code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _A : Any = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class a__ ( a_, unittest.TestCase ): __lowerCAmelCase = XLMProphetNetTokenizer __lowerCAmelCase = False __lowerCAmelCase = True def __magic_name__ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase : Union[str, Any] = XLMProphetNetTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ): lowercase : Dict = "[PAD]" lowercase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def __magic_name__ ( self ): lowercase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__a ) , 1_012 ) def __magic_name__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def __magic_name__ ( self ): lowercase : List[Any] = XLMProphetNetTokenizer(__a , keep_accents=__a ) lowercase : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase : List[str] = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def __magic_name__ ( self ): return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def __magic_name__ ( self ): lowercase : List[str] = "Hello World!" lowercase : List[str] = [35_389, 6_672, 49, 2] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def __magic_name__ ( self ): # fmt: off lowercase : Any = {"input_ids": [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
361
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __lowerCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( UpperCAmelCase ): def __init__( self : Dict , __a : List[Any] , __a : Optional[Any] ) -> Dict: super().__init__() self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self : Tuple , __a : int = 1 , __a : int = 1_0_0 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : Optional[float] = None , __a : bool = True , ) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: __UpperCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate __UpperCAmelCase = audio_length_in_s * self.unet.config.sample_rate __UpperCAmelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) __UpperCAmelCase = int(__a ) if sample_size % down_scale_factor != 0: __UpperCAmelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ''' process.''' ) __UpperCAmelCase = int(__a ) __UpperCAmelCase = next(iter(self.unet.parameters() ) ).dtype __UpperCAmelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__a , __a ) and len(__a ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__a )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __UpperCAmelCase = randn_tensor(__a , generator=__a , device=self.device , dtype=__a ) # set step values self.scheduler.set_timesteps(__a , device=audio.device ) __UpperCAmelCase = self.scheduler.timesteps.to(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __UpperCAmelCase = self.unet(__a , __a ).sample # 2. compute previous image: x_t -> t_t-1 __UpperCAmelCase = self.scheduler.step(__a , __a , __a ).prev_sample __UpperCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() __UpperCAmelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__a )
262
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """gpt_neox""" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Any=5_04_32 , __SCREAMING_SNAKE_CASE : Dict=61_44 , __SCREAMING_SNAKE_CASE : Any=44 , __SCREAMING_SNAKE_CASE : Optional[Any]=64 , __SCREAMING_SNAKE_CASE : Tuple=2_45_76 , __SCREAMING_SNAKE_CASE : Optional[int]="gelu" , __SCREAMING_SNAKE_CASE : List[str]=0.25 , __SCREAMING_SNAKE_CASE : List[str]=1_00_00 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : Tuple=20_48 , __SCREAMING_SNAKE_CASE : str=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=1E-5 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[Any]=0 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : int , ): super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = rotary_pct __a = rotary_emb_base __a = attention_dropout __a = hidden_dropout __a = classifier_dropout __a = initializer_range __a = layer_norm_eps __a = use_cache __a = tie_word_embeddings __a = use_parallel_residual __a = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def _UpperCAmelCase ( self : Optional[Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __SCREAMING_SNAKE_CASE ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) __a = self.rope_scaling.get("type" , __SCREAMING_SNAKE_CASE ) __a = self.rope_scaling.get("factor" , __SCREAMING_SNAKE_CASE ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
721
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __A ( _A , _A=False , _A=False ): """simple docstring""" __a = "backbone." if is_semantic else "" __a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", "beit.embeddings.cls_token"), (f"""{prefix}patch_embed.proj.weight""", "beit.embeddings.patch_embeddings.projection.weight"), (f"""{prefix}patch_embed.proj.bias""", "beit.embeddings.patch_embeddings.projection.bias"), (f"""{prefix}pos_embed""", "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __A ( _A , _A , _A=False , _A=False ): """simple docstring""" for i in range(config.num_hidden_layers ): __a = "backbone." if is_semantic else "" # queries, keys and values __a = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) __a = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) __a = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) __a = in_proj_weight[ : config.hidden_size, : ] __a = q_bias __a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __a = in_proj_weight[ -config.hidden_size :, : ] __a = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __a = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) __a = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) __a = gamma_a __a = gamma_a def __A ( _A , _A , _A ): """simple docstring""" __a = dct.pop(_A ) __a = val def __A ( ): """simple docstring""" __a = "http://images.cocodataset.org/val2017/000000039769.jpg" __a = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def __A ( _A , _A , _A=False ): """simple docstring""" __a = False if "rvlcdip" in checkpoint_url else True __a = BeitConfig(use_absolute_position_embeddings=_A , use_mask_token=_A ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __a = 1024 __a = 4096 __a = 24 __a = 16 # labels if "rvlcdip" in checkpoint_url: __a = 16 __a = "huggingface/label-files" __a = "rvlcdip-id2label.json" __a = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) __a = {int(_A ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __a = torch.hub.load_state_dict_from_url(_A , map_location="cpu" )["model"] __a = create_rename_keys(_A , has_lm_head=_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , _A , has_lm_head=_A ) # load HuggingFace model __a = BeitForMaskedImageModeling(_A ) if has_lm_head else BeitForImageClassification(_A ) model.eval() model.load_state_dict(_A ) # Check outputs on an image __a = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_A ) __a = prepare_img() __a = image_processor(images=_A , return_tensors="pt" ) __a = encoding["pixel_values"] __a = model(_A ) __a = outputs.logits # verify logits __a = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(_A ), "Shape of logits not as expected" Path(_A ).mkdir(exist_ok=_A ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_A ) if push_to_hub: if has_lm_head: __a = "dit-base" if "base" in checkpoint_url else "dit-large" else: __a = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_A , ) model.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_A , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
525
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Dict = 0 snake_case_ : Optional[int] = number while duplicate > 0: snake_case_ , snake_case_ : Any = divmod(SCREAMING_SNAKE_CASE__ , 1_0 ) fact_sum += factorial(SCREAMING_SNAKE_CASE__ ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') a_ = int(input('''Enter number: ''').strip()) print( F'''{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.''' )
480
