encoder=__SCREAMING_SNAKE_CASE ,tokenizer=__SCREAMING_SNAKE_CASE ,unet=__SCREAMING_SNAKE_CASE ,scheduler=__SCREAMING_SNAKE_CASE ,movq=__SCREAMING_SNAKE_CASE ,) lowercase_ : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]: '''simple docstring''' if latents is None: lowercase_ : Union[str, Any] = randn_tensor(__SCREAMING_SNAKE_CASE ,generator=__SCREAMING_SNAKE_CASE ,device=__SCREAMING_SNAKE_CASE ,dtype=__SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowercase_ : List[str] = latents.to(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = latents * scheduler.init_noise_sigma return latents def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) else 1 # get prompt text embeddings lowercase_ : Any = self.tokenizer( __SCREAMING_SNAKE_CASE ,padding='max_length' ,truncation=__SCREAMING_SNAKE_CASE ,max_length=77 ,return_attention_mask=__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ,return_tensors='pt' ,) lowercase_ : List[str] = text_inputs.input_ids lowercase_ : List[Any] = self.tokenizer(__SCREAMING_SNAKE_CASE ,padding='longest' ,return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): lowercase_ : Dict = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase_ : List[Any] = text_input_ids.to(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = text_inputs.attention_mask.to(__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Tuple = self.text_encoder( input_ids=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = prompt_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE ,dim=0 ) lowercase_ : int = text_encoder_hidden_states.repeat_interleave(__SCREAMING_SNAKE_CASE ,dim=0 ) lowercase_ : Any = text_mask.repeat_interleave(__SCREAMING_SNAKE_CASE ,dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] = 42 if negative_prompt is None: lowercase_ : Optional[Any] = [''] * batch_size elif type(__SCREAMING_SNAKE_CASE ) is not type(__SCREAMING_SNAKE_CASE ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__SCREAMING_SNAKE_CASE )} !=''' f''' {type(__SCREAMING_SNAKE_CASE )}.''' ) elif isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = [negative_prompt] elif batch_size != len(__SCREAMING_SNAKE_CASE ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__SCREAMING_SNAKE_CASE )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: lowercase_ : List[Any] = negative_prompt lowercase_ : Tuple = self.tokenizer( __SCREAMING_SNAKE_CASE ,padding='max_length' ,max_length=77 ,truncation=__SCREAMING_SNAKE_CASE ,return_attention_mask=__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ,return_tensors='pt' ,) lowercase_ : Optional[Any] = uncond_input.input_ids.to(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = uncond_input.attention_mask.to(__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : int = self.text_encoder( input_ids=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase_ : Union[str, Any] = negative_prompt_embeds.shape[1] lowercase_ : Tuple = negative_prompt_embeds.repeat(1 ,__SCREAMING_SNAKE_CASE ) lowercase_ : int = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,__SCREAMING_SNAKE_CASE ) lowercase_ : Any = uncond_text_encoder_hidden_states.shape[1] lowercase_ : List[Any] = uncond_text_encoder_hidden_states.repeat(1 ,__SCREAMING_SNAKE_CASE ,1 ) lowercase_ : Any = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt ,__SCREAMING_SNAKE_CASE ,-1 ) lowercase_ : Optional[Any] = uncond_text_mask.repeat_interleave(__SCREAMING_SNAKE_CASE ,dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ : Union[str, Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowercase_ : Dict = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowercase_ : Union[str, Any] = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def _UpperCAmelCase ( self ,__UpperCamelCase=0 ) -> Dict: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : Tuple = torch.device(f'''cuda:{gpu_id}''' ) lowercase_ : Tuple = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ,__UpperCamelCase=0 ) -> Any: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('>=' ,'0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[Any] = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' ,silence_dtype_warnings=__SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,prev_module_hook=__SCREAMING_SNAKE_CASE ) if self.safety_checker is not None: lowercase_ , lowercase_ : Any = cpu_offload_with_hook(self.safety_checker ,__SCREAMING_SNAKE_CASE ,prev_module_hook=__SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. lowercase_ : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not hasattr(self.unet ,'_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(__SCREAMING_SNAKE_CASE ,'_hf_hook' ) and hasattr(module._hf_hook ,'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__SCREAMING_SNAKE_CASE ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = 512 ,__UpperCamelCase = 512 ,__UpperCamelCase = 100 ,__UpperCamelCase = 4.0 ,__UpperCamelCase = 1 ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = "pil" ,__UpperCamelCase = True ,) -> Optional[int]: '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = 1 elif isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): lowercase_ : Tuple = len(__SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__SCREAMING_SNAKE_CASE )}''' ) lowercase_ : str = self._execution_device lowercase_ : Union[str, Any] = batch_size * num_images_per_prompt lowercase_ : List[Any] = guidance_scale > 1.0 lowercase_ , lowercase_ , lowercase_ : Dict = self._encode_prompt( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = torch.cat(__SCREAMING_SNAKE_CASE ,dim=0 ) if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = torch.cat(__SCREAMING_SNAKE_CASE ,dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[Any] = image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE ,dim=0 ) lowercase_ : Any = negative_image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE ,dim=0 ) lowercase_ : int = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to( dtype=prompt_embeds.dtype ,device=__SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ,device=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = self.scheduler.timesteps lowercase_ : int = self.unet.config.in_channels lowercase_ , lowercase_ : List[Any] = get_new_h_w(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,self.movq_scale_factor ) # create initial latent lowercase_ : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,text_encoder_hidden_states.dtype ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,self.scheduler ,) for i, t in enumerate(self.progress_bar(__SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance lowercase_ : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : Optional[int] = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} lowercase_ : Any = self.unet( sample=__SCREAMING_SNAKE_CASE ,timestep=__SCREAMING_SNAKE_CASE ,encoder_hidden_states=__SCREAMING_SNAKE_CASE ,added_cond_kwargs=__SCREAMING_SNAKE_CASE ,return_dict=__SCREAMING_SNAKE_CASE ,)[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] ,dim=1 ) lowercase_ , lowercase_ : Optional[Any] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : str = variance_pred.chunk(2 ) lowercase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : List[Any] = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Optional[Any] = self.scheduler.step( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,generator=__SCREAMING_SNAKE_CASE ,).prev_sample # post-processing lowercase_ : Any = self.movq.decode(__SCREAMING_SNAKE_CASE ,force_not_quantize=__SCREAMING_SNAKE_CASE )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowercase_ : str = image * 0.5 + 0.5 lowercase_ : Any = image.clamp(0 ,1 ) lowercase_ : Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": lowercase_ : Dict = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
425
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __A = logging.get_logger(__name__) __A = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class _A ( UpperCamelCase ): """simple docstring""" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : str=None , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if config is None: assert isinstance(self.model , __SCREAMING_SNAKE_CASE ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) __UpperCAmelCase =self.model.config else: __UpperCAmelCase =config __UpperCAmelCase =data_args __UpperCAmelCase =self.config.tgt_vocab_size if isinstance(self.config , __SCREAMING_SNAKE_CASE ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: __UpperCAmelCase =torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __UpperCAmelCase =label_smoothed_nll_loss def _a ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> Any: if self.optimizer is None: __UpperCAmelCase =["""bias""", """LayerNorm.weight"""] __UpperCAmelCase =[ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] __UpperCAmelCase =Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __UpperCAmelCase =Adafactor __UpperCAmelCase ={"""scale_parameter""": False, """relative_step""": False} else: __UpperCAmelCase =AdamW __UpperCAmelCase ={ """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } __UpperCAmelCase =self.args.learning_rate if self.sharded_ddp: __UpperCAmelCase =OSS( params=__SCREAMING_SNAKE_CASE , optim=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: __UpperCAmelCase =optimizer_cls(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if self.lr_scheduler is None: __UpperCAmelCase =self._get_lr_scheduler(__SCREAMING_SNAKE_CASE ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: __UpperCAmelCase =arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __UpperCAmelCase =schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __UpperCAmelCase =schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __UpperCAmelCase =schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__SCREAMING_SNAKE_CASE ) return scheduler def _a ( self : Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )[0] __UpperCAmelCase =self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __UpperCAmelCase , __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )[:2] else: # compute label smoothed loss __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )[0] __UpperCAmelCase =torch.nn.functional.log_softmax(__SCREAMING_SNAKE_CASE , dim=-1 ) __UpperCAmelCase , __UpperCAmelCase =self.loss_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: __UpperCAmelCase =inputs.pop("""labels""" ) __UpperCAmelCase , __UpperCAmelCase =self._compute_loss(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return loss def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : nn.Module , __SCREAMING_SNAKE_CASE : Dict[str, Union[torch.Tensor, Any]] , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: __UpperCAmelCase =self._prepare_inputs(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase ={ """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __UpperCAmelCase =self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__SCREAMING_SNAKE_CASE , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __UpperCAmelCase =self._pad_tensors_to_max_len(__SCREAMING_SNAKE_CASE , gen_kwargs["""max_length"""] ) __UpperCAmelCase =inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data __UpperCAmelCase , __UpperCAmelCase =self._compute_loss(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __UpperCAmelCase =generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __UpperCAmelCase =self._pad_tensors_to_max_len(__SCREAMING_SNAKE_CASE , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: # If PAD token is not defined at least EOS token has to be defined __UpperCAmelCase =self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) __UpperCAmelCase =pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __UpperCAmelCase =tensor return padded_tensor
68
0
def snake_case_ ( snake_case = 1_00_00_00 ) -> int: lowercase__: Any = 1 lowercase__: str = 1 lowercase__: List[str] = {1: 1} for inputa in range(2 , snake_case ): lowercase__: Dict = 0 lowercase__: Union[str, Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowercase__: List[str] = (3 * number) + 1 counter += 1 if inputa not in counters: lowercase__: Any = counter if counter > pre_counter: lowercase__: Optional[int] = inputa lowercase__: Any = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
335
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } __lowerCAmelCase = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class __a ( __UpperCamelCase ): __lowercase : Optional[int] = VOCAB_FILES_NAMES __lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Dict = ['input_ids', 'attention_mask'] __lowercase : Any = GPTaTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__: Optional[Any] = kwargs.pop('add_bos_token' , lowerCAmelCase__ ) lowercase__: Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase__ ) != add_prefix_space: lowercase__: Optional[int] = getattr(lowerCAmelCase__ , pre_tok_state.pop('type' ) ) lowercase__: Union[str, Any] = add_prefix_space lowercase__: Tuple = pre_tok_class(**lowerCAmelCase__ ) lowercase__: Optional[int] = add_prefix_space def SCREAMING_SNAKE_CASE__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__: List[str] = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: '''simple docstring''' lowercase__: Union[str, Any] = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' lowercase__: Dict = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[int]: '''simple docstring''' lowercase__: List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: lowercase__: Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
335
1
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" for param in module.parameters(): snake_case_ : Dict = False def lowerCamelCase_ ( ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): snake_case_ : Tuple = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : List[str] = plt.imshow(_UpperCamelCase ) fig.axes.get_xaxis().set_visible(_UpperCamelCase ) fig.axes.get_yaxis().set_visible(_UpperCamelCase ) plt.show() def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[str] = datetime.now() snake_case_ : Optional[Any] = current_time.strftime('''%H:%M:%S''' ) return timestamp
60
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[Any] = '''encoder-decoder''' lowerCamelCase_ : Optional[Any] = True def __init__(self , **__magic_name__ ) -> Optional[int]: '''simple docstring''' super().__init__(**__magic_name__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case_ : Any = kwargs.pop('''encoder''' ) snake_case_ : Tuple = encoder_config.pop('''model_type''' ) snake_case_ : Union[str, Any] = kwargs.pop('''decoder''' ) snake_case_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig snake_case_ : Optional[int] = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) snake_case_ : List[str] = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) snake_case_ : Any = True @classmethod def lowerCamelCase (cls , __magic_name__ , __magic_name__ , **__magic_name__ ) -> PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) snake_case_ : Tuple = True snake_case_ : Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__magic_name__ ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : str = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.encoder.to_dict() snake_case_ : Dict = self.decoder.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
60
1
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __A : List[Any] = get_logger(__name__) __A : Tuple = Path(__file__).parent / 'model_card_template.md' __A : Any = uuida().hex __A : Optional[int] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __A : Tuple = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __A : List[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def snake_case__ ( _lowerCamelCase = None ) ->str: """simple docstring""" __lowercase : Optional[Any] = F'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'; torch/{_torch_version}' if is_flax_available(): ua += F'; jax/{_jax_version}' ua += F'; flax/{_flax_version}' if is_onnx_available(): ua += F'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI", "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_lowerCamelCase, _lowerCamelCase ): ua += "; " + "; ".join(F'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(_lowerCamelCase, _lowerCamelCase ): ua += "; " + user_agent return ua def snake_case__ ( _lowerCamelCase, _lowerCamelCase = None, _lowerCamelCase = None ) ->List[Any]: """simple docstring""" if token is None: __lowercase : Any = HfFolder.get_token() if organization is None: __lowercase : int = whoami(_lowerCamelCase )["name"] return F'{username}/{model_id}' else: return F'{organization}/{model_id}' def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->Dict: """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(_lowerCamelCase, "local_rank" ) and args.local_rank not in [-1, 0]: return __lowercase : Tuple = args.hub_token if hasattr(_lowerCamelCase, "hub_token" ) else None __lowercase : int = get_full_repo_name(_lowerCamelCase, token=_lowerCamelCase ) __lowercase : Optional[Any] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en", license="apache-2.0", library_name="diffusers", tags=[], datasets=args.dataset_name, metrics=[], ), template_path=_lowerCamelCase, model_name=_lowerCamelCase, repo_name=_lowerCamelCase, dataset_name=args.dataset_name if hasattr(_lowerCamelCase, "dataset_name" ) else None, learning_rate=args.learning_rate, train_batch_size=args.train_batch_size, eval_batch_size=args.eval_batch_size, gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_lowerCamelCase, "gradient_accumulation_steps" ) else None ), adam_betaa=args.adam_betaa if hasattr(_lowerCamelCase, "adam_beta1" ) else None, adam_betaa=args.adam_betaa if hasattr(_lowerCamelCase, "adam_beta2" ) else None, adam_weight_decay=args.adam_weight_decay if hasattr(_lowerCamelCase, "adam_weight_decay" ) else None, adam_epsilon=args.adam_epsilon if hasattr(_lowerCamelCase, "adam_epsilon" ) else None, lr_scheduler=args.lr_scheduler if hasattr(_lowerCamelCase, "lr_scheduler" ) else None, lr_warmup_steps=args.lr_warmup_steps if hasattr(_lowerCamelCase, "lr_warmup_steps" ) else None, ema_inv_gamma=args.ema_inv_gamma if hasattr(_lowerCamelCase, "ema_inv_gamma" ) else None, ema_power=args.ema_power if hasattr(_lowerCamelCase, "ema_power" ) else None, ema_max_decay=args.ema_max_decay if hasattr(_lowerCamelCase, "ema_max_decay" ) else None, mixed_precision=args.mixed_precision, ) __lowercase : Dict = os.path.join(args.output_dir, "README.md" ) model_card.save(_lowerCamelCase ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase = None ) ->Tuple: """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash __lowercase : Union[str, Any] = str(Path(_lowerCamelCase ).as_posix() ) __lowercase : int = re.search(R"snapshots/([^/]+)/", _lowerCamelCase ) if search is None: return None __lowercase : Union[str, Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_lowerCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __A : Union[str, Any] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __A : List[str] = os.path.join(hf_cache_home, 'diffusers') def snake_case__ ( _lowerCamelCase = None, _lowerCamelCase = None ) ->None: """simple docstring""" if new_cache_dir is None: __lowercase : int = DIFFUSERS_CACHE if old_cache_dir is None: __lowercase : Tuple = old_diffusers_cache __lowercase : str = Path(_lowerCamelCase ).expanduser() __lowercase : Optional[int] = Path(_lowerCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __lowercase : str = new_cache_dir / old_blob_path.relative_to(_lowerCamelCase ) new_blob_path.parent.mkdir(parents=_lowerCamelCase, exist_ok=_lowerCamelCase ) os.replace(_lowerCamelCase, _lowerCamelCase ) try: os.symlink(_lowerCamelCase, _lowerCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __A : int = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __A : Optional[Any] = 0 else: with open(cache_version_file) as f: try: __A : Optional[int] = int(f.read()) except ValueError: __A : Optional[Any] = 0 if cache_version < 1: __A : Optional[Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __A : Union[str, Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase = None ) ->str: """simple docstring""" if variant is not None: __lowercase : str = weights_name.split("." ) __lowercase : str = splits[:-1] + [variant] + splits[-1:] __lowercase : Dict = ".".join(_lowerCamelCase ) return weights_name def snake_case__ ( _lowerCamelCase, *, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase=None, ) ->str: """simple docstring""" __lowercase : Dict = str(_lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(_lowerCamelCase ): if os.path.isfile(os.path.join(_lowerCamelCase, _lowerCamelCase ) ): # Load from a PyTorch checkpoint __lowercase : str = os.path.join(_lowerCamelCase, _lowerCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ): __lowercase : Dict = os.path.join(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) return model_file else: raise EnvironmentError( F'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_lowerCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: __lowercase : Any = hf_hub_download( _lowerCamelCase, filename=_add_variant(_lowerCamelCase, _lowerCamelCase ), cache_dir=_lowerCamelCase, force_download=_lowerCamelCase, proxies=_lowerCamelCase, resume_download=_lowerCamelCase, local_files_only=_lowerCamelCase, use_auth_token=_lowerCamelCase, user_agent=_lowerCamelCase, subfolder=_lowerCamelCase, revision=revision or commit_hash, ) warnings.warn( F'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.', _lowerCamelCase, ) return model_file except: # noqa: E722 warnings.warn( F'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_lowerCamelCase, _lowerCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_lowerCamelCase, _lowerCamelCase )}\' so that the correct variant file can be added.', _lowerCamelCase, ) try: # 2. Load model file as usual __lowercase : str = hf_hub_download( _lowerCamelCase, filename=_lowerCamelCase, cache_dir=_lowerCamelCase, force_download=_lowerCamelCase, proxies=_lowerCamelCase, resume_download=_lowerCamelCase, local_files_only=_lowerCamelCase, use_auth_token=_lowerCamelCase, user_agent=_lowerCamelCase, subfolder=_lowerCamelCase, revision=revision or commit_hash, ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( F'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' "this model name. Check the model page at " F'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( F'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( F'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' F' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' F' directory containing a file named {weights_name} or' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( F'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " F'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' F'containing a file named {weights_name}' )
715
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __A : int = '\nHuman: <<task>>\n\nAssistant: ' __A : List[str] = 'huggingface-tools/default-prompts' __A : Tuple = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase="run" ) ->Optional[int]: """simple docstring""" if prompt_or_repo_id is None: __lowercase : Any = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s", _lowerCamelCase ) is not None: return prompt_or_repo_id __lowercase : Optional[Any] = cached_file( _lowerCamelCase, PROMPT_FILES[mode], repo_type="dataset", user_agent={"agent": agent_name} ) with open(_lowerCamelCase, "r", encoding="utf-8" ) as f: return f.read()
281
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A__ ( SCREAMING_SNAKE_CASE_ : Dict ) -> Any: """simple docstring""" if ( (cp >= 0x4_e00 and cp <= 0x9_fff) or (cp >= 0x3_400 and cp <= 0x4_dbf) # or (cp >= 0x20_000 and cp <= 0x2a_6df) # or (cp >= 0x2a_700 and cp <= 0x2b_73f) # or (cp >= 0x2b_740 and cp <= 0x2b_81f) # or (cp >= 0x2b_820 and cp <= 0x2c_eaf) # or (cp >= 0xf_900 and cp <= 0xf_aff) or (cp >= 0x2f_800 and cp <= 0x2f_a1f) # ): # return True return False def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" for char in word: _UpperCAmelCase = ord(SCREAMING_SNAKE_CASE_ ) if not _is_chinese_char(SCREAMING_SNAKE_CASE_ ): return 0 return 1 def A__ ( SCREAMING_SNAKE_CASE_ : List[str] ) -> int: """simple docstring""" _UpperCAmelCase = set() for token in tokens: _UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) > 1 and is_chinese(SCREAMING_SNAKE_CASE_ ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = list(SCREAMING_SNAKE_CASE_ ) return word_list def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : set() ) -> Tuple: """simple docstring""" if not chinese_word_set: return bert_tokens _UpperCAmelCase = max([len(SCREAMING_SNAKE_CASE_ ) for w in chinese_word_set] ) _UpperCAmelCase = bert_tokens _UpperCAmelCase , _UpperCAmelCase = 0, len(SCREAMING_SNAKE_CASE_ ) while start < end: _UpperCAmelCase = True if is_chinese(bert_word[start] ): _UpperCAmelCase = min(end - start , SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ , 1 , -1 ): _UpperCAmelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _UpperCAmelCase = '''##''' + bert_word[j] _UpperCAmelCase = start + i _UpperCAmelCase = False break if single_word: start += 1 return bert_word def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : LTP , SCREAMING_SNAKE_CASE_ : BertTokenizer ) -> str: """simple docstring""" _UpperCAmelCase = [] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 1_00 ): _UpperCAmelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=['''cws'''] ).cws _UpperCAmelCase = [get_chinese_word(SCREAMING_SNAKE_CASE_ ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE_ ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = [] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 1_00 ): _UpperCAmelCase = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = [] for id in input_ids: _UpperCAmelCase = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) input_tokens.append(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = add_sub_symbol(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE_ ): if token[:2] == "##": _UpperCAmelCase = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE_ ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE_ ) ): ref_id.append(SCREAMING_SNAKE_CASE_ ) ref_ids.append(SCREAMING_SNAKE_CASE_ ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) return ref_ids def A__ ( SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _UpperCAmelCase = LTP(args.ltp ) # faster in GPU device _UpperCAmelCase = BertTokenizer.from_pretrained(args.bert ) _UpperCAmelCase = prepare_ref(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: _UpperCAmelCase = [json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) UpperCAmelCase_ = parser.parse_args() main(args)
32
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = jnp.ones((batch_size, length) ) / length return scores def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 20 lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create ramp distribution lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase__ = 5 lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy() lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowerCamelCase__ = 5 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = 15 lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowerCamelCase__ = 1 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = 5 lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowerCamelCase__ = 4 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # with processor list lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
50
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'ctrl' __snake_case = ['past_key_values'] __snake_case = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __lowerCamelCase=2_4_6_5_3_4 , __lowerCamelCase=2_5_6 , __lowerCamelCase=1_2_8_0 , __lowerCamelCase=8_1_9_2 , __lowerCamelCase=4_8 , __lowerCamelCase=1_6 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=1E-6 , __lowerCamelCase=0.02 , __lowerCamelCase=True , **__lowerCamelCase , ) -> int: _SCREAMING_SNAKE_CASE : int = vocab_size _SCREAMING_SNAKE_CASE : Dict = n_positions _SCREAMING_SNAKE_CASE : Optional[int] = n_embd _SCREAMING_SNAKE_CASE : Dict = n_layer _SCREAMING_SNAKE_CASE : Union[str, Any] = n_head _SCREAMING_SNAKE_CASE : List[str] = dff _SCREAMING_SNAKE_CASE : List[Any] = resid_pdrop _SCREAMING_SNAKE_CASE : int = embd_pdrop _SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : Any = use_cache super().__init__(**__lowerCamelCase )
381
from __future__ import annotations from scipy.special import comb # type: ignore class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : List[str] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _SCREAMING_SNAKE_CASE : Optional[int] = len(__lowerCamelCase ) - 1 def UpperCamelCase_ ( self , __lowerCamelCase ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _SCREAMING_SNAKE_CASE : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __lowerCamelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__lowerCamelCase ) , 5 ) == 1 return output_values def UpperCamelCase_ ( self , __lowerCamelCase ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _SCREAMING_SNAKE_CASE : Optional[int] = self.basis_function(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = 0.0 _SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCamelCase_ ( self , __lowerCamelCase = 0.01 ) -> int: from matplotlib import pyplot as plt # type: ignore _SCREAMING_SNAKE_CASE : list[float] = [] # x coordinates of points to plot _SCREAMING_SNAKE_CASE : list[float] = [] # y coordinates of points to plot _SCREAMING_SNAKE_CASE : Dict = 0.0 while t <= 1: _SCREAMING_SNAKE_CASE : str = self.bezier_curve_function(__lowerCamelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _SCREAMING_SNAKE_CASE : List[Any] = [i[0] for i in self.list_of_points] _SCREAMING_SNAKE_CASE : Dict = [i[1] for i in self.list_of_points] plt.plot( __lowerCamelCase , __lowerCamelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(__lowerCamelCase , __lowerCamelCase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
381
1
from __future__ import annotations __snake_case = '''#''' class __lowerCamelCase : def __init__( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = {} def snake_case_ ( self: str,A_: str ): '''simple docstring''' __UpperCamelCase = self._trie for char in text: if char not in trie: __UpperCamelCase = {} __UpperCamelCase = trie[char] __UpperCamelCase = True def snake_case_ ( self: Union[str, Any],A_: str ): '''simple docstring''' __UpperCamelCase = self._trie for char in prefix: if char in trie: __UpperCamelCase = trie[char] else: return [] return self._elements(A_ ) def snake_case_ ( self: Any,A_: dict ): '''simple docstring''' __UpperCamelCase = [] for c, v in d.items(): __UpperCamelCase = [' '] if c == END else [(c + s) for s in self._elements(A_ )] result.extend(A_ ) return tuple(A_ ) __snake_case = Trie() __snake_case = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def _A ( _lowercase ) -> tuple: """simple docstring""" __UpperCamelCase = trie.find_word(_lowercase ) return tuple(string + word for word in suffixes ) def _A ( ) -> None: """simple docstring""" print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __SCREAMING_SNAKE_CASE :int = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCAmelCase_ ( __lowercase : List[str] ) -> str: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : Dict ) -> str: '''simple docstring''' if args.student_type == "roberta": _UpperCAmelCase = False elif args.student_type == "gpt2": _UpperCAmelCase = False def UpperCAmelCase_ ( __lowercase : Any , __lowercase : List[Any] ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _UpperCAmelCase = False def UpperCAmelCase_ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=__lowercase , required=__lowercase , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=__lowercase , required=__lowercase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=__lowercase , choices=["distilbert", "roberta", "gpt2"] , required=__lowercase , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=__lowercase , required=__lowercase , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=__lowercase , type=__lowercase , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=__lowercase , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=__lowercase , required=__lowercase , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=__lowercase , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=__lowercase , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=__lowercase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=__lowercase , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=__lowercase , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=__lowercase , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=__lowercase , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=__lowercase , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=__lowercase , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=__lowercase , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=__lowercase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=__lowercase , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=__lowercase , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=__lowercase , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=__lowercase , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=__lowercase , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=__lowercase , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5E-4 , type=__lowercase , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1E-6 , type=__lowercase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=__lowercase , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=__lowercase , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__lowercase , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=__lowercase , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=__lowercase , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=__lowercase , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=__lowercase , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=__lowercase , default=4000 , help="Checkpoint interval." ) _UpperCAmelCase = parser.parse_args() sanity_checks(__lowercase ) # ARGS # init_gpu_params(__lowercase ) set_seed(__lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(f'Param: {args}' ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(__lowercase ) , __lowercase , indent=4 ) git_log(args.dump_path ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = MODEL_CLASSES[args.student_type] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _UpperCAmelCase = tokenizer.all_special_tokens.index(__lowercase ) _UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f'Special tokens {special_tok_ids}' ) _UpperCAmelCase = special_tok_ids _UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'Loading data from {args.data_file}' ) with open(args.data_file , "rb" ) as fp: _UpperCAmelCase = pickle.load(__lowercase ) if args.mlm: logger.info(f'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts , "rb" ) as fp: _UpperCAmelCase = pickle.load(__lowercase ) _UpperCAmelCase = np.maximum(__lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _UpperCAmelCase = 0.0 # do not predict special tokens _UpperCAmelCase = torch.from_numpy(__lowercase ) else: _UpperCAmelCase = None _UpperCAmelCase = LmSeqsDataset(params=__lowercase , data=__lowercase ) logger.info("Data loader created." ) # STUDENT # logger.info(f'Loading student config from {args.student_config}' ) _UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) _UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f'Loading pretrained weights from {args.student_pretrained_weights}' ) _UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowercase ) else: _UpperCAmelCase = student_model_class(__lowercase ) if args.n_gpu > 0: student.to(f'cuda:{args.local_rank}' ) logger.info("Student loaded." ) # TEACHER # _UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowercase ) if args.n_gpu > 0: teacher.to(f'cuda:{args.local_rank}' ) logger.info(f'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__lowercase , __lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__lowercase , __lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _UpperCAmelCase = Distiller( params=__lowercase , dataset=__lowercase , token_probs=__lowercase , student=__lowercase , teacher=__lowercase ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
236
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "roformer" def __init__( self : List[str] , __lowerCamelCase : Tuple=5_0000 , __lowerCamelCase : Dict=None , __lowerCamelCase : Any=768 , __lowerCamelCase : Dict=12 , __lowerCamelCase : str=12 , __lowerCamelCase : Dict=3072 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : str=1536 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Dict=1e-12 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : int=False , __lowerCamelCase : Tuple=True , **__lowerCamelCase : int , ) -> Optional[int]: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = rotary_value SCREAMING_SNAKE_CASE__ = use_cache class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''sequence'''} SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
472
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Dict = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
472
1
'''simple docstring''' from collections.abc import Generator from math import sin def lowerCamelCase__ ( __lowerCamelCase : bytes ): '''simple docstring''' if len(__lowerCamelCase ) != 3_2: raise ValueError('Input must be of length 32' ) _UpperCAmelCase : Union[str, Any] =b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowerCamelCase__ ( __lowerCamelCase : int ): '''simple docstring''' if i < 0: raise ValueError('Input must be non-negative' ) _UpperCAmelCase : Tuple =format(__lowerCamelCase , '08x' )[-8:] _UpperCAmelCase : List[Any] =b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def lowerCamelCase__ ( __lowerCamelCase : bytes ): '''simple docstring''' _UpperCAmelCase : Dict =b'' for char in message: bit_string += format(__lowerCamelCase , '08b' ).encode('utf-8' ) _UpperCAmelCase : str =format(len(__lowerCamelCase ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__lowerCamelCase ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def lowerCamelCase__ ( __lowerCamelCase : bytes ): '''simple docstring''' if len(__lowerCamelCase ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__lowerCamelCase ) , 5_1_2 ): _UpperCAmelCase : List[str] =bit_string[pos : pos + 5_1_2] _UpperCAmelCase : Union[str, Any] =[] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def lowerCamelCase__ ( __lowerCamelCase : int ): '''simple docstring''' if i < 0: raise ValueError('Input must be non-negative' ) _UpperCAmelCase : List[Any] =format(__lowerCamelCase , '032b' ) _UpperCAmelCase : Tuple ='' for c in i_str: new_str += "1" if c == "0" else "0" return int(__lowerCamelCase , 2 ) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' return (a + b) % 2**3_2 def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def lowerCamelCase__ ( __lowerCamelCase : bytes ): '''simple docstring''' _UpperCAmelCase : Dict =preprocess(__lowerCamelCase ) _UpperCAmelCase : Optional[Any] =[int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states _UpperCAmelCase : Tuple =0X67_45_23_01 _UpperCAmelCase : Optional[int] =0XEF_CD_AB_89 _UpperCAmelCase : str =0X98_BA_DC_FE _UpperCAmelCase : List[Any] =0X10_32_54_76 _UpperCAmelCase : Any =[ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__lowerCamelCase ): _UpperCAmelCase : Any =aa _UpperCAmelCase : Any =ba _UpperCAmelCase : List[str] =ca _UpperCAmelCase : Optional[Any] =da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _UpperCAmelCase : str =d ^ (b & (c ^ d)) _UpperCAmelCase : Union[str, Any] =i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _UpperCAmelCase : int =c ^ (d & (b ^ c)) _UpperCAmelCase : Any =(5 * i + 1) % 1_6 elif i <= 4_7: _UpperCAmelCase : int =b ^ c ^ d _UpperCAmelCase : Dict =(3 * i + 5) % 1_6 else: _UpperCAmelCase : List[str] =c ^ (b | not_aa(__lowerCamelCase )) _UpperCAmelCase : Tuple =(7 * i) % 1_6 _UpperCAmelCase : int =(f + a + added_consts[i] + block_words[g]) % 2**3_2 _UpperCAmelCase : Union[str, Any] =d _UpperCAmelCase : Optional[Any] =c _UpperCAmelCase : Optional[Any] =b _UpperCAmelCase : Dict =sum_aa(__lowerCamelCase , left_rotate_aa(__lowerCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total _UpperCAmelCase : int =sum_aa(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : List[Any] =sum_aa(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : Any =sum_aa(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : Tuple =sum_aa(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : int =reformat_hex(__lowerCamelCase ) + reformat_hex(__lowerCamelCase ) + reformat_hex(__lowerCamelCase ) + reformat_hex(__lowerCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
446
'''simple docstring''' from typing import Any import numpy as np def lowerCamelCase__ ( __lowerCamelCase : np.ndarray ): '''simple docstring''' return np.array_equal(__lowerCamelCase , matrix.conjugate().T ) def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : np.ndarray ): '''simple docstring''' _UpperCAmelCase : str =v.conjugate().T _UpperCAmelCase : Optional[int] =v_star.dot(__lowerCamelCase ) assert isinstance(__lowerCamelCase , np.ndarray ) return (v_star_dot.dot(__lowerCamelCase )) / (v_star.dot(__lowerCamelCase )) def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) _UpperCAmelCase : List[str] =np.array([[1], [2], [3]] ) assert is_hermitian(__lowerCamelCase ), f"{a} is not hermitian." print(rayleigh_quotient(__lowerCamelCase , __lowerCamelCase ) ) _UpperCAmelCase : List[str] =np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__lowerCamelCase ), f"{a} is not hermitian." assert rayleigh_quotient(__lowerCamelCase , __lowerCamelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
446
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Any = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
714
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Dict = logging.getLogger(__name__) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if metric == "rouge2": _UpperCAmelCase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _UpperCAmelCase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _UpperCAmelCase = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ''' function.''' ) _UpperCAmelCase = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=f'val_{metric}' , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return EarlyStopping( monitor=f'val_{metric}' , mode='''min''' if '''loss''' in metric else '''max''' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class _a ( pl.Callback): """simple docstring""" def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : str )->Tuple: _UpperCAmelCase = {F'lr_group_{i}': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__UpperCamelCase ) @rank_zero_only def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : pl.Trainer , __UpperCamelCase : pl.LightningModule , __UpperCamelCase : str , __UpperCamelCase : Tuple=True )->None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase = od / '''test_results.txt''' _UpperCAmelCase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F'{type_path}_results/{trainer.global_step:05d}.txt' _UpperCAmelCase = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__UpperCamelCase ) generations_file.parent.mkdir(exist_ok=__UpperCamelCase ) with open(__UpperCamelCase , '''a+''' ) as writer: for key in sorted(__UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(__UpperCamelCase , torch.Tensor ): _UpperCAmelCase = val.item() _UpperCAmelCase = F'{key}: {val:.6f}\n' writer.write(__UpperCamelCase ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__UpperCamelCase ) @rank_zero_only def lowercase__ ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Dict )->Union[str, Any]: try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(__UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def lowercase__ ( self : str , __UpperCamelCase : pl.Trainer , __UpperCamelCase : pl.LightningModule )->List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__UpperCamelCase , __UpperCamelCase , '''test''' ) @rank_zero_only def lowercase__ ( self : Optional[Any] , __UpperCamelCase : pl.Trainer , __UpperCamelCase : List[str] )->Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
95
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[str] , __snake_case : NestedDataStructureLike[PathLike] , __snake_case : Optional[NamedSplit] = None , __snake_case : Optional[Features] = None , __snake_case : str = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[str] = None , __snake_case : Optional[int] = None , **__snake_case : Tuple , ) -> Any: super().__init__( __snake_case , split=__snake_case , features=__snake_case , cache_dir=__snake_case , keep_in_memory=__snake_case , streaming=__snake_case , num_proc=__snake_case , **__snake_case , ) __magic_name__: Union[str, Any] = field __magic_name__: Optional[int] = path_or_paths if isinstance(__snake_case , __snake_case ) else {self.split: path_or_paths} __magic_name__: Optional[int] = Json( cache_dir=__snake_case , data_files=__snake_case , features=__snake_case , field=__snake_case , **__snake_case , ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: # Build iterable dataset if self.streaming: __magic_name__: List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __magic_name__: int = None __magic_name__: Optional[int] = None __magic_name__: Union[str, Any] = None __magic_name__: Optional[Any] = None self.builder.download_and_prepare( download_config=__snake_case , download_mode=__snake_case , verification_mode=__snake_case , base_path=__snake_case , num_proc=self.num_proc , ) __magic_name__: List[str] = self.builder.as_dataset( split=self.split , verification_mode=__snake_case , in_memory=self.keep_in_memory ) return dataset class __A : def __init__( self : List[str] , __snake_case : Dataset , __snake_case : Union[PathLike, BinaryIO] , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , **__snake_case : Dict , ) -> Dict: if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) __magic_name__: Dict = dataset __magic_name__: int = path_or_buf __magic_name__: Optional[int] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __magic_name__: Any = num_proc __magic_name__: Dict = """utf-8""" __magic_name__: List[Any] = to_json_kwargs def lowerCamelCase__ ( self : Union[str, Any] ) -> int: __magic_name__: Union[str, Any] = self.to_json_kwargs.pop("""path_or_buf""" , __snake_case ) __magic_name__: str = self.to_json_kwargs.pop("""orient""" , """records""" ) __magic_name__: Dict = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) __magic_name__: List[str] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) __magic_name__: List[Any] = self.to_json_kwargs.pop("""compression""" , __snake_case ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=__snake_case ) as buffer: __magic_name__: Any = self._write(file_obj=__snake_case , orient=__snake_case , lines=__snake_case , index=__snake_case , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' """ was passed. Please provide a local path instead.""" ) __magic_name__: Tuple = self._write( file_obj=self.path_or_buf , orient=__snake_case , lines=__snake_case , index=__snake_case , **self.to_json_kwargs ) return written def lowerCamelCase__ ( self : Dict , __snake_case : List[Any] ) -> Any: __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__: Union[str, Any] = args __magic_name__: Tuple = query_table( table=self.dataset.data , key=slice(__snake_case , offset + self.batch_size ) , indices=self.dataset._indices , ) __magic_name__: int = batch.to_pandas().to_json( path_or_buf=__snake_case , orient=__snake_case , lines=__snake_case , index=__snake_case , **__snake_case ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCamelCase__ ( self : int , __snake_case : BinaryIO , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , **__snake_case : Optional[Any] , ) -> int: __magic_name__: List[str] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): __magic_name__: Dict = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__snake_case ) else: __magic_name__, __magic_name__: List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __snake_case , __snake_case )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(__snake_case ) return written
96
import requests from bsa import BeautifulSoup def __magic_name__ ( SCREAMING_SNAKE_CASE = "AAPL" ) -> str: _lowercase : str = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" _lowercase : int = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE ).text , 'html.parser' ) _lowercase : List[str] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
66
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_="None" , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , ): __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : List[str] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : Optional[Any] = use_token_type_ids __UpperCAmelCase : str = use_labels __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : int = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : Any = relative_attention __UpperCAmelCase : str = position_biased_input __UpperCAmelCase : Any = pos_att_type __UpperCAmelCase : List[Any] = scope def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : List[str] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : List[Any] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = TFDebertaVaModel(config=UpperCamelCase_ ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : int = [input_ids, input_mask] __UpperCAmelCase : Any = model(UpperCamelCase_ ) __UpperCAmelCase : Any = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = TFDebertaVaForMaskedLM(config=UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Any = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Any = TFDebertaVaForSequenceClassification(config=UpperCamelCase_ ) __UpperCAmelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Optional[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.num_labels __UpperCAmelCase : str = TFDebertaVaForTokenClassification(config=UpperCamelCase_ ) __UpperCAmelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Dict = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = TFDebertaVaForQuestionAnswering(config=UpperCamelCase_ ) __UpperCAmelCase : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self ): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : int = config_and_inputs __UpperCAmelCase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __A (__magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Any = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) snake_case :Tuple = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) snake_case :List[Any] = False snake_case :Optional[int] = False def _snake_case ( self ): __UpperCAmelCase : List[Any] = TFDebertaVaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) @slow def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(UpperCamelCase_ ) @require_tf class __A (unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def _snake_case ( self ): pass @slow def _snake_case ( self ): __UpperCAmelCase : Any = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) __UpperCAmelCase : Optional[Any] = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __UpperCAmelCase : Dict = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] __UpperCAmelCase : Any = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCamelCase_ , atol=1E-4 )
710
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None ): """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __lowercase =quote(_lowerCAmelCase ) return hfh.hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' , revision=_lowerCAmelCase )
474
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _A ( _lowerCAmelCase=None , _lowerCAmelCase=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=_lowerCAmelCase ) @dataclass class _UpperCamelCase : '''simple docstring''' lowerCAmelCase__ = field( metadata={"""help""": """The csv file to plot."""} , ) lowerCAmelCase__ = field( default=A , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) lowerCAmelCase__ = field( default=A , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) lowerCAmelCase__ = field( default=A , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) lowerCAmelCase__ = field( default=A , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) lowerCAmelCase__ = field( default=A , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) lowerCAmelCase__ = list_field( default=A , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def _A ( _lowerCAmelCase ): """simple docstring""" try: int(_lowerCAmelCase ) return True except ValueError: return False def _A ( _lowerCAmelCase ): """simple docstring""" try: float(_lowerCAmelCase ) return True except ValueError: return False class _UpperCamelCase : '''simple docstring''' def __init__( self : str , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =args __lowercase =defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}}) with open(self.args.csv_file , newline='') as csv_file: __lowercase =csv.DictReader(_lowerCAmelCase) for row in reader: __lowercase =row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'])) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'])) if can_convert_to_int(row['result']): # value is not None __lowercase =int(row['result']) elif can_convert_to_float(row['result']): # value is not None __lowercase =float(row['result']) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase , __lowercase =plt.subplots() __lowercase ='Time usage' if self.args.is_time else 'Memory usage' __lowercase =title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log') ax.set_yscale('log') for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter()) for model_name_idx, model_name in enumerate(self.result_dict.keys()): __lowercase =sorted(set(self.result_dict[model_name]['bsz'])) __lowercase =sorted(set(self.result_dict[model_name]['seq_len'])) __lowercase =self.result_dict[model_name]['result'] ((__lowercase) , (__lowercase)) =( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowercase =( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowercase =np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_lowerCAmelCase , ) else: __lowercase =np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowercase) , (__lowercase)) =( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) __lowercase =np.asarray(_lowerCAmelCase , _lowerCAmelCase)[: len(_lowerCAmelCase)] plt.scatter( _lowerCAmelCase , _lowerCAmelCase , label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""") plt.plot(_lowerCAmelCase , _lowerCAmelCase , '--') title_str += f""" {label_model_name} vs.""" __lowercase =title_str[:-4] __lowercase ='Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(_lowerCAmelCase) plt.xlabel(_lowerCAmelCase) plt.ylabel(_lowerCAmelCase) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file) else: plt.show() def _A ( ): """simple docstring""" __lowercase =HfArgumentParser(_lowerCAmelCase ) __lowercase =parser.parse_args_into_dataclasses()[0] __lowercase =Plot(args=_lowerCAmelCase ) plot.plot() if __name__ == "__main__": main()
474
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCAmelCase_ = """\ Text data. Second line of data.""" UpperCAmelCase_ = """file""" @pytest.fixture(scope='session' ) def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] ) -> Dict: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') _snake_case = bytes(UpperCamelCase__ , 'utf-8' ) with zstd.open(UpperCamelCase__ , 'wb' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> str: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , UpperCamelCase__ ) , 'w' ) as f: f.write(UpperCamelCase__ ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] ) -> List[Any]: '''simple docstring''' _snake_case = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} _snake_case = input_paths[compression_format] _snake_case = tmp_path / 'cache' _snake_case = DownloadConfig(cache_dir=UpperCamelCase__ , extract_compressed_file=UpperCamelCase__ ) _snake_case = cached_path(UpperCamelCase__ , download_config=UpperCamelCase__ ) with open(UpperCamelCase__ ) as f: _snake_case = f.read() with open(UpperCamelCase__ ) as f: _snake_case = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> Dict: '''simple docstring''' _snake_case = 'custom_cache' _snake_case = 'custom_extracted_dir' _snake_case = tmp_path / 'custom_extracted_path' if default_extracted: _snake_case = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , UpperCamelCase__ ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(UpperCamelCase__ ) ) _snake_case = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _snake_case = xz_file _snake_case = ( DownloadConfig(extract_compressed_file=UpperCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=UpperCamelCase__ ) ) _snake_case = cached_path(UpperCamelCase__ , download_config=UpperCamelCase__ ) assert Path(UpperCamelCase__ ).parent.parts[-2:] == expected def lowerCamelCase__ ( UpperCamelCase__ : int ) -> str: '''simple docstring''' _snake_case = str(Path(UpperCamelCase__ ).resolve() ) assert cached_path(UpperCamelCase__ ) == text_file # relative path _snake_case = str(Path(UpperCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(UpperCamelCase__ ) == text_file def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' _snake_case = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(UpperCamelCase__ ): cached_path(UpperCamelCase__ ) # relative path _snake_case = './__missing_file__.txt' with pytest.raises(UpperCamelCase__ ): cached_path(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[Any] ) -> List[str]: '''simple docstring''' _snake_case = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(UpperCamelCase__ ) as f: _snake_case = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , UpperCamelCase__ ) def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' with pytest.raises(UpperCamelCase__ ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> int: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(UpperCamelCase__ ): http_get('https://huggingface.co' , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] ) -> str: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(UpperCamelCase__ ): ftp_get('ftp://huggingface.co' , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(UpperCamelCase__ ): fsspec_get('s3://huggingface.co' , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): fsspec_head('s3://huggingface.co' )
541
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
541
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCamelCase( unittest.TestCase ): def __lowerCAmelCase ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCAmelCase ( self : str ): '''simple docstring''' __a : List[str] = 1 __a : List[Any] = 3 __a : str = (3_2, 3_2) __a : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) return image @property def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __a : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=SCREAMING_SNAKE_CASE__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) __a : Optional[Any] = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __a : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator __a : int = self.dummy_cond_unet_upscale __a : Any = DDPMScheduler() __a : Any = DDIMScheduler(prediction_type='v_prediction' ) __a : Any = self.dummy_vae __a : List[str] = self.dummy_text_encoder __a : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __a : Optional[Any] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('RGB' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk __a : str = StableDiffusionUpscalePipeline( unet=SCREAMING_SNAKE_CASE__ , low_res_scheduler=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , max_noise_level=3_5_0 , ) __a : List[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = 'A painting of a squirrel eating a burger' __a : Any = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) __a : List[str] = sd_pipe( [prompt] , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , ) __a : Tuple = output.images __a : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) __a : int = sd_pipe( [prompt] , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , return_dict=SCREAMING_SNAKE_CASE__ , )[0] __a : Dict = image[0, -3:, -3:, -1] __a : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] __a : Any = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __a : Dict = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' __a : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator __a : List[str] = self.dummy_cond_unet_upscale __a : Dict = DDPMScheduler() __a : Dict = DDIMScheduler(prediction_type='v_prediction' ) __a : int = self.dummy_vae __a : Optional[int] = self.dummy_text_encoder __a : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __a : int = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('RGB' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk __a : Dict = StableDiffusionUpscalePipeline( unet=SCREAMING_SNAKE_CASE__ , low_res_scheduler=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , max_noise_level=3_5_0 , ) __a : int = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a : List[str] = 'A painting of a squirrel eating a burger' __a : str = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , ) __a : Any = output.images assert image.shape[0] == 2 __a : List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) __a : int = sd_pipe( [prompt] , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , ) __a : Optional[Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : Dict = self.dummy_cond_unet_upscale __a : Any = DDPMScheduler() __a : Tuple = DDIMScheduler(prediction_type='v_prediction' ) __a : Union[str, Any] = self.dummy_vae __a : Dict = self.dummy_text_encoder __a : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __a : Dict = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('RGB' ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 __a : str = unet.half() __a : Any = text_encoder.half() # make sure here that pndm scheduler skips prk __a : Optional[Any] = StableDiffusionUpscalePipeline( unet=SCREAMING_SNAKE_CASE__ , low_res_scheduler=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , max_noise_level=3_5_0 , ) __a : int = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a : str = 'A painting of a squirrel eating a burger' __a : Tuple = torch.manual_seed(0 ) __a : int = sd_pipe( [prompt] , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='np' , ).images __a : List[str] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class _UpperCamelCase( unittest.TestCase ): def __lowerCAmelCase ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __a : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) __a : List[Any] = 'stabilityai/stable-diffusion-x4-upscaler' __a : List[Any] = StableDiffusionUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) pipe.enable_attention_slicing() __a : Any = 'a cat sitting on a park bench' __a : List[str] = torch.manual_seed(0 ) __a : List[Any] = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) __a : Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' __a : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __a : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) __a : Dict = 'stabilityai/stable-diffusion-x4-upscaler' __a : Any = StableDiffusionUpscalePipeline.from_pretrained( SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa , ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) pipe.enable_attention_slicing() __a : Optional[Any] = 'a cat sitting on a park bench' __a : Any = torch.manual_seed(0 ) __a : List[Any] = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) __a : Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __lowerCAmelCase ( self : Any ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __a : Dict = 'stabilityai/stable-diffusion-x4-upscaler' __a : str = StableDiffusionUpscalePipeline.from_pretrained( SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa , ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a : List[Any] = 'a cat sitting on a park bench' __a : Union[str, Any] = torch.manual_seed(0 ) __a : Dict = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=5 , output_type='np' , ) __a : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
47
print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
47
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ : Any = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : int = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Dict = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCAmelCase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def __A ( lowerCAmelCase_ ): _UpperCAmelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase_ , max_perimeter + 1 ): _UpperCAmelCase : Any = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase_ ): _UpperCAmelCase : Dict = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __A ( lowerCAmelCase_ = 1000 ): _UpperCAmelCase : int = pythagorean_triple(lowerCAmelCase_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
156
0
'''simple docstring''' def UpperCamelCase_ ( A__ , A__ ): while b: a_ , a_ = b, a % b return a def UpperCamelCase_ ( A__ , A__ ): return a if b == 0 else euclidean_gcd_recursive(A__ , a % b ) def UpperCamelCase_ ( ): print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
263
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets lowercase__ =datasets.logging.get_logger(__name__) lowercase__ ='\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = "{COMET}: A Neural Framework for {MT} Evaluation",\n author = "Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon",\n booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",\n month = nov,\n year = "2020",\n address = "Online",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",\n pages = "2685--2702",\n}\n' lowercase__ ='\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n' lowercase__ ='\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric(\'comet\')\n >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use\n >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]\n >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]\n >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results["scores"]])\n [0.19, 0.92]\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def lowerCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def lowerCAmelCase__ ( self , UpperCAmelCase ): if self.config_name == "default": a_ = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: a_ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ): if gpus is None: a_ = 1 if torch.cuda.is_available() else 0 a_ = {"""src""": sources, """mt""": predictions, """ref""": references} a_ = [dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] a_ , a_ = self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
263
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class _lowerCAmelCase ( _lowercase ): A__ = 42 A__ = 42 A__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
470
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( _lowercase ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
470
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' ,'''False''' ) ) is not True ,reason='''Skipping test because should only be run when releasing minor transformers version''' ,) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self) -> Union[str, Any]: if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding="""utf-8""" , check=SCREAMING_SNAKE_CASE , ) assert hasattr(self , """env""") def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> int: _lowerCamelCase : Any = F'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings _lowerCamelCase : Tuple = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=SCREAMING_SNAKE_CASE , instance_count=SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=SCREAMING_SNAKE_CASE , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=SCREAMING_SNAKE_CASE , py_version="""py36""" , ) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> Any: TrainingJobAnalytics(SCREAMING_SNAKE_CASE).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv') @parameterized.expand([(2,)]) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> Dict: # create estimator _lowerCamelCase : str = self.create_estimator(SCREAMING_SNAKE_CASE) # run training estimator.fit() # result dataframe _lowerCamelCase : str = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _lowerCamelCase : int = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""]) _lowerCamelCase : str = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCamelCase : str = ( Session().describe_training_job(estimator.latest_training_job.name).get("""TrainingTimeInSeconds""" , 99_9999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy) assert all(t <= self.results["""eval_loss"""] for t in eval_loss) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , """w""") as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , SCREAMING_SNAKE_CASE)
88
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() _snake_case = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=False , _lowercase=True ) -> List[Any]: if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: UpperCamelCase = cached_file(_lowercase , _lowercase , force_download=not use_cached_models ) UpperCamelCase = config_class.from_json_file(_lowercase ) UpperCamelCase = True UpperCamelCase = True print(F'Building TensorFlow model from configuration: {config}' ) UpperCamelCase = model_class(_lowercase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): UpperCamelCase = cached_file( _lowercase , _lowercase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: UpperCamelCase = load_pytorch_checkpoint_in_tfa_model(_lowercase , _lowercase ) if compare_with_pt_model: UpperCamelCase = tf_model(tf_model.dummy_inputs , training=_lowercase ) # build the network UpperCamelCase = torch.load(_lowercase , map_location='cpu' ) UpperCamelCase = pt_model_class.from_pretrained( pretrained_model_name_or_path=_lowercase , config=_lowercase , state_dict=_lowercase ) with torch.no_grad(): UpperCamelCase = pt_model(**pt_model.dummy_inputs ) UpperCamelCase = pto[0].numpy() UpperCamelCase = tfo[0].numpy() UpperCamelCase = np.amax(np.abs(np_pt - np_tf ) ) print(F'Max absolute difference between models outputs {diff}' ) assert diff <= 2e-2, F'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(F'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(_lowercase , save_format='h5' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=False , _lowercase=False , _lowercase=False , ) -> int: if args_model_type is None: UpperCamelCase = list(MODEL_CLASSES.keys() ) else: UpperCamelCase = [args_model_type] for j, model_type in enumerate(_lowercase , start=1 ): print('=' * 100 ) print(F' Converting model type {j}/{len(_lowercase )}: {model_type}' ) print('=' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: UpperCamelCase = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: UpperCamelCase = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(_lowercase , _lowercase ) , start=1 ): print('-' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F' Skipping finetuned checkpoint {model_shortcut_name}' ) continue UpperCamelCase = model_shortcut_name elif only_convert_finetuned_models: print(F' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( F' Converting checkpoint {i}/{len(_lowercase )}: {model_shortcut_name} - model_type {model_type}' ) print('-' * 100 ) if config_shortcut_name in aws_config_map: UpperCamelCase = cached_file(_lowercase , _lowercase , force_download=not use_cached_models ) else: UpperCamelCase = config_shortcut_name if model_shortcut_name in aws_model_maps: UpperCamelCase = cached_file(_lowercase , _lowercase , force_download=not use_cached_models ) else: UpperCamelCase = model_shortcut_name if os.path.isfile(_lowercase ): UpperCamelCase = 'converted_model' convert_pt_checkpoint_to_tf( model_type=_lowercase , pytorch_checkpoint_path=_lowercase , config_file=_lowercase , tf_dump_path=os.path.join(_lowercase , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=_lowercase , ) if remove_cached_files: os.remove(_lowercase ) os.remove(_lowercase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and " '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') _snake_case = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
282
0
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __UpperCAmelCase :str = logging.get_logger(__name__) @add_end_docstrings(_a ) class a ( _a ): """simple docstring""" def __init__( self : str , **snake_case : Dict ) -> Any: super().__init__(**snake_case ) if self.framework != "pt": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self : Tuple , snake_case : Union[np.ndarray, bytes, str] , **snake_case : Dict ) -> List[Any]: return super().__call__(snake_case , **snake_case ) def lowerCamelCase__ ( self : int , **snake_case : int ) -> Dict: __UpperCAmelCase : List[str] = {} if "candidate_labels" in kwargs: __UpperCAmelCase : List[Any] = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __UpperCAmelCase : Tuple = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowerCamelCase__ ( self : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Optional[int]=None , snake_case : List[Any]="This is a sound of {}." ) -> Tuple: if isinstance(snake_case , snake_case ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __UpperCAmelCase : List[str] = requests.get(snake_case ).content else: with open(snake_case , '''rb''' ) as f: __UpperCAmelCase : Optional[int] = f.read() if isinstance(snake_case , snake_case ): __UpperCAmelCase : Optional[Any] = ffmpeg_read(snake_case , self.feature_extractor.sampling_rate ) if not isinstance(snake_case , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) __UpperCAmelCase : List[str] = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) __UpperCAmelCase : Tuple = candidate_labels __UpperCAmelCase : Optional[Any] = [hypothesis_template.format(snake_case ) for x in candidate_labels] __UpperCAmelCase : Union[str, Any] = self.tokenizer(snake_case , return_tensors=self.framework , padding=snake_case ) __UpperCAmelCase : Union[str, Any] = [text_inputs] return inputs def lowerCamelCase__ ( self : Union[str, Any] , snake_case : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Any = model_inputs.pop('''candidate_labels''' ) __UpperCAmelCase : List[Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , snake_case ): __UpperCAmelCase : Tuple = text_inputs[0] else: # Batching case. __UpperCAmelCase : Any = text_inputs[0][0] __UpperCAmelCase : Optional[int] = self.model(**snake_case , **snake_case ) __UpperCAmelCase : Optional[Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def lowerCamelCase__ ( self : str , snake_case : Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : int = model_outputs.pop('''candidate_labels''' ) __UpperCAmelCase : List[str] = model_outputs['''logits'''][0] if self.framework == "pt": __UpperCAmelCase : Any = logits.softmax(dim=0 ) __UpperCAmelCase : Any = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) __UpperCAmelCase : int = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(snake_case , snake_case ) , key=lambda snake_case : -x[0] ) ] return result
266
'''simple docstring''' def _a ( _lowercase : List[str] ): '''simple docstring''' __UpperCAmelCase : int = len(_lowercase ) while cur > 1: # Find the maximum number in arr __UpperCAmelCase : Union[str, Any] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __UpperCAmelCase : Any = arr[mi::-1] + arr[mi + 1 : len(_lowercase )] # Reverse whole list __UpperCAmelCase : List[str] = arr[cur - 1 :: -1] + arr[cur : len(_lowercase )] cur -= 1 return arr if __name__ == "__main__": __UpperCAmelCase :Any = input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase :Optional[int] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
266
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase_ ( lowerCamelCase ): a__ = ['''image_processor''', '''tokenizer'''] a__ = '''FlavaImageProcessor''' a__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" __magic_name__ :List[str] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) __magic_name__ :Any = kwargs.pop('''feature_extractor''' ) __magic_name__ :Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :Union[str, Any] = self.image_processor def __call__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __magic_name__ :Any = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if images is not None: __magic_name__ :Tuple = self.image_processor( __lowerCAmelCase , return_image_mask=__lowerCAmelCase , return_codebook_pixels=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if text is not None and images is not None: encoding.update(__lowerCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def A ( self ): """simple docstring""" __magic_name__ :List[Any] = self.tokenizer.model_input_names __magic_name__ :Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , ) return self.image_processor_class @property def A ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowerCAmelCase , ) return self.image_processor
0
SCREAMING_SNAKE_CASE__ : Tuple = { """a""": """AAAAA""", """b""": """AAAAB""", """c""": """AAABA""", """d""": """AAABB""", """e""": """AABAA""", """f""": """AABAB""", """g""": """AABBA""", """h""": """AABBB""", """i""": """ABAAA""", """j""": """BBBAA""", """k""": """ABAAB""", """l""": """ABABA""", """m""": """ABABB""", """n""": """ABBAA""", """o""": """ABBAB""", """p""": """ABBBA""", """q""": """ABBBB""", """r""": """BAAAA""", """s""": """BAAAB""", """t""": """BAABA""", """u""": """BAABB""", """v""": """BBBAB""", """w""": """BABAA""", """x""": """BABAB""", """y""": """BABBA""", """z""": """BABBB""", """ """: """ """, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = {value: key for key, value in encode_dict.items()} def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Tuple = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def __lowercase ( snake_case ): """simple docstring""" if set(snake_case ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) __magic_name__ :Dict = '''''' for word in coded.split(): while len(snake_case ) != 0: decoded += decode_dict[word[:5]] __magic_name__ :int = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
0
1
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ F"""{test_file} instead.""" ) _lowercase = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) _lowercase = components[:-1] + [test_fn.replace(""".py""" , """""" )] _lowercase = """.""".join(snake_case_ ) return test_module_path def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = get_module_path(snake_case_ ) _lowercase = importlib.import_module(snake_case_ ) return test_module def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = [] _lowercase = get_test_module(snake_case_ ) for attr in dir(snake_case_ ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(snake_case_ , snake_case_ ) ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = [] _lowercase = get_test_module(snake_case_ ) for attr in dir(snake_case_ ): _lowercase = getattr(snake_case_ , snake_case_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _lowercase = getattr(snake_case_ , """all_model_classes""" , [] ) if len(snake_case_ ) > 0: test_classes.append(snake_case_ ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = get_test_classes(snake_case_ ) _lowercase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = test_class() if hasattr(snake_case_ , """setUp""" ): test.setUp() _lowercase = None if hasattr(snake_case_ , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _lowercase = test.model_tester.__class__ return model_tester def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): _lowercase = get_test_classes(snake_case_ ) _lowercase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(snake_case_ ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): _lowercase = get_test_classes_for_model(snake_case_ , snake_case_ ) _lowercase = [] for test_class in test_classes: _lowercase = get_model_tester_from_test_class(snake_case_ ) if tester_class is not None: tester_classes.append(snake_case_ ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = get_test_classes(snake_case_ ) _lowercase = {test_class: get_model_tester_from_test_class(snake_case_ ) for test_class in test_classes} return test_tester_mapping def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = get_model_classes(snake_case_ ) _lowercase = { model_class: get_test_classes_for_model(snake_case_ , snake_case_ ) for model_class in model_classes } return model_test_mapping def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = get_model_classes(snake_case_ ) _lowercase = { model_class: get_tester_classes_for_model(snake_case_ , snake_case_ ) for model_class in model_classes } return model_to_tester_mapping def _SCREAMING_SNAKE_CASE ( snake_case_ ): if isinstance(snake_case_ , snake_case_ ): return o elif isinstance(snake_case_ , snake_case_ ): return o.__name__ elif isinstance(snake_case_ , (list, tuple) ): return [to_json(snake_case_ ) for x in o] elif isinstance(snake_case_ , snake_case_ ): return {to_json(snake_case_ ): to_json(snake_case_ ) for k, v in o.items()} else: return o
572
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __a ( unittest.TestCase ): def __init__( self : Dict , lowercase__ : Optional[int] , lowercase__ : Optional[Any]=7 , lowercase__ : Dict=3 , lowercase__ : Optional[int]=18 , lowercase__ : Any=30 , lowercase__ : Tuple=4_00 , lowercase__ : Dict=True , lowercase__ : List[str]=None , lowercase__ : Tuple=True , lowercase__ : Optional[int]=None , lowercase__ : Any=True , lowercase__ : Union[str, Any]=[0.5, 0.5, 0.5] , lowercase__ : Tuple=[0.5, 0.5, 0.5] , lowercase__ : Optional[Any]=False , ) ->str: """simple docstring""" _lowercase = size if size is not None else {"""height""": 20, """width""": 20} _lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowercase = parent _lowercase = batch_size _lowercase = num_channels _lowercase = image_size _lowercase = min_resolution _lowercase = max_resolution _lowercase = do_resize _lowercase = size _lowercase = do_center_crop _lowercase = crop_size _lowercase = do_normalize _lowercase = image_mean _lowercase = image_std _lowercase = do_reduce_labels def _UpperCAmelCase ( self : Union[str, Any]) ->str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def _SCREAMING_SNAKE_CASE ( ): _lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _lowercase = Image.open(dataset[0]["""file"""] ) _lowercase = Image.open(dataset[1]["""file"""] ) return image, map def _SCREAMING_SNAKE_CASE ( ): _lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _lowercase = Image.open(ds[0]["""file"""] ) _lowercase = Image.open(ds[1]["""file"""] ) _lowercase = Image.open(ds[2]["""file"""] ) _lowercase = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __a ( _snake_case ,unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = BeitImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self : Any) ->str: """simple docstring""" _lowercase = BeitImageProcessingTester(self) @property def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self : Optional[int]) ->Any: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , """do_resize""")) self.assertTrue(hasattr(lowercase__ , """size""")) self.assertTrue(hasattr(lowercase__ , """do_center_crop""")) self.assertTrue(hasattr(lowercase__ , """center_crop""")) self.assertTrue(hasattr(lowercase__ , """do_normalize""")) self.assertTrue(hasattr(lowercase__ , """image_mean""")) self.assertTrue(hasattr(lowercase__ , """image_std""")) def _UpperCAmelCase ( self : Optional[Any]) ->str: """simple docstring""" _lowercase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) self.assertEqual(image_processor.do_reduce_labels , lowercase__) _lowercase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowercase__) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) self.assertEqual(image_processor.do_reduce_labels , lowercase__) def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]: """simple docstring""" pass def _UpperCAmelCase ( self : List[str]) ->int: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : str) ->int: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : Dict) ->Union[str, Any]: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : Dict) ->Any: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__) _lowercase = [] for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor) maps.append(torch.zeros(image.shape[-2:]).long()) # Test not batched input _lowercase = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) # Test batched _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) # Test not batched input (PIL images) _lowercase , _lowercase = prepare_semantic_single_inputs() _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) # Test batched input (PIL images) _lowercase , _lowercase = prepare_semantic_batch_inputs() _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) def _UpperCAmelCase ( self : Dict) ->Optional[Any]: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _lowercase , _lowercase = prepare_semantic_single_inputs() _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 1_50) _lowercase = True _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55)
572
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") UpperCamelCase = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _lowerCamelCase ( UpperCAmelCase_ : str ) -> Tuple: """simple docstring""" with open(UpperCAmelCase_, "rb" ) as f: A__ = Image.open(UpperCAmelCase_ ) return im.convert("RGB" ) @dataclass class UpperCamelCase__ : """simple docstring""" A__ : Optional[str] = field( default=_lowerCAmelCase , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) A__ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) A__ : Optional[str] = field(default=_lowerCAmelCase , metadata={"help": "A folder containing the training data."} ) A__ : Optional[str] = field(default=_lowerCAmelCase , metadata={"help": "A folder containing the validation data."} ) A__ : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) A__ : Optional[int] = field( default=_lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) A__ : Optional[int] = field( default=_lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def snake_case__ ( self ) -> Optional[Any]: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class UpperCamelCase__ : """simple docstring""" A__ : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) A__ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_lowerCAmelCase )} , ) A__ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A__ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) A__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) A__ : str = field(default=_lowerCAmelCase , metadata={"help": "Name or path of preprocessor config."} ) A__ : bool = field( default=_lowerCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) A__ : bool = field( default=_lowerCAmelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" A__ = torch.stack([example["pixel_values"] for example in examples] ) A__ = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _lowerCamelCase ( ) -> str: """simple docstring""" A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__ , A__ , A__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__ , A__ , A__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification", UpperCAmelCase_, UpperCAmelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase_ ) transformers.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. A__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A__ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task="image-classification", use_auth_token=True if model_args.use_auth_token else None, ) else: A__ = {} if data_args.train_dir is not None: A__ = os.path.join(data_args.train_dir, "**" ) if data_args.validation_dir is not None: A__ = os.path.join(data_args.validation_dir, "**" ) A__ = load_dataset( "imagefolder", data_files=UpperCAmelCase_, cache_dir=model_args.cache_dir, task="image-classification", ) # If we don't have a validation split, split off a percentage of train as validation. A__ = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, UpperCAmelCase_ ) and data_args.train_val_split > 0.0: A__ = dataset["train"].train_test_split(data_args.train_val_split ) A__ = split["train"] A__ = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A__ = dataset["train"].features["labels"].names A__ , A__ = {}, {} for i, label in enumerate(UpperCAmelCase_ ): A__ = str(UpperCAmelCase_ ) A__ = label # Load the accuracy metric from the datasets package A__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCAmelCase_ : int ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(UpperCAmelCase_ ), labelaid=UpperCAmelCase_, idalabel=UpperCAmelCase_, finetuning_task="image-classification", cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A__ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=UpperCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A__ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A__ = image_processor.size["shortest_edge"] else: A__ = (image_processor.size["height"], image_processor.size["width"]) A__ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A__ = Compose( [ RandomResizedCrop(UpperCAmelCase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A__ = Compose( [ Resize(UpperCAmelCase_ ), CenterCrop(UpperCAmelCase_ ), ToTensor(), normalize, ] ) def train_transforms(UpperCAmelCase_ : Tuple ): A__ = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(UpperCAmelCase_ : Any ): A__ = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: A__ = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(UpperCAmelCase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: A__ = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(UpperCAmelCase_ ) # Initalize our trainer A__ = Trainer( model=UpperCAmelCase_, args=UpperCAmelCase_, train_dataset=dataset["train"] if training_args.do_train else None, eval_dataset=dataset["validation"] if training_args.do_eval else None, compute_metrics=UpperCAmelCase_, tokenizer=UpperCAmelCase_, data_collator=UpperCAmelCase_, ) # Training if training_args.do_train: A__ = None if training_args.resume_from_checkpoint is not None: A__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ = last_checkpoint A__ = trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() trainer.log_metrics("train", train_result.metrics ) trainer.save_metrics("train", train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A__ = trainer.evaluate() trainer.log_metrics("eval", UpperCAmelCase_ ) trainer.save_metrics("eval", UpperCAmelCase_ ) # Write model card and (optionally) push to hub A__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase_ ) else: trainer.create_model_card(**UpperCAmelCase_ ) if __name__ == "__main__": main()
104
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient lowerCAmelCase : List[Any] = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = test_results.split(" " ) SCREAMING_SNAKE_CASE_: Tuple = 0 SCREAMING_SNAKE_CASE_: str = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. SCREAMING_SNAKE_CASE_: Optional[Any] = expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(_UpperCAmelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Any = None SCREAMING_SNAKE_CASE_: Union[str, Any] = False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = True SCREAMING_SNAKE_CASE_: Dict = line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): SCREAMING_SNAKE_CASE_: Union[str, Any] = line SCREAMING_SNAKE_CASE_: List[str] = False return failures class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Dict = title SCREAMING_SNAKE_CASE_: int = doc_test_results["time_spent"].split(",")[0] SCREAMING_SNAKE_CASE_: int = doc_test_results["success"] SCREAMING_SNAKE_CASE_: Optional[Any] = doc_test_results["failures"] SCREAMING_SNAKE_CASE_: Any = self.n_success + self.n_failures # Failures and success of the modeling tests SCREAMING_SNAKE_CASE_: Optional[int] = doc_test_results @property def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: int = [self._time_spent] SCREAMING_SNAKE_CASE_: List[Any] = 0 for time in time_spent: SCREAMING_SNAKE_CASE_: Union[str, Any] = time.split(":") # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowerCAmelCase__) == 1: SCREAMING_SNAKE_CASE_: Dict = [0, 0, time_parts[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = int(time_parts[0]), int(time_parts[1]), float(time_parts[2]) total_secs += hours * 3600 + minutes * 60 + seconds SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F"{int(lowerCAmelCase__)}h{int(lowerCAmelCase__)}m{int(lowerCAmelCase__)}s" @property def _SCREAMING_SNAKE_CASE ( self : List[Any]): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return { "type": "section", "text": { "type": "plain_text", "text": F"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return { "type": "section", "text": { "type": "plain_text", "text": ( F"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" F" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[Any] = 40 SCREAMING_SNAKE_CASE_: List[str] = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(lowerCAmelCase__ , lowerCAmelCase__)} SCREAMING_SNAKE_CASE_: Tuple = "" for category, failures in category_failures.items(): if len(lowerCAmelCase__) == 0: continue if report != "": report += "\n\n" report += F"*{category} failures*:".ljust(line_length // 2).rjust(line_length // 2) + "\n" report += "`" report += "`\n`".join(lowerCAmelCase__) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"The following examples had failures:\n\n\n{report}\n", }, } @property def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Optional[Any] = [self.header] if self.n_failures > 0: blocks.append(self.failures) if self.n_failures > 0: blocks.extend([self.category_failures]) if self.n_failures == 0: blocks.append(self.no_failures) return json.dumps(lowerCAmelCase__) @staticmethod def _SCREAMING_SNAKE_CASE ( ): SCREAMING_SNAKE_CASE_: List[str] = [ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print("Sending the following payload") print(json.dumps({"blocks": json.loads(lowerCAmelCase__)})) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): print("Sending the following payload") print(json.dumps({"blocks": json.loads(self.payload)})) SCREAMING_SNAKE_CASE_: Optional[Any] = F"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else "All tests passed." SCREAMING_SNAKE_CASE_: List[Any] = client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = "" for key, value in failures.items(): SCREAMING_SNAKE_CASE_: str = value[:200] + " [Truncated]" if len(lowerCAmelCase__) > 250 else value failures_text += F"*{key}*\n_{value}_\n\n" SCREAMING_SNAKE_CASE_: Any = job_name SCREAMING_SNAKE_CASE_: List[Any] = {"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: SCREAMING_SNAKE_CASE_: Tuple = { "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _SCREAMING_SNAKE_CASE ( self : Any): if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made.") SCREAMING_SNAKE_CASE_: Tuple = self.doc_test_results.pop("job_link") self.doc_test_results.pop("failures") self.doc_test_results.pop("success") self.doc_test_results.pop("time_spent") SCREAMING_SNAKE_CASE_: Any = sorted(self.doc_test_results.items() , key=lambda lowerCAmelCase__: t[0]) for job, job_result in sorted_dict: if len(job_result["failures"]): SCREAMING_SNAKE_CASE_: Union[str, Any] = F"*Num failures* :{len(job_result['failed'])} \n" SCREAMING_SNAKE_CASE_: Optional[Any] = job_result["failures"] SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_reply_blocks(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , text=lowerCAmelCase__) print("Sending the following reply") print(json.dumps({"blocks": blocks})) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F"Results for {job}" , blocks=lowerCAmelCase__ , thread_ts=self.thread_ts["ts"] , ) time.sleep(1) def A_ ( ): SCREAMING_SNAKE_CASE_: Tuple = os.environ["GITHUB_RUN_ID"] SCREAMING_SNAKE_CASE_: Any = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" SCREAMING_SNAKE_CASE_: List[Any] = requests.get(_UpperCAmelCase ).json() SCREAMING_SNAKE_CASE_: Optional[Any] = {} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) SCREAMING_SNAKE_CASE_: Any = math.ceil((result["total_count"] - 1_00) / 1_00 ) for i in range(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , _UpperCAmelCase ) return {} def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = {} if os.path.exists(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = os.listdir(_UpperCAmelCase ) for file in files: try: with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_: Dict = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(_UpperCAmelCase , _UpperCAmelCase )}." ) from e return _artifact def A_ ( ): class __lowercase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Dict = name SCREAMING_SNAKE_CASE_: List[str] = [] def __str__( self : Optional[Any]): return self.name def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : str): self.paths.append({"name": self.name, "path": path}) SCREAMING_SNAKE_CASE_: Dict[str, Artifact] = {} SCREAMING_SNAKE_CASE_: List[Any] = filter(os.path.isdir , os.listdir() ) for directory in directories: SCREAMING_SNAKE_CASE_: Dict = directory if artifact_name not in _available_artifacts: SCREAMING_SNAKE_CASE_: Tuple = Artifact(_UpperCAmelCase ) _available_artifacts[artifact_name].add_path(_UpperCAmelCase ) return _available_artifacts if __name__ == "__main__": lowerCAmelCase : Tuple = get_job_links() lowerCAmelCase : Optional[Any] = retrieve_available_artifacts() lowerCAmelCase : Any = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' lowerCAmelCase : int = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job lowerCAmelCase : Optional[int] = github_actions_job_links.get("""run_doctests""") lowerCAmelCase : List[Any] = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] lowerCAmelCase : Any = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = handle_test_results(artifact["""stats"""]) lowerCAmelCase : List[str] = failed lowerCAmelCase : Any = success lowerCAmelCase : Dict = time_spent[1:-1] + """, """ lowerCAmelCase : str = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): lowerCAmelCase : Tuple = line.replace("""FAILED """, """""") lowerCAmelCase : str = line.split()[0].replace("""\n""", """""") if "::" in line: lowerCAmelCase , lowerCAmelCase : Optional[int] = line.split("""::""") else: lowerCAmelCase , lowerCAmelCase : str = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): lowerCAmelCase : str = docs[file_regex] doc_test_results[category]["failed"].append(test) lowerCAmelCase : str = all_failures[test] if test in all_failures else """N/A""" lowerCAmelCase : Any = failure break lowerCAmelCase : Union[str, Any] = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
671
0
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCamelCase__ : """simple docstring""" def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' raise NotImplementedError() def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' raise NotImplementedError() class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase : "AutoTokenizer" , UpperCamelCase : bool = False , **UpperCamelCase : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = tokenizer __UpperCAmelCase : Union[str, Any] = skip_prompt __UpperCAmelCase : List[str] = decode_kwargs # variables used in the streaming process __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Union[str, Any] = True def lowerCamelCase__ ( self : str , UpperCamelCase : List[str] ): '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: __UpperCAmelCase : Optional[int] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: __UpperCAmelCase : List[Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) __UpperCAmelCase : List[str] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): __UpperCAmelCase : Tuple = text[self.print_len :] __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Union[str, Any] = 0 # If the last token is a CJK character, we print the characters. elif len(UpperCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): __UpperCAmelCase : List[str] = text[self.print_len :] self.print_len += len(UpperCamelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: __UpperCAmelCase : List[str] = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(UpperCamelCase ) self.on_finalized_text(UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' if len(self.token_cache ) > 0: __UpperCAmelCase : Optional[Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) __UpperCAmelCase : Union[str, Any] = text[self.print_len :] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Dict = 0 else: __UpperCAmelCase : Tuple = """""" __UpperCAmelCase : Tuple = True self.on_finalized_text(UpperCamelCase , stream_end=UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : str , UpperCamelCase : bool = False ): '''simple docstring''' print(UpperCamelCase , flush=UpperCamelCase , end="""""" if not stream_end else None ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Tuple ): '''simple docstring''' if ( (cp >= 0x4E_00 and cp <= 0x9F_FF) or (cp >= 0x34_00 and cp <= 0x4D_BF) # or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) # or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) # or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) # or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) # or (cp >= 0xF9_00 and cp <= 0xFA_FF) or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) # ): # return True return False class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : "AutoTokenizer" , UpperCamelCase : bool = False , UpperCamelCase : Optional[float] = None , **UpperCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = Queue() __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = timeout def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : bool = False ): '''simple docstring''' self.text_queue.put(UpperCamelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Tuple ): '''simple docstring''' return self def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
299
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCAmelCase : Any = logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : List[Any] , **UpperCamelCase : int ): '''simple docstring''' super().__init__(**UpperCamelCase ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : Union[str, Any] = {} __UpperCAmelCase : str = {} # preprocess args if "points_per_batch" in kwargs: __UpperCAmelCase : Optional[Any] = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: __UpperCAmelCase : Optional[Any] = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: __UpperCAmelCase : str = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: __UpperCAmelCase : Any = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: __UpperCAmelCase : Any = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: __UpperCAmelCase : Dict = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: __UpperCAmelCase : Union[str, Any] = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: __UpperCAmelCase : Dict = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: __UpperCAmelCase : int = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: __UpperCAmelCase : Union[str, Any] = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: __UpperCAmelCase : Optional[Any] = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: __UpperCAmelCase : str = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : str , UpperCamelCase : Optional[int] , *UpperCamelCase : int , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=None , **UpperCamelCase : str ): '''simple docstring''' return super().__call__(UpperCamelCase , *UpperCamelCase , num_workers=UpperCamelCase , batch_size=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int]=64 , UpperCamelCase : int = 0 , UpperCamelCase : float = 512 / 1_500 , UpperCamelCase : Optional[int] = 32 , UpperCamelCase : Optional[int] = 1 , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = load_image(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = self.image_processor.size["""longest_edge"""] __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = self.image_processor.generate_crop_boxes( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = self.image_processor(images=UpperCamelCase , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": __UpperCAmelCase : Union[str, Any] = self.get_inference_context() with inference_context(): __UpperCAmelCase : Tuple = self._ensure_tensor_on_device(UpperCamelCase , device=self.device ) __UpperCAmelCase : List[str] = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) __UpperCAmelCase : Optional[int] = image_embeddings __UpperCAmelCase : List[str] = grid_points.shape[1] __UpperCAmelCase : Optional[Any] = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : str = grid_points[:, i : i + points_per_batch, :, :] __UpperCAmelCase : Union[str, Any] = input_labels[:, i : i + points_per_batch] __UpperCAmelCase : Optional[Any] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowerCamelCase__ ( self : str , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any]=0.88 , UpperCamelCase : Union[str, Any]=0.95 , UpperCamelCase : int=0 , UpperCamelCase : Optional[int]=1 , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = model_inputs.pop("""input_boxes""" ) __UpperCAmelCase : Tuple = model_inputs.pop("""is_last""" ) __UpperCAmelCase : List[Any] = model_inputs.pop("""original_sizes""" ).tolist() __UpperCAmelCase : Optional[int] = model_inputs.pop("""reshaped_input_sizes""" ).tolist() __UpperCAmelCase : str = self.model(**UpperCamelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __UpperCAmelCase : Dict = model_outputs["""pred_masks"""] __UpperCAmelCase : Union[str, Any] = self.image_processor.post_process_masks( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , binarize=UpperCamelCase ) __UpperCAmelCase : Optional[int] = model_outputs["""iou_scores"""] __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Tuple = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowerCamelCase__ ( self : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str]=False , UpperCamelCase : int=False , UpperCamelCase : int=0.7 , ): '''simple docstring''' __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : int = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) __UpperCAmelCase : List[Any] = torch.cat(UpperCamelCase ) __UpperCAmelCase : List[str] = torch.cat(UpperCamelCase ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = self.image_processor.post_process_for_mask_generation( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[Any] = defaultdict(UpperCamelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCamelCase ) __UpperCAmelCase : int = {} if output_rle_mask: __UpperCAmelCase : Union[str, Any] = rle_mask if output_bboxes_mask: __UpperCAmelCase : int = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
299
1
import warnings from ..trainer import Trainer from ..utils import logging lowerCAmelCase__ : List[str] =logging.get_logger(__name__) class __lowercase (_lowerCamelCase ): """simple docstring""" def __init__( self , lowerCAmelCase__=None , **lowerCAmelCase__ ): """simple docstring""" warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , lowerCAmelCase__ , ) super().__init__(args=lowerCAmelCase__ , **lowerCAmelCase__ )
101
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowercase( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): """simple docstring""" __lowerCamelCase = IFInpaintingSuperResolutionPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} __lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) __lowerCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def snake_case ( self: Optional[Any] ): return self._get_superresolution_dummy_components() def snake_case ( self: List[str] ,a: str ,a: Tuple=0 ): if str(a ).startswith('mps' ): __UpperCAmelCase = torch.manual_seed(a ) else: __UpperCAmelCase = torch.Generator(device=a ).manual_seed(a ) __UpperCAmelCase = floats_tensor((1, 3, 16, 16) ,rng=random.Random(a ) ).to(a ) __UpperCAmelCase = floats_tensor((1, 3, 32, 32) ,rng=random.Random(a ) ).to(a ) __UpperCAmelCase = floats_tensor((1, 3, 32, 32) ,rng=random.Random(a ) ).to(a ) __UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def snake_case ( self: Any ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' ,reason='float16 requires CUDA' ) def snake_case ( self: Any ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case ( self: Tuple ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case ( self: List[Any] ): self._test_save_load_local() def snake_case ( self: Tuple ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 ,)
396
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
413
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _snake_case = logging.get_logger(__name__) _snake_case = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class UpperCamelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase=None , **_UpperCAmelCase): logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''') lowerCAmelCase_ = model lowerCAmelCase_ = kwargs.get('''model_save_dir''' , _UpperCAmelCase) lowerCAmelCase_ = kwargs.get('''latest_model_name''' , _UpperCAmelCase) def __call__( self , **_UpperCAmelCase): lowerCAmelCase_ = {k: np.array(_UpperCAmelCase) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase) @staticmethod def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None): if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''') lowerCAmelCase_ = '''CPUExecutionProvider''' return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase): lowerCAmelCase_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowerCAmelCase_ = self.model_save_dir.joinpath(self.latest_model_name) lowerCAmelCase_ = Path(_UpperCAmelCase).joinpath(_UpperCAmelCase) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowerCAmelCase_ = self.model_save_dir.joinpath(_UpperCAmelCase) if src_path.exists(): lowerCAmelCase_ = Path(_UpperCAmelCase).joinpath(_UpperCAmelCase) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase) except shutil.SameFileError: pass def lowercase__ ( self , _UpperCAmelCase , **_UpperCAmelCase , ): if os.path.isfile(_UpperCAmelCase): logger.error(f'Provided path ({save_directory}) should be a directory, not a file') return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase) @classmethod def lowercase__ ( cls , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowerCAmelCase_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase): lowerCAmelCase_ = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase) lowerCAmelCase_ = Path(_UpperCAmelCase) # load model from hub else: # download model lowerCAmelCase_ = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) lowerCAmelCase_ = Path(_UpperCAmelCase).parent lowerCAmelCase_ = Path(_UpperCAmelCase).name lowerCAmelCase_ = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase) return cls(model=_UpperCAmelCase , **_UpperCAmelCase) @classmethod def lowercase__ ( cls , _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowerCAmelCase_ = None if len(str(_UpperCAmelCase).split('''@''')) == 2: lowerCAmelCase_ , lowerCAmelCase_ = model_id.split('''@''') return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
413