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__(self , lowercase__="</s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__=1_25 , lowercase__=None , **lowercase__ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case_ : Optional[Any] = [f'<extra_id_{i}>' for i in range(lowercase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case_ : int = len(set(filter(lambda lowercase__ : bool("""extra_id""" in str(lowercase__ ) ) , lowercase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) snake_case_ : Union[str, Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else pad_token snake_case_ : Optional[int] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else eos_token snake_case_ : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else unk_token super().__init__( eos_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , extra_ids=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : List[str] = extra_ids snake_case_ : Union[str, Any] = 2**8 # utf is 8 bits # define special tokens dict snake_case_ : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } snake_case_ : List[Any] = len(self.special_tokens_encoder ) snake_case_ : Tuple = len(lowercase__ ) for i, token in enumerate(lowercase__ ): snake_case_ : Union[str, Any] = self.vocab_size + i - n snake_case_ : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def __UpperCamelCase (self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase__ )) + [1] return ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] def __UpperCamelCase (self , lowercase__ ): if len(lowercase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : Union[str, Any] = self._add_eos_if_not_present(lowercase__ ) if token_ids_a is None: return token_ids_a else: snake_case_ : int = self._add_eos_if_not_present(lowercase__ ) return token_ids_a + token_ids_a def __UpperCamelCase (self , lowercase__ ): snake_case_ : List[str] = [chr(lowercase__ ) for i in text.encode("""utf-8""" )] return tokens def __UpperCamelCase (self , lowercase__ ): if token in self.special_tokens_encoder: snake_case_ : Any = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: snake_case_ : Optional[int] = self.added_tokens_encoder[token] elif len(lowercase__ ) != 1: snake_case_ : Dict = self.unk_token_id else: snake_case_ : List[str] = ord(lowercase__ ) + self._num_special_tokens return token_id def __UpperCamelCase (self , lowercase__ ): if index in self.special_tokens_decoder: snake_case_ : Tuple = self.special_tokens_decoder[index] else: snake_case_ : Dict = chr(index - self._num_special_tokens ) return token def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[int] = B"""""" for token in tokens: if token in self.special_tokens_decoder: snake_case_ : List[Any] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: snake_case_ : Union[str, Any] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: snake_case_ : Optional[int] = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: snake_case_ : Any = token.encode("""utf-8""" ) else: snake_case_ : Dict = bytes([ord(lowercase__ )] ) bstring += tok_string snake_case_ : List[Any] = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): return ()
480
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A : Optional[Any] = random.Random() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ): '''simple docstring''' if rng is None: __lowerCAmelCase = global_rng __lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __a , __a=7 , __a=4_00 , __a=20_00 , __a=10 , __a=1_60 , __a=8 , __a=0.0 , __a=40_00 , __a=False , __a=True , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = min_seq_length __lowerCAmelCase = max_seq_length __lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowerCAmelCase = padding_value __lowerCAmelCase = sampling_rate __lowerCAmelCase = return_attention_mask __lowerCAmelCase = do_normalize __lowerCAmelCase = feature_size __lowerCAmelCase = chunk_length __lowerCAmelCase = hop_length def snake_case ( self ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case ( self , __a=False , __a=False ): def _flatten(__a ): return list(itertools.chain(*__a ) ) if equal_length: __lowerCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowerCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowerCAmelCase = [np.asarray(__a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCamelCase ( lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] =WhisperFeatureExtractor if is_speech_available() else None def snake_case ( self ): __lowerCAmelCase = WhisperFeatureExtractionTester(self ) def snake_case ( self ): __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = feat_extract_first.save_pretrained(__a )[0] check_json_file_has_correct_format(__a ) __lowerCAmelCase = self.feature_extraction_class.from_pretrained(__a ) __lowerCAmelCase = feat_extract_first.to_dict() __lowerCAmelCase = feat_extract_second.to_dict() __lowerCAmelCase = feat_extract_first.mel_filters __lowerCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__a , __a ) ) self.assertEqual(__a , __a ) def snake_case ( self ): __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(__a , "feat_extract.json" ) feat_extract_first.to_json_file(__a ) __lowerCAmelCase = self.feature_extraction_class.from_json_file(__a ) __lowerCAmelCase = feat_extract_first.to_dict() __lowerCAmelCase = feat_extract_second.to_dict() __lowerCAmelCase = feat_extract_first.mel_filters __lowerCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__a , __a ) ) self.assertEqual(__a , __a ) def snake_case ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowerCAmelCase = [np.asarray(__a ) for speech_input in speech_inputs] # Test feature size __lowerCAmelCase = feature_extractor(__a , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __lowerCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features __lowerCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__a , __a , atol=1e-3 ) ) # Test batched __lowerCAmelCase = feature_extractor(__a , return_tensors="np" ).input_features __lowerCAmelCase = feature_extractor(__a , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__a , __a ): self.assertTrue(np.allclose(__a , __a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __lowerCAmelCase = np.asarray(__a ) __lowerCAmelCase = feature_extractor(__a , return_tensors="np" ).input_features __lowerCAmelCase = feature_extractor(__a , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__a , __a ): self.assertTrue(np.allclose(__a , __a , atol=1e-3 ) ) # Test truncation required __lowerCAmelCase = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] __lowerCAmelCase = [np.asarray(__a ) for speech_input in speech_inputs] __lowerCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] __lowerCAmelCase = [np.asarray(__a ) for speech_input in speech_inputs_truncated] __lowerCAmelCase = feature_extractor(__a , return_tensors="np" ).input_features __lowerCAmelCase = feature_extractor(__a , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__a , __a ): self.assertTrue(np.allclose(__a , __a , atol=1e-3 ) ) def snake_case ( self ): import torch __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase = np.random.rand(1_00 , 32 ).astype(np.floataa ) __lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowerCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __lowerCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def snake_case ( self , __a ): __lowerCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __lowerCAmelCase = ds.sort("id" ).select(range(__a ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def snake_case ( self ): # fmt: off __lowerCAmelCase = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ] ) # fmt: on __lowerCAmelCase = self._load_datasamples(1 ) __lowerCAmelCase = WhisperFeatureExtractor() __lowerCAmelCase = feature_extractor(__a , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __a , atol=1e-4 ) ) def snake_case ( self ): __lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase = self._load_datasamples(1 )[0] __lowerCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue __lowerCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__a )[0] self.assertTrue(np.all(np.mean(__a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__a ) - 1 ) < 1e-3 ) )