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase__ : int = random.Random() if is_torch_available(): import torch def a__ ( lowercase : Optional[int], lowercase : Optional[int]=1.0, lowercase : Optional[int]=None, lowercase : List[Any]=None ) -> str: """simple docstring""" if rng is None: _UpperCamelCase = global_rng _UpperCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : Optional[Any]=400 , lowerCAmelCase__ : Optional[Any]=2000 , lowerCAmelCase__ : int=1 , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : List[str]=16000 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[Any]=True , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = min_seq_length _UpperCamelCase = max_seq_length _UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCamelCase = feature_size _UpperCamelCase = padding_value _UpperCamelCase = sampling_rate _UpperCamelCase = return_attention_mask _UpperCamelCase = do_normalize def snake_case__ ( self : List[Any] ) -> str: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case__ ( self : Any , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : str=False ) -> Dict: '''simple docstring''' def _flatten(lowerCAmelCase__ : Union[str, Any] ): return list(itertools.chain(*lowerCAmelCase__ ) ) if equal_length: _UpperCamelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _UpperCamelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCamelCase = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[Any] = ASTFeatureExtractor def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ASTFeatureExtractionTester(self ) def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCamelCase = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input _UpperCamelCase = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values _UpperCamelCase = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) # Test batched _UpperCamelCase = feat_extract(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' ).input_values _UpperCamelCase = feat_extract(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCamelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCamelCase = np.asarray(lowerCAmelCase__ ) _UpperCamelCase = feat_extract(lowerCAmelCase__ , return_tensors='''np''' ).input_values _UpperCamelCase = feat_extract(lowerCAmelCase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) @require_torch def snake_case__ ( self : str ) -> Tuple: '''simple docstring''' import torch _UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCamelCase = np.random.rand(100 ).astype(np.floataa ) _UpperCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCamelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _UpperCamelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' from datasets import load_dataset _UpperCamelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _UpperCamelCase = ds.sort('''id''' ).select(range(lowerCAmelCase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on _UpperCamelCase = self._load_datasamples(1 ) _UpperCamelCase = ASTFeatureExtractor() _UpperCamelCase = feature_extractor(lowerCAmelCase__ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCAmelCase__ , atol=1e-4 ) )
98
def lowerCamelCase__ ( snake_case_ : int = 1000 ) -> int: __snake_case = 2**power __snake_case = str(snake_case_ ) __snake_case = list(snake_case_ ) __snake_case = 0 for i in list_num: sum_of_num += int(snake_case_ ) return sum_of_num if __name__ == "__main__": snake_case_ = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) snake_case_ = solution(power) print('Sum of the digits is: ', result)
592
0
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase__ = logging.get_logger(__name__) class __snake_case ( _lowercase): snake_case__ : str = ["input_values", "attention_mask"] def __init__( self : str , __lowerCAmelCase : int = 1 , __lowerCAmelCase : int = 1_6_0_0_0 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : bool = False , __lowerCAmelCase : int = 8_0 , __lowerCAmelCase : int = 1_6 , __lowerCAmelCase : int = 6_4 , __lowerCAmelCase : str = "hann_window" , __lowerCAmelCase : float = 1.0 , __lowerCAmelCase : float = 8_0 , __lowerCAmelCase : float = 7_6_0_0 , __lowerCAmelCase : float = 1E-10 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : bool = True , **__lowerCAmelCase : List[str] , ): """simple docstring""" super().__init__(feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : Optional[int] = do_normalize _lowerCamelCase : Optional[int] = return_attention_mask _lowerCamelCase : int = num_mel_bins _lowerCamelCase : Optional[Any] = hop_length _lowerCamelCase : Optional[int] = win_length _lowerCamelCase : Any = win_function _lowerCamelCase : Tuple = frame_signal_scale _lowerCamelCase : List[Any] = fmin _lowerCamelCase : Dict = fmax _lowerCamelCase : List[Any] = mel_floor _lowerCamelCase : Dict = reduction_factor _lowerCamelCase : Union[str, Any] = win_length * sampling_rate // 1_0_0_0 _lowerCamelCase : List[str] = hop_length * sampling_rate // 1_0_0_0 _lowerCamelCase : Any = optimal_fft_length(self.sample_size ) _lowerCamelCase : Optional[int] = (self.n_fft // 2) + 1 _lowerCamelCase : List[str] = window_function(window_length=self.sample_size , name=self.win_function , periodic=__lowerCAmelCase ) _lowerCamelCase : str = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , __lowerCAmelCase , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , __lowerCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE ( __lowerCAmelCase : List[np.ndarray] , __lowerCAmelCase : List[np.ndarray] , __lowerCAmelCase : float = 0.0 ): """simple docstring""" if attention_mask is not None: _lowerCamelCase : str = np.array(__lowerCAmelCase , np.intaa ) _lowerCamelCase : Optional[Any] = [] for vector, length in zip(__lowerCAmelCase , attention_mask.sum(-1 ) ): _lowerCamelCase : List[str] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _lowerCamelCase : List[Any] = padding_value normed_input_values.append(__lowerCAmelCase ) else: _lowerCamelCase : Optional[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : np.ndarray , ): """simple docstring""" _lowerCamelCase : Optional[int] = spectrogram( __lowerCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self : Union[str, Any] , __lowerCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __lowerCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : Optional[int] = None , **__lowerCAmelCase : int , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: _lowerCamelCase : List[str] = self._process_audio( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase , ) else: _lowerCamelCase : Any = None if audio_target is not None: _lowerCamelCase : Union[str, Any] = self._process_audio( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase , ) if inputs is None: return inputs_target else: _lowerCamelCase : Optional[int] = inputs_target['''input_values'''] _lowerCamelCase : Optional[Any] = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: _lowerCamelCase : Any = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCAmelCase : bool = False , __lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , **__lowerCAmelCase : Any , ): """simple docstring""" _lowerCamelCase : str = isinstance(__lowerCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) _lowerCamelCase : Any = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : Tuple = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray ): _lowerCamelCase : Optional[Any] = np.asarray(__lowerCAmelCase , dtype=np.floataa ) elif isinstance(__lowerCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Tuple = speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : int = [speech] # needed to make pad() work on spectrogram inputs _lowerCamelCase : Any = self.feature_size # convert into correct format for padding if is_target: _lowerCamelCase : Optional[int] = [self._extract_mel_features(__lowerCAmelCase ) for waveform in speech] _lowerCamelCase : str = BatchFeature({'''input_values''': features} ) _lowerCamelCase : Tuple = self.num_mel_bins else: _lowerCamelCase : Optional[int] = BatchFeature({'''input_values''': speech} ) _lowerCamelCase : Optional[Any] = self.pad( __lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) _lowerCamelCase : Optional[int] = feature_size_hack # convert input values to correct format _lowerCamelCase : int = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): _lowerCamelCase : List[str] = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__lowerCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _lowerCamelCase : str = [array.astype(np.floataa ) for array in input_values] elif isinstance(__lowerCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _lowerCamelCase : str = input_values.astype(np.floataa ) # convert attention_mask to correct format _lowerCamelCase : str = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: _lowerCamelCase : Any = [np.asarray(__lowerCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _lowerCamelCase : Optional[Any] = ( attention_mask if self._get_padding_strategies(__lowerCAmelCase , max_length=__lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _lowerCamelCase : str = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=__lowerCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: _lowerCamelCase : List[Any] = padded_inputs.convert_to_tensors(__lowerCAmelCase ) return padded_inputs def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = super().to_dict() # Don't serialize these as they are derived from the other properties. _lowerCamelCase : List[Any] = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
705
"""simple docstring""" import collections import os import re from pathlib import Path lowerCAmelCase__ = '''src/transformers''' # Matches is_xxx_available() lowerCAmelCase__ = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCAmelCase__ = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase__ = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCAmelCase__ = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase__ = re.compile(R'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase__ = re.compile(R'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCAmelCase__ = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCAmelCase__ = re.compile(R'''^\s*try:''') # Catches a line with else: lowerCAmelCase__ = re.compile(R'''^\s*else:''') def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' if _re_test_backend.search(A_ ) is None: return None _lowerCamelCase : Dict = [b[0] for b in _re_backend.findall(A_ )] backends.sort() return "_and_".join(A_ ) def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' with open(A_, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: _lowerCamelCase : List[str] = f.readlines() _lowerCamelCase : Dict = 0 while line_index < len(A_ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A_ ): return None # First grab the objects without a specific backend in _import_structure _lowerCamelCase : Union[str, Any] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _lowerCamelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A_ ): _lowerCamelCase : Union[str, Any] = _re_one_line_import_struct.search(A_ ).groups()[0] _lowerCamelCase : List[str] = re.findall(R'''\[([^\]]+)\]''', A_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _lowerCamelCase : List[Any] = _re_import_struct_key_value.search(A_ ) if single_line_import_search is not None: _lowerCamelCase : Dict = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(A_ ) > 0] objects.extend(A_ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _lowerCamelCase : Optional[int] = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _lowerCamelCase : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _lowerCamelCase : List[str] = lines[line_index] if _re_import_struct_add_one.search(A_ ) is not None: objects.append(_re_import_struct_add_one.search(A_ ).groups()[0] ) elif _re_import_struct_add_many.search(A_ ) is not None: _lowerCamelCase : Optional[Any] = _re_import_struct_add_many.search(A_ ).groups()[0].split(''', ''' ) _lowerCamelCase : Optional[int] = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_between_brackets.search(A_ ) is not None: _lowerCamelCase : Union[str, Any] = _re_between_brackets.search(A_ ).groups()[0].split(''', ''' ) _lowerCamelCase : Optional[int] = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_quote_object.search(A_ ) is not None: objects.append(_re_quote_object.search(A_ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _lowerCamelCase : Dict = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _lowerCamelCase : Optional[int] = [] while ( line_index < len(A_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _lowerCamelCase : List[str] = lines[line_index] _lowerCamelCase : List[str] = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _lowerCamelCase : Optional[Any] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(A_ ): # If the line is an if is_backend_available, we grab all objects associated. _lowerCamelCase : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _lowerCamelCase : int = lines[line_index] _lowerCamelCase : Any = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _lowerCamelCase : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case_ ( A_ : Dict, A_ : List[Any] ): '''simple docstring''' def find_duplicates(A_ : Dict ): return [k for k, v in collections.Counter(A_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _lowerCamelCase : Optional[int] = [] for key in import_dict_objects.keys(): _lowerCamelCase : Tuple = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _lowerCamelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _lowerCamelCase : str = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[str] = [] for root, _, files in os.walk(A_ ): if "__init__.py" in files: _lowerCamelCase : Union[str, Any] = os.path.join(A_, '''__init__.py''' ) _lowerCamelCase : List[str] = parse_init(A_ ) if objects is not None: _lowerCamelCase : str = analyze_results(*A_ ) if len(A_ ) > 0: _lowerCamelCase : Dict = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(A_ ) ) if len(A_ ) > 0: raise ValueError('''\n\n'''.join(A_ ) ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Tuple = [] for path, directories, files in os.walk(A_ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(A_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A_ ) / folder).glob('''*.py''' ) ) ) == 0: continue _lowerCamelCase : str = str((Path(A_ ) / folder).relative_to(A_ ) ) _lowerCamelCase : Any = short_path.replace(os.path.sep, '''.''' ) submodules.append(A_ ) for fname in files: if fname == "__init__.py": continue _lowerCamelCase : List[str] = str((Path(A_ ) / fname).relative_to(A_ ) ) _lowerCamelCase : Any = short_path.replace('''.py''', '''''' ).replace(os.path.sep, '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(A_ ) return submodules lowerCAmelCase__ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def snake_case_ ( ): '''simple docstring''' from transformers.utils import direct_transformers_import _lowerCamelCase : Union[str, Any] = direct_transformers_import(A_ ) _lowerCamelCase : Union[str, Any] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(A_, '''__init__.py''' ), '''r''' ) as f: _lowerCamelCase : Tuple = f.read() import_structure_keys.update(set(re.findall(R'''import_structure\[\"([^\"]*)\"\]''', A_ ) ) ) _lowerCamelCase : List[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(A_ ) > 0: _lowerCamelCase : Optional[Any] = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
598
0
'''simple docstring''' import logging from transformers import PretrainedConfig __A : Tuple = logging.getLogger(__name__) __A : str = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:List[Any] = 'bertabs' def __init__( self , _a=3_0522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ): """simple docstring""" super().__init__(**_a ) a__ = vocab_size a__ = max_pos a__ = enc_layers a__ = enc_hidden_size a__ = enc_heads a__ = enc_ff_size a__ = enc_dropout a__ = dec_layers a__ = dec_hidden_size a__ = dec_heads a__ = dec_ff_size a__ = dec_dropout
394
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:List[Any] = 'gptsan-japanese' SCREAMING_SNAKE_CASE:str = [ 'past_key_values', ] SCREAMING_SNAKE_CASE:int = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , _a=3_6000 , _a=1280 , _a=1024 , _a=8192 , _a=4096 , _a=128 , _a=10 , _a=0 , _a=16 , _a=16 , _a=128 , _a=0.0 , _a=1e-5 , _a=False , _a=0.0 , _a="float32" , _a=False , _a=False , _a=False , _a=0.002 , _a=False , _a=True , _a=3_5998 , _a=3_5995 , _a=3_5999 , **_a , ): """simple docstring""" a__ = vocab_size a__ = max_position_embeddings a__ = d_model a__ = d_ff a__ = d_ext a__ = d_spout a__ = num_switch_layers a__ = num_ext_layers a__ = num_switch_layers + num_ext_layers a__ = num_heads a__ = num_experts a__ = expert_capacity a__ = dropout_rate a__ = layer_norm_epsilon a__ = router_bias a__ = router_jitter_noise a__ = router_dtype a__ = router_ignore_padding_tokens a__ = output_hidden_states a__ = output_attentions a__ = initializer_factor a__ = output_router_logits a__ = use_cache super().__init__( separator_token_id=_a , pad_token_id=_a , eos_token_id=_a , **_a , )
394
1
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = CTRLTokenizer lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] __UpperCamelCase = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCamelCase = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] __UpperCamelCase = {'unk_token': '<unk>'} __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCAmelCase ) ) def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 'adapt react readapt apt' __UpperCamelCase = 'adapt react readapt apt' return input_text, output_text def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase = 'adapt react readapt apt' __UpperCamelCase = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() __UpperCamelCase = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = tokens + [tokenizer.unk_token] __UpperCamelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
704
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def A ( snake_case :Optional[int] ) -> str: __UpperCamelCase = torch.exp(snake_case ) __UpperCamelCase = torch.sum(snake_case , dim=1 ) # sum of exp(x_i) __UpperCamelCase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(snake_case ) - B / A class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__() __UpperCamelCase = config.output_attentions __UpperCamelCase = config.output_hidden_states __UpperCamelCase = nn.ModuleList([BertLayer(__UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __UpperCamelCase = nn.ModuleList([BertHighway(__UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __UpperCamelCase = [-1 for _ in range(config.num_hidden_layers )] def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if (type(__UpperCAmelCase ) is float) or (type(__UpperCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __UpperCamelCase = x else: __UpperCamelCase = x def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ): '''simple docstring''' __UpperCamelCase = () __UpperCamelCase = () __UpperCamelCase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __UpperCamelCase = all_hidden_states + (hidden_states,) __UpperCamelCase = layer_module( __UpperCAmelCase , __UpperCAmelCase , head_mask[i] , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = layer_outputs[0] if self.output_attentions: __UpperCamelCase = all_attentions + (layer_outputs[1],) __UpperCamelCase = (hidden_states,) if self.output_hidden_states: __UpperCamelCase = current_outputs + (all_hidden_states,) if self.output_attentions: __UpperCamelCase = current_outputs + (all_attentions,) __UpperCamelCase = self.highway[i](__UpperCAmelCase ) # logits, pooled_output if not self.training: __UpperCamelCase = highway_exit[0] __UpperCamelCase = entropy(__UpperCAmelCase ) __UpperCamelCase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __UpperCamelCase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __UpperCamelCase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__UpperCAmelCase , i + 1 ) else: __UpperCamelCase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __UpperCamelCase = all_hidden_states + (hidden_states,) __UpperCamelCase = (hidden_states,) if self.output_hidden_states: __UpperCamelCase = outputs + (all_hidden_states,) if self.output_attentions: __UpperCamelCase = outputs + (all_attentions,) __UpperCamelCase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , __SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) __UpperCamelCase = config __UpperCamelCase = BertEmbeddings(__UpperCAmelCase ) __UpperCamelCase = DeeBertEncoder(__UpperCAmelCase ) __UpperCamelCase = BertPooler(__UpperCAmelCase ) self.init_weights() def UpperCAmelCase ( self ): '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def UpperCAmelCase ( self ): '''simple docstring''' return self.embeddings.word_embeddings def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = value def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__UpperCAmelCase ) @add_start_docstrings_to_model_forward(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __UpperCamelCase = input_ids.size() elif inputs_embeds is not None: __UpperCamelCase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __UpperCamelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __UpperCamelCase = torch.ones(__UpperCAmelCase , device=__UpperCAmelCase ) if encoder_attention_mask is None: __UpperCamelCase = torch.ones(__UpperCAmelCase , device=__UpperCAmelCase ) if token_type_ids is None: __UpperCamelCase = torch.zeros(__UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __UpperCamelCase = self.get_extended_attention_mask(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __UpperCamelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __UpperCamelCase = encoder_attention_mask[:, None, None, :] __UpperCamelCase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __UpperCamelCase = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __UpperCamelCase = self.get_head_mask(__UpperCAmelCase , self.config.num_hidden_layers ) __UpperCamelCase = self.embeddings( input_ids=__UpperCAmelCase , position_ids=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase ) __UpperCamelCase = self.encoder( __UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCamelCase = encoder_outputs[0] __UpperCamelCase = self.pooler(__UpperCAmelCase ) __UpperCamelCase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = message __UpperCamelCase = exit_layer # start from 1! class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__() __UpperCamelCase = BertPooler(__UpperCAmelCase ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size , config.num_labels ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = encoder_outputs[0] __UpperCamelCase = self.pooler(__UpperCAmelCase ) # "return" pooler_output # BertModel __UpperCamelCase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __UpperCamelCase = bmodel_output[1] __UpperCamelCase = self.dropout(__UpperCAmelCase ) __UpperCamelCase = self.classifier(__UpperCAmelCase ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , __SCREAMING_SNAKE_CASE , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) __UpperCamelCase = config.num_labels __UpperCamelCase = config.num_hidden_layers __UpperCamelCase = DeeBertModel(__UpperCAmelCase ) __UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=-1 , __UpperCAmelCase=False , ): '''simple docstring''' __UpperCamelCase = self.num_layers try: __UpperCamelCase = self.bert( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , position_ids=__UpperCAmelCase , head_mask=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __UpperCamelCase = outputs[1] __UpperCamelCase = self.dropout(__UpperCAmelCase ) __UpperCamelCase = self.classifier(__UpperCAmelCase ) __UpperCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase = e.message __UpperCamelCase = e.exit_layer __UpperCamelCase = outputs[0] if not self.training: __UpperCamelCase = entropy(__UpperCAmelCase ) __UpperCamelCase = [] __UpperCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __UpperCamelCase = [] for highway_exit in outputs[-1]: __UpperCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(__UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase = MSELoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__UpperCAmelCase ) if train_highway: __UpperCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase = (loss,) + outputs if not self.training: __UpperCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
293
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = None # Automatically constructed lowerCamelCase__ = "dict" lowerCamelCase__ = None lowerCamelCase__ = field(default='''Translation''' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__ ) def __call__( self : List[Any] ) -> str: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self : Optional[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("string" ) for k in sorted(self.languages )} @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None # Automatically constructed lowerCamelCase__ = "dict" lowerCamelCase__ = None lowerCamelCase__ = field(default='''TranslationVariableLanguages''' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__ ) def __A ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = sorted(set(self.languages ) ) if self.languages else None SCREAMING_SNAKE_CASE_ = len(self.languages ) if self.languages else None def __call__( self : Optional[int] ) -> str: return pa.struct({"language": pa.list_(pa.string() ), "translation": pa.list_(pa.string() )} ) def __A ( self : int , __magic_name__ : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = set(self.languages ) if self.languages and set(__magic_name__ ) - lang_set: raise ValueError( F'''Some languages in example ({", ".join(sorted(set(__magic_name__ ) - lang_set ) )}) are not in valid set ({", ".join(__magic_name__ )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. SCREAMING_SNAKE_CASE_ = [] for lang, text in translation_dict.items(): if isinstance(__magic_name__ , __magic_name__ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = zip(*sorted(__magic_name__ ) ) return {"language": languages, "translation": translations} def __A ( self : Optional[int] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("string" ) ), "translation": Sequence(Value("string" ) ), }
140
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A : Tuple = "pt" elif is_tf_available(): A : Optional[int] = "tf" else: A : Optional[Any] = "jax" class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ByTaTokenizer lowerCamelCase__ = False def __A ( self : Union[str, Any] ) -> List[Any]: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self : Tuple ) -> Union[str, Any]: return ByTaTokenizer.from_pretrained("google/byt5-small" ) def __A ( self : List[Any] , **__magic_name__ : Dict ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) def __A ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : Optional[int]=False , __magic_name__ : Optional[int]=20 , __magic_name__ : Any=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=__magic_name__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda __magic_name__ : re.match(r"^[ a-zA-Z]+$" , t[1] ) , __magic_name__ ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda __magic_name__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__magic_name__ ) , __magic_name__ ) ) if max_length is not None and len(__magic_name__ ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(__magic_name__ ) < min_length and len(__magic_name__ ) > 0: while len(__magic_name__ ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) if " " not in output_txt and len(__magic_name__ ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__magic_name__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__magic_name__ ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = " " + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) return output_txt, output_ids def __A ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) SCREAMING_SNAKE_CASE_ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] ) def __A ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = "Unicode €." SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"] , __magic_name__ ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ ) self.assertEqual(__magic_name__ , "Unicode €.</s>" ) SCREAMING_SNAKE_CASE_ = tokenizer("e è é ê ë" ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"] , __magic_name__ ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ ) self.assertEqual(__magic_name__ , "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" ) def __A ( self : Any ) -> int: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors=__magic_name__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , __magic_name__ ) self.assertIn("attention_mask" , __magic_name__ ) self.assertNotIn("decoder_input_ids" , __magic_name__ ) self.assertNotIn("decoder_attention_mask" , __magic_name__ ) def __A ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ "Summary of the text.", "Another summary.", ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=__magic_name__ , max_length=32 , padding="max_length" , truncation=__magic_name__ , return_tensors=__magic_name__ ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ["A long paragraph for summarization. </s>"] SCREAMING_SNAKE_CASE_ = ["Summary of the text. </s>"] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , text_target=__magic_name__ ) self.assertEqual(__magic_name__ , batch["input_ids"][0] ) self.assertEqual(__magic_name__ , batch["labels"][0] ) def __A ( self : Dict ) -> List[str]: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = " He is very happy, UNwant\u00E9d,running" SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ "an_additional_special_token" ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(__magic_name__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( __magic_name__ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=__magic_name__ )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def __A ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(__magic_name__ ) self.assertTrue(tokenizer.decode([255] ) == "" ) def __A ( self : Optional[int] ) -> List[Any]: pass def __A ( self : List[Any] ) -> List[Any]: pass def __A ( self : List[str] ) -> List[str]: pass def __A ( self : Any ) -> Union[str, Any]: pass def __A ( self : List[Any] ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=__magic_name__ , do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( __magic_name__ , skip_special_tokens=__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + "_id" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + "_id" ) , __magic_name__ ) setattr(__magic_name__ , attr + "_id" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + "_id" ) , __magic_name__ ) setattr(__magic_name__ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__magic_name__ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__magic_name__ , "additional_special_tokens_ids" ) , [] ) setattr(__magic_name__ , "additional_special_tokens_ids" , [token_id_to_test_setters] ) self.assertListEqual(getattr(__magic_name__ , "additional_special_tokens" ) , [token_to_test_setters] ) self.assertListEqual(getattr(__magic_name__ , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
140
1
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowercase : Dict = True from torch.cuda.amp import autocast lowercase : Dict = logging.getLogger(__name__) def __a ( A__=None , A__=None ) -> Optional[int]: return field(default_factory=lambda: default , metadata=A__ ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCAmelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowerCAmelCase = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) lowerCAmelCase = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) lowerCAmelCase = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) lowerCAmelCase = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) lowerCAmelCase = field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) lowerCAmelCase = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCAmelCase = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) lowerCAmelCase = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = True lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: """simple docstring""" lowerCAmelCase = [{"input_values": feature["input_values"]} for feature in features] lowerCAmelCase = [{"input_ids": feature["labels"]} for feature in features] lowerCAmelCase = self.processor.pad( SCREAMING_SNAKE_CASE , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) lowerCAmelCase = self.processor.pad( labels=SCREAMING_SNAKE_CASE , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly lowerCAmelCase = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) lowerCAmelCase = labels return batch class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __A ( self : List[str] , SCREAMING_SNAKE_CASE : nn.Module , SCREAMING_SNAKE_CASE : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: """simple docstring""" model.train() lowerCAmelCase = self._prepare_inputs(SCREAMING_SNAKE_CASE ) if self.use_amp: with autocast(): lowerCAmelCase = self.compute_loss(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = self.compute_loss(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCAmelCase = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(SCREAMING_SNAKE_CASE ).backward() elif self.use_apex: with amp.scale_loss(SCREAMING_SNAKE_CASE , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(SCREAMING_SNAKE_CASE ) else: loss.backward() return loss.detach() def __a ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , A__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: lowerCAmelCase = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) lowerCAmelCase = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer lowerCAmelCase = f"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(A__ ): lowerCAmelCase = re.sub(A__ , "" , batch["sentence"] ).lower() + " " return batch lowerCAmelCase = train_dataset.map(A__ , remove_columns=["sentence"] ) lowerCAmelCase = eval_dataset.map(A__ , remove_columns=["sentence"] ) def extract_all_chars(A__ ): lowerCAmelCase = " ".join(batch["text"] ) lowerCAmelCase = list(set(A__ ) ) return {"vocab": [vocab], "all_text": [all_text]} lowerCAmelCase = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=train_dataset.column_names , ) lowerCAmelCase = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=eval_dataset.column_names , ) lowerCAmelCase = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) lowerCAmelCase = {v: k for k, v in enumerate(A__ )} lowerCAmelCase = vocab_dict[" "] del vocab_dict[" "] lowerCAmelCase = len(A__ ) lowerCAmelCase = len(A__ ) with open("vocab.json" , "w" ) as vocab_file: json.dump(A__ , A__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=A__ , return_attention_mask=A__ ) lowerCAmelCase = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: lowerCAmelCase = min(len(A__ ) , data_args.max_train_samples ) lowerCAmelCase = train_dataset.select(range(A__ ) ) if data_args.max_val_samples is not None: lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) lowerCAmelCase = torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(A__ ): lowerCAmelCase , lowerCAmelCase = torchaudio.load(batch["path"] ) lowerCAmelCase = resampler(A__ ).squeeze().numpy() lowerCAmelCase = 1_6000 lowerCAmelCase = batch["text"] return batch lowerCAmelCase = train_dataset.map( A__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) lowerCAmelCase = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(A__ ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." lowerCAmelCase = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(A__ ) return batch lowerCAmelCase = train_dataset.map( A__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) lowerCAmelCase = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) # Metric lowerCAmelCase = datasets.load_metric("wer" ) def compute_metrics(A__ ): lowerCAmelCase = pred.predictions lowerCAmelCase = np.argmax(A__ , axis=-1 ) lowerCAmelCase = processor.tokenizer.pad_token_id lowerCAmelCase = processor.batch_decode(A__ ) # we do not want to group tokens when computing the metrics lowerCAmelCase = processor.batch_decode(pred.label_ids , group_tokens=A__ ) lowerCAmelCase = wer_metric.compute(predictions=A__ , references=A__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator lowerCAmelCase = DataCollatorCTCWithPadding(processor=A__ , padding=A__ ) # Initialize our Trainer lowerCAmelCase = CTCTrainer( model=A__ , data_collator=A__ , args=A__ , compute_metrics=A__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): lowerCAmelCase = model_args.model_name_or_path else: lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) lowerCAmelCase = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() lowerCAmelCase = train_result.metrics lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A__ ) ) lowerCAmelCase = min(A__ , len(A__ ) ) trainer.log_metrics("train" , A__ ) trainer.save_metrics("train" , A__ ) trainer.save_state() # Evaluation lowerCAmelCase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase = trainer.evaluate() lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(A__ ) lowerCAmelCase = min(A__ , len(A__ ) ) trainer.log_metrics("eval" , A__ ) trainer.save_metrics("eval" , A__ ) return results if __name__ == "__main__": main()
721
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( A__ ) -> Dict: lowerCAmelCase , lowerCAmelCase = image.size lowerCAmelCase , lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) lowerCAmelCase = np.array(A__ ).astype(np.floataa ) / 255.0 lowerCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) lowerCAmelCase = torch.from_numpy(A__ ) return 2.0 * image - 1.0 class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE : VQModel , SCREAMING_SNAKE_CASE : UNetaDModel , SCREAMING_SNAKE_CASE : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules(vqvae=SCREAMING_SNAKE_CASE , unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self : Tuple , SCREAMING_SNAKE_CASE : Union[torch.Tensor, PIL.Image.Image] = None , SCREAMING_SNAKE_CASE : Optional[int] = 1 , SCREAMING_SNAKE_CASE : Optional[int] = 1_0_0 , SCREAMING_SNAKE_CASE : Optional[float] = 0.0 , SCREAMING_SNAKE_CASE : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE : Optional[str] = "pil" , SCREAMING_SNAKE_CASE : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , PIL.Image.Image ): lowerCAmelCase = 1 elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): lowerCAmelCase = image.shape[0] else: raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE )}" ) if isinstance(SCREAMING_SNAKE_CASE , PIL.Image.Image ): lowerCAmelCase = preprocess(SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowerCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) lowerCAmelCase = next(self.unet.parameters() ).dtype lowerCAmelCase = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=SCREAMING_SNAKE_CASE ) lowerCAmelCase = image.to(device=self.device , dtype=SCREAMING_SNAKE_CASE ) # set timesteps and move to the correct device self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE , device=self.device ) lowerCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase = {} if accepts_eta: lowerCAmelCase = eta for t in self.progress_bar(SCREAMING_SNAKE_CASE ): # concat latents and low resolution image in the channel dimension. lowerCAmelCase = torch.cat([latents, image] , dim=1 ) lowerCAmelCase = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # predict the noise residual lowerCAmelCase = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample # decode the image latents with the VQVAE lowerCAmelCase = self.vqvae.decode(SCREAMING_SNAKE_CASE ).sample lowerCAmelCase = torch.clamp(SCREAMING_SNAKE_CASE , -1.0 , 1.0 ) lowerCAmelCase = image / 2 + 0.5 lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
159
0
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : Dict = '' _A : List[Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self : List[str] , __lowercase : Optional[DatasetInfo] = None , __lowercase : Optional[str] = None , **__lowercase : int , ): '''simple docstring''' super().__init__(self , **__lowercase ) __UpperCAmelCase : Union[str, Any] = repo_info __UpperCAmelCase : List[str] = token __UpperCAmelCase : str = None def A_ ( self : List[str] ): '''simple docstring''' if self.dir_cache is None: __UpperCAmelCase : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __UpperCAmelCase : Dict = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(__lowercase ): {'''name''': str(__lowercase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def A_ ( self : str , __lowercase : str , __lowercase : str = "rb" , **__lowercase : Any , ): '''simple docstring''' if not isinstance(self.repo_info , __lowercase ): raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) __UpperCAmelCase : str = hf_hub_url(self.repo_info.id , __lowercase , revision=self.repo_info.sha ) return fsspec.open( __lowercase , mode=__lowercase , headers=get_authentication_headers_for_url(__lowercase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def A_ ( self : Tuple , __lowercase : List[str] , **__lowercase : Union[str, Any] ): '''simple docstring''' self._get_dirs() __UpperCAmelCase : Optional[int] = self._strip_protocol(__lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__lowercase ) def A_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[str, Any]=False , **__lowercase : Optional[int] ): '''simple docstring''' self._get_dirs() __UpperCAmelCase : Optional[Any] = PurePosixPath(path.strip('''/''' ) ) __UpperCAmelCase : Dict = {} for p, f in self.dir_cache.items(): __UpperCAmelCase : Any = PurePosixPath(p.strip('''/''' ) ) __UpperCAmelCase : Optional[int] = p.parent if root == path: __UpperCAmelCase : Dict = f __UpperCAmelCase : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
522
"""simple docstring""" def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[str]: """simple docstring""" if index == r: for j in range(UpperCAmelCase_ ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __UpperCAmelCase : Optional[Any] = arr[i] combination_util(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , index + 1 , UpperCAmelCase_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Tuple: """simple docstring""" __UpperCAmelCase : Union[str, Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , 0 , UpperCAmelCase_ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase__ :int = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
522
1
from ... import PretrainedConfig _lowerCamelCase = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class _SCREAMING_SNAKE_CASE (UpperCamelCase ): lowerCAmelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowerCAmelCase = """nezha""" def __init__( self : Tuple , UpperCamelCase : Any=2_1_1_2_8 , UpperCamelCase : Tuple=7_6_8 , UpperCamelCase : Any=1_2 , UpperCamelCase : Dict=1_2 , UpperCamelCase : List[Any]=3_0_7_2 , UpperCamelCase : Tuple="gelu" , UpperCamelCase : str=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : List[Any]=5_1_2 , UpperCamelCase : List[Any]=6_4 , UpperCamelCase : List[str]=2 , UpperCamelCase : Union[str, Any]=0.0_2 , UpperCamelCase : str=1E-12 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : Dict=0 , UpperCamelCase : Dict=2 , UpperCamelCase : Tuple=3 , UpperCamelCase : Optional[Any]=True , **UpperCamelCase : List[Any] , )->int: super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = vocab_size __SCREAMING_SNAKE_CASE : int = hidden_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : str = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = max_relative_position __SCREAMING_SNAKE_CASE : Optional[int] = type_vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout __SCREAMING_SNAKE_CASE : str = use_cache
447
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _SCREAMING_SNAKE_CASE (UpperCamelCase ): lowerCAmelCase = ["""vqvae"""] def __init__( self : Tuple , UpperCamelCase : AutoencoderKL , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : Mel , UpperCamelCase : Union[DDIMScheduler, DDPMScheduler] , )->Tuple: super().__init__() self.register_modules(unet=UpperCamelCase , scheduler=UpperCamelCase , mel=UpperCamelCase , vqvae=UpperCamelCase ) def __snake_case ( self : List[Any] )->int: return 5_0 if isinstance(self.scheduler , UpperCamelCase ) else 1_0_0_0 @torch.no_grad() def __call__( self : Dict , UpperCamelCase : int = 1 , UpperCamelCase : str = None , UpperCamelCase : np.ndarray = None , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = None , UpperCamelCase : torch.Generator = None , UpperCamelCase : float = 0 , UpperCamelCase : float = 0 , UpperCamelCase : torch.Generator = None , UpperCamelCase : float = 0 , UpperCamelCase : torch.Tensor = None , UpperCamelCase : torch.Tensor = None , UpperCamelCase : Any=True , )->Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: __SCREAMING_SNAKE_CASE : Optional[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __SCREAMING_SNAKE_CASE : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __SCREAMING_SNAKE_CASE : Any = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCamelCase , device=self.device , ) __SCREAMING_SNAKE_CASE : Any = noise __SCREAMING_SNAKE_CASE : Any = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCamelCase , UpperCamelCase ) __SCREAMING_SNAKE_CASE : str = self.mel.audio_slice_to_image(UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = (input_image / 2_5_5) * 2 - 1 __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.vqvae.encode(torch.unsqueeze(UpperCamelCase , 0 ) ).latent_dist.sample( generator=UpperCamelCase )[0] __SCREAMING_SNAKE_CASE : int = self.vqvae.config.scaling_factor * input_images if start_step > 0: __SCREAMING_SNAKE_CASE : List[str] = self.scheduler.add_noise(UpperCamelCase , UpperCamelCase , self.scheduler.timesteps[start_step - 1] ) __SCREAMING_SNAKE_CASE : int = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __SCREAMING_SNAKE_CASE : Union[str, Any] = int(mask_start_secs * pixels_per_second ) __SCREAMING_SNAKE_CASE : int = int(mask_end_secs * pixels_per_second ) __SCREAMING_SNAKE_CASE : Any = self.scheduler.add_noise(UpperCamelCase , UpperCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , UpperCamelCase ): __SCREAMING_SNAKE_CASE : str = self.unet(UpperCamelCase , UpperCamelCase , UpperCamelCase )["sample"] else: __SCREAMING_SNAKE_CASE : int = self.unet(UpperCamelCase , UpperCamelCase )["sample"] if isinstance(self.scheduler , UpperCamelCase ): __SCREAMING_SNAKE_CASE : int = self.scheduler.step( model_output=UpperCamelCase , timestep=UpperCamelCase , sample=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , )["prev_sample"] else: __SCREAMING_SNAKE_CASE : Tuple = self.scheduler.step( model_output=UpperCamelCase , timestep=UpperCamelCase , sample=UpperCamelCase , generator=UpperCamelCase , )["prev_sample"] if mask is not None: if mask_start > 0: __SCREAMING_SNAKE_CASE : int = mask[:, step, :, :mask_start] if mask_end > 0: __SCREAMING_SNAKE_CASE : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __SCREAMING_SNAKE_CASE : Any = 1 / self.vqvae.config.scaling_factor * images __SCREAMING_SNAKE_CASE : Any = self.vqvae.decode(UpperCamelCase )["sample"] __SCREAMING_SNAKE_CASE : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) __SCREAMING_SNAKE_CASE : str = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __SCREAMING_SNAKE_CASE : Tuple = (images * 2_5_5).round().astype("uint8" ) __SCREAMING_SNAKE_CASE : Optional[int] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCamelCase , mode="RGB" ).convert("L" ) for _ in images) ) __SCREAMING_SNAKE_CASE : List[str] = [self.mel.image_to_audio(UpperCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(UpperCamelCase ) ) @torch.no_grad() def __snake_case ( self : Dict , UpperCamelCase : List[Image.Image] , UpperCamelCase : int = 5_0 )->np.ndarray: assert isinstance(self.scheduler , UpperCamelCase ) self.scheduler.set_timesteps(UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) __SCREAMING_SNAKE_CASE : Dict = (sample / 2_5_5) * 2 - 1 __SCREAMING_SNAKE_CASE : Optional[int] = torch.Tensor(UpperCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __SCREAMING_SNAKE_CASE : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.alphas_cumprod[t] __SCREAMING_SNAKE_CASE : List[Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE : Dict = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE : List[Any] = self.unet(UpperCamelCase , UpperCamelCase )["sample"] __SCREAMING_SNAKE_CASE : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output __SCREAMING_SNAKE_CASE : Union[str, Any] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __SCREAMING_SNAKE_CASE : Optional[Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __snake_case ( UpperCamelCase : torch.Tensor , UpperCamelCase : torch.Tensor , UpperCamelCase : float )->torch.Tensor: __SCREAMING_SNAKE_CASE : List[str] = acos(torch.dot(torch.flatten(UpperCamelCase ) , torch.flatten(UpperCamelCase ) ) / torch.norm(UpperCamelCase ) / torch.norm(UpperCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(UpperCamelCase ) + sin(alpha * theta ) * xa / sin(UpperCamelCase )
447
1
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def snake_case ( _a: Any )-> List[str]: '''simple docstring''' lowerCamelCase__ = torch.load(_a , map_location='cpu' ) if "model" in sd.keys(): lowerCamelCase__ = torch.load(_a , map_location='cpu' )['model'] # pop unnecessary weights lowerCamelCase__ = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(_a ) lowerCamelCase__ = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: lowerCamelCase__ = sd.pop(_a ) lowerCamelCase__ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: lowerCamelCase__ = sd[key] # We split QKV in separate Q,K,V lowerCamelCase__ = key.replace('.qkv_proj.' , '.q_proj.' ) lowerCamelCase__ = key.replace('.qkv_proj.' , '.k_proj.' ) lowerCamelCase__ = key.replace('.qkv_proj.' , '.v_proj.' ) lowerCamelCase__ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = torch.split(_a , depth // 3 , dim=0 ) lowerCamelCase__ = q lowerCamelCase__ = k lowerCamelCase__ = v del sd[key] return sd @torch.no_grad() def snake_case ( _a: Union[str, Any] , _a: int , _a: Dict=None )-> str: '''simple docstring''' lowerCamelCase__ = load_checkpoint(_a ) if config is not None: lowerCamelCase__ = OPTConfig.from_pretrained(_a ) else: lowerCamelCase__ = OPTConfig() lowerCamelCase__ = OPTModel(_a ).half().eval() model.load_state_dict(_a ) # Check results Path(_a ).mkdir(exist_ok=_a ) model.save_pretrained(_a ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") _snake_case = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
510
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _snake_case = ["text", "image", "audio"] def snake_case ( _a: List[str] )-> List[str]: '''simple docstring''' lowerCamelCase__ = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_a , _a ): inputs.append(create_inputs(_a ) ) else: raise ValueError(F'Invalid type requested: {input_type}' ) return inputs def snake_case ( _a: List )-> Tuple: '''simple docstring''' lowerCamelCase__ = [] for output in outputs: if isinstance(_a , (str, AgentText) ): output_types.append('text' ) elif isinstance(_a , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(_a , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(F'Invalid output: {output}' ) return output_types @is_tool_test class _a : def _UpperCamelCase ( self : List[str] ): self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) lowerCamelCase__ = self.tool.inputs for _input in inputs: if isinstance(_input , SCREAMING_SNAKE_CASE__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCamelCase__ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = create_inputs(self.tool.inputs ) lowerCamelCase__ = self.tool(*SCREAMING_SNAKE_CASE__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCamelCase__ = [outputs] self.assertListEqual(output_types(SCREAMING_SNAKE_CASE__ ) , self.tool.outputs ) def _UpperCamelCase ( self : str ): self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = create_inputs(self.tool.inputs ) lowerCamelCase__ = self.tool(*SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(self.tool.outputs ) ) for output, output_type in zip(SCREAMING_SNAKE_CASE__ , self.tool.outputs ): lowerCamelCase__ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = create_inputs(self.tool.inputs ) lowerCamelCase__ = [] for _input, input_type in zip(SCREAMING_SNAKE_CASE__ , self.tool.inputs ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCamelCase__ = self.tool(*SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(self.tool.outputs ) )
510
1
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase : Optional[Any] = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] lowerCAmelCase : Optional[int] = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] lowerCAmelCase : Dict = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) lowerCAmelCase : Dict = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) lowerCAmelCase : int = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def __lowerCAmelCase ( lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' for tf_name, hf_name in patterns: __lowerCAmelCase = k.replace(lowerCamelCase , lowerCamelCase ) return k def __lowerCAmelCase ( lowerCamelCase : dict , lowerCamelCase : dict ): '''simple docstring''' __lowerCAmelCase = BigBirdPegasusConfig(**lowerCamelCase ) __lowerCAmelCase = BigBirdPegasusForConditionalGeneration(lowerCamelCase ) __lowerCAmelCase = torch_model.state_dict() __lowerCAmelCase = {} # separating decoder weights __lowerCAmelCase = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __lowerCAmelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): __lowerCAmelCase = [k.endswith(lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(lowerCamelCase ): continue __lowerCAmelCase = DECODER_PATTERNS __lowerCAmelCase = rename_state_dict_key(lowerCamelCase , lowerCamelCase ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __lowerCAmelCase = v.T __lowerCAmelCase = torch.from_numpy(lowerCamelCase ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): __lowerCAmelCase = [k.endswith(lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(lowerCamelCase ): continue __lowerCAmelCase = REMAINING_PATTERNS __lowerCAmelCase = rename_state_dict_key(lowerCamelCase , lowerCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __lowerCAmelCase = v.T __lowerCAmelCase = torch.from_numpy(lowerCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __lowerCAmelCase = mapping["model.embed_positions.weight"] __lowerCAmelCase = mapping.pop("model.embed_positions.weight" ) __lowerCAmelCase , __lowerCAmelCase = torch_model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) __lowerCAmelCase = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def __lowerCAmelCase ( lowerCamelCase : Tuple ): '''simple docstring''' __lowerCAmelCase = tf.train.list_variables(lowerCamelCase ) __lowerCAmelCase = {} __lowerCAmelCase = ["global_step"] for name, shape in tqdm(lowerCamelCase , desc="converting tf checkpoint to dict" ): __lowerCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCAmelCase = tf.train.load_variable(lowerCamelCase , lowerCamelCase ) __lowerCAmelCase = array return tf_weights def __lowerCAmelCase ( lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : dict ): '''simple docstring''' __lowerCAmelCase = get_tf_weights_as_numpy(lowerCamelCase ) __lowerCAmelCase = convert_bigbird_pegasus(lowerCamelCase , lowerCamelCase ) torch_model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase : str = parser.parse_args() lowerCAmelCase : Tuple = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
39
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __lowerCAmelCase ( lowerCamelCase : bytes , lowerCamelCase : int ): '''simple docstring''' __lowerCAmelCase = f'''{sampling_rate}''' __lowerCAmelCase = "1" __lowerCAmelCase = "f32le" __lowerCAmelCase = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(lowerCamelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __lowerCAmelCase = ffmpeg_process.communicate(lowerCamelCase ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error __lowerCAmelCase = output_stream[0] __lowerCAmelCase = np.frombuffer(lowerCamelCase , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : float , lowerCamelCase : str = "f32le" , ): '''simple docstring''' __lowerCAmelCase = f'''{sampling_rate}''' __lowerCAmelCase = "1" if format_for_conversion == "s16le": __lowerCAmelCase = 2 elif format_for_conversion == "f32le": __lowerCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) __lowerCAmelCase = platform.system() if system == "Linux": __lowerCAmelCase = "alsa" __lowerCAmelCase = "default" elif system == "Darwin": __lowerCAmelCase = "avfoundation" __lowerCAmelCase = ":0" elif system == "Windows": __lowerCAmelCase = "dshow" __lowerCAmelCase = "default" __lowerCAmelCase = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] __lowerCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __lowerCAmelCase = _ffmpeg_stream(lowerCamelCase , lowerCamelCase ) for item in iterator: yield item def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : float , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[Tuple[float, float], float]] = None , lowerCamelCase : str = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: __lowerCAmelCase = stream_chunk_s else: __lowerCAmelCase = chunk_length_s __lowerCAmelCase = ffmpeg_microphone(lowerCamelCase , lowerCamelCase , format_for_conversion=lowerCamelCase ) if format_for_conversion == "s16le": __lowerCAmelCase = np.intaa __lowerCAmelCase = 2 elif format_for_conversion == "f32le": __lowerCAmelCase = np.floataa __lowerCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: __lowerCAmelCase = chunk_length_s / 6 __lowerCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowerCamelCase , (int, float) ): __lowerCAmelCase = [stride_length_s, stride_length_s] __lowerCAmelCase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __lowerCAmelCase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __lowerCAmelCase = datetime.datetime.now() __lowerCAmelCase = datetime.timedelta(seconds=lowerCamelCase ) for item in chunk_bytes_iter(lowerCamelCase , lowerCamelCase , stride=(stride_left, stride_right) , stream=lowerCamelCase ): # Put everything back in numpy scale __lowerCAmelCase = np.frombuffer(item["raw"] , dtype=lowerCamelCase ) __lowerCAmelCase = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) __lowerCAmelCase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __lowerCAmelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Tuple[int, int] , lowerCamelCase : bool = False ): '''simple docstring''' __lowerCAmelCase = B"" __lowerCAmelCase , __lowerCAmelCase = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) __lowerCAmelCase = 0 for raw in iterator: acc += raw if stream and len(lowerCamelCase ) < chunk_len: __lowerCAmelCase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowerCamelCase ) >= chunk_len: # We are flushing the accumulator __lowerCAmelCase = (_stride_left, stride_right) __lowerCAmelCase = {"raw": acc[:chunk_len], "stride": stride} if stream: __lowerCAmelCase = False yield item __lowerCAmelCase = stride_left __lowerCAmelCase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowerCamelCase ) > stride_left: __lowerCAmelCase = {"raw": acc, "stride": (_stride_left, 0)} if stream: __lowerCAmelCase = False yield item def __lowerCAmelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : int ): '''simple docstring''' __lowerCAmelCase = 2**24 # 16Mo try: with subprocess.Popen(lowerCamelCase , stdout=subprocess.PIPE , bufsize=lowerCamelCase ) as ffmpeg_process: while True: __lowerCAmelCase = ffmpeg_process.stdout.read(lowerCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
39
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( __magic_name__ :Union[str, Any] , __magic_name__ :Union[str, Any] , __magic_name__ :List[Any] ): # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__magic_name__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__magic_name__ ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __magic_name__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCamelCase : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
121
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case__ ( __snake_case , unittest.TestCase ): '''simple docstring''' __A = DiTPipeline __A = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __A = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } __A = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __A = False def UpperCamelCase ( self : str ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCAmelCase_ , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=10_00 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=lowerCAmelCase_ , ) UpperCAmelCase_ = AutoencoderKL() UpperCAmelCase_ = DDIMScheduler() UpperCAmelCase_ = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def UpperCamelCase ( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict=0 ) -> Optional[int]: if str(lowerCAmelCase_ ).startswith('''mps''' ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase_ ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) UpperCAmelCase_ = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase ( self : Any ) -> Union[str, Any]: UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase_ ) UpperCAmelCase_ = pipe(**lowerCAmelCase_ ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCAmelCase_ = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) UpperCAmelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1e-3 ) def UpperCamelCase ( self : Dict ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=lowerCAmelCase_ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase ( self : Optional[int] ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self : Dict ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : List[str] ) -> Dict: UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) UpperCAmelCase_ = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] UpperCAmelCase_ = pipe.get_label_ids(lowerCAmelCase_ ) UpperCAmelCase_ = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def UpperCamelCase ( self : str ) -> Union[str, Any]: UpperCAmelCase_ = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) UpperCAmelCase_ = ['''vase''', '''umbrella'''] UpperCAmelCase_ = pipe.get_label_ids(lowerCAmelCase_ ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
121
1
'''simple docstring''' from __future__ import annotations from cmath import sqrt def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) -> tuple[complex, complex]: '''simple docstring''' if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) _UpperCamelCase : List[str] = b * b - 4 * a * c _UpperCamelCase : Dict = (-b + sqrt(UpperCAmelCase )) / (2 * a) _UpperCamelCase : Optional[int] = (-b - sqrt(UpperCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __A ( ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Any = quadratic_roots(a=5 ,b=6 ,c=1 ) print(f'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
711
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = 42 class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase__ : List[str]=3 , lowercase__ : Tuple=3 , lowercase__ : List[str]=("DownEncoderBlock2D",) , lowercase__ : Optional[int]=(64,) , lowercase__ : List[Any]=2 , lowercase__ : int=32 , lowercase__ : Optional[int]="silu" , lowercase__ : List[Any]=True , ) ->Optional[Any]: '''simple docstring''' super().__init__() _UpperCamelCase : Union[str, Any] = layers_per_block _UpperCamelCase : Union[str, Any] = torch.nn.Convad( lowercase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : int = None _UpperCamelCase : Optional[Any] = nn.ModuleList([] ) # down _UpperCamelCase : Optional[int] = block_out_channels[0] for i, down_block_type in enumerate(lowercase__ ): _UpperCamelCase : int = output_channel _UpperCamelCase : int = block_out_channels[i] _UpperCamelCase : Tuple = i == len(lowercase__ ) - 1 _UpperCamelCase : List[Any] = get_down_block( lowercase__ , num_layers=self.layers_per_block , in_channels=lowercase__ , out_channels=lowercase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowercase__ , resnet_groups=lowercase__ , attention_head_dim=lowercase__ , temb_channels=lowercase__ , ) self.down_blocks.append(lowercase__ ) # mid _UpperCamelCase : Dict = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowercase__ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase__ , temb_channels=lowercase__ , ) # out _UpperCamelCase : List[str] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowercase__ , eps=1e-6 ) _UpperCamelCase : Union[str, Any] = nn.SiLU() _UpperCamelCase : Tuple = 2 * out_channels if double_z else out_channels _UpperCamelCase : List[Any] = nn.Convad(block_out_channels[-1] , lowercase__ , 3 , padding=1 ) _UpperCamelCase : Tuple = False def snake_case__ ( self : str , lowercase__ : Any ) ->Any: '''simple docstring''' _UpperCamelCase : Dict = x _UpperCamelCase : str = self.conv_in(lowercase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase__ : Any ): def custom_forward(*lowercase__ : List[Any] ): return module(*lowercase__ ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: _UpperCamelCase : Optional[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(lowercase__ ) , lowercase__ , use_reentrant=lowercase__ ) # middle _UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase__ , use_reentrant=lowercase__ ) else: for down_block in self.down_blocks: _UpperCamelCase : List[str] = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase__ ) , lowercase__ ) # middle _UpperCamelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowercase__ ) else: # down for down_block in self.down_blocks: _UpperCamelCase : Tuple = down_block(lowercase__ ) # middle _UpperCamelCase : Optional[int] = self.mid_block(lowercase__ ) # post-process _UpperCamelCase : List[Any] = self.conv_norm_out(lowercase__ ) _UpperCamelCase : Tuple = self.conv_act(lowercase__ ) _UpperCamelCase : int = self.conv_out(lowercase__ ) return sample class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase__ : str=3 , lowercase__ : List[Any]=3 , lowercase__ : Optional[int]=("UpDecoderBlock2D",) , lowercase__ : Any=(64,) , lowercase__ : str=2 , lowercase__ : List[Any]=32 , lowercase__ : Optional[int]="silu" , lowercase__ : List[str]="group" , ) ->Any: '''simple docstring''' super().__init__() _UpperCamelCase : List[Any] = layers_per_block _UpperCamelCase : Any = nn.Convad( lowercase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = nn.ModuleList([] ) _UpperCamelCase : Optional[int] = in_channels if norm_type == "spatial" else None # mid _UpperCamelCase : int = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowercase__ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase__ , temb_channels=lowercase__ , ) # up _UpperCamelCase : Dict = list(reversed(lowercase__ ) ) _UpperCamelCase : Tuple = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowercase__ ): _UpperCamelCase : Union[str, Any] = output_channel _UpperCamelCase : Dict = reversed_block_out_channels[i] _UpperCamelCase : List[str] = i == len(lowercase__ ) - 1 _UpperCamelCase : Tuple = get_up_block( lowercase__ , num_layers=self.layers_per_block + 1 , in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowercase__ , resnet_groups=lowercase__ , attention_head_dim=lowercase__ , temb_channels=lowercase__ , resnet_time_scale_shift=lowercase__ , ) self.up_blocks.append(lowercase__ ) _UpperCamelCase : Any = output_channel # out if norm_type == "spatial": _UpperCamelCase : Any = SpatialNorm(block_out_channels[0] , lowercase__ ) else: _UpperCamelCase : int = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowercase__ , eps=1e-6 ) _UpperCamelCase : Tuple = nn.SiLU() _UpperCamelCase : Tuple = nn.Convad(block_out_channels[0] , lowercase__ , 3 , padding=1 ) _UpperCamelCase : Optional[Any] = False def snake_case__ ( self : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any]=None ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : str = z _UpperCamelCase : str = self.conv_in(lowercase__ ) _UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase__ : Optional[int] ): def custom_forward(*lowercase__ : List[str] ): return module(*lowercase__ ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle _UpperCamelCase : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase__ , lowercase__ , use_reentrant=lowercase__ ) _UpperCamelCase : Union[str, Any] = sample.to(lowercase__ ) # up for up_block in self.up_blocks: _UpperCamelCase : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(lowercase__ ) , lowercase__ , lowercase__ , use_reentrant=lowercase__ ) else: # middle _UpperCamelCase : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase__ , lowercase__ ) _UpperCamelCase : int = sample.to(lowercase__ ) # up for up_block in self.up_blocks: _UpperCamelCase : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase__ ) , lowercase__ , lowercase__ ) else: # middle _UpperCamelCase : str = self.mid_block(lowercase__ , lowercase__ ) _UpperCamelCase : int = sample.to(lowercase__ ) # up for up_block in self.up_blocks: _UpperCamelCase : str = up_block(lowercase__ , lowercase__ ) # post-process if latent_embeds is None: _UpperCamelCase : Union[str, Any] = self.conv_norm_out(lowercase__ ) else: _UpperCamelCase : Any = self.conv_norm_out(lowercase__ , lowercase__ ) _UpperCamelCase : List[str] = self.conv_act(lowercase__ ) _UpperCamelCase : Dict = self.conv_out(lowercase__ ) return sample class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase__ : str , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Tuple=None , lowercase__ : Dict="random" , lowercase__ : List[Any]=False , lowercase__ : List[Any]=True ) ->Optional[int]: '''simple docstring''' super().__init__() _UpperCamelCase : List[Any] = n_e _UpperCamelCase : List[str] = vq_embed_dim _UpperCamelCase : List[str] = beta _UpperCamelCase : Any = legacy _UpperCamelCase : Optional[int] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCamelCase : str = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) _UpperCamelCase : List[Any] = self.used.shape[0] _UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase : Any = self.re_embed _UpperCamelCase : Any = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCamelCase : Optional[Any] = n_e _UpperCamelCase : Optional[Any] = sane_index_shape def snake_case__ ( self : str , lowercase__ : Dict ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : str = inds.shape assert len(lowercase__ ) > 1 _UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Tuple = self.used.to(lowercase__ ) _UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase : Optional[Any] = match.argmax(-1 ) _UpperCamelCase : int = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCamelCase : int = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCamelCase : Optional[int] = self.unknown_index return new.reshape(lowercase__ ) def snake_case__ ( self : Any , lowercase__ : Optional[Any] ) ->int: '''simple docstring''' _UpperCamelCase : Tuple = inds.shape assert len(lowercase__ ) > 1 _UpperCamelCase : Dict = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[Any] = self.used.to(lowercase__ ) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase : int = 0 # simply set to zero _UpperCamelCase : Tuple = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowercase__ ) return back.reshape(lowercase__ ) def snake_case__ ( self : List[Any] , lowercase__ : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCamelCase : Any = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCamelCase : Optional[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase : Optional[Any] = torch.argmin(torch.cdist(lowercase__ , self.embedding.weight ) , dim=1 ) _UpperCamelCase : List[str] = self.embedding(lowercase__ ).view(z.shape ) _UpperCamelCase : Optional[int] = None _UpperCamelCase : Tuple = None # compute loss for embedding if not self.legacy: _UpperCamelCase : Any = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCamelCase : List[Any] = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase : List[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCamelCase : str = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCamelCase : int = self.remap_to_used(lowercase__ ) _UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCamelCase : Tuple = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case__ ( self : Optional[Any] , lowercase__ : List[str] , lowercase__ : List[str] ) ->Dict: '''simple docstring''' if self.remap is not None: _UpperCamelCase : Tuple = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCamelCase : str = self.unmap_to_all(lowercase__ ) _UpperCamelCase : str = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCamelCase : Dict = self.embedding(lowercase__ ) if shape is not None: _UpperCamelCase : List[Any] = z_q.view(lowercase__ ) # reshape back to match original input shape _UpperCamelCase : Optional[int] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , lowercase__ : str , lowercase__ : List[Any]=False ) ->Any: '''simple docstring''' _UpperCamelCase : Tuple = parameters _UpperCamelCase , _UpperCamelCase : Tuple = torch.chunk(lowercase__ , 2 , dim=1 ) _UpperCamelCase : str = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) _UpperCamelCase : str = deterministic _UpperCamelCase : Optional[Any] = torch.exp(0.5 * self.logvar ) _UpperCamelCase : Optional[Any] = torch.exp(self.logvar ) if self.deterministic: _UpperCamelCase : Optional[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case__ ( self : Any , lowercase__ : Optional[torch.Generator] = None ) ->torch.FloatTensor: '''simple docstring''' _UpperCamelCase : Union[str, Any] = randn_tensor( self.mean.shape , generator=lowercase__ , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCamelCase : Optional[int] = self.mean + self.std * sample return x def snake_case__ ( self : str , lowercase__ : Optional[int]=None ) ->List[str]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case__ ( self : List[Any] , lowercase__ : str , lowercase__ : List[Any]=[1, 2, 3] ) ->Dict: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) _UpperCamelCase : Optional[Any] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowercase__ ) def snake_case__ ( self : List[Any] ) ->str: '''simple docstring''' return self.mean
204
0
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
88
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( _a ,unittest.TestCase ): lowercase_ = LEDTokenizer lowercase_ = LEDTokenizerFast lowercase_ = True def __lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" super().setUp() _a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _a = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : Union[str, Any] , **lowerCAmelCase_ : int ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Any ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> List[str]: """simple docstring""" return "lower newer", "lower newer" @cached_property def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def __lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _a = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _a = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def __lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIn('''input_ids''' , lowerCAmelCase_ ) self.assertIn('''attention_mask''' , lowerCAmelCase_ ) self.assertNotIn('''labels''' , lowerCAmelCase_ ) self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase_ ) @require_torch def __lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" _a = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer( ['''I am a small frog''' * 10_24, '''I am a small frog'''] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a = ['''A long paragraph for summarization.'''] _a = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(lowerCAmelCase_ , return_tensors='''pt''' ) _a = tokenizer(text_target=lowerCAmelCase_ , return_tensors='''pt''' ) _a = inputs['''input_ids'''] _a = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = ['''Summary of the text.''', '''Another summary.'''] _a = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _a = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['''input_ids''']] _a = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" pass def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _a = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _a = '''A, <mask> AllenNLP sentence.''' _a = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _a = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
22
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @slow def a_ ( self : List[Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) _UpperCAmelCase : Dict = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(UpperCAmelCase_ ) from datasets import load_dataset _UpperCAmelCase : List[Any] = load_dataset('''nielsr/rvlcdip-demo''' ) _UpperCAmelCase : Optional[int] = dataset['''train'''][0]['''image'''].convert('''RGB''' ) _UpperCAmelCase : int = image_processor(UpperCAmelCase_ , return_tensors='''pt''' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): _UpperCAmelCase : Any = model(**UpperCAmelCase_ ) _UpperCAmelCase : Optional[int] = outputs.logits _UpperCAmelCase : Any = torch.Size((1, 16) ) self.assertEqual(logits.shape , UpperCAmelCase_ ) _UpperCAmelCase : Dict = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
416
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Optional[int] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowercase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = AlbertTokenizer SCREAMING_SNAKE_CASE_ : Dict = AlbertTokenizerFast SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : int = True def a_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : int = AlbertTokenizer(UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def a_ ( self : Union[str, Any] , UpperCAmelCase_ : List[str] ) -> Any: '''simple docstring''' _UpperCAmelCase : List[Any] = '''this is a test''' _UpperCAmelCase : Union[str, Any] = '''this is a test''' return input_text, output_text def a_ ( self : Tuple ) -> Dict: '''simple docstring''' _UpperCAmelCase : Any = '''<pad>''' _UpperCAmelCase : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def a_ ( self : int ) -> Dict: '''simple docstring''' _UpperCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(UpperCAmelCase_ ) , 30000 ) def a_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def a_ ( self : Any ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCAmelCase : List[Any] = self.get_tokenizer() _UpperCAmelCase : int = self.get_rust_tokenizer() _UpperCAmelCase : Dict = '''I was born in 92000, and this is falsé.''' _UpperCAmelCase : Tuple = tokenizer.tokenize(UpperCAmelCase_ ) _UpperCAmelCase : Tuple = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Dict = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) _UpperCAmelCase : str = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() _UpperCAmelCase : Any = tokenizer.encode(UpperCAmelCase_ ) _UpperCAmelCase : List[str] = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def a_ ( self : str ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = AlbertTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) _UpperCAmelCase : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCAmelCase_ , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [48, 25, 21, 1289] ) _UpperCAmelCase : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCAmelCase_ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) _UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def a_ ( self : Any ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AlbertTokenizer(UpperCAmelCase_ ) _UpperCAmelCase : Optional[int] = tokenizer.encode('''sequence builders''' ) _UpperCAmelCase : Optional[Any] = tokenizer.encode('''multi-sequence build''' ) _UpperCAmelCase : int = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def a_ ( self : List[str] ) -> str: '''simple docstring''' _UpperCAmelCase : Optional[int] = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
416
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'sew-d' def __init__( self , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=("p2c", "c2p") , SCREAMING_SNAKE_CASE_="layer_norm" , SCREAMING_SNAKE_CASE_="gelu_python" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-7 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_="group" , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=128 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.05 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="mean" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , ) -> Optional[int]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = hidden_size lowerCamelCase_ = feat_extract_norm lowerCamelCase_ = feat_extract_activation lowerCamelCase_ = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = conv_bias lowerCamelCase_ = num_conv_pos_embeddings lowerCamelCase_ = num_conv_pos_embedding_groups lowerCamelCase_ = len(self.conv_dim ) lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = intermediate_size lowerCamelCase_ = squeeze_factor lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = position_buckets lowerCamelCase_ = share_att_key lowerCamelCase_ = relative_attention lowerCamelCase_ = norm_rel_ebd lowerCamelCase_ = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = hidden_act lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = feat_proj_dropout lowerCamelCase_ = final_dropout lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = feature_layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ = apply_spec_augment lowerCamelCase_ = mask_time_prob lowerCamelCase_ = mask_time_length lowerCamelCase_ = mask_time_min_masks lowerCamelCase_ = mask_feature_prob lowerCamelCase_ = mask_feature_length lowerCamelCase_ = mask_feature_min_masks # ctc loss lowerCamelCase_ = ctc_loss_reduction lowerCamelCase_ = ctc_zero_infinity # sequence classification lowerCamelCase_ = use_weighted_layer_sum lowerCamelCase_ = classifier_proj_size @property def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
42
import inspect import unittest class UpperCamelCase( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps __snake_case = inspect.getmembers(SCREAMING_SNAKE_CASE , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __snake_case = "k-diffusion" elif backend == "invisible_watermark": __snake_case = "invisible-watermark" assert backend in deps, f'''{backend} is not in the deps table!'''
371
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) def A__ ( __A , __A ): '''simple docstring''' # save results if os.path.exists(__A ): if os.path.exists(os.path.join(__A , """config.json""" ) ) and os.path.isfile( os.path.join(__A , """config.json""" ) ): os.remove(os.path.join(__A , """config.json""" ) ) if os.path.exists(os.path.join(__A , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(__A , """pytorch_model.bin""" ) ): os.remove(os.path.join(__A , """pytorch_model.bin""" ) ) else: os.makedirs(__A ) model.save_pretrained(__A ) def A__ ( __A , __A=False ): '''simple docstring''' _lowerCamelCase : Optional[int] = 2 if unlogit: _lowerCamelCase : Union[str, Any] = torch.pow(__A , __A ) _lowerCamelCase : Tuple = p * torch.log(__A ) _lowerCamelCase : Union[str, Any] = 0 return -plogp.sum(dim=-1 ) def A__ ( __A ): '''simple docstring''' logger.info("""lv, h >\t""" + """\t""".join(F"""{x + 1}""" for x in range(len(__A ) ) ) ) for row in range(len(__A ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + """\t""".join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + """\t""".join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def A__ ( __A , __A , __A , __A=True , __A=True , __A=None , __A=False ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads _lowerCamelCase : int = torch.zeros(__A , __A ).to(args.device ) _lowerCamelCase : Optional[Any] = torch.zeros(__A , __A ).to(args.device ) if head_mask is None: _lowerCamelCase : List[Any] = torch.ones(__A , __A ).to(args.device ) head_mask.requires_grad_(requires_grad=__A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _lowerCamelCase : str = None _lowerCamelCase : List[Any] = 0.0 _lowerCamelCase : Tuple = 0.0 for step, inputs in enumerate(tqdm(__A , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): _lowerCamelCase : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((_lowerCamelCase) , ) : Union[str, Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _lowerCamelCase : str = model(__A , labels=__A , head_mask=__A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A ): _lowerCamelCase : Dict = entropy(attn.detach() , __A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _lowerCamelCase : Union[str, Any] = 2 _lowerCamelCase : int = torch.pow(torch.pow(__A , __A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _lowerCamelCase : Tuple = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(__A ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(__A ) logger.info("""Head ranked by importance scores""" ) _lowerCamelCase : Dict = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _lowerCamelCase : int = torch.arange( head_importance.numel() , device=args.device ) _lowerCamelCase : Dict = head_ranks.view_as(__A ) print_ad_tensor(__A ) return attn_entropy, head_importance, total_loss def A__ ( __A , __A , __A ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = compute_heads_importance(__A , __A , __A , compute_entropy=__A ) _lowerCamelCase : Optional[int] = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , __A , original_score * args.masking_threshold ) _lowerCamelCase : int = torch.ones_like(__A ) _lowerCamelCase : Any = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _lowerCamelCase : Optional[Any] = original_score while current_score >= original_score * args.masking_threshold: _lowerCamelCase : List[Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _lowerCamelCase : int = float("""Inf""" ) _lowerCamelCase : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__A ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads _lowerCamelCase : str = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) _lowerCamelCase : Union[str, Any] = new_head_mask.view(-1 ) _lowerCamelCase : Optional[Any] = 0.0 _lowerCamelCase : Tuple = new_head_mask.view_as(__A ) _lowerCamelCase : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__A ) # Compute metric and head importance again _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A ) _lowerCamelCase : str = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("""Final head mask""" ) print_ad_tensor(__A ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def A__ ( __A , __A , __A , __A ): '''simple docstring''' _lowerCamelCase : Optional[int] = datetime.now() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A ) _lowerCamelCase : Optional[Any] = 1 / loss _lowerCamelCase : Tuple = datetime.now() - before_time _lowerCamelCase : Optional[Any] = sum(p.numel() for p in model.parameters() ) _lowerCamelCase : Any = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A ) ) } for k, v in heads_to_prune.items(): if isinstance(__A , __A ): _lowerCamelCase : Any = [ v, ] assert sum(len(__A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__A ) _lowerCamelCase : Union[str, Any] = sum(p.numel() for p in model.parameters() ) _lowerCamelCase : Any = datetime.now() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) _lowerCamelCase : Dict = 1 / loss _lowerCamelCase : Tuple = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , __A , __A , pruned_num_params / original_num_params * 100 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , __A , __A ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 ) save_model(__A , args.output_dir ) def A__ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=__A , type=__A , required=__A , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=__A , type=__A , required=__A , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=__A , type=__A , required=__A , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=__A , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=__A , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=__A , type=__A , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=__A , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=__A , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=__A , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=__A , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=__A , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=__A , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=__A , default=42 ) parser.add_argument("""--local_rank""" , type=__A , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=__A , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=__A , default="""""" , help="""Can be used for distant debugging.""" ) _lowerCamelCase : Tuple = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _lowerCamelCase : Tuple = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) _lowerCamelCase : Union[str, Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _lowerCamelCase : Union[str, Any] = torch.device("""cuda""" , args.local_rank ) _lowerCamelCase : Optional[int] = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _lowerCamelCase : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _lowerCamelCase : Optional[Any] = nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A ) elif args.n_gpu > 1: _lowerCamelCase : List[str] = nn.DataParallel(__A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A ) torch.save(__A , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , __A ) # Prepare dataset _lowerCamelCase : Union[str, Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _lowerCamelCase : Optional[int] = (torch.from_numpy(__A ),) _lowerCamelCase : int = TensorDataset(*__A ) _lowerCamelCase : str = RandomSampler(__A ) _lowerCamelCase : Dict = DataLoader(__A , sampler=__A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _lowerCamelCase : str = mask_heads(__A , __A , __A ) prune_heads(__A , __A , __A , __A ) if __name__ == "__main__": main()
15
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""] _lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments) lowerCAmelCase : int =parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any =multiprocessing.cpu_count() lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : str =time.time() lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase : Dict =time.time() lowerCAmelCase : Dict =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
15
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self :Union[str, Any] , _lowercase :int , _lowercase :List[Any]=7 , _lowercase :Union[str, Any]=3 , _lowercase :Optional[Any]=30 , _lowercase :Dict=4_00 , _lowercase :Optional[Any]=True , _lowercase :Union[str, Any]=None , _lowercase :Any=True , _lowercase :int=[0.5, 0.5, 0.5] , _lowercase :List[str]=[0.5, 0.5, 0.5] , _lowercase :List[str]=True , _lowercase :Tuple=1 / 2_55 , _lowercase :List[str]=True , ): '''simple docstring''' lowercase__ = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_pad def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase ( self :Any , _lowercase :Optional[int] , _lowercase :Dict=False ): '''simple docstring''' if not batched: lowercase__ = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE_ , Image.Image ): lowercase__ , lowercase__ = image.size else: lowercase__ , lowercase__ = image.shape[1], image.shape[2] if w < h: lowercase__ = int(self.size["shortest_edge"] * h / w ) lowercase__ = self.size["shortest_edge"] elif w > h: lowercase__ = self.size["shortest_edge"] lowercase__ = int(self.size["shortest_edge"] * w / h ) else: lowercase__ = self.size["shortest_edge"] lowercase__ = self.size["shortest_edge"] else: lowercase__ = [] for image in image_inputs: lowercase__ , lowercase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ = max(SCREAMING_SNAKE_CASE_ , key=lambda _lowercase : item[0] )[0] lowercase__ = max(SCREAMING_SNAKE_CASE_ , key=lambda _lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase ( __lowercase , unittest.TestCase ): __lowerCamelCase = DetaImageProcessor if is_vision_available() else None def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = DetaImageProcessingTester(self ) @property def UpperCAmelCase ( self :Tuple ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "do_rescale" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "do_pad" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "size" ) ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self :int ): '''simple docstring''' pass def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) lowercase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowercase__ = json.loads(f.read() ) lowercase__ = {"image_id": 3_97_69, "annotations": target} # encode them lowercase__ = DetaImageProcessor() lowercase__ = image_processing(images=SCREAMING_SNAKE_CASE_ , annotations=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) # verify pixel values lowercase__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , SCREAMING_SNAKE_CASE_ ) lowercase__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) # verify area lowercase__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , SCREAMING_SNAKE_CASE_ ) ) # verify boxes lowercase__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , SCREAMING_SNAKE_CASE_ ) lowercase__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # verify image_id lowercase__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , SCREAMING_SNAKE_CASE_ ) ) # verify is_crowd lowercase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , SCREAMING_SNAKE_CASE_ ) ) # verify class_labels lowercase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , SCREAMING_SNAKE_CASE_ ) ) # verify orig_size lowercase__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , SCREAMING_SNAKE_CASE_ ) ) # verify size lowercase__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , SCREAMING_SNAKE_CASE_ ) ) @slow def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowercase__ = json.loads(f.read() ) lowercase__ = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} lowercase__ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowercase__ = DetaImageProcessor(format="coco_panoptic" ) lowercase__ = image_processing(images=SCREAMING_SNAKE_CASE_ , annotations=SCREAMING_SNAKE_CASE_ , masks_path=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) # verify pixel values lowercase__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , SCREAMING_SNAKE_CASE_ ) lowercase__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) # verify area lowercase__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , SCREAMING_SNAKE_CASE_ ) ) # verify boxes lowercase__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , SCREAMING_SNAKE_CASE_ ) lowercase__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # verify image_id lowercase__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , SCREAMING_SNAKE_CASE_ ) ) # verify is_crowd lowercase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , SCREAMING_SNAKE_CASE_ ) ) # verify class_labels lowercase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , SCREAMING_SNAKE_CASE_ ) ) # verify masks lowercase__ = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , SCREAMING_SNAKE_CASE_ ) # verify orig_size lowercase__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , SCREAMING_SNAKE_CASE_ ) ) # verify size lowercase__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , SCREAMING_SNAKE_CASE_ ) )
655
"""simple docstring""" from __future__ import annotations def _lowerCamelCase ( __a, __a = None ): SCREAMING_SNAKE_CASE_ = word_bank or [] # create a table SCREAMING_SNAKE_CASE_ = len(__a ) + 1 SCREAMING_SNAKE_CASE_ = [] for _ in range(__a ): table.append([] ) # seed value SCREAMING_SNAKE_CASE_ = [[]] # because empty string has empty combination # iterate through the indices for i in range(__a ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__a )] == word: SCREAMING_SNAKE_CASE_ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__a )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__a )]: combination.reverse() return table[len(__a )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
626
0
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=a ): UpperCAmelCase__ : List[str] = ['''torch''', '''torchsde'''] def __init__( self : Optional[Any] , *_snake_case : Tuple , **_snake_case : List[Any]): """simple docstring""" requires_backends(self , ['''torch''', '''torchsde''']) @classmethod def lowerCamelCase ( cls : Optional[int] , *_snake_case : Optional[Any] , **_snake_case : str): """simple docstring""" requires_backends(cls , ['''torch''', '''torchsde''']) @classmethod def lowerCamelCase ( cls : Optional[Any] , *_snake_case : Optional[Any] , **_snake_case : str): """simple docstring""" requires_backends(cls , ['''torch''', '''torchsde'''])
169
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __snake_case ( a , a ): @register_to_config def __init__( self : List[Any] , _snake_case : int = 128 , _snake_case : int = 256 , _snake_case : float = 2_0_0_0.0 , _snake_case : int = 768 , _snake_case : int = 12 , _snake_case : int = 12 , _snake_case : int = 64 , _snake_case : int = 2048 , _snake_case : float = 0.1 , ): """simple docstring""" super().__init__() UpperCAmelCase_ = nn.Sequential( nn.Linear(_snake_case , d_model * 4 , bias=_snake_case) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_snake_case) , nn.SiLU() , ) UpperCAmelCase_ = nn.Embedding(_snake_case , _snake_case) UpperCAmelCase_ = False UpperCAmelCase_ = nn.Linear(_snake_case , _snake_case , bias=_snake_case) UpperCAmelCase_ = nn.Dropout(p=_snake_case) UpperCAmelCase_ = nn.ModuleList() for lyr_num in range(_snake_case): # FiLM conditional T5 decoder UpperCAmelCase_ = DecoderLayer(d_model=_snake_case , d_kv=_snake_case , num_heads=_snake_case , d_ff=_snake_case , dropout_rate=_snake_case) self.decoders.append(_snake_case) UpperCAmelCase_ = TaLayerNorm(_snake_case) UpperCAmelCase_ = nn.Dropout(p=_snake_case) UpperCAmelCase_ = nn.Linear(_snake_case , _snake_case , bias=_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : str , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = torch.mul(query_input.unsqueeze(-1) , key_input.unsqueeze(-2)) return mask.unsqueeze(-3) def lowerCamelCase ( self : Dict , _snake_case : Any , _snake_case : Optional[int] , _snake_case : int): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCAmelCase_ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype) UpperCAmelCase_ = self.conditioning_emb(_snake_case).unsqueeze(1) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCAmelCase_ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCAmelCase_ = torch.broadcast_to( torch.arange(_snake_case , device=decoder_input_tokens.device) , (batch, seq_length) , ) UpperCAmelCase_ = self.position_encoding(_snake_case) UpperCAmelCase_ = self.continuous_inputs_projection(_snake_case) inputs += position_encodings UpperCAmelCase_ = self.dropout(_snake_case) # decoder: No padding present. UpperCAmelCase_ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype) # Translate encoding masks to encoder-decoder masks. UpperCAmelCase_ = [(x, self.encoder_decoder_mask(_snake_case , _snake_case)) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCAmelCase_ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1) UpperCAmelCase_ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1) for lyr in self.decoders: UpperCAmelCase_ = lyr( _snake_case , conditioning_emb=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , )[0] UpperCAmelCase_ = self.decoder_norm(_snake_case) UpperCAmelCase_ = self.post_dropout(_snake_case) UpperCAmelCase_ = self.spec_out(_snake_case) return spec_out class __snake_case ( nn.Module ): def __init__( self : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Any , _snake_case : List[Any] , _snake_case : Optional[int]=1e-6): """simple docstring""" super().__init__() UpperCAmelCase_ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_snake_case , d_kv=_snake_case , num_heads=_snake_case , dropout_rate=_snake_case)) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_snake_case , d_kv=_snake_case , num_heads=_snake_case , dropout_rate=_snake_case , layer_norm_epsilon=_snake_case , )) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_snake_case , d_ff=_snake_case , dropout_rate=_snake_case , layer_norm_epsilon=_snake_case)) def lowerCamelCase ( self : Optional[Any] , _snake_case : str , _snake_case : Union[str, Any]=None , _snake_case : Any=None , _snake_case : Any=None , _snake_case : Any=None , _snake_case : Tuple=None , ): """simple docstring""" UpperCAmelCase_ = self.layer[0]( _snake_case , conditioning_emb=_snake_case , attention_mask=_snake_case , ) if encoder_hidden_states is not None: UpperCAmelCase_ = torch.where(encoder_attention_mask > 0 , 0 , -1e10).to( encoder_hidden_states.dtype) UpperCAmelCase_ = self.layer[1]( _snake_case , key_value_states=_snake_case , attention_mask=_snake_case , ) # Apply Film Conditional Feed Forward layer UpperCAmelCase_ = self.layer[-1](_snake_case , _snake_case) return (hidden_states,) class __snake_case ( nn.Module ): def __init__( self : List[Any] , _snake_case : int , _snake_case : str , _snake_case : int , _snake_case : str): """simple docstring""" super().__init__() UpperCAmelCase_ = TaLayerNorm(_snake_case) UpperCAmelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=_snake_case) UpperCAmelCase_ = Attention(query_dim=_snake_case , heads=_snake_case , dim_head=_snake_case , out_bias=_snake_case , scale_qk=_snake_case) UpperCAmelCase_ = nn.Dropout(_snake_case) def lowerCamelCase ( self : str , _snake_case : str , _snake_case : Dict=None , _snake_case : List[str]=None , ): """simple docstring""" UpperCAmelCase_ = self.layer_norm(_snake_case) if conditioning_emb is not None: UpperCAmelCase_ = self.FiLMLayer(_snake_case , _snake_case) # Self-attention block UpperCAmelCase_ = self.attention(_snake_case) UpperCAmelCase_ = hidden_states + self.dropout(_snake_case) return hidden_states class __snake_case ( nn.Module ): def __init__( self : Any , _snake_case : Any , _snake_case : Any , _snake_case : Tuple , _snake_case : int , _snake_case : List[str]): """simple docstring""" super().__init__() UpperCAmelCase_ = Attention(query_dim=_snake_case , heads=_snake_case , dim_head=_snake_case , out_bias=_snake_case , scale_qk=_snake_case) UpperCAmelCase_ = TaLayerNorm(_snake_case , eps=_snake_case) UpperCAmelCase_ = nn.Dropout(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[Any] , _snake_case : List[str]=None , _snake_case : Tuple=None , ): """simple docstring""" UpperCAmelCase_ = self.layer_norm(_snake_case) UpperCAmelCase_ = self.attention( _snake_case , encoder_hidden_states=_snake_case , attention_mask=attention_mask.squeeze(1) , ) UpperCAmelCase_ = hidden_states + self.dropout(_snake_case) return layer_output class __snake_case ( nn.Module ): def __init__( self : List[Any] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[Any] , _snake_case : Union[str, Any]): """simple docstring""" super().__init__() UpperCAmelCase_ = TaDenseGatedActDense(d_model=_snake_case , d_ff=_snake_case , dropout_rate=_snake_case) UpperCAmelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=_snake_case) UpperCAmelCase_ = TaLayerNorm(_snake_case , eps=_snake_case) UpperCAmelCase_ = nn.Dropout(_snake_case) def lowerCamelCase ( self : Any , _snake_case : str , _snake_case : int=None): """simple docstring""" UpperCAmelCase_ = self.layer_norm(_snake_case) if conditioning_emb is not None: UpperCAmelCase_ = self.film(_snake_case , _snake_case) UpperCAmelCase_ = self.DenseReluDense(_snake_case) UpperCAmelCase_ = hidden_states + self.dropout(_snake_case) return hidden_states class __snake_case ( nn.Module ): def __init__( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Union[str, Any]): """simple docstring""" super().__init__() UpperCAmelCase_ = nn.Linear(_snake_case , _snake_case , bias=_snake_case) UpperCAmelCase_ = nn.Linear(_snake_case , _snake_case , bias=_snake_case) UpperCAmelCase_ = nn.Linear(_snake_case , _snake_case , bias=_snake_case) UpperCAmelCase_ = nn.Dropout(_snake_case) UpperCAmelCase_ = NewGELUActivation() def lowerCamelCase ( self : List[str] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = self.act(self.wi_a(_snake_case)) UpperCAmelCase_ = self.wi_a(_snake_case) UpperCAmelCase_ = hidden_gelu * hidden_linear UpperCAmelCase_ = self.dropout(_snake_case) UpperCAmelCase_ = self.wo(_snake_case) return hidden_states class __snake_case ( nn.Module ): def __init__( self : Any , _snake_case : Optional[Any] , _snake_case : List[Any]=1e-6): """simple docstring""" super().__init__() UpperCAmelCase_ = nn.Parameter(torch.ones(_snake_case)) UpperCAmelCase_ = eps def lowerCamelCase ( self : Tuple , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = hidden_states.to(torch.floataa).pow(2).mean(-1 , keepdim=_snake_case) UpperCAmelCase_ = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCAmelCase_ = hidden_states.to(self.weight.dtype) return self.weight * hidden_states class __snake_case ( nn.Module ): def lowerCamelCase ( self : Tuple , _snake_case : torch.Tensor): """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.0_4_4_7_1_5 * torch.pow(_snake_case , 3.0)))) class __snake_case ( nn.Module ): def __init__( self : int , _snake_case : int , _snake_case : Optional[Any]): """simple docstring""" super().__init__() UpperCAmelCase_ = nn.Linear(_snake_case , out_features * 2 , bias=_snake_case) def lowerCamelCase ( self : Optional[Any] , _snake_case : Tuple , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.scale_bias(_snake_case) UpperCAmelCase_ , UpperCAmelCase_ = torch.chunk(_snake_case , 2 , -1) UpperCAmelCase_ = x * (1 + scale) + shift return x
169
1
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _snake_case : """simple docstring""" @staticmethod def lowercase_ ( *a , **a ) -> Tuple: """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class _snake_case ( unittest.TestCase ): """simple docstring""" lowerCamelCase_ = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowercase_ ( self , a , a , a ) -> Optional[int]: """simple docstring""" _A = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) _A = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def lowercase_ ( self , a , a ) -> Union[str, Any]: """simple docstring""" _A = object_detector(examples[0] , threshold=0.0 ) _A = len(a ) self.assertGreater(a , 0 ) self.assertEqual( a , [ { '''score''': ANY(a ), '''label''': ANY(a ), '''box''': {'''xmin''': ANY(a ), '''ymin''': ANY(a ), '''xmax''': ANY(a ), '''ymax''': ANY(a )}, } for i in range(a ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowercase_ ( self ) -> Optional[int]: """simple docstring""" pass @require_torch def lowercase_ ( self ) -> Tuple: """simple docstring""" _A = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) _A = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'''score''': 0.7_235, '''label''': '''cat''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.7_218, '''label''': '''remote''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.7_184, '''label''': '''couch''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.6_748, '''label''': '''remote''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.6_656, '''label''': '''cat''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.6_614, '''label''': '''couch''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.6_456, '''label''': '''remote''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 6_7, '''ymin''': 2_7_4, '''xmax''': 9_3, '''ymax''': 2_9_7}}, {'''score''': 0.6_419, '''label''': '''cat''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, ] , ) _A = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {'''score''': 0.7_235, '''label''': '''cat''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.7_218, '''label''': '''remote''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.7_184, '''label''': '''couch''', '''box''': {'''xmin''': 2_0_4, '''ymin''': 1_6_7, '''xmax''': 2_3_2, '''ymax''': 1_9_0}}, {'''score''': 0.6_748, '''label''': '''remote''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.6_656, '''label''': '''cat''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.6_614, '''label''': '''couch''', '''box''': {'''xmin''': 5_7_1, '''ymin''': 8_3, '''xmax''': 5_9_8, '''ymax''': 1_0_3}}, {'''score''': 0.6_456, '''label''': '''remote''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 6_7, '''ymin''': 2_7_4, '''xmax''': 9_3, '''ymax''': 2_9_7}}, {'''score''': 0.6_419, '''label''': '''cat''', '''box''': {'''xmin''': 4_9_4, '''ymin''': 1_0_5, '''xmax''': 5_2_1, '''ymax''': 1_2_7}}, ] ] , ) @require_torch @slow def lowercase_ ( self ) -> str: """simple docstring""" _A = pipeline('''zero-shot-object-detection''' ) _A = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.1_474, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.1_208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ] , ) _A = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.1_474, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.1_208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ], [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, {'''score''': 0.1_474, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_5, '''ymin''': 7_4, '''xmax''': 3_7_1, '''ymax''': 1_8_7}}, {'''score''': 0.1_208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_4_2, '''ymax''': 4_7_6}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowercase_ ( self ) -> Dict: """simple docstring""" pass @require_torch @slow def lowercase_ ( self ) -> List[str]: """simple docstring""" _A = 0.2 _A = pipeline('''zero-shot-object-detection''' ) _A = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=a , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 5_5, '''xmax''': 3_1_5, '''ymax''': 4_7_2}}, ] , ) @require_torch @slow def lowercase_ ( self ) -> List[Any]: """simple docstring""" _A = 2 _A = pipeline('''zero-shot-object-detection''' ) _A = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=a , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 3_2_4, '''ymin''': 2_0, '''xmax''': 6_4_0, '''ymax''': 3_7_3}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_2, '''xmax''': 1_7_7, '''ymax''': 1_1_5}}, ] , )
317
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
317
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __A : List[str] = 16 __A : Any = 32 def lowercase ( _SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int = 16 , _SCREAMING_SNAKE_CASE : str = "bert-base-cased" ): '''simple docstring''' _UpperCAmelCase = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_SCREAMING_SNAKE_CASE : List[str] ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=_SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_SCREAMING_SNAKE_CASE : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. _UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' model.eval() _UpperCAmelCase = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _UpperCAmelCase , _UpperCAmelCase = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] _UpperCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = metric.compute() return eval_metric["accuracy"] def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase = config['''lr'''] _UpperCAmelCase = int(config['''num_epochs'''] ) _UpperCAmelCase = int(config['''seed'''] ) _UpperCAmelCase = int(config['''batch_size'''] ) _UpperCAmelCase = args.model_name_or_path set_seed(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) # Instantiate optimizer _UpperCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCAmelCase = optimizer_cls(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: _UpperCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: _UpperCAmelCase = 1 _UpperCAmelCase = (len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=_SCREAMING_SNAKE_CASE , ) else: _UpperCAmelCase = DummyScheduler(_SCREAMING_SNAKE_CASE , total_num_steps=_SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over _UpperCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCAmelCase = 0 _UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) _UpperCAmelCase = num_epochs if args.partial_train_epoch is not None: _UpperCAmelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _UpperCAmelCase = args.resume_from_checkpoint.split('''epoch_''' )[1] _UpperCAmelCase = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) + 1 _UpperCAmelCase = evaluation_loop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) accelerator.print('''resumed checkpoint performance:''' , _SCREAMING_SNAKE_CASE ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _UpperCAmelCase = {} for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.loss _UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _UpperCAmelCase = f'epoch_{epoch}' _UpperCAmelCase = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE ) accelerator.save_state(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = evaluation_loop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = accuracy _UpperCAmelCase = lr_scheduler.get_lr()[0] _UpperCAmelCase = optimizer.param_groups[0]['''lr'''] _UpperCAmelCase = epoch _UpperCAmelCase = overall_step accelerator.print(f'epoch {epoch}:' , _SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=_SCREAMING_SNAKE_CASE , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_SCREAMING_SNAKE_CASE , ) parser.add_argument( '''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=2 , help='''Number of train epochs.''' , ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