706
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __a , __a , __a , __a , __a=1 , __a=False , **__a ): super().__init__(**__a ) __lowerCAmelCase = vocab_size __lowerCAmelCase = d_embed __lowerCAmelCase = d_proj __lowerCAmelCase = cutoffs + [vocab_size] __lowerCAmelCase = [0] + self.cutoffs __lowerCAmelCase = div_val __lowerCAmelCase = self.cutoffs[0] __lowerCAmelCase = len(self.cutoffs ) - 1 __lowerCAmelCase = self.shortlist_size + self.n_clusters __lowerCAmelCase = keep_order __lowerCAmelCase = [] __lowerCAmelCase = [] def snake_case ( self , __a ): if self.n_clusters > 0: __lowerCAmelCase = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=__a , name="cluster_weight" ) __lowerCAmelCase = self.add_weight( shape=(self.n_clusters,) , initializer="zeros" , trainable=__a , name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: __lowerCAmelCase = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=__a , name=f"out_projs_._{i}" , ) self.out_projs.append(__a ) else: self.out_projs.append(__a ) __lowerCAmelCase = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=__a , name=f"out_layers_._{i}_._weight" , ) __lowerCAmelCase = self.add_weight( shape=(self.vocab_size,) , initializer="zeros" , trainable=__a , name=f"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): __lowerCAmelCase , __lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCAmelCase = self.d_embed // (self.div_val**i) __lowerCAmelCase = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=__a , name=f"out_projs_._{i}" ) self.out_projs.append(__a ) __lowerCAmelCase = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=__a , name=f"out_layers_._{i}_._weight" , ) __lowerCAmelCase = self.add_weight( shape=(r_idx - l_idx,) , initializer="zeros" , trainable=__a , name=f"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) super().build(__a ) @staticmethod def snake_case ( __a , __a , __a , __a=None ): __lowerCAmelCase = x if proj is not None: __lowerCAmelCase = tf.einsum("ibd,ed->ibe" , __a , __a ) return tf.einsum("ibd,nd->ibn" , __a , __a ) + b @staticmethod def snake_case ( __a , __a ): __lowerCAmelCase = shape_list(__a ) __lowerCAmelCase = tf.range(lp_size[0] , dtype=target.dtype ) __lowerCAmelCase = tf.stack([r, target] , 1 ) return tf.gather_nd(__a , __a ) def snake_case ( self , __a , __a , __a=True , __a=False ): __lowerCAmelCase = 0 if self.n_clusters == 0: __lowerCAmelCase = self._logit(__a , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: __lowerCAmelCase = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__a , logits=__a ) __lowerCAmelCase = tf.nn.log_softmax(__a , axis=-1 ) else: __lowerCAmelCase = shape_list(__a ) __lowerCAmelCase = [] __lowerCAmelCase = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): __lowerCAmelCase , __lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: __lowerCAmelCase = (target >= l_idx) & (target < r_idx) __lowerCAmelCase = tf.where(__a ) __lowerCAmelCase = tf.boolean_mask(__a , __a ) - l_idx if self.div_val == 1: __lowerCAmelCase = self.out_layers[0][0][l_idx:r_idx] __lowerCAmelCase = self.out_layers[0][1][l_idx:r_idx] else: __lowerCAmelCase = self.out_layers[i][0] __lowerCAmelCase = self.out_layers[i][1] if i == 0: __lowerCAmelCase = tf.concat([cur_W, self.cluster_weight] , 0 ) __lowerCAmelCase = tf.concat([cur_b, self.cluster_bias] , 0 ) __lowerCAmelCase = self._logit(__a , __a , __a , self.out_projs[0] ) __lowerCAmelCase = tf.nn.log_softmax(__a ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: __lowerCAmelCase = tf.boolean_mask(__a , __a ) __lowerCAmelCase = self._gather_logprob(__a , __a ) else: __lowerCAmelCase = self._logit(__a , __a , __a , self.out_projs[i] ) __lowerCAmelCase = tf.nn.log_softmax(__a ) __lowerCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster __lowerCAmelCase = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__a ) if target is not None: __lowerCAmelCase = tf.boolean_mask(__a , __a ) __lowerCAmelCase = tf.boolean_mask(__a , __a ) __lowerCAmelCase = self._gather_logprob(__a , __a ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__a , -cur_logprob , shape_list(__a ) ) __lowerCAmelCase = tf.concat(__a , axis=-1 ) if target is not None: if return_mean: __lowerCAmelCase = tf.reduce_mean(__a ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__a ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__a , name=self.name , aggregation="mean" if return_mean else "" ) return out
282
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _lowerCAmelCase: List[Any] = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _lowerCAmelCase: List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _lowercase( __a : str ): if "://" in dataset_path: a__ =dataset_path.split('://' )[1] return dataset_path def _lowercase( __a : fsspec.AbstractFileSystem ): if fs is not None and fs.protocol != "file": return True else: return False def _lowercase( __a : fsspec.AbstractFileSystem , __a : str , __a : str ): a__ =not is_remote_filesystem(__a ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__a ) , fs._strip_protocol(__a ) ) else: fs.mv(__a , __a , recursive=__a ) def _lowercase( ): if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: a__ =None a__ =None a__ =threading.Lock()
20
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __UpperCAmelCase =logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCAmelCase__ ( UpperCAmelCase_ ): def __init__( self , *UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ): '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) A__ = eval_examples A__ = post_process_function A__ = quant_trainer_args A__ = 1_28 # default number of calibration samples def lowercase_ ( self , UpperCamelCase__=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) A__ = calib_dataset if calib_dataset is not None else self.calib_dataset A__ = self._remove_unused_columns(UpperCamelCase__ , description="Calibration" ) return DataLoader( UpperCamelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCamelCase__ , ) def lowercase_ ( self , UpperCamelCase__=None ): '''simple docstring''' A__ = self.train_dataset if calib_dataset is None else calib_dataset A__ = self.get_calib_dataloader(UpperCamelCase__ ) A__ = self.model quant_trainer.configure_model(UpperCamelCase__ , self.quant_trainer_args , calib=UpperCamelCase__ ) model.eval() quant_trainer.enable_calibration(UpperCamelCase__ ) logger.info("***** Running calibration *****" ) logger.info(f""" Num examples = {self.calib_num}""" ) logger.info(f""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(UpperCamelCase__ ): # Prediction step A__ , A__ , A__ = self.prediction_step(UpperCamelCase__ , UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCamelCase__ , self.quant_trainer_args ) A__ = model def lowercase_ ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = "eval" ): '''simple docstring''' A__ = self.eval_dataset if eval_dataset is None else eval_dataset A__ = self.get_eval_dataloader(UpperCamelCase__ ) A__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , ) finally: A__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: A__ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions ) A__ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase__ ) self.log(UpperCamelCase__ ) else: A__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase__ ) return metrics def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__ = "test" ): '''simple docstring''' A__ = self.get_test_dataloader(UpperCamelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , ) finally: A__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output A__ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions , "predict" ) A__ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__="./" ): '''simple docstring''' A__ = self.eval_dataset A__ = self.get_eval_dataloader(UpperCamelCase__ ) A__ = next(iter(UpperCamelCase__ ) ) # saving device - to make it consistent A__ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple A__ = tuple(v.to(UpperCamelCase__ ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer A__ = True A__ = self.model.to(UpperCamelCase__ ) model.eval() model.float() A__ = model.module if hasattr(UpperCamelCase__ , "module" ) else model quant_trainer.configure_model(UpperCamelCase__ , self.quant_trainer_args ) A__ = os.path.join(UpperCamelCase__ , "model.onnx" ) logger.info(f"""exporting model to {output_model_file}""" ) A__ = {0: "batch_size", 1: "seq_len"} torch.onnx.export( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , export_params=UpperCamelCase__ , opset_version=13 , do_constant_folding=UpperCamelCase__ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=UpperCamelCase__ , ) logger.info("onnx export finished" )