95
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Tuple )->int: _UpperCAmelCase = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _UpperCAmelCase = test_metrics @require_cpu def lowercase__ ( self : Any )->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def lowercase__ ( self : List[str] )->List[str]: debug_launcher(self.test_metrics.main ) @require_single_gpu def lowercase__ ( self : List[Any] )->Dict: self.test_metrics.main() @require_multi_gpu def lowercase__ ( self : str )->int: print(F'Found {torch.cuda.device_count()} devices.' ) _UpperCAmelCase = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCamelCase , env=os.environ.copy() )
95
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) snake_case : List[Any] = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house snake_case : Optional[Any] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim snake_case : Optional[int] = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE )["last_hidden_state"].detach() self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) snake_case : List[Any] = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house snake_case : Any = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim snake_case : List[Any] = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case : List[Any] = model(SCREAMING_SNAKE_CASE )["last_hidden_state"].detach() self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE , atol=1E-3 ) )
134
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __A = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCamelCase_ ): def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
134
1
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class lowerCamelCase : """simple docstring""" UpperCAmelCase_ = field( metadata={"help": "The output directory where the model will be written."} , ) UpperCAmelCase_ = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } , ) UpperCAmelCase_ = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } , ) UpperCAmelCase_ = field( default=__lowerCamelCase , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) UpperCAmelCase_ = field( default=__lowerCamelCase , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def _a ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = HfArgumentParser((ModelArguments,) ) (SCREAMING_SNAKE_CASE__) : Dict = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: SCREAMING_SNAKE_CASE__ : str = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: SCREAMING_SNAKE_CASE__ : int = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: SCREAMING_SNAKE_CASE__ : str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: SCREAMING_SNAKE_CASE__ : Any = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=SCREAMING_SNAKE_CASE__ , decoder_config=SCREAMING_SNAKE_CASE__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens SCREAMING_SNAKE_CASE__ : Any = decoder_config.decoder_start_token_id SCREAMING_SNAKE_CASE__ : Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: SCREAMING_SNAKE_CASE__ : int = decoder_config.bos_token_id if pad_token_id is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work SCREAMING_SNAKE_CASE__ : List[str] = decoder_config.eos_token_id SCREAMING_SNAKE_CASE__ : str = decoder_start_token_id SCREAMING_SNAKE_CASE__ : List[str] = pad_token_id SCREAMING_SNAKE_CASE__ : Any = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) SCREAMING_SNAKE_CASE__ : Dict = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
708
import math def _a ( SCREAMING_SNAKE_CASE__ : int ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(SCREAMING_SNAKE_CASE__ ) def _a ( SCREAMING_SNAKE_CASE__ : float = 1 / 1_23_45 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = 0 SCREAMING_SNAKE_CASE__ : List[Any] = 0 SCREAMING_SNAKE_CASE__ : List[str] = 3 while True: SCREAMING_SNAKE_CASE__ : Optional[int] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Any = int(SCREAMING_SNAKE_CASE__ ) total_partitions += 1 if check_partition_perfect(SCREAMING_SNAKE_CASE__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(SCREAMING_SNAKE_CASE__ ) integer += 1 if __name__ == "__main__": print(f"{solution() = }")
157
0
def __lowerCAmelCase ( __lowerCamelCase : float , __lowerCamelCase : list[float] ) -> float: if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) __lowerCAmelCase =sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__lowerCamelCase ) ) return round(__lowerCamelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
1
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __lowerCAmelCase (): _UpperCAmelCase : Optional[Any] = torch.nn.Linear(2 , 4 ) _UpperCAmelCase : List[str] = torch.optim.AdamW(model.parameters() , lr=1.0 ) _UpperCAmelCase : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(__lowerCAmelCase , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) _UpperCAmelCase : Dict = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _UpperCAmelCase : str = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __lowerCAmelCase (__lowerCAmelCase ): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Optional[int] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(__lowerCAmelCase ) class lowerCAmelCase__ ( UpperCAmelCase__ ): @require_cuda def lowerCAmelCase__ ( self : str ) ->Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowerCamelCase__ ): _UpperCAmelCase : int = Accelerator(cpu=lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = Accelerator() _UpperCAmelCase : List[Any] = GradientState() assert state.num_steps == 1 _UpperCAmelCase : Optional[Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True _UpperCAmelCase : List[str] = False assert state.sync_gradients is False GradientState._reset_state() def lowerCAmelCase__ ( self : str ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : str = Accelerator() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = create_components() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Dict = accelerator.prepare(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = Accelerator() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = create_components() accelerator.prepare(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def lowerCAmelCase__ ( self : int ) ->Optional[Any]: '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ): pass with patch("torch.cuda.set_device" , lowerCamelCase__ ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): _UpperCAmelCase : Optional[int] = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def lowerCAmelCase__ ( self : Tuple ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = Accelerator() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = create_components() accelerator.prepare(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Dict = get_signature(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCamelCase__ ) # make sure random weights don't match load_random_weights(lowerCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase__ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(lowerCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase__ ) ) < 1E-3 ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = Accelerator() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = create_components() accelerator.prepare(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Dict = get_signature(lowerCamelCase__ ) # saving hook def save_config(lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Dict ): _UpperCAmelCase : Union[str, Any] = {"class_name": models[0].__class__.__name__} with open(os.path.join(lowerCamelCase__ , "data.json" ) , "w" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) # loading hook def load_config(lowerCamelCase__ : int , lowerCamelCase__ : int ): with open(os.path.join(lowerCamelCase__ , "data.json" ) , "r" ) as f: _UpperCAmelCase : List[str] = json.load(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = config["class_name"] _UpperCAmelCase : List[Any] = accelerator.register_save_state_pre_hook(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = accelerator.register_load_state_pre_hook(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCamelCase__ ) # make sure random weights don't match with hooks load_random_weights(lowerCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase__ ) ) > 1E-3 ) # random class name to verify correct one is loaded _UpperCAmelCase : List[Any] = "random" # make sure loaded weights match with hooks accelerator.load_state(lowerCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase__ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCamelCase__ ) # make sure random weights don't match with hooks removed load_random_weights(lowerCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase__ ) ) > 1E-3 ) # random class name to verify correct one is loaded _UpperCAmelCase : int = "random" # make sure loaded weights match with hooks removed accelerator.load_state(lowerCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase__ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def lowerCAmelCase__ ( self : str ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = Accelerator() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = create_components() _UpperCAmelCase : List[str] = None # This should work _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.assertTrue(dummy_obj is None ) def lowerCAmelCase__ ( self : str ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = Accelerator() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = create_components() _UpperCAmelCase : List[Any] = [1, 2, 3] # This should work _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual( getattr(lowerCamelCase__ , "_is_accelerate_prepared" , lowerCamelCase__ ) , lowerCamelCase__ , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(lowerCamelCase__ , "_is_accelerate_prepared" , lowerCamelCase__ ) , lowerCamelCase__ , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCamelCase__ , "_is_accelerate_prepared" , lowerCamelCase__ ) , lowerCamelCase__ , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCamelCase__ , "_is_accelerate_prepared" , lowerCamelCase__ ) , lowerCamelCase__ , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCamelCase__ , "_is_accelerate_prepared" , lowerCamelCase__ ) , lowerCamelCase__ , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCamelCase__ , "_is_accelerate_prepared" , lowerCamelCase__ ) , lowerCamelCase__ , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' from transformers import AutoModelForCausalLM _UpperCAmelCase : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowerCamelCase__ , device_map={"": 0} , ) _UpperCAmelCase : List[str] = Accelerator() # This should work _UpperCAmelCase : Optional[int] = accelerator.prepare(lowerCamelCase__ ) @slow @require_bnb def lowerCAmelCase__ ( self : int ) ->Tuple: '''simple docstring''' from transformers import AutoModelForCausalLM _UpperCAmelCase : Optional[Any] = Accelerator() with init_empty_weights(): _UpperCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() _UpperCAmelCase : str = infer_auto_device_map(lowerCamelCase__ ) _UpperCAmelCase : Any = "cpu" _UpperCAmelCase : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=lowerCamelCase__ , load_in_abit=lowerCamelCase__ , llm_inta_enable_fpaa_cpu_offload=lowerCamelCase__ ) # This should not work and get value error with self.assertRaises(lowerCamelCase__ ): _UpperCAmelCase : Dict = accelerator.prepare(lowerCamelCase__ ) @slow @require_bnb @require_multi_gpu def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' from transformers import AutoModelForCausalLM _UpperCAmelCase : Tuple = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): _UpperCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() _UpperCAmelCase : int = infer_auto_device_map(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowerCamelCase__ , device_map=lowerCamelCase__ , ) _UpperCAmelCase : Union[str, Any] = Accelerator() # This should not work and get value error with self.assertRaises(lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = accelerator.prepare(lowerCamelCase__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def lowerCAmelCase__ ( self : int ) ->Optional[int]: '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): _UpperCAmelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) _UpperCAmelCase : Tuple = infer_auto_device_map(lowerCamelCase__ ) _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowerCamelCase__ , device_map=lowerCamelCase__ , ) _UpperCAmelCase : Optional[int] = Accelerator() # This should work _UpperCAmelCase : int = accelerator.prepare(lowerCamelCase__ ) @require_cuda def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = torch.nn.Linear(10 , 10 ) _UpperCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_1 ) _UpperCAmelCase : int = Accelerator(cpu=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = accelerator.prepare(lowerCamelCase__ )
40
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase__ = 16 lowerCamelCase__ = 32 def __lowerCAmelCase (__lowerCAmelCase ): return int(x / 2**20 ) class lowerCAmelCase__ : def __enter__( self : int ) ->Optional[Any]: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _UpperCAmelCase : Tuple = torch.cuda.memory_allocated() return self def __exit__( self : Tuple , *lowerCamelCase__ : str ) ->int: '''simple docstring''' gc.collect() torch.cuda.empty_cache() _UpperCAmelCase : List[str] = torch.cuda.memory_allocated() _UpperCAmelCase : Tuple = torch.cuda.max_memory_allocated() _UpperCAmelCase : List[Any] = bamb(self.end - self.begin ) _UpperCAmelCase : int = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = 16 , __lowerCAmelCase = "bert-base-cased" , __lowerCAmelCase = 320 , __lowerCAmelCase = 160 , ): _UpperCAmelCase : int = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : Any = load_dataset( "glue" , "mrpc" , split={"train": F"""train[:{n_train}]""", "validation": F"""validation[:{n_val}]"""} ) def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase : int = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(__lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _UpperCAmelCase : Any = DataLoader( tokenized_datasets["train"] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) _UpperCAmelCase : List[str] = DataLoader( tokenized_datasets["validation"] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : List[Any] = config["lr"] _UpperCAmelCase : List[Any] = int(config["num_epochs"] ) _UpperCAmelCase : int = int(config["seed"] ) _UpperCAmelCase : Union[str, Any] = int(config["batch_size"] ) _UpperCAmelCase : Tuple = args.model_name_or_path set_seed(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : List[str] = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained(__lowerCAmelCase , return_dict=__lowerCAmelCase ) # Instantiate optimizer _UpperCAmelCase : Dict = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCAmelCase : str = optimizer_cls(params=model.parameters() , lr=__lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: _UpperCAmelCase : Any = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _UpperCAmelCase : Any = 1 _UpperCAmelCase : Optional[int] = (len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCAmelCase : Tuple = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=0 , num_training_steps=__lowerCAmelCase , ) else: _UpperCAmelCase : Optional[Any] = DummyScheduler(__lowerCAmelCase , total_num_steps=__lowerCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over _UpperCAmelCase : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCAmelCase : str = 0 # Now we train the model _UpperCAmelCase : Optional[Any] = {} for epoch in range(__lowerCAmelCase , __lowerCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = model(**__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = outputs.loss _UpperCAmelCase : List[Any] = loss / gradient_accumulation_steps accelerator.backward(__lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) _UpperCAmelCase : Optional[int] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json" ) , "w" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (): _UpperCAmelCase : Any = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__lowerCAmelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__lowerCAmelCase , ) parser.add_argument( "--output_dir" , type=__lowerCAmelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=__lowerCAmelCase , default=320 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=__lowerCAmelCase , default=160 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=__lowerCAmelCase , default=1 , help="Number of train epochs." , ) _UpperCAmelCase : Tuple = parser.parse_args() _UpperCAmelCase : Optional[Any] = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
40
1
def _lowerCAmelCase ( UpperCamelCase__: List[str] ) -> Optional[Any]: """simple docstring""" A = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def _lowerCAmelCase ( UpperCamelCase__: Dict ) -> str: """simple docstring""" if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""The input value of \'num_rows\' should be \'int\'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of \'num_rows\' should be greater than or equal to 0""" ) A = [] for current_row_idx in range(lowerCAmelCase__ ): A = populate_current_row(lowerCAmelCase__ , lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def _lowerCAmelCase ( UpperCamelCase__: List[Any] , UpperCamelCase__: int ) -> List[str]: """simple docstring""" A = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 A , A = 1, 1 for current_col_idx in range(1 , lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return current_row def _lowerCAmelCase ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Dict , ) -> Optional[int]: """simple docstring""" A = triangle[current_row_idx - 1][current_col_idx - 1] A = triangle[current_row_idx - 1][current_col_idx] A = above_to_left_elt + above_to_right_elt def _lowerCAmelCase ( UpperCamelCase__: List[Any] ) -> str: """simple docstring""" if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""The input value of \'num_rows\' should be \'int\'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of \'num_rows\' should be greater than or equal to 0""" ) A = [[1]] for row_index in range(1 , lowerCAmelCase__ ): A = [0] + result[-1] + [0] A = row_index + 1 # Calculate the number of distinct elements in a row A = sum(divmod(lowerCAmelCase__ , 2 ) ) A = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] A = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() A = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCamelCase__: Any , UpperCamelCase__: int ) -> None: A = f'{func.__name__}({value})' A = timeit(f'__main__.{call}' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ , lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
641
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ ) lowerCamelCase_ = TestCommand(*lowerCAmelCase__ ) test_command.run() lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] ,download_size=3_940_680 ,dataset_size=2_589_981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
0
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy UpperCAmelCase_ : Any = logging.getLogger(__name__) UpperCAmelCase_ : List[Any] = 'pytorch_model.bin' @dataclasses.dataclass class __UpperCAmelCase : '''simple docstring''' lowercase : int = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) lowercase : Union[str, Any] = dataclasses.field( default=_A, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."}, ) @dataclasses.dataclass class __UpperCAmelCase : '''simple docstring''' lowercase : Tuple = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) lowercase : List[str] = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) lowercase : Tuple = dataclasses.field( default=_A, metadata={"help": "A csv or a json file containing the validation data."} ) lowercase : List[Any] = dataclasses.field( default=_A, metadata={"help": "The name of the task to train on."}, ) lowercase : Tuple = dataclasses.field( default=_A, metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class __UpperCAmelCase : '''simple docstring''' lowercase : Tuple = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) lowercase : Tuple = dataclasses.field( default="accuracy", metadata={"help": "The evaluation metric used for the task."} ) lowercase : Optional[int] = dataclasses.field( default="no", metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" }, ) lowercase : List[str] = dataclasses.field( default=10, metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."}, ) lowercase : Union[str, Any] = dataclasses.field( default=0.0, metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." }, ) lowercase : Any = dataclasses.field( default=_A, metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."}, ) lowercase : Dict = dataclasses.field( default=_A, metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."}, ) lowercase : Any = dataclasses.field( default=_A, metadata={"help": "Whether to fine-tune on labeled data after pseudo training."}, ) lowercase : List[str] = dataclasses.field( default=0.0, metadata={"help": "Confidence threshold for pseudo-labeled data filtering."}, ) lowercase : Optional[Any] = dataclasses.field( default=100, metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."}, ) lowercase : Optional[Any] = dataclasses.field( default=_A, metadata={"help": "Random seed for initialization."}, ) def _lowerCAmelCase(a : List[str] , a : str , a : Tuple , a : Tuple , a : str , a : Union[str, Any] ) -> List[str]: _SCREAMING_SNAKE_CASE =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _SCREAMING_SNAKE_CASE =dataset.filter(lambda a : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _SCREAMING_SNAKE_CASE =int(eval_result * len(A_ ) ) print(A_ ) _SCREAMING_SNAKE_CASE =dataset.sort('''probability''' , reverse=A_ ) _SCREAMING_SNAKE_CASE =dataset.select(range(A_ ) ) _SCREAMING_SNAKE_CASE =dataset.remove_columns(['''label''', '''probability'''] ) _SCREAMING_SNAKE_CASE =dataset.rename_column('''prediction''' , '''label''' ) _SCREAMING_SNAKE_CASE =dataset.map(lambda a : {"label": idalabel[example["label"]]} ) _SCREAMING_SNAKE_CASE =dataset.shuffle(seed=args.seed ) _SCREAMING_SNAKE_CASE =os.path.join(A_ , f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(A_ , index=A_ ) else: dataset.to_json(A_ ) def _lowerCAmelCase(a : Optional[Any] , a : str , a : Any , a : List[str] , **a : Any ) -> List[Any]: _SCREAMING_SNAKE_CASE =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _SCREAMING_SNAKE_CASE =STModelArguments(model_name_or_path=A_ ) _SCREAMING_SNAKE_CASE =STDataArguments(train_file=A_ , infer_file=A_ ) _SCREAMING_SNAKE_CASE =STTrainingArguments(output_dir=A_ ) _SCREAMING_SNAKE_CASE =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(A_ ).items(): setattr(A_ , A_ , A_ ) for key, value in kwargs.items(): if hasattr(A_ , A_ ): setattr(A_ , A_ , A_ ) # Sanity checks _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _SCREAMING_SNAKE_CASE =args.train_file _SCREAMING_SNAKE_CASE =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _SCREAMING_SNAKE_CASE =args.eval_file for key in data_files: _SCREAMING_SNAKE_CASE =data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _SCREAMING_SNAKE_CASE =extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) _SCREAMING_SNAKE_CASE =f"""{args.output_dir}/self-train_iter-{{}}""".format _SCREAMING_SNAKE_CASE =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=A_ ) os.makedirs(A_ , exist_ok=A_ ) accelerator.wait_for_everyone() _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =False # Show the progress bar _SCREAMING_SNAKE_CASE =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _SCREAMING_SNAKE_CASE =data_dir_format(A_ ) assert os.path.exists(A_ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _SCREAMING_SNAKE_CASE =os.path.join(A_ , '''stage-1''' ) _SCREAMING_SNAKE_CASE ={ '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(A_ , A_ ): arguments_dict.update({key: value} ) _SCREAMING_SNAKE_CASE =os.path.join(A_ , '''best-checkpoint''' , A_ ) if os.path.exists(A_ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , A_ , A_ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , A_ ) finetune(**A_ ) accelerator.wait_for_everyone() assert os.path.exists(A_ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , A_ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _SCREAMING_SNAKE_CASE =os.path.join(A_ , '''best-checkpoint''' ) _SCREAMING_SNAKE_CASE =os.path.join(A_ , '''stage-2''' ) # Update arguments_dict _SCREAMING_SNAKE_CASE =model_path _SCREAMING_SNAKE_CASE =data_files['''train'''] _SCREAMING_SNAKE_CASE =current_output_dir _SCREAMING_SNAKE_CASE =os.path.join(A_ , '''best-checkpoint''' , A_ ) if os.path.exists(A_ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , A_ , A_ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , A_ ) finetune(**A_ ) accelerator.wait_for_everyone() assert os.path.exists(A_ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , A_ ) _SCREAMING_SNAKE_CASE =iteration _SCREAMING_SNAKE_CASE =data_dir_format(iteration + 1 ) _SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained(os.path.join(A_ , '''best-checkpoint''' ) ) _SCREAMING_SNAKE_CASE =config.idalabel _SCREAMING_SNAKE_CASE =os.path.join(A_ , '''eval_results_best-checkpoint.json''' ) _SCREAMING_SNAKE_CASE =os.path.join(A_ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(A_ ) with open(A_ , '''r''' ) as f: _SCREAMING_SNAKE_CASE =float(json.load(A_ )[args.eval_metric] ) _SCREAMING_SNAKE_CASE =os.path.join(A_ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(A_ ) # Loading the dataset from local csv or json files. _SCREAMING_SNAKE_CASE =load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] _SCREAMING_SNAKE_CASE =load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(A_ , exist_ok=A_ ) shutil.copy(A_ , os.path.join(A_ , f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(A_ ): shutil.copy(A_ , os.path.join(A_ , f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(A_ , A_ , A_ , A_ , A_ , A_ ) accelerator.wait_for_everyone() _SCREAMING_SNAKE_CASE =os.path.join(A_ , f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _SCREAMING_SNAKE_CASE =eval_result if best_iteration is None: _SCREAMING_SNAKE_CASE =new_iteration _SCREAMING_SNAKE_CASE =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _SCREAMING_SNAKE_CASE =new_iteration _SCREAMING_SNAKE_CASE =new_eval_result _SCREAMING_SNAKE_CASE =0 else: if new_eval_result == best_eval_result: _SCREAMING_SNAKE_CASE =new_iteration _SCREAMING_SNAKE_CASE =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _SCREAMING_SNAKE_CASE =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , A_ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , A_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A_ , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(A_ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , A_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(A_ , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(A_ , '''eval_results_best-iteration.json''' ) , )
710
"""simple docstring""" def _lowerCAmelCase(a : list ) -> int: if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _SCREAMING_SNAKE_CASE =grid[0] for row_n in range(1 , len(a ) ): _SCREAMING_SNAKE_CASE =grid[row_n] _SCREAMING_SNAKE_CASE =fill_row(a , a ) _SCREAMING_SNAKE_CASE =grid[row_n] return grid[-1][-1] def _lowerCAmelCase(a : list , a : list ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(a ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
165
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class snake_case : def __init__( self : int)-> Dict: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = {} def lowercase_ ( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=1)-> Dict: '''simple docstring''' if self.graph.get(UpperCamelCase__): if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: __lowerCAmelCase: List[Any] = [[w, v]] if not self.graph.get(UpperCamelCase__): __lowerCAmelCase: str = [] def lowercase_ ( self : Dict)-> Any: '''simple docstring''' return list(self.graph) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any])-> str: '''simple docstring''' if self.graph.get(UpperCamelCase__): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : Union[str, Any]=-2 , UpperCamelCase__ : int=-1)-> Optional[Any]: '''simple docstring''' if s == d: return [] __lowerCAmelCase: List[Any] = [] __lowerCAmelCase: str = [] if s == -2: __lowerCAmelCase: Optional[Any] = list(self.graph)[0] stack.append(UpperCamelCase__) visited.append(UpperCamelCase__) __lowerCAmelCase: Optional[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __lowerCAmelCase: int = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(UpperCamelCase__) return visited else: stack.append(node[1]) visited.append(node[1]) __lowerCAmelCase: Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase__) != 0: __lowerCAmelCase: List[Any] = stack[len(UpperCamelCase__) - 1] else: __lowerCAmelCase: List[Any] = ss # check if se have reached the starting point if len(UpperCamelCase__) == 0: return visited def lowercase_ ( self : int , UpperCamelCase__ : str=-1)-> Any: '''simple docstring''' if c == -1: __lowerCAmelCase: List[str] = floor(random() * 1_0_0_0_0) + 1_0 for i in range(UpperCamelCase__): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2) + 1): __lowerCAmelCase: List[Any] = floor(random() * c) + 1 if n != i: self.add_pair(UpperCamelCase__ , UpperCamelCase__ , 1) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Optional[int]=-2)-> List[str]: '''simple docstring''' __lowerCAmelCase: Tuple = deque() __lowerCAmelCase: Any = [] if s == -2: __lowerCAmelCase: int = list(self.graph)[0] d.append(UpperCamelCase__) visited.append(UpperCamelCase__) while d: __lowerCAmelCase: Union[str, Any] = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def lowercase_ ( self : int , UpperCamelCase__ : Union[str, Any])-> Tuple: '''simple docstring''' __lowerCAmelCase: Optional[Any] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowercase_ ( self : Tuple , UpperCamelCase__ : int)-> List[Any]: '''simple docstring''' return len(self.graph[u]) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : str=-2)-> int: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = [] __lowerCAmelCase: int = [] if s == -2: __lowerCAmelCase: Optional[int] = list(self.graph)[0] stack.append(UpperCamelCase__) visited.append(UpperCamelCase__) __lowerCAmelCase: str = s __lowerCAmelCase: Tuple = [] while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __lowerCAmelCase: Optional[int] = s for node in self.graph[s]: if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __lowerCAmelCase: Any = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop()) if len(UpperCamelCase__) != 0: __lowerCAmelCase: Union[str, Any] = stack[len(UpperCamelCase__) - 1] else: __lowerCAmelCase: str = ss # check if se have reached the starting point if len(UpperCamelCase__) == 0: return sorted_nodes def lowercase_ ( self : Union[str, Any])-> List[Any]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = [] __lowerCAmelCase: Dict = [] __lowerCAmelCase: int = list(self.graph)[0] stack.append(UpperCamelCase__) visited.append(UpperCamelCase__) __lowerCAmelCase: Optional[int] = -2 __lowerCAmelCase: Any = [] __lowerCAmelCase: int = s __lowerCAmelCase: List[str] = False __lowerCAmelCase: Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __lowerCAmelCase: Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): __lowerCAmelCase: List[Any] = len(UpperCamelCase__) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __lowerCAmelCase: Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCAmelCase: Dict = True if len(UpperCamelCase__) != 0: __lowerCAmelCase: Optional[Any] = stack[len(UpperCamelCase__) - 1] else: __lowerCAmelCase: Union[str, Any] = False indirect_parents.append(UpperCamelCase__) __lowerCAmelCase: Optional[Any] = s __lowerCAmelCase: List[Any] = ss # check if se have reached the starting point if len(UpperCamelCase__) == 0: return list(UpperCamelCase__) def lowercase_ ( self : Tuple)-> str: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = [] __lowerCAmelCase: List[Any] = [] __lowerCAmelCase: Union[str, Any] = list(self.graph)[0] stack.append(UpperCamelCase__) visited.append(UpperCamelCase__) __lowerCAmelCase: List[str] = -2 __lowerCAmelCase: Union[str, Any] = [] __lowerCAmelCase: int = s __lowerCAmelCase: Any = False __lowerCAmelCase: Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __lowerCAmelCase: Any = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): __lowerCAmelCase: str = len(UpperCamelCase__) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __lowerCAmelCase: Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCAmelCase: List[Any] = True if len(UpperCamelCase__) != 0: __lowerCAmelCase: Tuple = stack[len(UpperCamelCase__) - 1] else: __lowerCAmelCase: int = False indirect_parents.append(UpperCamelCase__) __lowerCAmelCase: List[str] = s __lowerCAmelCase: Tuple = ss # check if se have reached the starting point if len(UpperCamelCase__) == 0: return False def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : Tuple=-2 , UpperCamelCase__ : Dict=-1)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: str = time() self.dfs(UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = time() return end - begin def lowercase_ ( self : List[str] , UpperCamelCase__ : Optional[int]=-2)-> Dict: '''simple docstring''' __lowerCAmelCase: Optional[Any] = time() self.bfs(UpperCamelCase__) __lowerCAmelCase: str = time() return end - begin class snake_case : def __init__( self : Any)-> int: '''simple docstring''' __lowerCAmelCase: Optional[int] = {} def lowercase_ ( self : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any]=1)-> List[str]: '''simple docstring''' if self.graph.get(UpperCamelCase__): # if there already is a edge if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: # if u does not exist __lowerCAmelCase: Union[str, Any] = [[w, v]] # add the other way if self.graph.get(UpperCamelCase__): # if there already is a edge if self.graph[v].count([w, u]) == 0: self.graph[v].append([w, u]) else: # if u does not exist __lowerCAmelCase: Dict = [[w, u]] def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int)-> str: '''simple docstring''' if self.graph.get(UpperCamelCase__): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase__) # the other way round if self.graph.get(UpperCamelCase__): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(UpperCamelCase__) def lowercase_ ( self : List[Any] , UpperCamelCase__ : Union[str, Any]=-2 , UpperCamelCase__ : Any=-1)-> Dict: '''simple docstring''' if s == d: return [] __lowerCAmelCase: Optional[int] = [] __lowerCAmelCase: Optional[Any] = [] if s == -2: __lowerCAmelCase: str = list(self.graph)[0] stack.append(UpperCamelCase__) visited.append(UpperCamelCase__) __lowerCAmelCase: Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __lowerCAmelCase: str = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(UpperCamelCase__) return visited else: stack.append(node[1]) visited.append(node[1]) __lowerCAmelCase: Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase__) != 0: __lowerCAmelCase: Tuple = stack[len(UpperCamelCase__) - 1] else: __lowerCAmelCase: Tuple = ss # check if se have reached the starting point if len(UpperCamelCase__) == 0: return visited def lowercase_ ( self : List[Any] , UpperCamelCase__ : Tuple=-1)-> List[Any]: '''simple docstring''' if c == -1: __lowerCAmelCase: Dict = floor(random() * 1_0_0_0_0) + 1_0 for i in range(UpperCamelCase__): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2) + 1): __lowerCAmelCase: Dict = floor(random() * c) + 1 if n != i: self.add_pair(UpperCamelCase__ , UpperCamelCase__ , 1) def lowercase_ ( self : Any , UpperCamelCase__ : List[Any]=-2)-> Any: '''simple docstring''' __lowerCAmelCase: Optional[Any] = deque() __lowerCAmelCase: List[str] = [] if s == -2: __lowerCAmelCase: Optional[Any] = list(self.graph)[0] d.append(UpperCamelCase__) visited.append(UpperCamelCase__) while d: __lowerCAmelCase: int = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def lowercase_ ( self : Optional[int] , UpperCamelCase__ : List[Any])-> List[Any]: '''simple docstring''' return len(self.graph[u]) def lowercase_ ( self : Any)-> Tuple: '''simple docstring''' __lowerCAmelCase: Any = [] __lowerCAmelCase: Optional[int] = [] __lowerCAmelCase: List[Any] = list(self.graph)[0] stack.append(UpperCamelCase__) visited.append(UpperCamelCase__) __lowerCAmelCase: List[str] = -2 __lowerCAmelCase: Union[str, Any] = [] __lowerCAmelCase: Union[str, Any] = s __lowerCAmelCase: List[str] = False __lowerCAmelCase: Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __lowerCAmelCase: List[str] = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): __lowerCAmelCase: Dict = len(UpperCamelCase__) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __lowerCAmelCase: Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCAmelCase: Tuple = True if len(UpperCamelCase__) != 0: __lowerCAmelCase: Union[str, Any] = stack[len(UpperCamelCase__) - 1] else: __lowerCAmelCase: Any = False indirect_parents.append(UpperCamelCase__) __lowerCAmelCase: Dict = s __lowerCAmelCase: Optional[int] = ss # check if se have reached the starting point if len(UpperCamelCase__) == 0: return list(UpperCamelCase__) def lowercase_ ( self : Tuple)-> List[str]: '''simple docstring''' __lowerCAmelCase: Dict = [] __lowerCAmelCase: str = [] __lowerCAmelCase: str = list(self.graph)[0] stack.append(UpperCamelCase__) visited.append(UpperCamelCase__) __lowerCAmelCase: List[str] = -2 __lowerCAmelCase: List[Any] = [] __lowerCAmelCase: str = s __lowerCAmelCase: Tuple = False __lowerCAmelCase: Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __lowerCAmelCase: int = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): __lowerCAmelCase: str = len(UpperCamelCase__) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __lowerCAmelCase: int = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCAmelCase: Any = True if len(UpperCamelCase__) != 0: __lowerCAmelCase: Optional[Any] = stack[len(UpperCamelCase__) - 1] else: __lowerCAmelCase: Optional[int] = False indirect_parents.append(UpperCamelCase__) __lowerCAmelCase: Optional[Any] = s __lowerCAmelCase: Any = ss # check if se have reached the starting point if len(UpperCamelCase__) == 0: return False def lowercase_ ( self : List[Any])-> Union[str, Any]: '''simple docstring''' return list(self.graph) def lowercase_ ( self : int , UpperCamelCase__ : str=-2 , UpperCamelCase__ : List[str]=-1)-> List[Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = time() self.dfs(UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = time() return end - begin def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : List[Any]=-2)-> Tuple: '''simple docstring''' __lowerCAmelCase: Dict = time() self.bfs(UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = time() return end - begin
346
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate __lowerCAmelCase: str = rate_per_annum / 1_2 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowerCAmelCase: Optional[Any] = years_to_repay * 1_2 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
346
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> tuple[str, float]: a__ : int = len([g for position, g in enumerate(__UpperCamelCase ) if g == main_target[position]] ) return (item, float(__UpperCamelCase )) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> tuple[str, str]: a__ : str = random.randint(0 , len(__UpperCamelCase ) - 1 ) a__ : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] a__ : str = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> str: a__ : Optional[Any] = list(__UpperCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: a__ : str = random.choice(__UpperCamelCase ) return "".join(__UpperCamelCase ) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> list[str]: a__ : List[Any] = [] # Generate more children proportionally to the fitness score. a__ : List[str] = int(parent_a[1] * 1_00 ) + 1 a__ : Optional[Any] = 10 if child_n >= 10 else child_n for _ in range(__UpperCamelCase ): a__ : Optional[Any] = population_score[random.randint(0 , __UpperCamelCase )][0] a__ : List[str] = crossover(parent_a[0] , __UpperCamelCase ) # Append new string to the population list. pop.append(mutate(__UpperCamelCase , __UpperCamelCase ) ) pop.append(mutate(__UpperCamelCase , __UpperCamelCase ) ) return pop def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: a__ : int = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(__UpperCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. a__ : Tuple = sorted({c for c in target if c not in genes} ) if not_in_genes_list: a__ : Any = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(__UpperCamelCase ) # Generate random starting population. a__ : Union[str, Any] = [] for _ in range(__UpperCamelCase ): population.append("".join([random.choice(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. a__ : List[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__UpperCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. a__ : str = [evaluate(__UpperCamelCase , __UpperCamelCase ) for item in population] # Check if there is a matching evolution. a__ : List[str] = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. a__ : List[str] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__UpperCamelCase ) # Normalize population score to be between 0 and 1. a__ : List[str] = [ (item, score / len(__UpperCamelCase )) for item, score in population_score ] # This is selection for i in range(__UpperCamelCase ): population.extend(select(population_score[int(__UpperCamelCase )] , __UpperCamelCase , __UpperCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__UpperCamelCase ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) lowerCamelCase = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
709
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCamelCase = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _a ( unittest.TestCase ): '''simple docstring''' def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None ): """simple docstring""" a__ : Optional[Any] = None a__ : Dict = os.path.abspath(os.path.join("examples" , "by_feature" ) ) a__ : Tuple = os.path.abspath("examples" ) for item in os.listdir(__UpperCAmelCase ): if item not in EXCLUDE_EXAMPLES: a__ : Optional[int] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if os.path.isfile(__UpperCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=__UpperCAmelCase , feature_script=__UpperCAmelCase , tested_section="main()" if parser_only else "training_function()" , ): a__ : List[Any] = compare_against_test( os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a__ : Optional[Any] = "\n".join(__UpperCAmelCase ) if special_strings is not None: for string in special_strings: a__ : Optional[Any] = diff.replace(__UpperCAmelCase , "" ) self.assertEqual(__UpperCAmelCase , "" ) def _A ( self ): """simple docstring""" self.one_complete_example("complete_nlp_example.py" , __UpperCAmelCase ) self.one_complete_example("complete_nlp_example.py" , __UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : List[Any] = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) a__ : int = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.one_complete_example("complete_cv_example.py" , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :int = False @classmethod def _A ( cls ): """simple docstring""" super().setUpClass() a__ : Optional[Any] = tempfile.mkdtemp() a__ : Tuple = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) a__ : Any = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def _A ( cls ): """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _A ( self ): """simple docstring""" a__ : Dict = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def _A ( self ): """simple docstring""" a__ : Union[str, Any] = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() a__ : Optional[int] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def _A ( self ): """simple docstring""" a__ : Dict = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() a__ : List[str] = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase ) self.assertNotIn("epoch 0:" , __UpperCAmelCase ) self.assertIn("epoch 1:" , __UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : List[Any] = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() a__ : List[str] = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase ) if torch.cuda.is_available(): a__ : List[str] = torch.cuda.device_count() else: a__ : str = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , __UpperCAmelCase ) self.assertIn("epoch 1:" , __UpperCAmelCase ) else: self.assertIn("epoch 0:" , __UpperCAmelCase ) self.assertIn("epoch 1:" , __UpperCAmelCase ) @slow def _A ( self ): """simple docstring""" a__ : List[str] = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): a__ : Any = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase ) a__ : List[str] = re.findall("({.+})" , __UpperCAmelCase ) a__ : str = [r for r in results if "accuracy" in r][-1] a__ : Optional[int] = ast.literal_eval(__UpperCAmelCase ) self.assertGreaterEqual(results["accuracy"] , 0.7_5 ) def _A ( self ): """simple docstring""" a__ : Any = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _A ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: a__ : Tuple = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , "tracking" ) ) ) def _A ( self ): """simple docstring""" a__ : List[str] = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def _A ( self ): """simple docstring""" a__ : Optional[int] = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
207
0
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def snake_case__ ( UpperCamelCase ) -> int: monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' ,set() ) @pytest.fixture def snake_case__ ( UpperCamelCase ) -> Tuple: class UpperCAmelCase : """simple docstring""" def __init__( self , _snake_case ) -> str: _UpperCamelCase : Dict = metric_id class UpperCAmelCase : """simple docstring""" A__ : Tuple = [MetricMock(a_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def _lowercase ( self ) -> List[Any]: return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' ,HfhMock() ) @pytest.mark.parametrize( '''func, args''' ,[(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: if "tmp_path" in args: _UpperCamelCase : Any = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(UpperCamelCase ,match='''https://huggingface.co/docs/evaluate''' ): func(*UpperCamelCase )
683
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( a_ ): """simple docstring""" A__ : str = ['image_processor', 'tokenizer'] A__ : Dict = 'CLIPImageProcessor' A__ : str = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> List[Any]: _UpperCamelCase : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) _UpperCamelCase : Optional[Any] = kwargs.pop('''feature_extractor''' ) _UpperCamelCase : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Dict: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _UpperCamelCase : List[str] = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: _UpperCamelCase : str = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: _UpperCamelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def _lowercase ( self , *_snake_case , **_snake_case ) -> Tuple: return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def _lowercase ( self , *_snake_case , **_snake_case ) -> Any: return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def _lowercase ( self ) -> int: _UpperCamelCase : Optional[int] = self.tokenizer.model_input_names _UpperCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
683
1
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
228
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Union[List[PIL.Image.Image], np.ndarray] _snake_case : Optional[List[bool]] _snake_case : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
228
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class A ( __lowercase ): _snake_case =DistilBertTokenizer _snake_case =DistilBertTokenizerFast _snake_case =True @slow def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ =tokenizer.encode("sequence builders" , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode("multi-sequence build" , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
54
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __UpperCAmelCase = logging.get_logger(__name__) class A__ ( A ): """simple docstring""" _lowercase : List[Any] = ['''pixel_values'''] def __init__( self : Tuple , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BILINEAR , A_ : bool = True , A_ : Union[int, float] = 1 / 2_5_5 , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , **A_ : List[Any] , ): '''simple docstring''' super().__init__(**A_ ) _lowerCAmelCase : Optional[int] = size if size is not None else {"shortest_edge": 2_2_4} _lowerCAmelCase : Optional[int] = get_size_dict(A_ , default_to_square=A_ ) _lowerCAmelCase : Any = crop_size if crop_size is not None else {"height": 2_5_6, "width": 2_5_6} _lowerCAmelCase : str = get_size_dict(A_ , param_name="crop_size" ) _lowerCAmelCase : Any = do_resize _lowerCAmelCase : Optional[Any] = size _lowerCAmelCase : str = resample _lowerCAmelCase : Optional[Any] = do_rescale _lowerCAmelCase : Dict = rescale_factor _lowerCAmelCase : Any = do_center_crop _lowerCAmelCase : List[Any] = crop_size _lowerCAmelCase : List[Any] = do_flip_channel_order def __magic_name__ ( self : Tuple , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PIL.Image.BILINEAR , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Dict , ): '''simple docstring''' _lowerCAmelCase : Any = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowerCAmelCase : Union[str, Any] = get_resize_output_image_size(A_ , size=size["shortest_edge"] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def __magic_name__ ( self : Union[str, Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : List[str] , ): '''simple docstring''' _lowerCAmelCase : str = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(A_ , size=(size["height"], size["width"]) , data_format=A_ , **A_ ) def __magic_name__ ( self : Tuple , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ): '''simple docstring''' return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def __magic_name__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' return flip_channel_order(A_ , data_format=A_ ) def __magic_name__ ( self : List[Any] , A_ : ImageInput , A_ : bool = None , A_ : Dict[str, int] = None , A_ : PILImageResampling = None , A_ : bool = None , A_ : float = None , A_ : bool = None , A_ : Dict[str, int] = None , A_ : bool = None , A_ : Optional[Union[str, TensorType]] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : Tuple , ): '''simple docstring''' _lowerCAmelCase : str = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Dict = resample if resample is not None else self.resample _lowerCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : str = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _lowerCAmelCase : str = size if size is not None else self.size _lowerCAmelCase : str = get_size_dict(A_ , default_to_square=A_ ) _lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : List[str] = get_size_dict(A_ , param_name="crop_size" ) _lowerCAmelCase : Dict = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. _lowerCAmelCase : Optional[int] = [to_numpy_array(A_ ) for image in images] if do_resize: _lowerCAmelCase : Any = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: _lowerCAmelCase : Tuple = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: _lowerCAmelCase : Any = [self.rescale(image=A_ , scale=A_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _lowerCAmelCase : Dict = [self.flip_channel_order(image=A_ ) for image in images] _lowerCAmelCase : Optional[Any] = [to_channel_dimension_format(A_ , A_ ) for image in images] _lowerCAmelCase : Tuple = {"pixel_values": images} return BatchFeature(data=A_ , tensor_type=A_ ) def __magic_name__ ( self : List[Any] , A_ : Union[str, Any] , A_ : List[Tuple] = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(A_ ): _lowerCAmelCase : Dict = target_sizes.numpy() _lowerCAmelCase : List[Any] = [] for idx in range(len(A_ ) ): _lowerCAmelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=A_ ) _lowerCAmelCase : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: _lowerCAmelCase : Tuple = logits.argmax(dim=1 ) _lowerCAmelCase : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
503
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ ( A ): """simple docstring""" def __magic_name__ ( self : List[str] ): '''simple docstring''' _lowerCAmelCase : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , "embed_dim" ) ) self.parent.assertTrue(hasattr(A_ , "num_heads" ) ) class A__ : """simple docstring""" def __init__( self : Tuple , A_ : int , A_ : Dict=1_3 , A_ : int=6_4 , A_ : str=3 , A_ : Optional[int]=[1_6, 4_8, 9_6] , A_ : int=[1, 3, 6] , A_ : Optional[int]=[1, 2, 1_0] , A_ : Any=[7, 3, 3] , A_ : Tuple=[4, 2, 2] , A_ : str=[2, 1, 1] , A_ : Optional[Any]=[2, 2, 2] , A_ : Union[str, Any]=[False, False, True] , A_ : Union[str, Any]=[0.0, 0.0, 0.0] , A_ : Any=0.02 , A_ : Optional[int]=1E-12 , A_ : str=True , A_ : List[Any]=True , A_ : Union[str, Any]=2 , ): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : Optional[Any] = patch_sizes _lowerCAmelCase : Optional[int] = patch_stride _lowerCAmelCase : List[str] = patch_padding _lowerCAmelCase : str = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : Dict = num_labels _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = num_heads _lowerCAmelCase : Union[str, Any] = stride_kv _lowerCAmelCase : Tuple = depth _lowerCAmelCase : List[str] = cls_token _lowerCAmelCase : Tuple = attention_drop_rate _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps def __magic_name__ ( self : Dict ): '''simple docstring''' _lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : int = None if self.use_labels: # create a random int32 tensor of given shape _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __magic_name__ ( self : Union[str, Any] , A_ : str , A_ : Optional[int] , A_ : str ): '''simple docstring''' _lowerCAmelCase : str = TFCvtModel(config=A_ ) _lowerCAmelCase : str = model(A_ , training=A_ ) _lowerCAmelCase : List[Any] = (self.image_size, self.image_size) _lowerCAmelCase , _lowerCAmelCase : Any = image_size[0], image_size[1] for i in range(len(self.depth ) ): _lowerCAmelCase : Union[str, Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _lowerCAmelCase : List[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __magic_name__ ( self : Any , A_ : Tuple , A_ : int , A_ : Any ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : Optional[Any] = TFCvtForImageClassification(A_ ) _lowerCAmelCase : Optional[Any] = model(A_ , labels=A_ , training=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[str] ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = config_and_inputs _lowerCAmelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class A__ ( A , A , unittest.TestCase ): """simple docstring""" _lowercase : Any = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () _lowercase : Tuple = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) _lowercase : Optional[int] = False _lowercase : Any = False _lowercase : int = False _lowercase : int = False _lowercase : Tuple = False def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' _lowerCAmelCase : List[Any] = TFCvtModelTester(self ) _lowerCAmelCase : Optional[Any] = TFCvtConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=3_7 ) def __magic_name__ ( self : List[Any] ): '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions" ) def __magic_name__ ( self : str ): '''simple docstring''' pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def __magic_name__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def __magic_name__ ( self : int ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def __magic_name__ ( self : Dict ): '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def __magic_name__ ( self : Dict ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8" ) def __magic_name__ ( self : Dict ): '''simple docstring''' _lowerCAmelCase : Optional[int] = tf.keras.mixed_precision.Policy("mixed_float16" ) tf.keras.mixed_precision.set_global_policy(A_ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32" ) def __magic_name__ ( self : str ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Dict = model_class(A_ ) _lowerCAmelCase : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : List[Any] = [*signature.parameters.keys()] _lowerCAmelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , A_ ) def __magic_name__ ( self : int ): '''simple docstring''' def check_hidden_states_output(A_ : Any , A_ : Any , A_ : Dict ): _lowerCAmelCase : Tuple = model_class(A_ ) _lowerCAmelCase : List[Any] = model(**self._prepare_for_class(A_ , A_ ) ) _lowerCAmelCase : Tuple = outputs.hidden_states _lowerCAmelCase : Optional[Any] = len(self.model_tester.depth ) self.assertEqual(len(A_ ) , A_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : List[str] = True check_hidden_states_output(A_ , A_ , A_ ) def __magic_name__ ( self : Tuple ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def __magic_name__ ( self : Dict ): '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFCvtModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _snake_case ( ) -> Dict: """simple docstring""" _lowerCAmelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ ( self : str ): '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __magic_name__ ( self : int ): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : int = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : Optional[Any] = image_processor(images=A_ , return_tensors="tf" ) # forward pass _lowerCAmelCase : str = model(**A_ ) # verify the logits _lowerCAmelCase : List[str] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , A_ ) _lowerCAmelCase : Any = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , A_ , atol=1E-4 ) )
503
1
import random class _UpperCamelCase : '''simple docstring''' @staticmethod def _snake_case ( _lowerCamelCase : str ): '''simple docstring''' __lowerCamelCase : Tuple = [ord(_lowerCamelCase ) for i in text] __lowerCamelCase : Union[str, Any] = [] __lowerCamelCase : List[Any] = [] for i in plain: __lowerCamelCase : Optional[int] = random.randint(1 , 3_0_0 ) __lowerCamelCase : Tuple = (i + k) * k cipher.append(_lowerCamelCase ) key.append(_lowerCamelCase ) return cipher, key @staticmethod def _snake_case ( _lowerCamelCase : list[int] , _lowerCamelCase : list[int] ): '''simple docstring''' __lowerCamelCase : Tuple = [] for i in range(len(_lowerCamelCase ) ): __lowerCamelCase : Tuple = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_lowerCamelCase ) ) return "".join(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase , __UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
519
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCamelCase : '''simple docstring''' def __init__( self : int , _lowerCamelCase : Collection[float] | None = None ): '''simple docstring''' if components is None: __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Dict = list(_lowerCamelCase ) def __len__( self : int ): '''simple docstring''' return len(self.__components ) def __str__( self : Any ): '''simple docstring''' return "(" + ",".join(map(_lowerCamelCase , self.__components ) ) + ")" def __add__( self : Union[str, Any] , _lowerCamelCase : Vector ): '''simple docstring''' __lowerCamelCase : Any = len(self ) if size == len(_lowerCamelCase ): __lowerCamelCase : List[str] = [self.__components[i] + other.component(_lowerCamelCase ) for i in range(_lowerCamelCase )] return Vector(_lowerCamelCase ) else: raise Exception("""must have the same size""" ) def __sub__( self : List[str] , _lowerCamelCase : Vector ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = len(self ) if size == len(_lowerCamelCase ): __lowerCamelCase : Tuple = [self.__components[i] - other.component(_lowerCamelCase ) for i in range(_lowerCamelCase )] return Vector(_lowerCamelCase ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self : Tuple , _lowerCamelCase : float ): '''simple docstring''' ... @overload def __mul__( self : str , _lowerCamelCase : Vector ): '''simple docstring''' ... def __mul__( self : List[str] , _lowerCamelCase : float | Vector ): '''simple docstring''' if isinstance(_lowerCamelCase , (float, int) ): __lowerCamelCase : List[Any] = [c * other for c in self.__components] return Vector(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and len(self ) == len(_lowerCamelCase ): __lowerCamelCase : List[str] = len(self ) __lowerCamelCase : int = [self.__components[i] * other.component(_lowerCamelCase ) for i in range(_lowerCamelCase )] return sum(_lowerCamelCase ) else: # error case raise Exception("""invalid operand!""" ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' return Vector(self.__components ) def _snake_case ( self : Optional[Any] , _lowerCamelCase : int ): '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def _snake_case ( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : float ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) __lowerCamelCase : Any = value def _snake_case ( self : Tuple ): '''simple docstring''' if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __lowerCamelCase : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(_lowerCamelCase ) ) def _snake_case ( self : Dict , _lowerCamelCase : Vector , _lowerCamelCase : bool = False ): '''simple docstring''' __lowerCamelCase : List[str] = self * other __lowerCamelCase : List[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( UpperCAmelCase : int ): """simple docstring""" assert isinstance(UpperCAmelCase , UpperCAmelCase ) return Vector([0] * dimension ) def _UpperCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int ): """simple docstring""" assert isinstance(UpperCAmelCase , UpperCAmelCase ) and (isinstance(UpperCAmelCase , UpperCAmelCase )) __lowerCamelCase : Optional[Any] = [0] * dimension __lowerCamelCase : Union[str, Any] = 1 return Vector(UpperCAmelCase ) def _UpperCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : Vector , UpperCAmelCase : Vector ): """simple docstring""" assert ( isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ) and (isinstance(UpperCAmelCase , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): """simple docstring""" random.seed(UpperCAmelCase ) __lowerCamelCase : str = [random.randint(UpperCAmelCase , UpperCAmelCase ) for _ in range(UpperCAmelCase )] return Vector(UpperCAmelCase ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCamelCase : list[list[float]] , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' __lowerCamelCase : str = matrix __lowerCamelCase : Optional[int] = w __lowerCamelCase : List[Any] = h def __str__( self : Any ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Any , _lowerCamelCase : Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): __lowerCamelCase : int = [] for i in range(self.__height ): __lowerCamelCase : str = [ self.__matrix[i][j] + other.component(_lowerCamelCase , _lowerCamelCase ) for j in range(self.__width ) ] matrix.append(_lowerCamelCase ) return Matrix(_lowerCamelCase , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self : str , _lowerCamelCase : Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): __lowerCamelCase : List[Any] = [] for i in range(self.__height ): __lowerCamelCase : List[Any] = [ self.__matrix[i][j] - other.component(_lowerCamelCase , _lowerCamelCase ) for j in range(self.__width ) ] matrix.append(_lowerCamelCase ) return Matrix(_lowerCamelCase , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self : List[Any] , _lowerCamelCase : float ): '''simple docstring''' ... @overload def __mul__( self : Optional[int] , _lowerCamelCase : Vector ): '''simple docstring''' ... def __mul__( self : Optional[Any] , _lowerCamelCase : float | Vector ): '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ): # matrix-vector if len(_lowerCamelCase ) == self.__width: __lowerCamelCase : List[str] = zero_vector(self.__height ) for i in range(self.__height ): __lowerCamelCase : Optional[int] = [ self.__matrix[i][j] * other.component(_lowerCamelCase ) for j in range(self.__width ) ] ans.change_component(_lowerCamelCase , sum(_lowerCamelCase ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(_lowerCamelCase , (int, float) ): # matrix-scalar __lowerCamelCase : Union[str, Any] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_lowerCamelCase , self.__width , self.__height ) return None def _snake_case ( self : Tuple ): '''simple docstring''' return self.__height def _snake_case ( self : Any ): '''simple docstring''' return self.__width def _snake_case ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def _snake_case ( self : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : float ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: __lowerCamelCase : Optional[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def _snake_case ( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __lowerCamelCase : Union[str, Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_lowerCamelCase ) ): __lowerCamelCase : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(_lowerCamelCase , self.__width - 1 , self.__height - 1 ).determinant() def _snake_case ( self : Tuple , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_lowerCamelCase , _lowerCamelCase ) else: raise Exception("""Indices out of bounds""" ) def _snake_case ( self : int ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __lowerCamelCase : int = [ self.__matrix[0][y] * self.cofactor(0 , _lowerCamelCase ) for y in range(self.__width ) ] return sum(_lowerCamelCase ) def _UpperCAmelCase ( UpperCAmelCase : int ): """simple docstring""" __lowerCamelCase : list[list[float]] = [[0] * n for _ in range(UpperCAmelCase )] return Matrix(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def _UpperCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): """simple docstring""" random.seed(UpperCAmelCase ) __lowerCamelCase : list[list[float]] = [ [random.randint(UpperCAmelCase , UpperCAmelCase ) for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase ) ] return Matrix(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
519
1
'''simple docstring''' import math import tensorflow as tf from packaging import version def __UpperCamelCase ( __lowerCamelCase : str ) -> List[str]: '''simple docstring''' _a = tf.convert_to_tensor(__lowerCamelCase ) _a = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __UpperCamelCase ( __lowerCamelCase : Any ) -> str: '''simple docstring''' _a = tf.convert_to_tensor(__lowerCamelCase ) _a = tf.cast(math.pi , x.dtype ) _a = tf.cast(0.04_47_15 , x.dtype ) _a = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__lowerCamelCase , 3 )) )) return x * cdf def __UpperCamelCase ( __lowerCamelCase : int ) -> Union[str, Any]: '''simple docstring''' _a = tf.convert_to_tensor(__lowerCamelCase ) return x * tf.tanh(tf.math.softplus(__lowerCamelCase ) ) def __UpperCamelCase ( __lowerCamelCase : List[str] ) -> int: '''simple docstring''' _a = tf.convert_to_tensor(__lowerCamelCase ) _a = tf.cast(0.04_47_15 , x.dtype ) _a = tf.cast(0.79_78_84_56_08 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __UpperCamelCase ( __lowerCamelCase : List[Any] ) -> Tuple: '''simple docstring''' _a = tf.convert_to_tensor(__lowerCamelCase ) _a = tf.cast(1.7_02 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __UpperCamelCase ( __lowerCamelCase : Any ) -> List[str]: '''simple docstring''' return tf.clip_by_value(_gelu(__lowerCamelCase ) , -10 , 10 ) def __UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any]=-1 ) -> Tuple: '''simple docstring''' _a , _a = tf.split(__lowerCamelCase , 2 , axis=__lowerCamelCase ) return a * tf.math.sigmoid(__lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def __UpperCamelCase ( __lowerCamelCase : Optional[int] ) -> str: '''simple docstring''' return tf.keras.activations.gelu(__lowerCamelCase , approximate=__lowerCamelCase ) lowercase__ = tf.keras.activations.gelu lowercase__ = approximate_gelu_wrap else: lowercase__ = _gelu lowercase__ = _gelu_new lowercase__ = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def __UpperCamelCase ( __lowerCamelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
276
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Dict=1024 ) -> str: '''simple docstring''' _a , _a = [], [] _a = list(zip(__lowerCamelCase , __lowerCamelCase ) ) _a , _a = sorted_examples[0] def is_too_big(__lowerCamelCase : Union[str, Any] ): return tok(__lowerCamelCase , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _a = new_src + " " + src _a = new_tgt + " " + tgt if is_too_big(__lowerCamelCase ) or is_too_big(__lowerCamelCase ): # cant fit, finalize example finished_src.append(__lowerCamelCase ) finished_tgt.append(__lowerCamelCase ) _a , _a = src, tgt else: # can fit, keep adding _a , _a = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__lowerCamelCase ) finished_tgt.append(__lowerCamelCase ) return finished_src, finished_tgt def __UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Path , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' _a = Path(__lowerCamelCase ) save_path.mkdir(exist_ok=__lowerCamelCase ) for split in ["train"]: _a , _a = data_dir / F"{split}.source", data_dir / F"{split}.target" _a = [x.rstrip() for x in Path(__lowerCamelCase ).open().readlines()] _a = [x.rstrip() for x in Path(__lowerCamelCase ).open().readlines()] _a , _a = pack_examples(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) print(F"packed {split} split from {len(__lowerCamelCase )} examples -> {len(__lowerCamelCase )}." ) Path(save_path / F"{split}.source" ).open("w" ).write("\n".join(__lowerCamelCase ) ) Path(save_path / F"{split}.target" ).open("w" ).write("\n".join(__lowerCamelCase ) ) for split in ["val", "test"]: _a , _a = data_dir / F"{split}.source", data_dir / F"{split}.target" shutil.copyfile(__lowerCamelCase , save_path / F"{split}.source" ) shutil.copyfile(__lowerCamelCase , save_path / F"{split}.target" ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' _a = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=__lowerCamelCase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=__lowerCamelCase , default=128 ) parser.add_argument("--data_dir" , type=__lowerCamelCase ) parser.add_argument("--save_path" , type=__lowerCamelCase ) _a = parser.parse_args() _a = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__lowerCamelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
276
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : List[str] = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''roc_bert''' def __init__( self , __SCREAMING_SNAKE_CASE=3_0_5_2_2 , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=3_0_7_2 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=9_1_0 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2_4_8_5_8 , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): snake_case__ : List[str] = vocab_size snake_case__ : Optional[Any] = max_position_embeddings snake_case__ : Optional[int] = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : str = intermediate_size snake_case__ : List[str] = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Optional[int] = initializer_range snake_case__ : Any = type_vocab_size snake_case__ : Dict = layer_norm_eps snake_case__ : Optional[Any] = use_cache snake_case__ : List[Any] = enable_pronunciation snake_case__ : Tuple = enable_shape snake_case__ : List[str] = pronunciation_embed_dim snake_case__ : List[str] = pronunciation_vocab_size snake_case__ : int = shape_embed_dim snake_case__ : Dict = shape_vocab_size snake_case__ : int = concat_input snake_case__ : Optional[int] = position_embedding_type snake_case__ : int = classifier_dropout super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
38
def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCamelCase__, int(b / 2 ) ) * actual_power(UpperCamelCase__, int(b / 2 ) ) else: return a * actual_power(UpperCamelCase__, int(b / 2 ) ) * actual_power(UpperCamelCase__, int(b / 2 ) ) def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' if b < 0: return 1 / actual_power(UpperCamelCase__, UpperCamelCase__ ) return actual_power(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": print(power(-2, -3))
240
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') lowercase = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowerCAmelCase__ ): os.makedirs(lowerCAmelCase__ ) lowercase = model.state_dict() def to_tf_var_name(lowerCAmelCase__ ): for patt, repl in iter(lowerCAmelCase__ ): lowercase = name.replace(lowerCAmelCase__ , lowerCAmelCase__ ) return f'bert/{name}' def create_tf_var(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = tf.dtypes.as_dtype(tensor.dtype ) lowercase = tf.get_variable(dtype=lowerCAmelCase__ , shape=tensor.shape , name=lowerCAmelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCAmelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase = to_tf_var_name(lowerCAmelCase__ ) lowercase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase = torch_tensor.T lowercase = create_tf_var(tensor=lowerCAmelCase__ , name=lowerCAmelCase__ , session=lowerCAmelCase__ ) tf.keras.backend.set_value(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = session.run(lowerCAmelCase__ ) print(f'Successfully created {tf_name}: {np.allclose(lowerCAmelCase__ , lowerCAmelCase__ )}' ) lowercase = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def UpperCamelCase ( lowerCAmelCase__=None ): '''simple docstring''' lowercase = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Directory in which to save tensorflow model''' ) lowercase = parser.parse_args(lowerCAmelCase__ ) lowercase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCAmelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
715
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,*A__ ,A__=None ,A__=None ,**A__): super().__init__(*A__ ,**A__) lowercase = eval_examples lowercase = post_process_function def A__ ( self ,A__ = None ,A__=None ,A__ = None ,A__ = "eval" ,**A__ ,): lowercase = gen_kwargs.copy() lowercase = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''') is not None else self.args.generation_max_length ) lowercase = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''') is not None else self.args.generation_num_beams ) lowercase = gen_kwargs lowercase = self.eval_dataset if eval_dataset is None else eval_dataset lowercase = self.get_eval_dataloader(A__) lowercase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase = self.compute_metrics lowercase = None lowercase = time.time() lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase = eval_loop( A__ ,description='''Evaluation''' ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=A__ ,metric_key_prefix=A__ ,) finally: lowercase = compute_metrics lowercase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( A__ ,A__ ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size) ,)) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase = self.post_process_function(A__ ,A__ ,A__) lowercase = self.compute_metrics(A__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'{metric_key_prefix}_'): lowercase = metrics.pop(A__) metrics.update(output.metrics) else: lowercase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(A__) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) lowercase = self.callback_handler.on_evaluate(self.args ,self.state ,self.control ,A__) return metrics def A__ ( self ,A__ ,A__ ,A__=None ,A__ = "test" ,**A__): lowercase = gen_kwargs.copy() lowercase = self.get_test_dataloader(A__) # Temporarily disable metric computation, we will do it in the loop here. lowercase = self.compute_metrics lowercase = None lowercase = time.time() lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase = eval_loop( A__ ,description='''Prediction''' ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=A__ ,metric_key_prefix=A__ ,) finally: lowercase = compute_metrics lowercase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( A__ ,A__ ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size) ,)) if self.post_process_function is None or self.compute_metrics is None: return output lowercase = self.post_process_function(A__ ,A__ ,A__ ,'''predict''') lowercase = self.compute_metrics(A__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'{metric_key_prefix}_'): lowercase = metrics.pop(A__) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions ,label_ids=predictions.label_ids ,metrics=A__)
633
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _A : Tuple = 16 _A : str = 32 def __magic_name__ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Union[str, Any]: lowercase : Tuple = AutoTokenizer.from_pretrained(__snake_case ) lowercase : List[str] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : List[str] ): # max_length=None => use the model max length (it's actually the default) lowercase : Optional[int] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase : Optional[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase : Optional[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase : Union[str, Any] = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowercase : Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def __magic_name__ ( __snake_case : Union[str, Any] , __snake_case : str ) -> Union[str, Any]: # Initialize accelerator lowercase : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase : int = config["lr"] lowercase : int = int(config["num_epochs"] ) lowercase : int = int(config["seed"] ) lowercase : int = int(config["batch_size"] ) lowercase : Optional[Any] = args.model_name_or_path set_seed(__snake_case ) lowercase , lowercase : str = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase : List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer lowercase : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase : Union[str, Any] = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: lowercase : Any = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase : int = 1 lowercase : Dict = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase : Tuple = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: lowercase : str = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase : Tuple = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over lowercase : int = 0 # We also need to keep track of the stating epoch so files are named properly lowercase : Optional[int] = 0 # Now we train the model lowercase : List[str] = evaluate.load("glue" , "mrpc" ) lowercase : Any = 0 lowercase : List[Any] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): lowercase : Any = model(**__snake_case ) lowercase : Dict = outputs.loss lowercase : Tuple = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase : Tuple = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase : List[Any] = model(**__snake_case ) lowercase : str = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase , lowercase : Any = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: lowercase : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowercase : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __snake_case ) lowercase : Optional[int] = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase : Any = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def __magic_name__ ( ) -> Dict: lowercase : List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=__snake_case , default=__snake_case , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=3 , help="Number of train epochs." , ) lowercase : List[str] = parser.parse_args() lowercase : Optional[int] = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
361
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _A : Dict = """facebook/wmt19-en-de""" _A : str = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _A : List[Any] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _A : int = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test _A : Dict = tokenizer(["""Making tiny model"""], return_tensors="""pt""") _A : List[Any] = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save _A : List[Any] = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-de
361
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
711
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) snake_case_ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) snake_case_ = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): for example in examples: snake_case_ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'''score''': ANY(_UpperCAmelCase ), '''label''': ANY(_UpperCAmelCase )}, {'''score''': ANY(_UpperCAmelCase ), '''label''': ANY(_UpperCAmelCase )}, ] , ) @require_torch def UpperCamelCase__ ( self ): snake_case_ = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' snake_case_ = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) snake_case_ = pipeline( '''video-classification''' , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) snake_case_ = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) snake_case_ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}] , ) snake_case_ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def UpperCamelCase__ ( self ): pass
531
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCamelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCamelCase : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def __UpperCamelCase( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) UpperCamelCase : Tuple = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A_ , env=os.environ.copy() ) @require_multi_gpu def __UpperCamelCase( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) UpperCamelCase : Optional[Any] = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A_ , env=os.environ.copy() ) @require_multi_gpu def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A_ , env=os.environ.copy() ) @require_multi_gpu def __UpperCamelCase( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) UpperCamelCase : List[Any] = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": __lowerCamelCase : List[Any] = Accelerator() __lowerCamelCase : Any = (accelerator.state.process_index + 2, 10) __lowerCamelCase : Optional[int] = torch.randint(0, 10, shape).to(accelerator.device) __lowerCamelCase : Tuple = """""" __lowerCamelCase : List[Any] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __lowerCamelCase : Dict = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __lowerCamelCase : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
629
import os def A_ ( ) -> Union[str, Any]: with open(os.path.dirname(_lowerCAmelCase ) + "/grid.txt" ) as f: UpperCamelCase : Optional[Any] = [] # noqa: E741 for _ in range(20 ): l.append([int(_lowerCAmelCase ) for x in f.readline().split()] ) UpperCamelCase : str = 0 # right for i in range(20 ): for j in range(17 ): UpperCamelCase : int = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: UpperCamelCase : List[Any] = temp # down for i in range(17 ): for j in range(20 ): UpperCamelCase : List[str] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: UpperCamelCase : List[str] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): UpperCamelCase : Any = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: UpperCamelCase : Tuple = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): UpperCamelCase : Tuple = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: UpperCamelCase : List[Any] = temp return maximum if __name__ == "__main__": print(solution())
629
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowerCamelCase = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCamelCase = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _lowerCamelCase = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): """simple docstring""" def lowerCAmelCase__ ( self ): if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = False , ): SCREAMING_SNAKE_CASE__ = len(references[0] ) if any(len(UpperCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) SCREAMING_SNAKE_CASE__ = [[refs[i] for refs in references] for i in range(UpperCAmelCase__ )] SCREAMING_SNAKE_CASE__ = TER( normalized=UpperCAmelCase__ , no_punct=UpperCAmelCase__ , asian_support=UpperCAmelCase__ , case_sensitive=UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE__ = sb_ter.corpus_score(UpperCAmelCase__ , UpperCAmelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
112
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _lowerCamelCase = logging.get_logger(__name__) @dataclass class lowerCamelCase_ : """simple docstring""" _lowerCAmelCase : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) _lowerCAmelCase : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) _lowerCAmelCase : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _lowerCAmelCase : bool = field( default=lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = self.task_name.lower() class lowerCamelCase_ ( lowercase ): """simple docstring""" _lowerCAmelCase : Tuple = "train" _lowerCAmelCase : Union[str, Any] = "dev" _lowerCAmelCase : List[Any] = "test" class lowerCamelCase_ ( lowercase ): """simple docstring""" _lowerCAmelCase : GlueDataTrainingArguments _lowerCAmelCase : str _lowerCAmelCase : List[InputFeatures] def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = Split.train , UpperCAmelCase__ = None , ): warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = glue_processors[args.task_name]() SCREAMING_SNAKE_CASE__ = glue_output_modes[args.task_name] if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): try: SCREAMING_SNAKE_CASE__ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) SCREAMING_SNAKE_CASE__ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = label_list[2], label_list[1] SCREAMING_SNAKE_CASE__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ = cached_features_file + ".lock" with FileLock(UpperCAmelCase__ ): if os.path.exists(UpperCAmelCase__ ) and not args.overwrite_cache: SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = torch.load(UpperCAmelCase__ ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: SCREAMING_SNAKE_CASE__ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: SCREAMING_SNAKE_CASE__ = self.processor.get_test_examples(args.data_dir ) else: SCREAMING_SNAKE_CASE__ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: SCREAMING_SNAKE_CASE__ = examples[:limit_length] SCREAMING_SNAKE_CASE__ = glue_convert_examples_to_features( UpperCAmelCase__ , UpperCAmelCase__ , max_length=args.max_seq_length , label_list=UpperCAmelCase__ , output_mode=self.output_mode , ) SCREAMING_SNAKE_CASE__ = time.time() torch.save(self.features , UpperCAmelCase__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): return len(self.features ) def __getitem__( self , UpperCAmelCase__ ): return self.features[i] def lowerCAmelCase__ ( self ): return self.label_list
112
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Any = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
196
"""simple docstring""" def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(snake_case__ ) SCREAMING_SNAKE_CASE__ = len(snake_case__ ) SCREAMING_SNAKE_CASE__ = ( first_str_length if first_str_length > second_str_length else second_str_length ) SCREAMING_SNAKE_CASE__ = [] for char_count in range(snake_case__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(snake_case__ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
196
1
'''simple docstring''' __UpperCAmelCase :Union[str, Any] = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __UpperCAmelCase :str = {value: key for key, value in encode_dict.items()} def _a ( _lowercase : str ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( _lowercase : str ): '''simple docstring''' if set(_lowercase ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) __UpperCAmelCase : int = '''''' for word in coded.split(): while len(_lowercase ) != 0: decoded += decode_dict[word[:5]] __UpperCAmelCase : Dict = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
266
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __UpperCAmelCase :Optional[int] = TypeVar("KEY") __UpperCAmelCase :Tuple = TypeVar("VAL") @dataclass(frozen=_a , slots=_a ) class a ( Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class a ( _Item ): """simple docstring""" def __init__( self : Optional[int] ) -> None: super().__init__(snake_case , snake_case ) def __bool__( self : Dict ) -> bool: return False __UpperCAmelCase :Optional[Any] = _DeletedItem() class a ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : str , snake_case : int = 8 , snake_case : float = 0.75 ) -> None: __UpperCAmelCase : Dict = initial_block_size __UpperCAmelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCAmelCase : str = capacity_factor __UpperCAmelCase : Optional[int] = 0 def lowerCamelCase__ ( self : Optional[Any] , snake_case : KEY ) -> int: return hash(snake_case ) % len(self._buckets ) def lowerCamelCase__ ( self : Union[str, Any] , snake_case : int ) -> int: return (ind + 1) % len(self._buckets ) def lowerCamelCase__ ( self : List[str] , snake_case : int , snake_case : KEY , snake_case : VAL ) -> bool: __UpperCAmelCase : int = self._buckets[ind] if not stored: __UpperCAmelCase : List[str] = _Item(snake_case , snake_case ) self._len += 1 return True elif stored.key == key: __UpperCAmelCase : int = _Item(snake_case , snake_case ) return True else: return False def lowerCamelCase__ ( self : str ) -> bool: __UpperCAmelCase : Union[str, Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(snake_case ) def lowerCamelCase__ ( self : List[str] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __UpperCAmelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowerCamelCase__ ( self : Optional[int] , snake_case : int ) -> None: __UpperCAmelCase : Union[str, Any] = self._buckets __UpperCAmelCase : Union[str, Any] = [None] * new_size __UpperCAmelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowerCamelCase__ ( self : Optional[int] ) -> None: self._resize(len(self._buckets ) * 2 ) def lowerCamelCase__ ( self : List[str] ) -> None: self._resize(len(self._buckets ) // 2 ) def lowerCamelCase__ ( self : Union[str, Any] , snake_case : KEY ) -> Iterator[int]: __UpperCAmelCase : Tuple = self._get_bucket_index(snake_case ) for _ in range(len(self._buckets ) ): yield ind __UpperCAmelCase : Dict = self._get_next_ind(snake_case ) def lowerCamelCase__ ( self : str , snake_case : KEY , snake_case : VAL ) -> None: for ind in self._iterate_buckets(snake_case ): if self._try_set(snake_case , snake_case , snake_case ): break def __setitem__( self : List[str] , snake_case : KEY , snake_case : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(snake_case , snake_case ) def __delitem__( self : Any , snake_case : KEY ) -> None: for ind in self._iterate_buckets(snake_case ): __UpperCAmelCase : List[Any] = self._buckets[ind] if item is None: raise KeyError(snake_case ) if item is _deleted: continue if item.key == key: __UpperCAmelCase : Optional[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : List[str] , snake_case : KEY ) -> VAL: for ind in self._iterate_buckets(snake_case ): __UpperCAmelCase : Optional[int] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(snake_case ) def __len__( self : List[Any] ) -> int: return self._len def __iter__( self : str ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __UpperCAmelCase : str = ''' ,'''.join( f'{item.key}: {item.val}' for item in self._buckets if item ) return f'HashMap({val_string})'
266
1
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A : Optional[int] = logging.get_logger(__name__) A : Union[str, Any] = {'''vocab_file''': '''spiece.model'''} A : Any = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } A : Optional[int] = { '''AI-Sweden/gpt-sw3-126m''': 2048, '''AI-Sweden/gpt-sw3-350m''': 2048, '''AI-Sweden/gpt-sw3-1.6b''': 2048, '''AI-Sweden/gpt-sw3-6.7b''': 2048, '''AI-Sweden/gpt-sw3-20b''': 2048, } class __lowerCamelCase ( a_ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = ["input_ids", "attention_mask"] def __init__( self : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE : List[str] , ): _A : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs _A : List[str] = kwargs.get('name_or_path') if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored') _A : Union[str, Any] = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _A : Any = '<|endoftext|>' if eos_token is None else eos_token _A : str = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _A : Tuple = unk_token if pad_token is None else pad_token _A : Union[str, Any] = eos_token if bos_token is None else bos_token else: _A : str = '<pad>' if pad_token is None else pad_token _A : Optional[int] = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) _A : Optional[Any] = do_lower_case _A : Optional[Any] = remove_space _A : int = keep_accents _A : Union[str, Any] = vocab_file _A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(SCREAMING_SNAKE_CASE) # Used for whitespace normalization in input texts # fmt : off _A : str = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _A : Dict = re.compile( F'[{"".join(map(SCREAMING_SNAKE_CASE , list(range(0 , 9)) + list(range(11 , 32)) + list(range(127 , 160)) + [160, 173, 8203]))}]') def __getstate__( self : Optional[int]): _A : Any = self.__dict__.copy() _A : List[Any] = None return state def __setstate__( self : int , SCREAMING_SNAKE_CASE : int): _A : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _A : List[str] = {} _A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def A ( self : str): return len(self.sp_model) def A ( self : List[Any] , SCREAMING_SNAKE_CASE : str): _A : Union[str, Any] = self.non_printing_characters_re.sub('' , SCREAMING_SNAKE_CASE) # Normalize whitespaces _A : str = ''.join([char if char not in self.whitespaces else ' ' for char in text]) # NFC Unicode normalization _A : Tuple = unicodedata.normalize('NFC' , SCREAMING_SNAKE_CASE) return text def A ( self : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Dict): _A : Any = self.preprocess_text(SCREAMING_SNAKE_CASE) return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE) def A ( self : Tuple , SCREAMING_SNAKE_CASE : str): return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE) def A ( self : List[str] , SCREAMING_SNAKE_CASE : int): return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE) @staticmethod def A ( SCREAMING_SNAKE_CASE : str): return out_string def A ( self : Any , SCREAMING_SNAKE_CASE : List[str]): _A : Optional[Any] = [] _A : List[str] = '' _A : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE) + token _A : str = True _A : str = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE) _A : Dict = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE) return out_string def A ( self : Union[str, Any]): _A : str = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A ( self : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None): if not os.path.isdir(SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return _A : Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.vocab_file): with open(SCREAMING_SNAKE_CASE , 'wb') as fi: _A : Tuple = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE) return (out_vocab_file,) def A ( self : str , SCREAMING_SNAKE_CASE : Union[str, List[str]] , SCREAMING_SNAKE_CASE : Union[str, bool] = False): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): _A : int = self.preprocess_text(SCREAMING_SNAKE_CASE) _A : int = self.sp_model.encode(SCREAMING_SNAKE_CASE) else: _A : Optional[Any] = [self.preprocess_text(SCREAMING_SNAKE_CASE) for t in text] _A : Dict = self.sp_model.encode(SCREAMING_SNAKE_CASE) if return_tensors is True or return_tensors == "pt": _A : Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE) return token_ids def A ( self : str , SCREAMING_SNAKE_CASE : Union[int, List[int]]): return self.sp_model.decode(SCREAMING_SNAKE_CASE) def A ( self : Tuple , SCREAMING_SNAKE_CASE : "Conversation"): _A : int = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] _A : Any = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(SCREAMING_SNAKE_CASE) + F'{self.bos_token}Bot:' ) return self.encode(text=SCREAMING_SNAKE_CASE)
128
'''simple docstring''' from __future__ import annotations def lowerCAmelCase__ ( lowerCamelCase : list ): if not nums: raise ValueError('List is empty' ) return sum(lowerCamelCase ) / len(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
128
1
def lowerCAmelCase ( _lowerCAmelCase : int ): """simple docstring""" if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence UpperCAmelCase__ = gray_code_sequence_string(_lowerCAmelCase ) # # convert them to integers for i in range(len(_lowerCAmelCase ) ): UpperCAmelCase__ = int(sequence[i] , 2 ) return sequence def lowerCAmelCase ( _lowerCAmelCase : int ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase__ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase__ = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase__ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase__ = "0" + smaller_sequence[i] sequence.append(_lowerCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase__ = "1" + smaller_sequence[i] sequence.append(_lowerCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
364
from ....configuration_utils import PretrainedConfig from ....utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """trajectory_transformer""" UpperCAmelCase_ = ["""past_key_values"""] UpperCAmelCase_ = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self :Union[str, Any] , lowerCamelCase :Optional[int]=100 , lowerCamelCase :Optional[int]=5 , lowerCamelCase :Optional[Any]=1 , lowerCamelCase :Any=1 , lowerCamelCase :int=249 , lowerCamelCase :Optional[Any]=6 , lowerCamelCase :Optional[Any]=17 , lowerCamelCase :Optional[int]=25 , lowerCamelCase :Union[str, Any]=4 , lowerCamelCase :Union[str, Any]=4 , lowerCamelCase :Optional[int]=128 , lowerCamelCase :List[Any]=0.1 , lowerCamelCase :List[str]=0.1 , lowerCamelCase :Tuple=0.1 , lowerCamelCase :Dict=0.00_06 , lowerCamelCase :Dict=512 , lowerCamelCase :Optional[Any]=0.02 , lowerCamelCase :Any=1e-12 , lowerCamelCase :Optional[Any]=1 , lowerCamelCase :List[Any]=True , lowerCamelCase :int=1 , lowerCamelCase :Dict=5_0256 , lowerCamelCase :Union[str, Any]=5_0256 , **lowerCamelCase :int , ) -> Optional[Any]: UpperCAmelCase__ = vocab_size UpperCAmelCase__ = action_weight UpperCAmelCase__ = reward_weight UpperCAmelCase__ = value_weight UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = block_size UpperCAmelCase__ = action_dim UpperCAmelCase__ = observation_dim UpperCAmelCase__ = transition_dim UpperCAmelCase__ = learning_rate UpperCAmelCase__ = n_layer UpperCAmelCase__ = n_head UpperCAmelCase__ = n_embd UpperCAmelCase__ = embd_pdrop UpperCAmelCase__ = attn_pdrop UpperCAmelCase__ = resid_pdrop UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = kaiming_initializer_range UpperCAmelCase__ = use_cache super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase )
364
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=3 , lowerCAmelCase_=32 , lowerCAmelCase_=3 , lowerCAmelCase_=10 , lowerCAmelCase_=[10, 20, 30, 40] , lowerCAmelCase_=[1, 1, 2, 1] , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_="relu" , lowerCAmelCase_=3 , lowerCAmelCase_=None , ) -> List[str]: _A = parent _A = batch_size _A = image_size _A = num_channels _A = embeddings_size _A = hidden_sizes _A = depths _A = is_training _A = use_labels _A = hidden_act _A = num_labels _A = scope _A = len(__UpperCAmelCase ) def UpperCAmelCase ( self ) -> str: _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = self.get_config() return config, pixel_values def UpperCAmelCase ( self ) -> Tuple: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _A = FlaxRegNetModel(config=__UpperCAmelCase ) _A = model(__UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _A = self.num_labels _A = FlaxRegNetForImageClassification(config=__UpperCAmelCase ) _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self ) -> Any: _A = self.prepare_config_and_inputs() _A , _A = config_and_inputs _A = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class a ( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase :str = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCamelCase :Optional[int] = False lowerCamelCase :Optional[int] = False lowerCamelCase :Tuple = False def UpperCAmelCase ( self ) -> None: _A = FlaxRegNetModelTester(self ) _A = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def UpperCAmelCase ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self ) -> Dict: return def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase ( self ) -> List[str]: pass def UpperCAmelCase ( self ) -> Optional[Any]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__UpperCAmelCase ) _A = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _A = model_class(__UpperCAmelCase ) _A = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) _A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ) -> List[str]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) _A = model_class(__UpperCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase_ , **lowerCAmelCase_ ): return model(pixel_values=__UpperCAmelCase , **__UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): _A = model_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _A = model_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case ( ) -> Optional[int]: _A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_flax class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> Dict: return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def UpperCAmelCase ( self ) -> int: _A = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=__UpperCAmelCase , return_tensors="""np""" ) _A = model(**__UpperCAmelCase ) # verify the logits _A = (1, 10_00) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) _A = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
401
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def A ( snake_case__ ): '''simple docstring''' def decorator(snake_case__ ): SCREAMING_SNAKE_CASE__ = getattr(snake_case__ , """handle_key""" , [] ) handle += [key] setattr(snake_case__ , """handle_key""" , snake_case__ ) return func return decorator def A ( *snake_case__ ): '''simple docstring''' def decorator(snake_case__ ): SCREAMING_SNAKE_CASE__ = getattr(snake_case__ , """handle_key""" , [] ) handle += keys setattr(snake_case__ , """handle_key""" , snake_case__ ) return func return decorator class lowerCamelCase (A__ ): def __new__( cls : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = super().__new__(cls , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if not hasattr(__UpperCAmelCase , """key_handler""" ): setattr(__UpperCAmelCase , """key_handler""" , {} ) setattr(__UpperCAmelCase , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): SCREAMING_SNAKE_CASE__ = getattr(__UpperCAmelCase , """handle_key""" , [] ) for key in handled_keys: SCREAMING_SNAKE_CASE__ = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE ( cls : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = get_character() if char != KEYMAP["undefined"]: SCREAMING_SNAKE_CASE__ = ord(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = cls.key_handler.get(__UpperCAmelCase ) if handler: SCREAMING_SNAKE_CASE__ = char return handler(cls ) else: return None def A ( cls ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
196
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : List[Any] ): """simple docstring""" if len(UpperCAmelCase__ ) <= 1 or n <= 1: return insert_next(UpperCAmelCase__ , n - 1 ) rec_insertion_sort(UpperCAmelCase__ , n - 1 ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[str] ): """simple docstring""" if index >= len(UpperCAmelCase__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _snake_case , _snake_case : Union[str, Any] = ( collection[index], collection[index - 1], ) insert_next(UpperCAmelCase__ , index + 1 ) if __name__ == "__main__": A_ = input('''Enter integers separated by spaces: ''') A_ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
713
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _snake_case : Dict = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
28
0
from abc import ABC, abstractmethod from typing import List, Optional class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): '''simple docstring''' def __init__( self : List[Any] ): '''simple docstring''' self.test() def A ( self : int ): '''simple docstring''' _snake_case = 0 _snake_case = False while not completed: if counter == 1: self.reset() _snake_case = self.advance() if not self.does_advance(a_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) _snake_case = self.update(a_ ) counter += 1 if counter > 10_000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def A ( self : Optional[int] ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def A ( self : List[str] , lowercase : int ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def A ( self : List[str] , lowercase : int ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def A ( self : int ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def A ( self : Optional[Any] ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def A ( self : Optional[Any] , lowercase : int=False ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : List[int] ): '''simple docstring''' super(a_ , self ).__init__() if not isinstance(a_ , a_ ) or len(a_ ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(a_ , a_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) _snake_case = token_ids _snake_case = len(self.token_ids ) _snake_case = -1 # the index of the currently fulfilled step _snake_case = False def A ( self : Optional[Any] ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def A ( self : int , lowercase : int ): '''simple docstring''' if not isinstance(a_ , a_ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(a_ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def A ( self : Any , lowercase : int ): '''simple docstring''' if not isinstance(a_ , a_ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(a_ )}''' ) _snake_case = False _snake_case = False _snake_case = False if self.does_advance(a_ ): self.fulfilled_idx += 1 _snake_case = True if self.fulfilled_idx == (self.seqlen - 1): _snake_case = True _snake_case = completed else: # failed to make progress. _snake_case = True self.reset() return stepped, completed, reset def A ( self : Optional[int] ): '''simple docstring''' _snake_case = False _snake_case = 0 def A ( self : int ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def A ( self : List[str] , lowercase : Optional[int]=False ): '''simple docstring''' _snake_case = PhrasalConstraint(self.token_ids ) if stateful: _snake_case = self.seqlen _snake_case = self.fulfilled_idx _snake_case = self.completed return new_constraint class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Dict , lowercase : List[List[int]] , lowercase : List[str]=True ): '''simple docstring''' _snake_case = max([len(a_ ) for one in nested_token_ids] ) _snake_case = {} for token_ids in nested_token_ids: _snake_case = root for tidx, token_id in enumerate(a_ ): if token_id not in level: _snake_case = {} _snake_case = level[token_id] if no_subsets and self.has_subsets(a_ , a_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' f''' {nested_token_ids}.''' ) _snake_case = root def A ( self : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = self.trie for current_token in current_seq: _snake_case = start[current_token] _snake_case = list(start.keys() ) return next_tokens def A ( self : Dict , lowercase : Any ): '''simple docstring''' _snake_case = self.next_tokens(a_ ) return len(a_ ) == 0 def A ( self : Union[str, Any] , lowercase : Any ): '''simple docstring''' _snake_case = list(root.values() ) if len(a_ ) == 0: return 1 else: return sum([self.count_leaves(a_ ) for nn in next_nodes] ) def A ( self : Tuple , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = self.count_leaves(a_ ) return len(a_ ) != leaf_count class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): '''simple docstring''' def __init__( self : List[str] , lowercase : List[List[int]] ): '''simple docstring''' super(a_ , self ).__init__() if not isinstance(a_ , a_ ) or len(a_ ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(a_ , a_ ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(a_ , a_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) _snake_case = DisjunctiveTrie(a_ ) _snake_case = nested_token_ids _snake_case = self.trie.max_height _snake_case = [] _snake_case = False def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.trie.next_tokens(self.current_seq ) if len(a_ ) == 0: return None else: return token_list def A ( self : Dict , lowercase : int ): '''simple docstring''' if not isinstance(a_ , a_ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(a_ )}''' ) _snake_case = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def A ( self : List[str] , lowercase : int ): '''simple docstring''' if not isinstance(a_ , a_ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(a_ )}''' ) _snake_case = False _snake_case = False _snake_case = False if self.does_advance(a_ ): self.current_seq.append(a_ ) _snake_case = True else: _snake_case = True self.reset() _snake_case = self.trie.reached_leaf(self.current_seq ) _snake_case = completed return stepped, completed, reset def A ( self : List[str] ): '''simple docstring''' _snake_case = False _snake_case = [] def A ( self : int ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def A ( self : List[str] , lowercase : str=False ): '''simple docstring''' _snake_case = DisjunctiveConstraint(self.token_ids ) if stateful: _snake_case = self.seqlen _snake_case = self.current_seq _snake_case = self.completed return new_constraint class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Tuple , lowercase : List[Constraint] ): '''simple docstring''' _snake_case = constraints # max # of steps required to fulfill a given constraint _snake_case = max([c.seqlen for c in constraints] ) _snake_case = len(a_ ) _snake_case = False self.init_state() def A ( self : List[Any] ): '''simple docstring''' _snake_case = [] _snake_case = None _snake_case = [constraint.copy(stateful=a_ ) for constraint in self.constraints] def A ( self : List[Any] ): '''simple docstring''' _snake_case = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def A ( self : str ): '''simple docstring''' _snake_case = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _snake_case = constraint.advance() if isinstance(a_ , a_ ): token_list.append(a_ ) elif isinstance(a_ , a_ ): token_list.extend(a_ ) else: _snake_case = self.inprogress_constraint.advance() if isinstance(a_ , a_ ): token_list.append(a_ ) elif isinstance(a_ , a_ ): token_list.extend(a_ ) if len(a_ ) == 0: return None else: return token_list def A ( self : List[Any] , lowercase : Optional[List[int]] ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _snake_case = self.add(a_ ) # the entire list of constraints are fulfilled if self.completed: break def A ( self : Optional[int] , lowercase : int ): '''simple docstring''' if not isinstance(a_ , a_ ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) _snake_case = False, False if self.completed: _snake_case = True _snake_case = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _snake_case = self.inprogress_constraint.update(a_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=a_ ) ) _snake_case = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _snake_case = None if len(self.pending_constraints ) == 0: # we're done! _snake_case = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(a_ ): _snake_case = pending_constraint.update(a_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(a_ ) _snake_case = None if not complete and stepped: _snake_case = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _snake_case = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _snake_case = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def A ( self : Optional[int] , lowercase : Optional[Any]=True ): '''simple docstring''' _snake_case = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _snake_case = [ constraint.copy(stateful=a_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _snake_case = self.inprogress_constraint.copy(stateful=a_ ) _snake_case = [constraint.copy() for constraint in self.pending_constraints] return new_state
686