337
0
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase : Dict ="""src/transformers""" # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase : str =importlib.util.spec_from_file_location( """transformers""", os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) UpperCAmelCase : Optional[int] =spec.loader.load_module() UpperCAmelCase : str =transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCAmelCase : Optional[int] =re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") UpperCAmelCase : Optional[Any] ={ """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def _lowerCAmelCase (): UpperCamelCase_ = [] for config_class in list(CONFIG_MAPPING.values()): UpperCamelCase_ = False # source code of `config_class` UpperCamelCase_ = inspect.getsource(_lowerCAmelCase) UpperCamelCase_ = _re_checkpoint.findall(_lowerCAmelCase) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCamelCase_ , UpperCamelCase_ = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase_ = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: UpperCamelCase_ = True break UpperCamelCase_ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCAmelCase) if len(_lowerCAmelCase) > 0: UpperCamelCase_ = "\n".join(sorted(_lowerCAmelCase)) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""") if __name__ == "__main__": check_config_docstrings_have_checkpoints()
504
import re def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = re.compile(r"^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$") if match := re.search(_lowerCAmelCase , _lowerCAmelCase): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
504
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class __snake_case ( UpperCamelCase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = "falcon" __SCREAMING_SNAKE_CASE = ["past_key_values"] def __init__( self , _UpperCamelCase=6_50_24 , _UpperCamelCase=45_44 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1E-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ) -> Optional[Any]: """simple docstring""" __snake_case = vocab_size # Backward compatibility with n_embed kwarg __snake_case = kwargs.pop("""n_embed""" , __lowerCamelCase ) __snake_case = hidden_size if n_embed is None else n_embed __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = use_cache __snake_case = hidden_dropout __snake_case = attention_dropout __snake_case = bos_token_id __snake_case = eos_token_id __snake_case = num_attention_heads if num_kv_heads is None else num_kv_heads __snake_case = alibi __snake_case = new_decoder_architecture __snake_case = multi_query # Ignored when new_decoder_architecture is True __snake_case = parallel_attn __snake_case = bias super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @property def a ( self ) -> Dict: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def a ( self ) -> str: """simple docstring""" return not self.alibi
268
def UpperCamelCase__( UpperCamelCase__ : str = "The quick brown fox jumps over the lazy dog" , )->bool: A__ = set() # Replace all the whitespace in our sentence A__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCamelCase__ ) == 26 def UpperCamelCase__( UpperCamelCase__ : str = "The quick brown fox jumps over the lazy dog" , )->bool: A__ = [False] * 26 for char in input_str: if char.islower(): A__ = True elif char.isupper(): A__ = True return all(UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : str = "The quick brown fox jumps over the lazy dog" , )->bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase__( )->None: from timeit import timeit A__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=UpperCamelCase__ ) ) print(timeit('''is_pangram_faster()''' , setup=UpperCamelCase__ ) ) print(timeit('''is_pangram_fastest()''' , setup=UpperCamelCase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
190
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = KandinskyVaaControlnetPipeline a = ["image_embeds", "negative_image_embeds", "hint"] a = ["image_embeds", "negative_image_embeds", "hint"] a = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a = False @property def lowercase_ ( self : Optional[Any] ) -> Any: return 32 @property def lowercase_ ( self : Tuple ) -> Tuple: return 32 @property def lowercase_ ( self : Any ) -> Tuple: return self.time_input_dim @property def lowercase_ ( self : int ) -> Union[str, Any]: return self.time_input_dim * 4 @property def lowercase_ ( self : int ) -> Optional[int]: return 100 @property def lowercase_ ( self : List[Any] ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE__ = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowercase_ ( self : List[str] ) -> Dict: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase_ ( self : Optional[int] ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.dummy_unet SCREAMING_SNAKE_CASE__ = self.dummy_movq SCREAMING_SNAKE_CASE__ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase_ ( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str=0 ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCamelCase ) # create hint SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) if str(__lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def lowercase_ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = '''cpu''' SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[str] ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) SCREAMING_SNAKE_CASE__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(np.array(__lowerCamelCase ) ).float() / 255.0 SCREAMING_SNAKE_CASE__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''A robot, 4k photo''' SCREAMING_SNAKE_CASE__ = torch.Generator(device='''cuda''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE__ = torch.Generator(device='''cuda''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipeline( image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , hint=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
472
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = original_name.split('''.''' )[0] SCREAMING_SNAKE_CASE__ = key.split('''.''' ) SCREAMING_SNAKE_CASE__ = int(key_list[key_list.index(_A ) - 2] ) SCREAMING_SNAKE_CASE__ = int(key_list[key_list.index(_A ) - 1] ) SCREAMING_SNAKE_CASE__ = orig_block_num - offset SCREAMING_SNAKE_CASE__ = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = OrderedDict() SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): SCREAMING_SNAKE_CASE__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 SCREAMING_SNAKE_CASE__ = key[: key.find('''proj''' )] SCREAMING_SNAKE_CASE__ = key.replace(_A , F'''patch_embeddings.