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): __lowerCamelCase : List[Any] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def UpperCAmelCase ( self : str , a_ : Optional[Any]=0 ) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = np.random.RandomState(a_ ) a__ : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' a__ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a_ ) a__ : Optional[int] = self.get_dummy_inputs() a__ : Union[str, Any] = pipe(**a_ ).images a__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : List[str] = np.array([0.6_5072, 0.5_8492, 0.4_8219, 0.5_5521, 0.5_3180, 0.5_5939, 0.5_0697, 0.3_9800, 0.4_6455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a_ ) pipe.set_progress_bar_config(disable=a_ ) a__ : Optional[int] = self.get_dummy_inputs() a__ : List[Any] = pipe(**a_ ).images a__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : List[str] = np.array([0.6_5863, 0.5_9425, 0.4_9326, 0.5_6313, 0.5_3875, 0.5_6627, 0.5_1065, 0.3_9777, 0.4_6330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' a__ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) a__ : List[Any] = self.get_dummy_inputs() a__ : Optional[Any] = pipe(**a_ ).images a__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : Dict = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' a__ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) a__ : Optional[int] = self.get_dummy_inputs() a__ : int = pipe(**a_ ).images a__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : str = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' a__ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) a__ : Any = self.get_dummy_inputs() a__ : List[str] = pipe(**a_ ).images a__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : Any = np.array([0.5_3817, 0.6_0812, 0.4_7384, 0.4_9530, 0.5_1894, 0.4_9814, 0.4_7984, 0.3_8958, 0.4_4271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' a__ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) a__ : Tuple = self.get_dummy_inputs() a__ : List[str] = pipe(**a_ ).images a__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : Any = np.array([0.5_3895, 0.6_0808, 0.4_7933, 0.4_9608, 0.5_1886, 0.4_9950, 0.4_8053, 0.3_8957, 0.4_4200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' a__ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a_ ) a__ : Any = self.get_dummy_inputs() a__ : Any = 3 * [inputs["prompt"]] # forward a__ : Union[str, Any] = pipe(**a_ ) a__ : int = output.images[0, -3:, -3:, -1] a__ : Union[str, Any] = self.get_dummy_inputs() a__ : List[Any] = 3 * [inputs.pop("prompt" )] a__ : Optional[Any] = pipe.tokenizer( a_ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=a_ , return_tensors="np" , ) a__ : List[str] = text_inputs["input_ids"] a__ : int = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] a__ : List[Any] = prompt_embeds # forward a__ : List[Any] = pipe(**a_ ) a__ : List[str] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def UpperCAmelCase ( self : Dict ) -> Optional[int]: '''simple docstring''' a__ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a_ ) a__ : Tuple = self.get_dummy_inputs() a__ : Dict = 3 * ["this is a negative prompt"] a__ : Optional[Any] = negative_prompt a__ : Any = 3 * [inputs["prompt"]] # forward a__ : str = pipe(**a_ ) a__ : List[str] = output.images[0, -3:, -3:, -1] a__ : Union[str, Any] = self.get_dummy_inputs() a__ : Union[str, Any] = 3 * [inputs.pop("prompt" )] a__ : List[Any] = [] for p in [prompt, negative_prompt]: a__ : int = pipe.tokenizer( a_ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=a_ , return_tensors="np" , ) a__ : Any = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) a__ , a__ : Union[str, Any] = embeds # forward a__ : Dict = pipe(**a_ ) a__ : Any = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): @property def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' a__ : List[str] = ort.SessionOptions() a__ : List[str] = False return options def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: '''simple docstring''' a__ : Dict = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a_ ) a__ : Optional[int] = "A painting of a squirrel eating a burger" np.random.seed(0 ) a__ : Dict = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) a__ : Any = output.images a__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ : str = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' a__ : Any = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) a__ : str = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=a_ , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a_ ) a__ : str = "open neural network exchange" a__ : Tuple = np.random.RandomState(0 ) a__ : Dict = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=a_ , output_type="np" ) a__ : Dict = output.images a__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ : Dict = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: '''simple docstring''' a__ : List[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) a__ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=a_ , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a_ ) a__ : Any = "open neural network exchange" a__ : Optional[Any] = np.random.RandomState(0 ) a__ : Optional[int] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=a_ , output_type="np" ) a__ : int = output.images a__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ : Dict = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' a__ : List[str] = 0 def test_callback_fn(a_ : int , a_ : int , a_ : np.ndarray ) -> None: a__ : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) a__ : Any = latents[0, -3:, -3:, -1] a__ : Union[str, Any] = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) a__ : Union[str, Any] = latents[0, -3:, -3:, -1] a__ : Optional[int] = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 a__ : Tuple = False a__ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a_ ) a__ : List[Any] = "Andromeda galaxy in a bottle" a__ : str = np.random.RandomState(0 ) pipe( prompt=a_ , num_inference_steps=5 , guidance_scale=7.5 , generator=a_ , callback=a_ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' a__ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(a_ , a_ ) assert pipe.safety_checker is None a__ : Tuple = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) a__ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None a__ : Dict = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
642
0
UpperCamelCase__ : Optional[int] = 9.8_06_65 def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float = g ): """simple docstring""" if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
620
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __snake_case ( unittest.TestCase ): __lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) __lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) __lowerCAmelCase : Tuple = ['accelerate', 'launch'] __lowerCAmelCase : Union[str, Any] = Path.home() / '.cache/huggingface/accelerate' __lowerCAmelCase : List[str] = 'default_config.yaml' __lowerCAmelCase : List[Any] = config_folder / config_file __lowerCAmelCase : str = config_folder / '_default_config.yaml' __lowerCAmelCase : Optional[int] = Path('tests/test_configs' ) @classmethod def lowerCAmelCase__ ( cls): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def lowerCAmelCase__ ( cls): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy()) def lowerCAmelCase__ ( self): for config in sorted(self.test_config_path.glob('**/*.yaml')): with self.subTest(config_file=_A): execute_subprocess_async( self.base_cmd + ['--config_file', str(_A), self.test_file_path] , env=os.environ.copy()) def lowerCAmelCase__ ( self): execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy()) class __snake_case ( unittest.TestCase ): __lowerCAmelCase : Optional[Any] = 'test-tpu' __lowerCAmelCase : str = 'us-central1-a' __lowerCAmelCase : Union[str, Any] = 'ls' __lowerCAmelCase : Union[str, Any] = ['accelerate', 'tpu-config'] __lowerCAmelCase : Union[str, Any] = 'cd /usr/share' __lowerCAmelCase : List[Any] = 'tests/test_samples/test_command_file.sh' __lowerCAmelCase : Dict = 'Running gcloud compute tpus tpu-vm ssh' def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_A) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , )
620
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : Optional[int] = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Union[str, Any] = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
143
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["YolosFeatureExtractor"] _snake_case = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
413
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class UpperCamelCase_ ( A ): '''simple docstring''' a :List[Any] = 'codegen' a :Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _UpperCAmelCase=50_400 , _UpperCAmelCase=2_048 , _UpperCAmelCase=2_048 , _UpperCAmelCase=4_096 , _UpperCAmelCase=28 , _UpperCAmelCase=16 , _UpperCAmelCase=64 , _UpperCAmelCase=None , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=50_256 , _UpperCAmelCase=50_256 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowerCAmelCase_ = vocab_size lowerCAmelCase_ = n_ctx lowerCAmelCase_ = n_positions lowerCAmelCase_ = n_embd lowerCAmelCase_ = n_layer lowerCAmelCase_ = n_head lowerCAmelCase_ = n_inner lowerCAmelCase_ = rotary_dim lowerCAmelCase_ = activation_function lowerCAmelCase_ = resid_pdrop lowerCAmelCase_ = embd_pdrop lowerCAmelCase_ = attn_pdrop lowerCAmelCase_ = layer_norm_epsilon lowerCAmelCase_ = initializer_range lowerCAmelCase_ = use_cache lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase) class UpperCamelCase_ ( A ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase): # TODO: how to do that better? lowerCAmelCase_ = 0 @property def lowercase__ ( self): lowerCAmelCase_ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}}) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''') lowerCAmelCase_ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowerCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def lowercase__ ( self): return self._config.n_layer @property def lowercase__ ( self): return self._config.n_head def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowerCAmelCase_ = super(_UpperCAmelCase , self).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch lowerCAmelCase_ , lowerCAmelCase_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCAmelCase_ = seqlen + 2 lowerCAmelCase_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ = [ (torch.zeros(_UpperCAmelCase), torch.zeros(_UpperCAmelCase)) for _ in range(self.num_layers) ] lowerCAmelCase_ = common_inputs['''attention_mask'''] if self.use_past: lowerCAmelCase_ = ordered_inputs['''attention_mask'''].dtype lowerCAmelCase_ = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase)] , dim=1) return ordered_inputs @property def lowercase__ ( self): return 13
413
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __A = logging.getLogger(__name__) def lowercase__ ( A_: int , A_: Optional[Any] ) -> int: """simple docstring""" return (preds == labels).mean() @dataclass class _A : """simple docstring""" lowerCamelCase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase : Optional[str] = field( default=UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase : Optional[str] = field( default=UpperCamelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase : Optional[str] = field( default=UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class _A : """simple docstring""" lowerCamelCase : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) lowerCamelCase : str = field(metadata={'help': 'Should contain the data files for the task.'} ) lowerCamelCase : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase : bool = field( default=UpperCamelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowercase__ ( ) -> str: """simple docstring""" __UpperCAmelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , A_ ) # Set seed set_seed(training_args.seed ) try: __UpperCAmelCase =processors[data_args.task_name]() __UpperCAmelCase =processor.get_labels() __UpperCAmelCase =len(A_ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCAmelCase =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=A_ , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCAmelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=A_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCAmelCase =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=A_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(A_: EvalPrediction ) -> Dict: __UpperCAmelCase =np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(A_ , p.label_ids )} # Data collator __UpperCAmelCase =DataCollatorWithPadding(A_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCAmelCase =Trainer( model=A_ , args=A_ , train_dataset=A_ , eval_dataset=A_ , compute_metrics=A_ , data_collator=A_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __UpperCAmelCase =trainer.evaluate() __UpperCAmelCase =os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(A_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , A_ , A_ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(A_ ) return results def lowercase__ ( A_: Union[str, Any] ) -> Any: """simple docstring""" main() if __name__ == "__main__": main()
68
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } __SCREAMING_SNAKE_CASE = { 'junnyu/roformer_chinese_small': 1_536, 'junnyu/roformer_chinese_base': 1_536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } __SCREAMING_SNAKE_CASE = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class a__ ( A__ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = RoFormerTokenizer def __init__( self :Tuple , _lowerCamelCase :Dict=None , _lowerCamelCase :Dict=None , _lowerCamelCase :List[Any]=True , _lowerCamelCase :Dict="[UNK]" , _lowerCamelCase :List[str]="[SEP]" , _lowerCamelCase :str="[PAD]" , _lowerCamelCase :Optional[Any]="[CLS]" , _lowerCamelCase :Optional[int]="[MASK]" , _lowerCamelCase :str=True , _lowerCamelCase :Tuple=None , **_lowerCamelCase :Any , ): '''simple docstring''' super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_ : Any =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , _lowerCamelCase ) != do_lower_case or pre_tok_state.get('strip_accents' , _lowerCamelCase ) != strip_accents ): UpperCamelCase_ : Optional[Any] =getattr(_lowerCamelCase , pre_tok_state.pop('type' ) ) UpperCamelCase_ : Tuple =do_lower_case UpperCamelCase_ : Union[str, Any] =strip_accents UpperCamelCase_ : Union[str, Any] =pre_tok_class(**_lowerCamelCase ) UpperCamelCase_ : List[str] =do_lower_case def __getstate__( self :Any ): '''simple docstring''' UpperCamelCase_ : str =self.__dict__.copy() UpperCamelCase_ : Union[str, Any] =BertPreTokenizer() return state def __setstate__( self :str , _lowerCamelCase :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : int =d UpperCamelCase_ : Optional[int] =self.__dict__['_tokenizer'].get_vocab() UpperCamelCase_ : Any =PreTokenizer.custom(JiebaPreTokenizer(_lowerCamelCase ) ) def lowerCamelCase_ ( self :Dict , _lowerCamelCase :Optional[Any] , _lowerCamelCase :Any=None ): '''simple docstring''' UpperCamelCase_ : int =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self :Union[str, Any] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase_ : List[Any] =[self.sep_token_id] UpperCamelCase_ : List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self :Optional[int] , _lowerCamelCase :str , _lowerCamelCase :Optional[str] = None ): '''simple docstring''' UpperCamelCase_ : List[Any] =self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def lowerCamelCase_ ( self :str , _lowerCamelCase :List[str] , _lowerCamelCase :List[Any]=None , _lowerCamelCase :Optional[Any]=None , _lowerCamelCase :int=False , **_lowerCamelCase :Optional[int] , ): '''simple docstring''' UpperCamelCase_ : str =BertPreTokenizer() return super().save_pretrained(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
357
0
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __magic_name__ : Tuple = datasets.logging.get_logger(__name__) __magic_name__ : Optional[Any] = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' __magic_name__ : Dict = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' __magic_name__ : Optional[int] = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def snake_case ( self : Any ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence" ), "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def snake_case ( self : Optional[Any] , __A : List[Any] ): """simple docstring""" if self.config_name == "default": _lowercase = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) ) else: _lowercase = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def snake_case ( self : Any , __A : int , __A : Dict , __A : List[Any] , __A : int=None , __A : int=False ): """simple docstring""" if gpus is None: _lowercase = 1 if torch.cuda.is_available() else 0 _lowercase = {"src": sources, "mt": predictions, "ref": references} _lowercase = [dict(zip(__A , __A ) ) for t in zip(*data.values() )] _lowercase , _lowercase = self.scorer.predict(__A , gpus=__A , progress_bar=__A ) return {"mean_score": mean_score, "scores": scores}
602
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ : Any = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[int] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __magic_name__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
602
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = {} UpperCAmelCase_ : Any = tokenizer(example['''content'''] , truncation=_lowercase )['''input_ids'''] UpperCAmelCase_ : Optional[int] = len(example['''content'''] ) / len(output['''input_ids'''] ) return output __a = HfArgumentParser(PretokenizationArguments) __a = parser.parse_args() if args.num_workers is None: __a = multiprocessing.cpu_count() __a = AutoTokenizer.from_pretrained(args.tokenizer_dir) __a = time.time() __a = load_dataset(args.dataset_name, split='train') print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") __a = time.time() __a = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") __a = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
30
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class snake_case__ : @staticmethod def __lowerCAmelCase ( *lowercase : Any , **lowercase : str ): '''simple docstring''' pass def lowercase_ ( _lowercase : Image ): '''simple docstring''' UpperCAmelCase : str = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def lowercase_ ( _lowercase : Image ): '''simple docstring''' UpperCAmelCase : int = np.array(_lowercase ) UpperCAmelCase : Union[str, Any] = npimg.shape return {"hash": hashimage(_lowercase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class snake_case__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __lowerCAmelCase ( self : List[Any] , lowercase : List[str] , lowercase : Dict , lowercase : str ): '''simple docstring''' UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=lowercase , image_processor=lowercase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowerCAmelCase ( self : Optional[Any] , lowercase : Dict , lowercase : Dict ): '''simple docstring''' pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' pass @slow @require_torch def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : Any = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) UpperCAmelCase : str = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=2_56 ) # Shortening by hashing UpperCAmelCase : Optional[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(lowercase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_80, 6_40)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (4_80, 6_40)}, "scores": 1.0_2_1}, {"mask": {"hash": "dfe28a0388", "shape": (4_80, 6_40)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (4_80, 6_40)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (4_80, 6_40)}, "scores": 1.0_0_5_3}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_80, 6_40)}, "scores": 0.9_9_6_7}, {"mask": {"hash": "453c7844bd", "shape": (4_80, 6_40)}, "scores": 0.9_9_3}, {"mask": {"hash": "3d44f2926d", "shape": (4_80, 6_40)}, "scores": 0.9_9_0_9}, {"mask": {"hash": "64033ddc3f", "shape": (4_80, 6_40)}, "scores": 0.9_8_7_9}, {"mask": {"hash": "801064ff79", "shape": (4_80, 6_40)}, "scores": 0.9_8_3_4}, {"mask": {"hash": "6172f276ef", "shape": (4_80, 6_40)}, "scores": 0.9_7_1_6}, {"mask": {"hash": "b49e60e084", "shape": (4_80, 6_40)}, "scores": 0.9_6_1_2}, {"mask": {"hash": "a811e775fd", "shape": (4_80, 6_40)}, "scores": 0.9_5_9_9}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_80, 6_40)}, "scores": 0.9_5_5_2}, {"mask": {"hash": "9d8257e080", "shape": (4_80, 6_40)}, "scores": 0.9_5_3_2}, {"mask": {"hash": "32de6454a8", "shape": (4_80, 6_40)}, "scores": 0.9_5_1_6}, {"mask": {"hash": "af3d4af2c8", "shape": (4_80, 6_40)}, "scores": 0.9_4_9_9}, {"mask": {"hash": "3c6db475fb", "shape": (4_80, 6_40)}, "scores": 0.9_4_8_3}, {"mask": {"hash": "c290813fb9", "shape": (4_80, 6_40)}, "scores": 0.9_4_6_4}, {"mask": {"hash": "b6f0b8f606", "shape": (4_80, 6_40)}, "scores": 0.9_4_3}, {"mask": {"hash": "92ce16bfdf", "shape": (4_80, 6_40)}, "scores": 0.9_4_3}, {"mask": {"hash": "c749b25868", "shape": (4_80, 6_40)}, "scores": 0.9_4_0_8}, {"mask": {"hash": "efb6cab859", "shape": (4_80, 6_40)}, "scores": 0.9_3_3_5}, {"mask": {"hash": "1ff2eafb30", "shape": (4_80, 6_40)}, "scores": 0.9_3_2_6}, {"mask": {"hash": "788b798e24", "shape": (4_80, 6_40)}, "scores": 0.9_2_6_2}, {"mask": {"hash": "abea804f0e", "shape": (4_80, 6_40)}, "scores": 0.8_9_9_9}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_80, 6_40)}, "scores": 0.8_9_8_6}, {"mask": {"hash": "cd24047c8a", "shape": (4_80, 6_40)}, "scores": 0.8_9_8_4}, {"mask": {"hash": "6943e6bcbd", "shape": (4_80, 6_40)}, "scores": 0.8_8_7_3}, {"mask": {"hash": "b5f47c9191", "shape": (4_80, 6_40)}, "scores": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = "facebook/sam-vit-huge" UpperCAmelCase : Optional[int] = pipeline("mask-generation" , model=lowercase ) UpperCAmelCase : Dict = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing UpperCAmelCase : str = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(lowercase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_80, 6_40)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (4_80, 6_40)}, "scores": 1.0_2_1_0}, {"mask": {"hash": "dfe28a0388", "shape": (4_80, 6_40)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (4_80, 6_40)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (4_80, 6_40)}, "scores": 1.0_0_5_3}, ] , )
595
0
def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] SCREAMING_SNAKE_CASE = 6 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 19_01 SCREAMING_SNAKE_CASE = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 SCREAMING_SNAKE_CASE = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 SCREAMING_SNAKE_CASE = day - 29 else: if day > days_per_month[month - 1]: month += 1 SCREAMING_SNAKE_CASE = day - days_per_month[month - 2] if month > 12: year += 1 SCREAMING_SNAKE_CASE = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="openai/whisper-base" __UpperCamelCase =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCamelCase ="transcriber" __UpperCamelCase =WhisperProcessor __UpperCamelCase =WhisperForConditionalGeneration __UpperCamelCase =["audio"] __UpperCamelCase =["text"] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): """simple docstring""" return self.pre_processor(snake_case__ , return_tensors='pt' ).input_features def UpperCamelCase ( self : Optional[int] , snake_case__ : Tuple ): """simple docstring""" return self.model.generate(inputs=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): """simple docstring""" return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0]
673
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :Tuple =logging.get_logger(__name__) __snake_case :str ={ 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class lowerCAmelCase__ ( _lowerCamelCase ): A_ : List[Any] = 'markuplm' def __init__( self : Optional[Any] , __UpperCamelCase : List[str]=30_522 , __UpperCamelCase : Tuple=768 , __UpperCamelCase : Union[str, Any]=12 , __UpperCamelCase : Any=12 , __UpperCamelCase : Optional[int]=3_072 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Any=512 , __UpperCamelCase : int=2 , __UpperCamelCase : List[Any]=0.0_2 , __UpperCamelCase : Optional[int]=1e-12 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Optional[Any]=256 , __UpperCamelCase : int=1_024 , __UpperCamelCase : Union[str, Any]=216 , __UpperCamelCase : Optional[Any]=1_001 , __UpperCamelCase : Any=32 , __UpperCamelCase : Union[str, Any]=50 , __UpperCamelCase : Tuple="absolute" , __UpperCamelCase : int=True , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Optional[Any] , ) -> Tuple: super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = position_embedding_type A = use_cache A = classifier_dropout # additional properties A = max_depth A = max_xpath_tag_unit_embeddings A = max_xpath_subs_unit_embeddings A = tag_pad_id A = subs_pad_id A = xpath_unit_hidden_size
106
import argparse from collections import defaultdict def lowerCamelCase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' A = F'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(lowerCAmelCase__ , 'r' ) as f: A = f.readlines() A = F'''class {class_name}(''' A = F'''{4 * " "}def {test_name}(''' A = F'''{8 * " "}{correct_line.split()[0]}''' A = F'''{16 * " "}{correct_line.split()[0]}''' A = False A = False A = False A = False A = 0 A = 0 A = [] for line in lines: if line.startswith(lowerCAmelCase__ ): A = True elif in_class and line.startswith(lowerCAmelCase__ ): A = True elif in_class and in_func and (line.startswith(lowerCAmelCase__ ) or line.startswith(lowerCAmelCase__ )): A = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: A = True if in_class and in_func and in_line: if ")" not in line: continue else: A = True if in_class and in_func and in_line and insert_line: new_lines.append(F'''{spaces * " "}{correct_line}''' ) A = A = A = A = False else: new_lines.append(lowerCAmelCase__ ) with open(lowerCAmelCase__ , 'w' ) as f: for line in new_lines: f.write(lowerCAmelCase__ ) def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=None ) -> Union[str, Any]: '''simple docstring''' if fail is not None: with open(lowerCAmelCase__ , 'r' ) as f: A = {l.strip() for l in f.readlines()} else: A = None with open(lowerCAmelCase__ , 'r' ) as f: A = f.readlines() A = defaultdict(lowerCAmelCase__ ) for line in correct_lines: A , A , A , A = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __snake_case :List[Any] =argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __snake_case :Optional[int] =parser.parse_args() main(args.correct_filename, args.fail_filename)
106
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): lowerCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCamelCase__ = 128022 lowerCamelCase__ = 128028 @require_sentencepiece class _lowerCAmelCase ( __UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ =MaMaaaTokenizer lowerCAmelCase__ =False lowerCAmelCase__ =False lowerCAmelCase__ =True def UpperCAmelCase ( self ) -> int: """simple docstring""" super().setUp() snake_case__ : List[Any] =['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] snake_case__ : Any =dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : List[Any] =Path(self.tmpdirname ) save_json(__SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) snake_case__ : int =MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return ( "This is a test", "This is a test", ) def UpperCAmelCase ( self ) -> Tuple: """simple docstring""" snake_case__ : Union[str, Any] ='''</s>''' snake_case__ : List[Any] =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> str: """simple docstring""" snake_case__ : Optional[Any] =self.get_tokenizer() snake_case__ : List[Any] =list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<s>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def UpperCAmelCase ( self ) -> int: """simple docstring""" pass def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" snake_case__ : str =self.get_tokenizer() snake_case__ : Optional[int] =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [2, 3, 4, 5, 6] , ) snake_case__ : List[str] =tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) snake_case__ : Optional[int] =tokenizer.convert_tokens_to_string(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , '''This is a test''' ) @slow def UpperCAmelCase ( self ) -> Dict: """simple docstring""" snake_case__ : int ={'''input_ids''': [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ ='''facebook/m2m100_418M''' lowerCAmelCase__ =[ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] lowerCAmelCase__ =[ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off lowerCAmelCase__ =[EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def UpperCAmelCase ( cls ) -> Dict: """simple docstring""" snake_case__ : MaMaaaTokenizer =MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''' ) snake_case__ : Dict =1 return cls def UpperCAmelCase ( self ) -> Any: """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) , 12_8063 ) def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" snake_case__ : Dict =self.tokenizer.get_vocab() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] , 3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" snake_case__ : int ='''en''' snake_case__ : Any =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Dict: """simple docstring""" self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) # fmt: off snake_case__ : Optional[Any] =[FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on snake_case__ : Dict =self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : List[Any] =tempfile.mkdtemp() snake_case__ : List[str] =self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =MaMaaaTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.lang_token_to_id , __SCREAMING_SNAKE_CASE ) @require_torch def UpperCAmelCase ( self ) -> str: """simple docstring""" snake_case__ : List[Any] ='''en''' snake_case__ : Dict ='''fr''' snake_case__ : Tuple =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) snake_case__ : Dict =shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case__ : Any =batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" snake_case__ : int ='''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case__ : int ='''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def UpperCAmelCase ( self ) -> Dict: """simple docstring""" snake_case__ : Optional[Any] ='''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case__ : Optional[int] ='''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" snake_case__ : Any =self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''' ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { # en_XX, A, test, EOS '''input_ids''': [[12_8022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 12_8006, } , )
408
def lowercase_ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[int] ): """simple docstring""" # Check if the input is valid if not len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients snake_case__, snake_case__, snake_case__ : List[Any] =equationa snake_case__, snake_case__, snake_case__ : Any =equationa # Calculate the determinants of the matrices snake_case__ : str =aa * ba - aa * ba snake_case__ : Any =ca * ba - ca * ba snake_case__ : Any =aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: snake_case__ : str =determinant_x / determinant snake_case__ : List[str] =determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
408
1
import itertools import string from collections.abc import Generator, Iterable def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = iter(lowercase__ ) while True: __SCREAMING_SNAKE_CASE : List[str] = tuple(itertools.islice(lowercase__ , lowercase__ ) ) if not chunk: return yield chunk def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) __SCREAMING_SNAKE_CASE : Optional[int] = '''''' if len(lowercase__ ) < 2: return dirty for i in range(len(lowercase__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowercase__ ) & 1: clean += "X" return clean def _UpperCamelCase ( lowercase__ ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) __SCREAMING_SNAKE_CASE : str = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __SCREAMING_SNAKE_CASE : Optional[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowercase__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowercase__ ) return table def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = generate_table(lowercase__ ) __SCREAMING_SNAKE_CASE : int = prepare_input(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase__ , 2 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = divmod(table.index(lowercase__ ) , 5 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = divmod(table.index(lowercase__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = generate_table(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase__ , 2 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = divmod(table.index(lowercase__ ) , 5 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = divmod(table.index(lowercase__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
696
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : int ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } __lowerCAmelCase : Optional[int] ={'mobilebert-uncased': 5_1_2} __lowerCAmelCase : Union[str, Any] ={} class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = MobileBertTokenizer def __init__( self :Tuple , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]="[UNK]" , lowerCAmelCase__ :List[Any]="[SEP]" , lowerCAmelCase__ :List[Any]="[PAD]" , lowerCAmelCase__ :List[Any]="[CLS]" , lowerCAmelCase__ :Any="[MASK]" , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Tuple=None , **lowerCAmelCase__ :List[str] , ) -> Optional[Any]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : int = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case __SCREAMING_SNAKE_CASE : str = strip_accents __SCREAMING_SNAKE_CASE : Dict = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : Union[str, Any] = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = do_lower_case def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : int = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
696
1
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : bool , __lowerCamelCase : list[int] , __lowerCamelCase : float ): '''simple docstring''' if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) ) def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Optional[int] =[9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] _UpperCAmelCase : Optional[Any] =math.log(len(__lowerCamelCase ) , 2 ) print(f"Optimal value : {minimax(0 , 0 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
331
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowercase =logging.get_logger(__name__) lowercase ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } lowercase =[ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): '''simple docstring''' for attribute in key.split('.' ): _UpperCAmelCase : Optional[Any] =getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: _UpperCAmelCase : List[Any] =getattr(__lowerCamelCase , __lowerCamelCase ).shape else: _UpperCAmelCase : Dict =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCAmelCase : Tuple =value elif weight_type == "weight_g": _UpperCAmelCase : List[str] =value elif weight_type == "weight_v": _UpperCAmelCase : Any =value elif weight_type == "bias": _UpperCAmelCase : Dict =value else: _UpperCAmelCase : Optional[Any] =value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): '''simple docstring''' _UpperCAmelCase : Tuple =[] _UpperCAmelCase : List[Any] =fairseq_model.state_dict() _UpperCAmelCase : Union[str, Any] =hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase : Optional[int] =False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == 'group' , ) _UpperCAmelCase : Dict =True else: for key, mapped_key in MAPPING.items(): _UpperCAmelCase : str ='unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue _UpperCAmelCase : Optional[Any] =True if "*" in mapped_key: _UpperCAmelCase : List[str] =name.split(__lowerCamelCase )[0].split('.' )[-2] _UpperCAmelCase : Any =mapped_key.replace('*' , __lowerCamelCase ) if "weight_g" in name: _UpperCAmelCase : int ='weight_g' elif "weight_v" in name: _UpperCAmelCase : List[str] ='weight_v' elif "bias" in name: _UpperCAmelCase : Optional[int] ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase : str ='weight' else: _UpperCAmelCase : str =None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): '''simple docstring''' _UpperCAmelCase : Dict =full_name.split('conv_layers.' )[-1] _UpperCAmelCase : List[str] =name.split('.' ) _UpperCAmelCase : List[str] =int(items[0] ) _UpperCAmelCase : Optional[int] =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCAmelCase : List[str] =value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCAmelCase : Union[str, Any] =value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) _UpperCAmelCase : Tuple =value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCAmelCase : Tuple =value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Any=True ): '''simple docstring''' if config_path is not None: _UpperCAmelCase : Dict =UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: _UpperCAmelCase : Union[str, Any] =UniSpeechSatConfig() _UpperCAmelCase : List[Any] ='' if is_finetuned: _UpperCAmelCase : Union[str, Any] =UniSpeechSatForCTC(__lowerCamelCase ) else: _UpperCAmelCase : Tuple =UniSpeechSatForPreTraining(__lowerCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) _UpperCAmelCase : Tuple =model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowercase =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowercase =parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
331
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCamelCase__ = None UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } UpperCamelCase__ = { 'camembert-base': 512, } UpperCamelCase__ = '▁' class UpperCAmelCase__ ( A_ ): '''simple docstring''' UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase_ = CamembertTokenizer def __init__( self : str , UpperCamelCase : Tuple=None , UpperCamelCase : Tuple=None , UpperCamelCase : str="<s>" , UpperCamelCase : Optional[Any]="</s>" , UpperCamelCase : List[str]="</s>" , UpperCamelCase : int="<s>" , UpperCamelCase : Any="<unk>" , UpperCamelCase : str="<pad>" , UpperCamelCase : Union[str, Any]="<mask>" , UpperCamelCase : Tuple=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCamelCase : List[Any] , ): """simple docstring""" _lowercase : List[str] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) _lowercase : Optional[Any] = vocab_file _lowercase : Optional[Any] = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : Any = [self.cls_token_id] _lowercase : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self : str , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): """simple docstring""" _lowercase : Tuple = [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self : str , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowercase : List[Any] = os.path.join( UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
322
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase__ ( A_ , A_ ): '''simple docstring''' @register_to_config def __init__( self : Tuple , UpperCamelCase : bool , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None ): """simple docstring""" super().__init__() _lowercase : str = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _lowercase : Optional[Any] = torch.zeros(UpperCamelCase , UpperCamelCase ) else: _lowercase : str = None _lowercase : List[Any] = torch.nn.Parameter(UpperCamelCase ) class UpperCAmelCase__ ( A_ ): '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 def __init__( self : List[Any] , UpperCamelCase : VQModel , UpperCamelCase : CLIPTextModel , UpperCamelCase : CLIPTokenizer , UpperCamelCase : TransformeraDModel , UpperCamelCase : VQDiffusionScheduler , UpperCamelCase : LearnedClassifierFreeSamplingEmbeddings , ): """simple docstring""" super().__init__() self.register_modules( vqvae=UpperCamelCase , transformer=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , scheduler=UpperCamelCase , learned_classifier_free_sampling_embeddings=UpperCamelCase , ) def lowerCAmelCase_ ( self : str , UpperCamelCase : Dict , UpperCamelCase : List[Any] , UpperCamelCase : Dict ): """simple docstring""" _lowercase : Dict = len(UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else 1 # get prompt text embeddings _lowercase : str = self.tokenizer( UpperCamelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _lowercase : str = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowercase : int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _lowercase : Any = text_input_ids[:, : self.tokenizer.model_max_length] _lowercase : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _lowercase : List[Any] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase ) # duplicate text embeddings for each generation per prompt _lowercase : Optional[int] = prompt_embeds.repeat_interleave(UpperCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _lowercase : Tuple = self.learned_classifier_free_sampling_embeddings.embeddings _lowercase : Optional[int] = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase , 1 , 1 ) else: _lowercase : Any = [''''''] * batch_size _lowercase : Tuple = text_input_ids.shape[-1] _lowercase : Any = self.tokenizer( UpperCamelCase , padding='''max_length''' , max_length=UpperCamelCase , truncation=UpperCamelCase , return_tensors='''pt''' , ) _lowercase : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _lowercase : Optional[Any] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowercase : int = negative_prompt_embeds.shape[1] _lowercase : int = negative_prompt_embeds.repeat(1 , UpperCamelCase , 1 ) _lowercase : str = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowercase : int = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Tuple , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 1_00 , UpperCamelCase : float = 5.0 , UpperCamelCase : float = 1.0 , UpperCamelCase : int = 1 , UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , ): """simple docstring""" if isinstance(UpperCamelCase , UpperCamelCase ): _lowercase : Any = 1 elif isinstance(UpperCamelCase , UpperCamelCase ): _lowercase : int = len(UpperCamelCase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase )}' ) _lowercase : Any = batch_size * num_images_per_prompt _lowercase : Optional[int] = guidance_scale > 1.0 _lowercase : Any = self._encode_prompt(UpperCamelCase , UpperCamelCase , UpperCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase , UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCamelCase )}.' ) # get the initial completely masked latents unless the user supplied it _lowercase : Optional[Any] = (batch_size, self.transformer.num_latent_pixels) if latents is None: _lowercase : Optional[int] = self.transformer.num_vector_embeds - 1 _lowercase : Union[str, Any] = torch.full(UpperCamelCase , UpperCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) _lowercase : List[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCamelCase , device=self.device ) _lowercase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) _lowercase : Optional[int] = latents for i, t in enumerate(self.progress_bar(UpperCamelCase ) ): # expand the sample if we are doing classifier free guidance _lowercase : Tuple = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _lowercase : Union[str, Any] = self.transformer(UpperCamelCase , encoder_hidden_states=UpperCamelCase , timestep=UpperCamelCase ).sample if do_classifier_free_guidance: _lowercase , _lowercase : Dict = model_output.chunk(2 ) _lowercase : Union[str, Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(UpperCamelCase , dim=1 , keepdim=UpperCamelCase ) _lowercase : Dict = self.truncate(UpperCamelCase , UpperCamelCase ) # remove `log(0)`'s (`-inf`s) _lowercase : int = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step(UpperCamelCase , timestep=UpperCamelCase , sample=UpperCamelCase , generator=UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase , UpperCamelCase , UpperCamelCase ) _lowercase : Optional[int] = self.vqvae.config.vq_embed_dim _lowercase : List[str] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _lowercase : Union[str, Any] = self.vqvae.quantize.get_codebook_entry(UpperCamelCase , shape=UpperCamelCase ) _lowercase : Union[str, Any] = self.vqvae.decode(UpperCamelCase , force_not_quantize=UpperCamelCase ).sample _lowercase : Any = (image / 2 + 0.5).clamp(0 , 1 ) _lowercase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowercase : int = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase ) def lowerCAmelCase_ ( self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float ): """simple docstring""" _lowercase , _lowercase : int = torch.sort(UpperCamelCase , 1 , descending=UpperCamelCase ) _lowercase : Any = torch.exp(UpperCamelCase ) _lowercase : Optional[Any] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _lowercase : Any = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase ) _lowercase : List[Any] = torch.cat((all_true, keep_mask) , dim=1 ) _lowercase : Tuple = keep_mask[:, :-1, :] _lowercase : Union[str, Any] = keep_mask.gather(1 , indices.argsort(1 ) ) _lowercase : int = log_p_x_0.clone() _lowercase : List[str] = -torch.inf # -inf = log(0) return rv
322
1
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int ): A__ = generate_pascal_triangle(UpperCAmelCase_ ) for row_idx in range(UpperCAmelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def _snake_case ( UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) A__ = [] for current_row_idx in range(UpperCAmelCase_ ): A__ = populate_current_row(UpperCAmelCase_ , UpperCAmelCase_ ) triangle.append(UpperCAmelCase_ ) return triangle def _snake_case ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int ): A__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 A__ , A__ = 1, 1 for current_col_idx in range(1 , UpperCAmelCase_ ): calculate_current_element( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return current_row def _snake_case ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , ): A__ = triangle[current_row_idx - 1][current_col_idx - 1] A__ = triangle[current_row_idx - 1][current_col_idx] A__ = above_to_left_elt + above_to_right_elt def _snake_case ( UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) A__ = [[1]] for row_index in range(1 , UpperCAmelCase_ ): A__ = [0] + result[-1] + [0] A__ = row_index + 1 # Calculate the number of distinct elements in a row A__ = sum(divmod(UpperCAmelCase_ , 2 ) ) A__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] A__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() A__ = row_first_half + row_second_half result.append(UpperCAmelCase_ ) return result def _snake_case ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCAmelCase_ : Callable , UpperCAmelCase_ : int ) -> None: A__ = F"""{func.__name__}({value})""" A__ = timeit(F"""__main__.{call}""" , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
706
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class a ( _lowerCamelCase ): """simple docstring""" def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(UpperCamelCase , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(UpperCamelCase , """num_encoder_blocks""" ) ) class a : """simple docstring""" def __init__( self: str , UpperCamelCase: Dict , UpperCamelCase: int=13 , UpperCamelCase: Optional[int]=64 , UpperCamelCase: List[Any]=3 , UpperCamelCase: List[Any]=4 , UpperCamelCase: Optional[Any]=[2, 2, 2, 2] , UpperCamelCase: Any=[8, 4, 2, 1] , UpperCamelCase: Optional[int]=[16, 32, 64, 1_28] , UpperCamelCase: str=[1, 4, 8, 16] , UpperCamelCase: Dict=[1, 2, 4, 8] , UpperCamelCase: Optional[Any]=True , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Tuple=0.1 , UpperCamelCase: Optional[int]=0.1 , UpperCamelCase: Tuple=0.02 , UpperCamelCase: int=3 , UpperCamelCase: str=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_encoder_blocks A__ = sr_ratios A__ = depths A__ = hidden_sizes A__ = downsampling_rates A__ = num_attention_heads A__ = is_training A__ = use_labels A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = num_labels A__ = scope def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Tuple , UpperCamelCase: str , UpperCamelCase: Optional[Any] , UpperCamelCase: int ): """simple docstring""" A__ = SegformerModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) A__ = A__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCamelCase ( self: List[str] , UpperCamelCase: Tuple , UpperCamelCase: str , UpperCamelCase: List[str] ): """simple docstring""" A__ = self.num_labels A__ = SegformerForSemanticSegmentation(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A__ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: str , UpperCamelCase: Tuple ): """simple docstring""" A__ = 1 A__ = SegformerForSemanticSegmentation(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(UpperCamelCase ) A__ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Any ): """simple docstring""" A__ = SegformerModelTester(self ) A__ = SegformerConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase ( self: Any ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase ( self: int ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCamelCase ) def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*UpperCamelCase ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def UpperCamelCase ( self: List[str] ): """simple docstring""" pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def UpperCamelCase ( self: str ): """simple docstring""" pass def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCamelCase ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.attentions A__ = sum(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ = (self.model_tester.image_size // 32) ** 2 A__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ = len(UpperCamelCase ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase ) ) A__ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" def check_hidden_states_output(UpperCamelCase: Dict , UpperCamelCase: Tuple , UpperCamelCase: Dict ): A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_encoder_blocks self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" if not self.model_tester.is_training: return A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase ): continue A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.train() A__ = self._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) A__ = model(**UpperCamelCase ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" pass @slow def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SegformerModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def _snake_case ( ): A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase ( self: Any ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase , align=UpperCamelCase , do_random_crop=UpperCamelCase ) A__ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) A__ = encoded_inputs.pixel_values.to(UpperCamelCase ) with torch.no_grad(): A__ = model(UpperCamelCase ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) A__ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase , atol=1e-4 ) ) @slow def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase , align=UpperCamelCase , do_random_crop=UpperCamelCase ) A__ = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) A__ = encoded_inputs.pixel_values.to(UpperCamelCase ) with torch.no_grad(): A__ = model(UpperCamelCase ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) A__ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase , atol=1e-1 ) ) @slow def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase , align=UpperCamelCase , do_random_crop=UpperCamelCase ) A__ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) A__ = encoded_inputs.pixel_values.to(UpperCamelCase ) with torch.no_grad(): A__ = model(UpperCamelCase ) A__ = outputs.logits.detach().cpu() A__ = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase , target_sizes=[(5_00, 3_00)] ) A__ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , UpperCamelCase ) A__ = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase ) A__ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , UpperCamelCase )
500
0
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 0.1 ): snake_case_ = 3 snake_case_ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(SCREAMING_SNAKE_CASE__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
39
'''simple docstring''' import math def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _SCREAMING_SNAKE_CASE : List[str] = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1 , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = factor * value _SCREAMING_SNAKE_CASE : Optional[Any] = value while not is_prime(SCREAMING_SNAKE_CASE__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ ) return value
533
0
import warnings from ..trainer import Trainer from ..utils import logging __A : Tuple = logging.get_logger(__name__) class lowercase_ ( lowerCAmelCase__ ): def __init__( self: List[Any], _lowercase: Dict=None, **_lowercase: str): '''simple docstring''' warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""", _lowercase, ) super().__init__(args=_lowercase, **_lowercase)
704
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __A : Optional[Any] = logging.getLogger(__name__) if __name__ == "__main__": __A : int = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=30_522, type=int) __A : Optional[Any] = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, "rb") as fp: __A : Union[str, Any] = pickle.load(fp) logger.info("Counting occurrences for MLM.") __A : Optional[Any] = Counter() for tk_ids in data: counter.update(tk_ids) __A : int = [0] * args.vocab_size for k, v in counter.items(): __A : Optional[int] = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
334
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
635
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
182
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) class __lowerCAmelCase( lowerCAmelCase__ ): def __init__( self : Tuple , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Any ): """simple docstring""" warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
233