{total_embed_found}.''' ) SCREAMING_SNAKE_CASE__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: SCREAMING_SNAKE_CASE__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(_A , _A , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(_A , _A , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(_A , _A , '''norm1''' , '''before_norm''' ) if "norm2" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(_A , _A , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(_A , _A , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: SCREAMING_SNAKE_CASE__ = replace_key_with_offset(_A , _A , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: SCREAMING_SNAKE_CASE__ = key.replace('''head''' , '''classifier''' ) SCREAMING_SNAKE_CASE__ = value return new_state_dict def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ = Image.open(requests.get(_A , stream=_A ).raw ) return image @torch.no_grad() def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = PoolFormerConfig() # set attributes based on model_name SCREAMING_SNAKE_CASE__ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE__ = model_name[-3:] SCREAMING_SNAKE_CASE__ = 10_00 SCREAMING_SNAKE_CASE__ = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE__ = (1, 10_00) # set config attributes SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE__ = {int(_A ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} if size == "s12": SCREAMING_SNAKE_CASE__ = [2, 2, 6, 2] SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 0.9 elif size == "s24": SCREAMING_SNAKE_CASE__ = [4, 4, 12, 4] SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 0.9 elif size == "s36": SCREAMING_SNAKE_CASE__ = [6, 6, 18, 6] SCREAMING_SNAKE_CASE__ = [64, 1_28, 3_20, 5_12] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 1e-6 SCREAMING_SNAKE_CASE__ = 0.9 elif size == "m36": SCREAMING_SNAKE_CASE__ = [6, 6, 18, 6] SCREAMING_SNAKE_CASE__ = [96, 1_92, 3_84, 7_68] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 1e-6 SCREAMING_SNAKE_CASE__ = 0.9_5 elif size == "m48": SCREAMING_SNAKE_CASE__ = [8, 8, 24, 8] SCREAMING_SNAKE_CASE__ = [96, 1_92, 3_84, 7_68] SCREAMING_SNAKE_CASE__ = 4.0 SCREAMING_SNAKE_CASE__ = 1e-6 SCREAMING_SNAKE_CASE__ = 0.9_5 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor SCREAMING_SNAKE_CASE__ = PoolFormerImageProcessor(crop_pct=_A ) # Prepare image SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=_A , return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location=torch.device('''cpu''' ) ) # rename keys SCREAMING_SNAKE_CASE__ = rename_keys(_A ) # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE__ = PoolFormerForImageClassification(_A ) model.load_state_dict(_A ) model.eval() # Define image processor SCREAMING_SNAKE_CASE__ = PoolFormerImageProcessor(crop_pct=_A ) SCREAMING_SNAKE_CASE__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass SCREAMING_SNAKE_CASE__ = model(_A ) SCREAMING_SNAKE_CASE__ = outputs.logits # define expected logit slices for different models if size == "s12": SCREAMING_SNAKE_CASE__ = torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9] ) elif size == "s24": SCREAMING_SNAKE_CASE__ = torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5] ) elif size == "s36": SCREAMING_SNAKE_CASE__ = torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8] ) elif size == "m36": SCREAMING_SNAKE_CASE__ = torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8] ) elif size == "m48": SCREAMING_SNAKE_CASE__ = torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _A , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_A ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
472
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def a__ ( _UpperCamelCase : List[str]=None ,_UpperCamelCase : Optional[Any]=None ): return field(default_factory=lambda: default ,metadata=_UpperCamelCase ) @dataclass class __lowerCAmelCase : lowerCAmelCase__ = field( metadata={"""help""": """The csv file to plot."""} , ) lowerCAmelCase__ = field( default=lowerCAmelCase__ , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) lowerCAmelCase__ = field( default=lowerCAmelCase__ , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) lowerCAmelCase__ = field( default=lowerCAmelCase__ , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) lowerCAmelCase__ = field( default=lowerCAmelCase__ , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) lowerCAmelCase__ = field( default=lowerCAmelCase__ , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) lowerCAmelCase__ = list_field( default=lowerCAmelCase__ , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def a__ ( _UpperCamelCase : Dict ): try: int(_UpperCamelCase ) return True except ValueError: return False def a__ ( _UpperCamelCase : Optional[Any] ): try: float(_UpperCamelCase ) return True except ValueError: return False class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = args __lowerCamelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: __lowerCamelCase = csv.DictReader(__UpperCAmelCase ) for row in reader: __lowerCamelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None __lowerCamelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None __lowerCamelCase = float(row['''result'''] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = plt.subplots() __lowerCamelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' __lowerCamelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowerCamelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) __lowerCamelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) __lowerCamelCase = self.result_dict[model_name]['''result'''] ((__lowerCamelCase) ,(__lowerCamelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowerCamelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowerCamelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__UpperCAmelCase , ) else: __lowerCamelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowerCamelCase) ,(__lowerCamelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) __lowerCamelCase = np.asarray(__UpperCAmelCase , __UpperCAmelCase )[: len(__UpperCAmelCase )] plt.scatter( __UpperCAmelCase , __UpperCAmelCase , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(__UpperCAmelCase , __UpperCAmelCase , '''--''' ) title_str += F""" {label_model_name} vs.""" __lowerCamelCase = title_str[:-4] __lowerCamelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(__UpperCAmelCase ) plt.xlabel(__UpperCAmelCase ) plt.ylabel(__UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def a__ ( ): __lowerCamelCase = HfArgumentParser(_UpperCamelCase ) __lowerCamelCase = parser.parse_args_into_dataclasses()[0] __lowerCamelCase = Plot(args=_UpperCamelCase ) plot.plot() if __name__ == "__main__": main()
175
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = """Hello, World!""" a_ = """en_XX""" def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : bool ): __lowerCamelCase = Path('''data_bin''' ) __lowerCamelCase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_UpperCamelCase ).parent ) ,checkpoint_file=Path(_UpperCamelCase ).name ,_name='''xmod_base''' ,arch='''xmod_base''' ,task='''multilingual_masked_lm''' ,data_name_or_path=str(_UpperCamelCase ) ,bpe='''sentencepiece''' ,sentencepiece_model=str(Path(_UpperCamelCase ).parent / '''sentencepiece.bpe.model''' ) ,src_dict=str(data_dir / '''dict.txt''' ) ,) xmod.eval() # disable dropout print(_UpperCamelCase ) __lowerCamelCase = xmod.model.encoder.sentence_encoder __lowerCamelCase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings ,hidden_size=xmod.cfg.model.encoder_embed_dim ,num_hidden_layers=xmod.cfg.model.encoder_layers ,num_attention_heads=xmod.cfg.model.encoder_attention_heads ,intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=5_14 ,type_vocab_size=1 ,layer_norm_eps=1e-5 ,pre_norm=xmod.cfg.model.encoder_normalize_before ,adapter_reduction_factor=getattr(xmod.cfg.model ,'''bottleneck''' ,2 ) ,adapter_layer_norm=xmod.cfg.model.adapter_layer_norm ,adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm ,ln_before_adapter=xmod.cfg.model.ln_before_adapter ,languages=xmod.cfg.model.languages ,) if classification_head: __lowerCamelCase = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' ,_UpperCamelCase ) __lowerCamelCase = XmodForSequenceClassification(_UpperCamelCase ) if classification_head else XmodForMaskedLM(_UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCamelCase = xmod_sent_encoder.embed_tokens.weight __lowerCamelCase = xmod_sent_encoder.embed_positions.weight __lowerCamelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowerCamelCase = xmod_sent_encoder.layernorm_embedding.weight __lowerCamelCase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCamelCase = model.roberta.encoder.layer[i] __lowerCamelCase = xmod_sent_encoder.layers[i] # self attention __lowerCamelCase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) __lowerCamelCase = xmod_layer.self_attn.q_proj.weight __lowerCamelCase = xmod_layer.self_attn.q_proj.bias __lowerCamelCase = xmod_layer.self_attn.k_proj.weight __lowerCamelCase = xmod_layer.self_attn.k_proj.bias __lowerCamelCase = xmod_layer.self_attn.v_proj.weight __lowerCamelCase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowerCamelCase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) __lowerCamelCase = xmod_layer.self_attn.out_proj.weight __lowerCamelCase = xmod_layer.self_attn.out_proj.bias __lowerCamelCase = xmod_layer.self_attn_layer_norm.weight __lowerCamelCase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowerCamelCase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) __lowerCamelCase = xmod_layer.fca.weight __lowerCamelCase = xmod_layer.fca.bias # output __lowerCamelCase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) __lowerCamelCase = xmod_layer.fca.weight __lowerCamelCase = xmod_layer.fca.bias __lowerCamelCase = xmod_layer.final_layer_norm.weight __lowerCamelCase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowerCamelCase = xmod_layer.adapter_layer_norm.weight __lowerCamelCase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowerCamelCase = bert_output.adapter_modules[lang_code] __lowerCamelCase = xmod_layer.adapter_modules[lang_code] __lowerCamelCase = from_adapter.fca.weight __lowerCamelCase = from_adapter.fca.bias __lowerCamelCase = from_adapter.fca.weight __lowerCamelCase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowerCamelCase = xmod_sent_encoder.layer_norm.weight __lowerCamelCase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowerCamelCase = xmod.model.classification_heads['''mnli'''].dense.weight __lowerCamelCase = xmod.model.classification_heads['''mnli'''].dense.bias __lowerCamelCase = xmod.model.classification_heads['''mnli'''].out_proj.weight __lowerCamelCase = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head __lowerCamelCase = xmod.model.encoder.lm_head.dense.weight __lowerCamelCase = xmod.model.encoder.lm_head.dense.bias __lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.weight __lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.bias __lowerCamelCase = xmod.model.encoder.lm_head.weight __lowerCamelCase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCamelCase = xmod.encode(_UpperCamelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_UpperCamelCase ) __lowerCamelCase = model(_UpperCamelCase )[0] if classification_head: __lowerCamelCase = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_UpperCamelCase ) ) else: __lowerCamelCase = xmod.model(_UpperCamelCase ,lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape ,their_output.shape ) __lowerCamelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowerCamelCase = torch.allclose(_UpperCamelCase ,_UpperCamelCase ,atol=1e-3 ) print('''Do both models output the same tensors?''' ,'''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_UpperCamelCase ).mkdir(parents=_UpperCamelCase ,exist_ok=_UpperCamelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a_ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
175
1
'''simple docstring''' def snake_case ( snake_case : List[str] , snake_case : Tuple ) -> Optional[int]: """simple docstring""" lowerCAmelCase = [1] for i in range(2 , SCREAMING_SNAKE_CASE_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowerCAmelCase = [] lowerCAmelCase = list(range(SCREAMING_SNAKE_CASE_ ) ) # Find permutation while factorials: lowerCAmelCase = factorials.pop() lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : List[Any] = {"vocab_file": "spiece.model"} _UpperCamelCase : Union[str, Any] = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _UpperCamelCase : List[Any] = { "AI-Sweden/gpt-sw3-126m": 2048, "AI-Sweden/gpt-sw3-350m": 2048, "AI-Sweden/gpt-sw3-1.6b": 2048, "AI-Sweden/gpt-sw3-6.7b": 2048, "AI-Sweden/gpt-sw3-20b": 2048, } class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): '''simple docstring''' lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) lowerCAmelCase = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCAmelCase = '<|endoftext|>' if eos_token is None else eos_token lowerCAmelCase = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCAmelCase = unk_token if pad_token is None else pad_token lowerCAmelCase = eos_token if bos_token is None else bos_token else: lowerCAmelCase = '<pad>' if pad_token is None else pad_token lowerCAmelCase = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = do_lower_case lowerCAmelCase = remove_space lowerCAmelCase = keep_accents lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off lowerCAmelCase = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCAmelCase = re.compile( F'[{"".join(map(_SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]' ) def __getstate__( self ): '''simple docstring''' lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return len(self.sp_model ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = self.non_printing_characters_re.sub('' , _SCREAMING_SNAKE_CASE ) # Normalize whitespaces lowerCAmelCase = ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization lowerCAmelCase = unicodedata.normalize('NFC' , _SCREAMING_SNAKE_CASE ) return text def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = self.preprocess_text(_SCREAMING_SNAKE_CASE ) return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) @staticmethod def _SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' return out_string def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = [] lowerCAmelCase = '' lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token lowerCAmelCase = True lowerCAmelCase = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = False out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = self.preprocess_text(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.sp_model.encode(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = [self.preprocess_text(_SCREAMING_SNAKE_CASE ) for t in text] lowerCAmelCase = self.sp_model.encode(_SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) return token_ids def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.decode(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] lowerCAmelCase = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(_SCREAMING_SNAKE_CASE ) + F'{self.bos_token}Bot:' ) return self.encode(text=_SCREAMING_SNAKE_CASE )
514
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowercase__ : Any = KandinskyVaaInpaintPipeline lowercase__ : List[str] = ["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] lowercase__ : List[str] = [ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] lowercase__ : str = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase__ : Union[str, Any] = False @property def lowercase_ ( self ): '''simple docstring''' return 32 @property def lowercase_ ( self ): '''simple docstring''' return 32 @property def lowercase_ ( self ): '''simple docstring''' return self.time_input_dim @property def lowercase_ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self ): '''simple docstring''' return 1_00 @property def lowercase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) A__ = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } A__ = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def lowercase_ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) A__ = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self ): '''simple docstring''' A__ = self.dummy_unet A__ = self.dummy_movq A__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=UpperCamelCase__ , ) A__ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ): '''simple docstring''' A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase__ ) # create init_image A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("RGB" ).resize((2_56, 