'''simple docstring''' import argparse import struct import unittest class __lowerCAmelCase: def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : bytes ): """simple docstring""" SCREAMING_SNAKE_CASE_ :str = data # Initialize hash values SCREAMING_SNAKE_CASE_ :Any = [ 0x6A_09_E6_67, 0xBB_67_AE_85, 0x3C_6E_F3_72, 0xA5_4F_F5_3A, 0x51_0E_52_7F, 0x9B_05_68_8C, 0x1F_83_D9_AB, 0x5B_E0_CD_19, ] # Initialize round constants SCREAMING_SNAKE_CASE_ :Optional[int] = [ 0x42_8A_2F_98, 0x71_37_44_91, 0xB5_C0_FB_CF, 0xE9_B5_DB_A5, 0x39_56_C2_5B, 0x59_F1_11_F1, 0x92_3F_82_A4, 0xAB_1C_5E_D5, 0xD8_07_AA_98, 0x12_83_5B_01, 0x24_31_85_BE, 0x55_0C_7D_C3, 0x72_BE_5D_74, 0x80_DE_B1_FE, 0x9B_DC_06_A7, 0xC1_9B_F1_74, 0xE4_9B_69_C1, 0xEF_BE_47_86, 0x0F_C1_9D_C6, 0x24_0C_A1_CC, 0x2D_E9_2C_6F, 0x4A_74_84_AA, 0x5C_B0_A9_DC, 0x76_F9_88_DA, 0x98_3E_51_52, 0xA8_31_C6_6D, 0xB0_03_27_C8, 0xBF_59_7F_C7, 0xC6_E0_0B_F3, 0xD5_A7_91_47, 0x06_CA_63_51, 0x14_29_29_67, 0x27_B7_0A_85, 0x2E_1B_21_38, 0x4D_2C_6D_FC, 0x53_38_0D_13, 0x65_0A_73_54, 0x76_6A_0A_BB, 0x81_C2_C9_2E, 0x92_72_2C_85, 0xA2_BF_E8_A1, 0xA8_1A_66_4B, 0xC2_4B_8B_70, 0xC7_6C_51_A3, 0xD1_92_E8_19, 0xD6_99_06_24, 0xF4_0E_35_85, 0x10_6A_A0_70, 0x19_A4_C1_16, 0x1E_37_6C_08, 0x27_48_77_4C, 0x34_B0_BC_B5, 0x39_1C_0C_B3, 0x4E_D8_AA_4A, 0x5B_9C_CA_4F, 0x68_2E_6F_F3, 0x74_8F_82_EE, 0x78_A5_63_6F, 0x84_C8_78_14, 0x8C_C7_02_08, 0x90_BE_FF_FA, 0xA4_50_6C_EB, 0xBE_F9_A3_F7, 0xC6_71_78_F2, ] SCREAMING_SNAKE_CASE_ :Optional[int] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowercase ( SCREAMING_SNAKE_CASE : bytes ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[str] = b'\x80' + (b'\x00' * (63 - (len(SCREAMING_SNAKE_CASE ) + 8) % 64)) SCREAMING_SNAKE_CASE_ :int = struct.pack('>Q' , (len(SCREAMING_SNAKE_CASE ) * 8) ) return data + padding + big_endian_integer def _lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers SCREAMING_SNAKE_CASE_ :Any = list(struct.unpack('>16L' , SCREAMING_SNAKE_CASE ) ) # add 48 0-ed integers words += [0] * 48 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :List[str] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array SCREAMING_SNAKE_CASE_ :Optional[int] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) SCREAMING_SNAKE_CASE_ :List[str] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) SCREAMING_SNAKE_CASE_ :Optional[int] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression SCREAMING_SNAKE_CASE_ :Optional[Any] = self.ror(SCREAMING_SNAKE_CASE , 6 ) ^ self.ror(SCREAMING_SNAKE_CASE , 11 ) ^ self.ror(SCREAMING_SNAKE_CASE , 25 ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = (e & f) ^ ((~e & 0xFF_FF_FF_FF) & g) SCREAMING_SNAKE_CASE_ :List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 SCREAMING_SNAKE_CASE_ :List[str] = self.ror(SCREAMING_SNAKE_CASE , 2 ) ^ self.ror(SCREAMING_SNAKE_CASE , 13 ) ^ self.ror(SCREAMING_SNAKE_CASE , 22 ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = (a & b) ^ (a & c) ^ (b & c) SCREAMING_SNAKE_CASE_ :str = (sa + maj) % 0x1_00_00_00_00 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Tuple = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) SCREAMING_SNAKE_CASE_ :Optional[Any] = [a, b, c, d, e, f, g, h] # Modify final values SCREAMING_SNAKE_CASE_ :List[Any] = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] SCREAMING_SNAKE_CASE_ :List[str] = ''.join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for value in self.hashes] ) def _lowercase ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" return 0xFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class __lowerCAmelCase( unittest.TestCase ): def _lowercase ( self : Union[str, Any] ): """simple docstring""" import hashlib SCREAMING_SNAKE_CASE_ :List[Any] = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(SCREAMING_SNAKE_CASE ).hash , hashlib.shaaaa(SCREAMING_SNAKE_CASE ).hexdigest() ) def SCREAMING_SNAKE_CASE__ ( ): import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ :str = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) SCREAMING_SNAKE_CASE_ :str = parser.parse_args() SCREAMING_SNAKE_CASE_ :str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: SCREAMING_SNAKE_CASE_ :Optional[int] = f.read() else: SCREAMING_SNAKE_CASE_ :str = bytes(SCREAMING_SNAKE_CASE , 'utf-8' ) print(SHAaaa(SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
233
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase_ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def a__ ( snake_case ): """simple docstring""" config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def a__ ( snake_case ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case ) def a__ ( snake_case ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main __SCREAMING_SNAKE_CASE : List[Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(snake_case , id=snake_case ) def a__ ( snake_case , snake_case ): """simple docstring""" # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 # Doctest custom flag to ignore output. lowercase_ = doctest.register_optionflag("""IGNORE_RESULT""") lowercase_ = doctest.OutputChecker class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def UpperCAmelCase__ ( self : int , _A : Any , _A : Tuple , _A : Optional[int] ): """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _A , _A , _A ) lowercase_ = CustomOutputChecker lowercase_ = HfDoctestModule lowercase_ = HfDocTestParser
74
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = MobileBertTokenizer lowerCAmelCase_ = MobileBertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = filter_non_english lowerCAmelCase_ = '''google/mobilebert-uncased''' def UpperCAmelCase__ ( self : Dict ): """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE : int = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCAmelCase__ ( self : Tuple , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : List[str] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer_class(self.vocab_file ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] ) def UpperCAmelCase__ ( self : int ): """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : str = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : str = tokenizer.encode(_A ) __SCREAMING_SNAKE_CASE : Any = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) # With lower casing __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer(do_lower_case=_A ) __SCREAMING_SNAKE_CASE : List[str] = self.get_rust_tokenizer(do_lower_case=_A ) __SCREAMING_SNAKE_CASE : List[str] = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Any = tokenizer.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Any = tokenizer.encode(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __SCREAMING_SNAKE_CASE : Dict = {} for i, token in enumerate(_A ): __SCREAMING_SNAKE_CASE : List[str] = i __SCREAMING_SNAKE_CASE : str = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self : str ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Any = tokenizer.build_inputs_with_special_tokens(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : str = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r.encode_plus( _A , return_attention_mask=_A , return_token_type_ids=_A , return_offsets_mapping=_A , add_special_tokens=_A , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(_A , '''do_lower_case''' ) else False __SCREAMING_SNAKE_CASE : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = ['''的''', '''人''', '''有'''] __SCREAMING_SNAKE_CASE : int = ''''''.join(_A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : str = True __SCREAMING_SNAKE_CASE : int = self.tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : int = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.convert_ids_to_tokens(_A ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(_A ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that only the first Chinese character is not preceded by "##". __SCREAMING_SNAKE_CASE : List[Any] = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(_A ) ] self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A )
74
1
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __snake_case ( _SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = WavaVecaPhonemeCTCTokenizer lowercase = False def __lowercase ( self : Union[str, Any] ) -> int: super().setUp() lowerCAmelCase_ : Tuple = ( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) lowerCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) lowerCAmelCase_ : Optional[Any] = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} lowerCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase ) + """\n""" ) def __lowercase ( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[str]=20 , lowerCamelCase : List[Any]=5 ) -> Tuple[str, list]: lowerCAmelCase_ : List[str] = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase )) for i in range(len(lowerCamelCase ) )] lowerCAmelCase_ : List[str] = list(filter(lambda lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowerCamelCase ) , lowerCamelCase ) ) if max_length is not None and len(lowerCamelCase ) > max_length: lowerCAmelCase_ : str = toks[:max_length] if min_length is not None and len(lowerCamelCase ) < min_length and len(lowerCamelCase ) > 0: while len(lowerCamelCase ) < min_length: lowerCAmelCase_ : str = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase_ : Optional[Any] = [t[0] for t in toks] # Ensure consistency lowerCAmelCase_ : int = tokenizer.decode(lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) if " " not in output_txt and len(lowerCamelCase ) > 1: lowerCAmelCase_ : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase ) ) if with_prefix_space: lowerCAmelCase_ : Union[str, Any] = """ """ + output_txt lowerCAmelCase_ : str = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) return output_txt, output_ids def __lowercase ( self : int , **lowerCamelCase : Dict ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __lowercase ( self : int ) -> Any: lowerCAmelCase_ : Union[str, Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) lowerCAmelCase_ : Any = tokenizer("""m xxx ɪ""" , do_phonemize=lowerCamelCase ).input_ids self.assertEqual(lowerCamelCase , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) lowerCAmelCase_ : Optional[int] = tokenizer("""m aaa ɪ ccc""" , do_phonemize=lowerCamelCase ).input_ids self.assertEqual(lowerCamelCase , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa lowerCAmelCase_ : str = tokenizer("""maɪ c""" , do_phonemize=lowerCamelCase ).input_ids self.assertEqual(lowerCamelCase , [3, 2_00] ) # mai should be <unk> (=3) def __lowercase ( self : Any ) -> int: lowerCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCAmelCase_ : Tuple = """Hello how are you""" lowerCAmelCase_ : Union[str, Any] = tokenizer.phonemize(lowerCamelCase , phonemizer_lang="""en-us""" ) self.assertEqual(lowerCamelCase , """h ə l oʊ h aʊ ɑːɹ j uː""" ) def __lowercase ( self : List[str] ) -> List[Any]: lowerCAmelCase_ : int = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCAmelCase_ : int = """Hello how are you""" lowerCAmelCase_ : Any = tokenizer.phonemize(lowerCamelCase , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowerCamelCase ).input_ids , tokenizer(lowerCamelCase , do_phonemize=lowerCamelCase ).input_ids ) def __lowercase ( self : Union[str, Any] ) -> List[Any]: lowerCAmelCase_ : Tuple = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCAmelCase_ : Union[str, Any] = """Hello how are you""" lowerCAmelCase_ : Optional[int] = tokenizer.phonemize(lowerCamelCase , phonemizer_lang="""en-us""" ) lowerCAmelCase_ : Optional[int] = tokenizer.decode(tokenizer(lowerCamelCase ).input_ids ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> int: lowerCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCAmelCase_ : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowerCAmelCase_ : List[str] = tokenizer.decode(sample_ids[0] ) lowerCAmelCase_ : Tuple = tokenizer.batch_decode(lowerCamelCase ) self.assertEqual(lowerCamelCase , batch_tokens[0] ) self.assertEqual(lowerCamelCase , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def __lowercase ( self : str ) -> Any: lowerCAmelCase_ : str = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) lowerCAmelCase_ : str = """Hello how are you""" lowerCAmelCase_ : Tuple = tokenizer.phonemize(lowerCamelCase , phonemizer_lang="""en-us""" ) self.assertEqual(lowerCamelCase , """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def __lowercase ( self : Optional[Any] ) -> Optional[int]: lowerCAmelCase_ : Union[str, Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) lowerCAmelCase_ : Dict = """Hello how are you""" lowerCAmelCase_ : List[str] = tokenizer.phonemize(lowerCamelCase , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(lowerCamelCase ).input_ids , tokenizer(lowerCamelCase , do_phonemize=lowerCamelCase ).input_ids ) def __lowercase ( self : Tuple ) -> Optional[Any]: lowerCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off lowerCAmelCase_ : int = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowerCAmelCase_ : List[str] = tokenizer.decode(sample_ids[0] ) lowerCAmelCase_ : Tuple = tokenizer.batch_decode(lowerCamelCase ) self.assertEqual(lowerCamelCase , batch_tokens[0] ) self.assertEqual(lowerCamelCase , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter lowerCAmelCase_ : int = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowerCamelCase ) lowerCAmelCase_ : Dict = tokenizer.batch_decode(lowerCamelCase , filter_word_delimiter_token=lowerCamelCase ) self.assertEqual(lowerCamelCase , batch_tokens[0] ) self.assertEqual(lowerCamelCase , ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def __lowercase ( self : Union[str, Any] ) -> List[str]: lowerCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) lowerCAmelCase_ : List[Any] = """Hello how are you""" lowerCAmelCase_ : Optional[Any] = tokenizer.phonemize(lowerCamelCase , phonemizer_lang="""en-us""" ) lowerCAmelCase_ : Dict = tokenizer.decode(tokenizer(lowerCamelCase ).input_ids , filter_word_delimiter_token=lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def __lowercase ( self : Any ) -> Optional[Any]: lowerCAmelCase_ : int = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) lowerCAmelCase_ : str = """Hello how are you""" lowerCAmelCase_ : Union[str, Any] = tokenizer.phonemize(lowerCamelCase , phonemizer_lang="""en-us""" ) lowerCAmelCase_ : Optional[Any] = tokenizer.decode(tokenizer(lowerCamelCase ).input_ids , filter_word_delimiter_token=lowerCamelCase ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , lowerCamelCase ) def __lowercase ( self : Any ) -> Tuple: lowerCAmelCase_ : Dict = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=lowerCamelCase ) lowerCAmelCase_ : str = """Hello how are you""" lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCamelCase , phonemizer_lang="""en-us""" ).input_ids lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCamelCase , phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : str = tokenizer.decode(lowerCamelCase ) lowerCAmelCase_ : Dict = tokenizer.decode(lowerCamelCase ) self.assertEqual(lowerCamelCase , """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(lowerCamelCase , """ɛ l o h aʊ a ʁ j u""" ) def __lowercase ( self : str ) -> List[Any]: lowerCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) lowerCAmelCase_ : Optional[Any] = """Hello how Are you""" lowerCAmelCase_ : Any = """hello how are you""" lowerCAmelCase_ : List[str] = tokenizer(lowerCamelCase ).input_ids lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCamelCase ).input_ids self.assertEqual(lowerCamelCase , lowerCamelCase ) def __lowercase ( self : Union[str, Any] ) -> str: lowerCAmelCase_ : Union[str, Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off lowerCAmelCase_ : List[str] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on lowerCAmelCase_ : Union[str, Any] = tokenizer.batch_decode(lowerCamelCase ) self.assertEqual(lowerCamelCase , ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] ) -> Optional[Any]: lowerCAmelCase_ : Optional[int] = [d[key] for d in offsets] return retrieved_list def __lowercase ( self : Tuple ) -> List[str]: lowerCAmelCase_ : Tuple = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowerCAmelCase_ : Dict = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowerCAmelCase_ : Optional[int] = tokenizer.decode(lowerCamelCase , output_char_offsets=lowerCamelCase , filter_word_delimiter_token=lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(lowerCamelCase , lowerCamelCase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def __lowercase ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase_ : Optional[Any] = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(lowerCamelCase : List[str] , lowerCamelCase : Dict ): self.assertTrue(isinstance(lowerCamelCase , lowerCamelCase ) ) self.assertTrue(isinstance(outputs_list[0] , lowerCamelCase ) ) # transform list to ModelOutput lowerCAmelCase_ : Optional[Any] = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] ) def recursive_check(lowerCamelCase : List[str] , lowerCamelCase : Tuple ): if isinstance(lowerCamelCase , lowerCamelCase ): [recursive_check(lowerCamelCase , lowerCamelCase ) for la, la in zip(lowerCamelCase , lowerCamelCase )] self.assertEqual(lowerCamelCase , lowerCamelCase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] ) # fmt: off lowerCAmelCase_ : Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowerCAmelCase_ : List[str] = tokenizer.batch_decode(lowerCamelCase , output_char_offsets=lowerCamelCase ) lowerCAmelCase_ : Dict = [tokenizer.decode(lowerCamelCase , output_char_offsets=lowerCamelCase ) for ids in sample_ids] check_list_tuples_equal(lowerCamelCase , lowerCamelCase ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def __lowercase ( self : List[Any] ) -> Dict: pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def __lowercase ( self : Optional[int] ) -> List[str]: pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def __lowercase ( self : Any ) -> Optional[Any]: pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def __lowercase ( self : Dict ) -> str: pass def __lowercase ( self : Tuple ) -> List[str]: lowerCAmelCase_ : Optional[int] = self.get_tokenizers(do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCAmelCase_ : Any = tokenizer.vocab_size lowerCAmelCase_ : Optional[int] = len(lowerCamelCase ) self.assertNotEqual(lowerCamelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCAmelCase_ : Tuple = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] lowerCAmelCase_ : Union[str, Any] = tokenizer.add_tokens(lowerCamelCase ) lowerCAmelCase_ : str = tokenizer.vocab_size lowerCAmelCase_ : Optional[int] = len(lowerCamelCase ) self.assertNotEqual(lowerCamelCase , 0 ) self.assertEqual(lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , len(lowerCamelCase ) ) self.assertEqual(lowerCamelCase , all_size + len(lowerCamelCase ) ) lowerCAmelCase_ : Any = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=lowerCamelCase ) self.assertGreaterEqual(len(lowerCamelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCAmelCase_ : Optional[int] = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} lowerCAmelCase_ : str = tokenizer.add_special_tokens(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = tokenizer.vocab_size lowerCAmelCase_ : Any = len(lowerCamelCase ) self.assertNotEqual(lowerCamelCase , 0 ) self.assertEqual(lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , len(lowerCamelCase ) ) self.assertEqual(lowerCamelCase , all_size_a + len(lowerCamelCase ) ) lowerCAmelCase_ : Tuple = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=lowerCamelCase ) self.assertGreaterEqual(len(lowerCamelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def __lowercase ( self : Tuple ) -> Any: pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def __lowercase ( self : Tuple ) -> Optional[int]: pass def __lowercase ( self : Any ) -> List[str]: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. lowerCAmelCase_ : Tuple = self.get_tokenizers(fast=lowerCamelCase , do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCAmelCase_ : Union[str, Any] = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] lowerCAmelCase_ : Tuple = tokenizer.convert_tokens_to_string(lowerCamelCase ) self.assertIsInstance(output["""text"""] , lowerCamelCase )
398
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
398
1
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=100 , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : str=2 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : int=None , _UpperCAmelCase : Union[str, Any]=[0, 1, 2, 3] , ): _A = parent _A = 100 _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = scope _A = out_indices _A = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = num_patches + 1 def lowerCAmelCase_ ( self : Dict ): _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _A = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase_ ( self : Tuple ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ): _A = BeitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ): _A = BeitForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Any ): _A = self.type_sequence_label_size _A = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A = 1 _A = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict ): _A = self.num_labels _A = BeitForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _A = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowerCAmelCase_ ( self : Tuple ): _A = self.prepare_config_and_inputs() _A , _A , _A , _A = config_and_inputs _A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase : Any = False UpperCAmelCase : Any = False UpperCAmelCase : List[str] = False def lowerCAmelCase_ ( self : List[str] ): _A = BeitModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def lowerCAmelCase_ ( self : str ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowerCAmelCase_ ( self : Dict ): pass def lowerCAmelCase_ ( self : List[str] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): if not self.model_tester.is_training: return _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling]: continue _A = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() _A = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) _A = model(**_UpperCAmelCase ).loss loss.backward() def lowerCAmelCase_ ( self : Optional[int] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _A = False _A = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _A = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() _A = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) _A = model(**_UpperCAmelCase ).loss loss.backward() def lowerCAmelCase_ ( self : Any ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _A = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = BeitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _snake_case ( ) -> int: '''simple docstring''' _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[Any] ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self : Any ): _A = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(_UpperCAmelCase ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values.to(_UpperCAmelCase ) # prepare bool_masked_pos _A = torch.ones((1, 196) , dtype=torch.bool ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _A = model(pixel_values=_UpperCAmelCase , bool_masked_pos=_UpperCAmelCase ) _A = outputs.logits # verify the logits _A = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , _UpperCAmelCase ) _A = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _UpperCAmelCase , atol=1E-2 ) ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(_UpperCAmelCase ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _A = model(**_UpperCAmelCase ) _A = outputs.logits # verify the logits _A = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , _UpperCAmelCase ) _A = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) _A = 281 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Dict ): _A = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( _UpperCAmelCase ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _A = model(**_UpperCAmelCase ) _A = outputs.logits # verify the logits _A = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , _UpperCAmelCase ) _A = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) _A = 2_396 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Dict ): _A = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) _A = model.to(_UpperCAmelCase ) _A = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) _A = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _A = Image.open(ds[0]['file'] ) _A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _A = model(**_UpperCAmelCase ) _A = outputs.logits # verify the logits _A = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _UpperCAmelCase ) _A = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: _A = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_UpperCAmelCase , ) else: _A = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self : List[Any] ): _A = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) _A = model.to(_UpperCAmelCase ) _A = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) _A = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _A = Image.open(ds[0]['file'] ) _A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _A = model(**_UpperCAmelCase ) _A = outputs.logits.detach().cpu() _A = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(500, 300)] ) _A = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) _A = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) _A = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
7
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __snake_case = get_tests_dir('''fixtures''') class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = mock.Mock() __UpperCamelCase = 500 __UpperCamelCase = {} __UpperCamelCase = HTTPError __UpperCamelCase = {} # Download this model to make sure it's in the cache. __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request',return_value=A_ ) as mock_head: __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class __lowerCamelCase (unittest.TestCase ): @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' __UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' try: delete_repo(token=cls._token,repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: int ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() __UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},) __UpperCamelCase = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
1
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : str ): '''simple docstring''' __snake_case :Any = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" ,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __snake_case :int = MaskFormerConfig(backbone_config=snake_case__ ) __snake_case :Union[str, Any] = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __snake_case :Dict = 847 __snake_case :Union[str, Any] = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __snake_case :Dict = 150 __snake_case :Union[str, Any] = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __snake_case :int = 171 __snake_case :Optional[int] = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __snake_case :str = 133 __snake_case :str = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __snake_case :Optional[Any] = 19 __snake_case :str = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __snake_case :str = 65 __snake_case :List[Any] = """mapillary-vistas-id2label.json""" __snake_case :str = json.load(open(hf_hub_download(snake_case__ ,snake_case__ ,repo_type="""dataset""" ) ,"""r""" ) ) __snake_case :Any = {int(snake_case__ ): v for k, v in idalabel.items()} return config def UpperCamelCase ( snake_case__ : Optional[int] ): '''simple docstring''' __snake_case :Tuple = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def UpperCamelCase ( snake_case__ : Dict ,snake_case__ : List[str] ,snake_case__ : Union[str, Any] ): '''simple docstring''' __snake_case :List[Any] = dct.pop(snake_case__ ) __snake_case :Union[str, Any] = val def UpperCamelCase ( snake_case__ : Union[str, Any] ,snake_case__ : Dict ): '''simple docstring''' __snake_case :Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __snake_case :int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __snake_case :str = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __snake_case :Any = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case :Union[str, Any] = in_proj_weight[:dim, :] __snake_case :List[Any] = in_proj_bias[: dim] __snake_case :int = in_proj_weight[ dim : dim * 2, : ] __snake_case :List[Any] = in_proj_bias[ dim : dim * 2 ] __snake_case :Any = in_proj_weight[ -dim :, : ] __snake_case :List[Any] = in_proj_bias[-dim :] # fmt: on def UpperCamelCase ( snake_case__ : str ,snake_case__ : Optional[int] ): '''simple docstring''' __snake_case :Dict = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __snake_case :Dict = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) __snake_case :List[str] = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case :Tuple = in_proj_weight[: hidden_size, :] __snake_case :str = in_proj_bias[:config.hidden_size] __snake_case :Optional[int] = in_proj_weight[hidden_size : hidden_size * 2, :] __snake_case :Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] __snake_case :str = in_proj_weight[-hidden_size :, :] __snake_case :Tuple = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __snake_case :int = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) __snake_case :Optional[int] = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case :int = in_proj_weight[: hidden_size, :] __snake_case :Any = in_proj_bias[:config.hidden_size] __snake_case :List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] __snake_case :Tuple = in_proj_bias[hidden_size : hidden_size * 2] __snake_case :int = in_proj_weight[-hidden_size :, :] __snake_case :int = in_proj_bias[-hidden_size :] # fmt: on def UpperCamelCase ( ): '''simple docstring''' __snake_case :Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case :Optional[int] = Image.open(requests.get(snake_case__ ,stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( snake_case__ : str ,snake_case__ : str ,snake_case__ : str ,snake_case__ : bool = False ): '''simple docstring''' __snake_case :str = get_maskformer_config(snake_case__ ) # load original state_dict with open(snake_case__ ,"""rb""" ) as f: __snake_case :str = pickle.load(snake_case__ ) __snake_case :int = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __snake_case :str = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ ,snake_case__ ,snake_case__ ) read_in_swin_q_k_v(snake_case__ ,config.backbone_config ) read_in_decoder_q_k_v(snake_case__ ,snake_case__ ) # update to torch tensors for key, value in state_dict.items(): __snake_case :Tuple = torch.from_numpy(snake_case__ ) # load 🤗 model __snake_case :int = MaskFormerForInstanceSegmentation(snake_case__ ) model.eval() for name, param in model.named_parameters(): print(snake_case__ ,param.shape ) __snake_case , __snake_case :Any = model.load_state_dict(snake_case__ ,strict=snake_case__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(snake_case__ ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results __snake_case :Optional[int] = prepare_img() if "vistas" in model_name: __snake_case :List[str] = 65 elif "cityscapes" in model_name: __snake_case :Optional[Any] = 6_5535 else: __snake_case :Optional[Any] = 255 __snake_case :Union[str, Any] = True if """ade""" in model_name else False __snake_case :List[Any] = MaskFormerImageProcessor(ignore_index=snake_case__ ,reduce_labels=snake_case__ ) __snake_case :int = image_processor(snake_case__ ,return_tensors="""pt""" ) __snake_case :Tuple = model(**snake_case__ ) print("""Logits:""" ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __snake_case :Optional[Any] = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,snake_case__ ,atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
291
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : Union[str, Any] = "align_text_model" def __init__( self , a__=3_05_22 , a__=7_68 , a__=12 , a__=12 , a__=30_72 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=2 , a__=0.02 , a__=1e-12 , a__=0 , a__="absolute" , a__=True , **a__ , ) -> List[str]: '''simple docstring''' super().__init__(**a__ ) __snake_case :Optional[int] = vocab_size __snake_case :List[str] = hidden_size __snake_case :Optional[Any] = num_hidden_layers __snake_case :int = num_attention_heads __snake_case :Optional[Any] = hidden_act __snake_case :Union[str, Any] = intermediate_size __snake_case :int = hidden_dropout_prob __snake_case :Optional[Any] = attention_probs_dropout_prob __snake_case :List[str] = max_position_embeddings __snake_case :List[str] = type_vocab_size __snake_case :Union[str, Any] = initializer_range __snake_case :str = layer_norm_eps __snake_case :Any = position_embedding_type __snake_case :List[str] = use_cache __snake_case :Optional[int] = pad_token_id @classmethod def __lowercase ( cls , a__ , **a__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(a__ ) __snake_case , __snake_case :Tuple = cls.get_config_dict(a__ , **a__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __snake_case :Any = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a__ , **a__ ) class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : Optional[int] = "align_vision_model" def __init__( self , a__ = 3 , a__ = 6_00 , a__ = 2.0 , a__ = 3.1 , a__ = 8 , a__ = [3, 3, 5, 3, 5, 5, 3] , a__ = [32, 16, 24, 40, 80, 1_12, 1_92] , a__ = [16, 24, 40, 80, 1_12, 1_92, 3_20] , a__ = [] , a__ = [1, 2, 2, 2, 1, 2, 1] , a__ = [1, 2, 2, 3, 3, 4, 1] , a__ = [1, 6, 6, 6, 6, 6, 6] , a__ = 0.25 , a__ = "swish" , a__ = 25_60 , a__ = "mean" , a__ = 0.02 , a__ = 0.0_01 , a__ = 0.99 , a__ = 0.2 , **a__ , ) -> List[Any]: '''simple docstring''' super().__init__(**a__ ) __snake_case :Union[str, Any] = num_channels __snake_case :List[str] = image_size __snake_case :int = width_coefficient __snake_case :int = depth_coefficient __snake_case :List[Any] = depth_divisor __snake_case :Any = kernel_sizes __snake_case :Optional[int] = in_channels __snake_case :Optional[int] = out_channels __snake_case :int = depthwise_padding __snake_case :List[str] = strides __snake_case :Union[str, Any] = num_block_repeats __snake_case :Dict = expand_ratios __snake_case :Union[str, Any] = squeeze_expansion_ratio __snake_case :Any = hidden_act __snake_case :Optional[Any] = hidden_dim __snake_case :Union[str, Any] = pooling_type __snake_case :Union[str, Any] = initializer_range __snake_case :Optional[Any] = batch_norm_eps __snake_case :List[Any] = batch_norm_momentum __snake_case :Optional[int] = drop_connect_rate __snake_case :Union[str, Any] = sum(a__ ) * 4 @classmethod def __lowercase ( cls , a__ , **a__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(a__ ) __snake_case , __snake_case :int = cls.get_config_dict(a__ , **a__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __snake_case :str = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a__ , **a__ ) class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : str = "align" lowerCamelCase : Union[str, Any] = True def __init__( self , a__=None , a__=None , a__=6_40 , a__=1.0 , a__=0.02 , **a__ , ) -> Dict: '''simple docstring''' super().__init__(**a__ ) if text_config is None: __snake_case :Union[str, Any] = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: __snake_case :str = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) __snake_case :List[Any] = AlignTextConfig(**a__ ) __snake_case :Tuple = AlignVisionConfig(**a__ ) __snake_case :Tuple = projection_dim __snake_case :int = temperature_init_value __snake_case :Any = initializer_range @classmethod def __lowercase ( cls , a__ , a__ , **a__ ) -> str: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Optional[Any] = copy.deepcopy(self.__dict__ ) __snake_case :Dict = self.text_config.to_dict() __snake_case :Union[str, Any] = self.vision_config.to_dict() __snake_case :List[Any] = self.__class__.model_type return output
291
1
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING a_ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" super().__init__(*lowerCAmelCase, **lowerCAmelCase ) requires_backends(self, '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowercase__ ( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None ): """simple docstring""" lowerCamelCase_ ={} lowerCamelCase_ ={} if prompt is not None: lowerCamelCase_ =prompt if generate_kwargs is not None: lowerCamelCase_ =generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowerCamelCase_ ={} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) lowerCamelCase_ =max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return super().__call__(lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" lowerCamelCase_ =load_image(lowerCAmelCase ) if prompt is not None: if not isinstance(lowerCAmelCase, lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCAmelCase )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) lowerCamelCase_ =self.model.config.model_type if model_type == "git": lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=self.framework ) lowerCamelCase_ =self.tokenizer(text=lowerCAmelCase, add_special_tokens=lowerCAmelCase ).input_ids lowerCamelCase_ =[self.tokenizer.cls_token_id] + input_ids lowerCamelCase_ =torch.tensor(lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, header_text=lowerCAmelCase, return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=self.framework ) lowerCamelCase_ =self.tokenizer(lowerCAmelCase, return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowerCamelCase_ =None return model_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''], lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): lowerCamelCase_ =None if generate_kwargs is None: lowerCamelCase_ ={} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowerCamelCase_ =model_inputs.pop(self.model.main_input_name ) lowerCamelCase_ =self.model.generate(lowerCAmelCase, **lowerCAmelCase, **lowerCAmelCase ) return model_outputs def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for output_ids in model_outputs: lowerCamelCase_ ={ '''generated_text''': self.tokenizer.decode( lowerCAmelCase, skip_special_tokens=lowerCAmelCase, ) } records.append(lowerCAmelCase ) return records
676
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =['image_processor', 'tokenizer'] lowercase : str ='CLIPImageProcessor' lowercase : Optional[Any] =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase ) if text is not None and images is not None: lowerCamelCase_ =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ), tensor_type=lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tokenizer.model_input_names lowerCamelCase_ =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
676
1
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging snake_case : int = logging.get_logger(__name__) class lowerCamelCase__( snake_case_ ): UpperCamelCase : Optional[int] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 2_5_5 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): """simple docstring""" super().__init__(**__UpperCAmelCase ) __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_pad __lowercase = pad_size def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): """simple docstring""" return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" __lowercase , __lowercase = get_image_size(__UpperCAmelCase ) __lowercase = (old_height // size + 1) * size - old_height __lowercase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): """simple docstring""" __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_pad if do_pad is not None else self.do_pad __lowercase = pad_size if pad_size is not None else self.pad_size __lowercase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __lowercase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __lowercase = {"""pixel_values""": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
717
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase__( snake_case_ , unittest.TestCase ): UpperCamelCase : Dict = MobileBertTokenizer UpperCamelCase : Optional[int] = MobileBertTokenizerFast UpperCamelCase : Union[str, Any] = True UpperCamelCase : int = True UpperCamelCase : Dict = filter_non_english UpperCamelCase : Any = "google/mobilebert-uncased" def __magic_name__ ( self ): """simple docstring""" super().setUp() __lowercase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __lowercase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = """UNwant\u00E9d,running""" __lowercase = """unwanted, running""" return input_text, output_text def __magic_name__ ( self ): """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __magic_name__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = """UNwant\u00E9d,running""" __lowercase = tokenizer.tokenize(__UpperCAmelCase ) __lowercase = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(__UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # With lower casing __lowercase = self.get_tokenizer(do_lower_case=__UpperCAmelCase ) __lowercase = self.get_rust_tokenizer(do_lower_case=__UpperCAmelCase ) __lowercase = """UNwant\u00E9d,running""" __lowercase = tokenizer.tokenize(__UpperCAmelCase ) __lowercase = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(__UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __lowercase = {} for i, token in enumerate(__UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __magic_name__ ( self ): """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __magic_name__ ( self ): """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __magic_name__ ( self ): """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__UpperCAmelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(__UpperCAmelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def __magic_name__ ( self ): """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) __lowercase = tokenizer.encode("""sequence builders""" , add_special_tokens=__UpperCAmelCase ) __lowercase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def __magic_name__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __lowercase = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __lowercase = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __lowercase = tokenizer_r.encode_plus( __UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , ) __lowercase = tokenizer_r.do_lower_case if hasattr(__UpperCAmelCase , """do_lower_case""" ) else False __lowercase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """Allen"""), ((2_1, 2_3), """##NL"""), ((2_3, 2_4), """##P"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """allen"""), ((2_1, 2_3), """##nl"""), ((2_3, 2_4), """##p"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = ["""的""", """人""", """有"""] __lowercase = """""".join(__UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __lowercase = True __lowercase = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __lowercase = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __lowercase = tokenizer_p.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = tokenizer_r.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = tokenizer_r.convert_ids_to_tokens(__UpperCAmelCase ) __lowercase = tokenizer_p.convert_ids_to_tokens(__UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = False __lowercase = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __lowercase = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __lowercase = tokenizer_r.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = tokenizer_p.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = tokenizer_r.convert_ids_to_tokens(__UpperCAmelCase ) __lowercase = tokenizer_p.convert_ids_to_tokens(__UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". __lowercase = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__UpperCAmelCase ) ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
339
0
from math import pi, sqrt def lowerCamelCase__ ( snake_case_ : float ) -> float: if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(snake_case_ ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(snake_case_ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowerCamelCase__ ( ) -> None: assert gamma(0.5 ) == sqrt(snake_case_ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() snake_case_ = 1.0 while num: snake_case_ = float(input('Gamma of: ')) print(F'gamma({num}) = {gamma(num)}') print('\nEnter 0 to exit...')
592
import colorsys from PIL import Image # type: ignore def lowerCamelCase__ ( snake_case_ : float , snake_case_ : float , snake_case_ : int ) -> float: __snake_case = x __snake_case = y for step in range(snake_case_ ): # noqa: B007 __snake_case = a * a - b * b + x __snake_case = 2 * a * b + y __snake_case = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase__ ( snake_case_ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase__ ( snake_case_ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case_ , 1 , 1 ) ) def lowerCamelCase__ ( snake_case_ : int = 800 , snake_case_ : int = 600 , snake_case_ : float = -0.6 , snake_case_ : float = 0 , snake_case_ : float = 3.2 , snake_case_ : int = 50 , snake_case_ : bool = True , ) -> Image.Image: __snake_case = Image.new('''RGB''' , (image_width, image_height) ) __snake_case = img.load() # loop through the image-coordinates for image_x in range(snake_case_ ): for image_y in range(snake_case_ ): # determine the figure-coordinates based on the image-coordinates __snake_case = figure_width / image_width * image_height __snake_case = figure_center_x + (image_x / image_width - 0.5) * figure_width __snake_case = figure_center_y + (image_y / image_height - 0.5) * figure_height __snake_case = get_distance(snake_case_ , snake_case_ , snake_case_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __snake_case = get_color_coded_rgb(snake_case_ ) else: __snake_case = get_black_and_white_rgb(snake_case_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure snake_case_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
592
1
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : int = logging.get_logger() def lowercase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : LevitConfig , lowerCAmelCase : Path , lowerCAmelCase : bool = True): """simple docstring""" print(f"""Converting {name}...""") with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": _A : Optional[Any] = timm.create_model('''levit_128s''' , pretrained=lowerCAmelCase) else: _A : Any = timm.create_model('''levit_128''' , pretrained=lowerCAmelCase) if hidden_sizes == 192: _A : Optional[Any] = timm.create_model('''levit_192''' , pretrained=lowerCAmelCase) if hidden_sizes == 256: _A : str = timm.create_model('''levit_256''' , pretrained=lowerCAmelCase) if hidden_sizes == 384: _A : List[str] = timm.create_model('''levit_384''' , pretrained=lowerCAmelCase) from_model.eval() _A : Any = LevitForImageClassificationWithTeacher(lowerCAmelCase).eval() _A : List[Any] = OrderedDict() _A : List[Any] = from_model.state_dict() _A : List[str] = list(from_model.state_dict().keys()) _A : Tuple = list(our_model.state_dict().keys()) print(len(lowerCAmelCase) , len(lowerCAmelCase)) for i in range(len(lowerCAmelCase)): _A : str = weights[og_keys[i]] our_model.load_state_dict(lowerCAmelCase) _A : Optional[Any] = torch.randn((2, 3, 224, 224)) _A : Dict = from_model(lowerCAmelCase) _A : Union[str, Any] = our_model(lowerCAmelCase).logits assert torch.allclose(lowerCAmelCase , lowerCAmelCase), "The model logits don't match the original one." _A : Dict = name print(lowerCAmelCase) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name) _A : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name) print(f"""Pushed {checkpoint_name}""") def lowercase ( lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : bool = True): """simple docstring""" _A : Any = '''imagenet-1k-id2label.json''' _A : int = 1000 _A : str = (1, num_labels) _A : str = '''huggingface/label-files''' _A : int = num_labels _A : Optional[int] = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='''dataset''') , '''r''')) _A : Optional[int] = {int(lowerCAmelCase): v for k, v in idalabel.items()} _A : List[Any] = idalabel _A : Any = {v: k for k, v in idalabel.items()} _A : Optional[Any] = partial(lowerCAmelCase , num_labels=lowerCAmelCase , idalabel=lowerCAmelCase , labelaid=lowerCAmelCase) _A : Optional[int] = { '''levit-128S''': 128, '''levit-128''': 128, '''levit-192''': 192, '''levit-256''': 256, '''levit-384''': 384, } _A : List[Any] = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowerCAmelCase , names_to_config[model_name] , lowerCAmelCase , lowerCAmelCase) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) return config, expected_shape if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
417
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) # TODO Update this __UpperCamelCase : int = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( snake_case_ ): """simple docstring""" __magic_name__ = """esm""" def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=7_6_8 , UpperCAmelCase__=1_2 , UpperCAmelCase__=1_2 , UpperCAmelCase__=3_0_7_2 , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=1_0_2_6 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__="absolute" , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=False , UpperCAmelCase__=False , UpperCAmelCase__=None , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> List[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , mask_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) _A : List[Any] = vocab_size _A : int = hidden_size _A : Any = num_hidden_layers _A : List[str] = num_attention_heads _A : Dict = intermediate_size _A : Union[str, Any] = hidden_dropout_prob _A : int = attention_probs_dropout_prob _A : List[str] = max_position_embeddings _A : List[str] = initializer_range _A : Optional[Any] = layer_norm_eps _A : Tuple = position_embedding_type _A : Any = use_cache _A : Tuple = emb_layer_norm_before _A : Union[str, Any] = token_dropout _A : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _A : Dict = EsmFoldConfig() elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _A : List[str] = EsmFoldConfig(**UpperCAmelCase__ ) _A : List[Any] = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _A : Tuple = get_default_vocab_list() else: _A : int = vocab_list else: _A : Dict = None _A : Optional[int] = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def _lowerCamelCase ( self ) -> Optional[Any]: _A : str = super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase__ ): _A : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : """simple docstring""" __magic_name__ = None __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = 0 __magic_name__ = True __magic_name__ = False __magic_name__ = 1_2_8 __magic_name__ = None def _lowerCamelCase ( self ) -> List[Any]: if self.trunk is None: _A : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase__ ): _A : Dict = TrunkConfig(**self.trunk ) def _lowerCamelCase ( self ) -> Optional[Any]: _A : Dict = asdict(self ) _A : str = self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : """simple docstring""" __magic_name__ = 4_8 __magic_name__ = 1_0_2_4 __magic_name__ = 1_2_8 __magic_name__ = 3_2 __magic_name__ = 3_2 __magic_name__ = 3_2 __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = False __magic_name__ = 4 __magic_name__ = 1_2_8 __magic_name__ = None def _lowerCamelCase ( self ) -> str: if self.structure_module is None: _A : List[Any] = StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase__ ): _A : Any = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _A : List[Any] = self.sequence_state_dim // self.sequence_head_width _A : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowerCamelCase ( self ) -> Tuple: _A : Optional[Any] = asdict(self ) _A : Union[str, Any] = self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : """simple docstring""" __magic_name__ = 3_8_4 __magic_name__ = 1_2_8 __magic_name__ = 1_6 __magic_name__ = 1_2_8 __magic_name__ = 1_2 __magic_name__ = 4 __magic_name__ = 8 __magic_name__ = 0.1 __magic_name__ = 8 __magic_name__ = 1 __magic_name__ = 2 __magic_name__ = 7 __magic_name__ = 1_0 __magic_name__ = 1e-8 __magic_name__ = 1e5 def _lowerCamelCase ( self ) -> Union[str, Any]: return asdict(self ) def lowercase ( ): """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
417
1
import numpy as np def a__ ( A__, A__ ): return np.where(vector > 0, A__, (alpha * (np.exp(A__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
101
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """microsoft/speecht5_tts""" _UpperCAmelCase = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) _UpperCAmelCase = """text_reader""" _UpperCAmelCase = SpeechTaProcessor _UpperCAmelCase = SpeechTaForTextToSpeech _UpperCAmelCase = SpeechTaHifiGan _UpperCAmelCase = ["""text"""] _UpperCAmelCase = ["""audio"""] def UpperCamelCase__ ( self ): """simple docstring""" if self.post_processor is None: SCREAMING_SNAKE_CASE_ : List[Any] = 'microsoft/speecht5_hifigan' super().setup() def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.pre_processor(text=lowerCAmelCase__ , return_tensors='pt' , truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) SCREAMING_SNAKE_CASE_ : List[Any] = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor(embeddings_dataset[7_3_0_5]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
101
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE: def __lowerCamelCase ( self : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[str] ) -> int: return None class _SCREAMING_SNAKE_CASE: def __lowerCamelCase ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ) -> str: return None class _SCREAMING_SNAKE_CASE( unittest.TestCase ): A_ : Dict = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __lowerCamelCase ( self : int ) -> int: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(UpperCamelCase_ , 'tf' , 12 , **UpperCamelCase_ ) @require_torch @slow def __lowerCamelCase ( self : Optional[Any] ) -> Dict: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(UpperCamelCase_ , 'pt' , 12 , **UpperCamelCase_ ) @require_torch @slow def __lowerCamelCase ( self : List[str] ) -> int: from transformers import BertModel SCREAMING_SNAKE_CASE__ :Tuple = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(UpperCamelCase_ ) ) vocab_file.flush() SCREAMING_SNAKE_CASE__ :Union[str, Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE__ :Any = BertModel(BertConfig(vocab_size=len(UpperCamelCase_ ) ) ) model.save_pretrained(UpperCamelCase_ ) self._test_export(UpperCamelCase_ , 'pt' , 12 , UpperCamelCase_ ) @require_tf @slow def __lowerCamelCase ( self : Tuple ) -> Dict: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE__ :List[str] = self._test_export(UpperCamelCase_ , 'tf' , 12 , **UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = quantize(Path(UpperCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(UpperCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def __lowerCamelCase ( self : List[str] ) -> str: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE__ :List[Any] = self._test_export(UpperCamelCase_ , 'pt' , 12 , **UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = quantize(UpperCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(UpperCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def __lowerCamelCase ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str]=None , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE__ :Any = Path(UpperCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) return path except Exception as e: self.fail(UpperCamelCase_ ) @require_torch @require_tokenizers @slow def __lowerCamelCase ( self : Union[str, Any] ) -> List[str]: from transformers import BertModel SCREAMING_SNAKE_CASE__ :Optional[int] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) SCREAMING_SNAKE_CASE__ :Dict = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(UpperCamelCase_ , UpperCamelCase_ , 'pt' ) @require_tf @require_tokenizers @slow def __lowerCamelCase ( self : str ) -> int: from transformers import TFBertModel SCREAMING_SNAKE_CASE__ :List[str] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) SCREAMING_SNAKE_CASE__ :Tuple = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(UpperCamelCase_ , UpperCamelCase_ , 'tf' ) def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :List[Any] = FeatureExtractionPipeline(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Any = infer_shapes(UpperCamelCase_ , UpperCamelCase_ ) # Assert all variables are present self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , UpperCamelCase_ ) self.assertSequenceEqual(variable_names[3:] , UpperCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def __lowerCamelCase ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ :Any = ['input_ids', 'attention_mask', 'token_type_ids'] SCREAMING_SNAKE_CASE__ :Tuple = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :List[str] = ensure_valid_input(FuncContiguousArgs() , UpperCamelCase_ , UpperCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(UpperCamelCase_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(UpperCamelCase_ ) , set(UpperCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(UpperCamelCase_ , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Any = ensure_valid_input(FuncNonContiguousArgs() , UpperCamelCase_ , UpperCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(UpperCamelCase_ ) , 1 ) self.assertEqual(len(UpperCamelCase_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def __lowerCamelCase ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ :Dict = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
320
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = BigBirdConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: SCREAMING_SNAKE_CASE__ :Tuple = BigBirdForQuestionAnswering(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :Any = BigBirdForPreTraining(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCAmelCase__ , UpperCAmelCase__ , is_trivia_qa=UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) UpperCamelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
320
1