2_56) ) # create mask A__ = np.ones((64, 64) , dtype=np.floataa ) A__ = 0 if str(UpperCamelCase__ ).startswith("mps" ): A__ = torch.manual_seed(UpperCamelCase__ ) else: A__ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A__ = { "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCamelCase__ ) A__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A__ = output.images A__ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) A__ = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def lowercase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def lowercase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): '''simple docstring''' A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy" ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) A__ = np.ones((7_68, 7_68) , dtype=np.floataa ) A__ = 0 A__ = "a hat" A__ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) A__ = KandinskyVaaInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder-inpaint" , torch_dtype=torch.floataa ) A__ = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = torch.Generator(device="cpu" ).manual_seed(0 ) A__ , A__ = pipe_prior( UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() A__ = pipeline( image=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_embeds=UpperCamelCase__ , negative_image_embeds=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="np" , ) A__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
337
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor __UpperCAmelCase =transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __a ( A ) -> Dict: '''simple docstring''' if isinstance(A , torch.Tensor ): return image elif isinstance(A , PIL.Image.Image ): A__ = [image] A__ = [trans(img.convert("RGB" ) ) for img in image] A__ = torch.stack(A ) return image class lowerCAmelCase__ ( UpperCAmelCase_ ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM A__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = min(int(num_inference_steps * strength ) , UpperCamelCase__ ) A__ = max(num_inference_steps - init_timestep , 0 ) A__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' if not isinstance(UpperCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCamelCase__ )}""" ) A__ = image.to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(UpperCamelCase__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) A__ = init_latents.shape A__ = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=UpperCamelCase__ , dtype=UpperCamelCase__ ) # get latents print("add noise to latents at timestep" , UpperCamelCase__ ) A__ = self.scheduler.add_noise(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = init_latents return latents @torch.no_grad() def __call__( self , UpperCamelCase__ = None , UpperCamelCase__ = 0.8 , UpperCamelCase__ = 1 , UpperCamelCase__ = None , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 50 , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , ): '''simple docstring''' self.check_inputs(UpperCamelCase__ ) # 2. Preprocess image A__ = preprocess(UpperCamelCase__ ) # 3. set timesteps self.scheduler.set_timesteps(UpperCamelCase__ , device=self.device ) A__ , A__ = self.get_timesteps(UpperCamelCase__ , UpperCamelCase__ , self.device ) A__ = timesteps[:1].repeat(UpperCamelCase__ ) # 4. Prepare latent variables A__ = self.prepare_latents(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.unet.dtype , self.device , UpperCamelCase__ ) A__ = latents # 5. Denoising loop for t in self.progress_bar(UpperCamelCase__ ): # 1. predict noise model_output A__ = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A__ = self.scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , eta=UpperCamelCase__ , use_clipped_model_output=UpperCamelCase__ , generator=UpperCamelCase__ , ).prev_sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) A__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=UpperCamelCase__ )
337
1
'''simple docstring''' import random def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ) -> List[str]: UpperCAmelCase : Dict = a[left_index] UpperCAmelCase : List[str] = left_index + 1 for j in range(left_index + 1 , _lowerCAmelCase ): if a[j] < pivot: UpperCAmelCase , UpperCAmelCase : Optional[int] = a[i], a[j] i += 1 UpperCAmelCase , UpperCAmelCase : List[str] = a[i - 1], a[left_index] return i - 1 def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: if left < right: UpperCAmelCase : List[str] = random.randint(_lowerCAmelCase , right - 1 ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCAmelCase : Tuple = partition(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) quick_sort_random( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( _lowerCAmelCase , pivot_index + 1 , _lowerCAmelCase ) # recursive quicksort to the right of the pivot point def snake_case_ ( ) -> int: UpperCAmelCase : int = input('''Enter numbers separated by a comma:\n''' ).strip() UpperCAmelCase : int = [int(_lowerCAmelCase ) for item in user_input.split(''',''' )] quick_sort_random(_lowerCAmelCase , 0 , len(_lowerCAmelCase ) ) print(_lowerCAmelCase ) if __name__ == "__main__": main()
528
'''simple docstring''' UpperCamelCase__: dict[tuple[int, int, int], int] = {} def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCAmelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCAmelCase : int = _calculate(days - 1 , _lowerCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCAmelCase : Optional[Any] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCAmelCase : Tuple = _calculate(days - 1 , _lowerCAmelCase , 0 ) UpperCAmelCase : str = state_late + state_absent + state_ontime UpperCAmelCase : List[Any] = prizestrings return prizestrings def snake_case_ ( _lowerCAmelCase : int = 30 ) -> int: return _calculate(_lowerCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
528
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): def __UpperCAmelCase ( self ,__snake_case ): """simple docstring""" return 0.0 def UpperCAmelCase_ ( _UpperCAmelCase :np.ndarray , _UpperCAmelCase :int ) -> tuple[int | float, int | float]: '''simple docstring''' A_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) A_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def UpperCAmelCase_ ( _UpperCAmelCase :FilterType , _UpperCAmelCase :int ) -> None: '''simple docstring''' A_ = 512 A_ = [1] + [0] * (size - 1) A_ = [filter_type.process(_UpperCAmelCase ) for item in inputs] A_ = [0] * (samplerate - size) # zero-padding outputs += filler A_ = np.abs(np.fft.fft(_UpperCAmelCase ) ) A_ = 20 * np.logaa(_UpperCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds A_ = get_bounds(_UpperCAmelCase , _UpperCAmelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(_UpperCAmelCase ) plt.show() def UpperCAmelCase_ ( _UpperCAmelCase :FilterType , _UpperCAmelCase :int ) -> None: '''simple docstring''' A_ = 512 A_ = [1] + [0] * (size - 1) A_ = [filter_type.process(_UpperCAmelCase ) for item in inputs] A_ = [0] * (samplerate - size) # zero-padding outputs += filler A_ = np.angle(np.fft.fft(_UpperCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(_UpperCAmelCase , -2 * pi ) ) plt.show()
188
import logging import os import threading import time try: import warnings except ImportError: a__ : Optional[Any] = None try: import msvcrt except ImportError: a__ : List[str] = None try: import fcntl except ImportError: a__ : Optional[int] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a__ : List[str] = OSError # Data # ------------------------------------------------ a__ : Union[str, Any] = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] a__ : str = '3.0.12' a__ : Optional[int] = None def UpperCAmelCase_ ( ) -> Tuple: '''simple docstring''' global _logger A_ = _logger or logging.getLogger(__name__ ) return _logger class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): def __init__( self ,__snake_case ): """simple docstring""" A_ = lock_file return None def __str__( self ): """simple docstring""" A_ = f'The file lock \'{self.lock_file}\' could not be acquired.' return temp class UpperCAmelCase_ : def __init__( self ,__snake_case ): """simple docstring""" A_ = lock return None def __enter__( self ): """simple docstring""" return self.lock def __exit__( self ,__snake_case ,__snake_case ,__snake_case ): """simple docstring""" self.lock.release() return None class UpperCAmelCase_ : def __init__( self ,__snake_case ,__snake_case=-1 ,__snake_case=None ): """simple docstring""" A_ = max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long A_ = self.hash_filename_if_too_long(__snake_case ,__snake_case ) # The path to the lock file. A_ = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. A_ = None # The default timeout value. A_ = timeout # We use this lock primarily for the lock counter. A_ = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. A_ = 0 return None @property def __UpperCAmelCase ( self ): """simple docstring""" return self._lock_file @property def __UpperCAmelCase ( self ): """simple docstring""" return self._timeout @timeout.setter def __UpperCAmelCase ( self ,__snake_case ): """simple docstring""" A_ = float(__snake_case ) return None def __UpperCAmelCase ( self ): """simple docstring""" raise NotImplementedError() def __UpperCAmelCase ( self ): """simple docstring""" raise NotImplementedError() @property def __UpperCAmelCase ( self ): """simple docstring""" return self._lock_file_fd is not None def __UpperCAmelCase ( self ,__snake_case=None ,__snake_case=0.05 ): """simple docstring""" if timeout is None: A_ = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 A_ = id(self ) A_ = self._lock_file A_ = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' ) self._acquire() if self.is_locked: logger().debug(f'Lock {lock_id} acquired on {lock_filename}' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' ) raise Timeout(self._lock_file ) else: logger().debug( f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' ) time.sleep(__snake_case ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: A_ = max(0 ,self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __UpperCAmelCase ( self ,__snake_case=False ): """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: A_ = id(self ) A_ = self._lock_file logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' ) self._release() A_ = 0 logger().debug(f'Lock {lock_id} released on {lock_filename}' ) return None def __enter__( self ): """simple docstring""" self.acquire() return self def __exit__( self ,__snake_case ,__snake_case ,__snake_case ): """simple docstring""" self.release() return None def __del__( self ): """simple docstring""" self.release(force=__snake_case ) return None def __UpperCAmelCase ( self ,__snake_case ,__snake_case ): """simple docstring""" A_ = os.path.basename(__snake_case ) if len(__snake_case ) > max_length and max_length > 0: A_ = os.path.dirname(__snake_case ) A_ = str(hash(__snake_case ) ) A_ = filename[: max_length - len(__snake_case ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__snake_case ,__snake_case ) else: return path class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): def __init__( self ,__snake_case ,__snake_case=-1 ,__snake_case=None ): """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__snake_case ,timeout=__snake_case ,max_filename_length=__snake_case ) A_ = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: A_ = os.open(self._lock_file ,__snake_case ) except OSError: pass else: try: msvcrt.locking(__snake_case ,msvcrt.LK_NBLCK ,1 ) except OSError: os.close(__snake_case ) else: A_ = fd return None def __UpperCAmelCase ( self ): """simple docstring""" A_ = self._lock_file_fd A_ = None msvcrt.locking(__snake_case ,msvcrt.LK_UNLCK ,1 ) os.close(__snake_case ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): def __init__( self ,__snake_case ,__snake_case=-1 ,__snake_case=None ): """simple docstring""" A_ = os.statvfs(os.path.dirname(__snake_case ) ).f_namemax super().__init__(__snake_case ,timeout=__snake_case ,max_filename_length=__snake_case ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = os.O_RDWR | os.O_CREAT | os.O_TRUNC A_ = os.open(self._lock_file ,__snake_case ) try: fcntl.flock(__snake_case ,fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__snake_case ) else: A_ = fd return None def __UpperCAmelCase ( self ): """simple docstring""" A_ = self._lock_file_fd A_ = None fcntl.flock(__snake_case ,fcntl.LOCK_UN ) os.close(__snake_case ) return None class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): def __UpperCAmelCase ( self ): """simple docstring""" A_ = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: A_ = os.open(self._lock_file ,__snake_case ) except OSError: pass else: A_ = fd return None def __UpperCAmelCase ( self ): """simple docstring""" os.close(self._lock_file_fd ) A_ = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a__ : Union[str, Any] = None if msvcrt: a__ : Dict = WindowsFileLock elif fcntl: a__ : Dict = UnixFileLock else: a__ : Optional[int] = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
188
1
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __lowerCamelCase : Optional[Any] = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } __lowerCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def _lowercase ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" lowercase , lowercase = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase_ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase_ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def _lowercase ( lowerCAmelCase_ ): """simple docstring""" lowercase = {} lowercase = R".*sequential.(\d+).*" lowercase = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase = key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): # replace sequential layers with list lowercase = re.match(lowerCAmelCase_ , lowerCAmelCase_ ).group(1 ) lowercase = key.replace(f'sequential.{sequential_layer}.' , f'layers.{int(lowerCAmelCase_ )//3}.linear.' ) elif re.match(lowerCAmelCase_ , lowerCAmelCase_ ): lowercase = int(re.match(lowerCAmelCase_ , lowerCAmelCase_ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowercase = 1 if projecton_layer == 0 else 2 lowercase = key.replace(f'_projection.{projecton_layer}.' , f'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value lowercase = value lowercase = mixed_qkv.size(0 ) // 3 lowercase = mixed_qkv[:qkv_dim] lowercase = mixed_qkv[qkv_dim : qkv_dim * 2] lowercase = mixed_qkv[qkv_dim * 2 :] lowercase = query_layer lowercase = key_layer lowercase = value_layer else: lowercase = value return model_state_dict def _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" lowercase , lowercase = init_clap(lowerCAmelCase_ , enable_fusion=lowerCAmelCase_ ) clap_model.eval() lowercase = clap_model.state_dict() lowercase = rename_state_dict(lowerCAmelCase_ ) lowercase = ClapConfig() lowercase = enable_fusion lowercase = ClapModel(lowerCAmelCase_ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) transformers_config.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") __lowerCamelCase : List[str] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
715
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : def __init__(self : Dict , A__ : str , A__ : int=3 , A__ : Dict=3_2 , A__ : str=3 , A__ : str=1_0 , A__ : Optional[int]=[1_0, 2_0, 3_0, 4_0] , A__ : Tuple=[1, 1, 2, 1] , A__ : int=True , A__ : List[Any]=True , A__ : List[Any]="relu" , A__ : Any=3 , A__ : Any=None , ) -> Tuple: lowercase = parent lowercase = batch_size lowercase = image_size lowercase = num_channels lowercase = embeddings_size lowercase = hidden_sizes lowercase = depths lowercase = is_training lowercase = use_labels lowercase = hidden_act lowercase = num_labels lowercase = scope lowercase = len(A__ ) def UpperCAmelCase__ (self : str ) -> List[str]: lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ (self : Optional[Any] ) -> List[str]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase__ (self : Dict , A__ : Union[str, Any] , A__ : Optional[int] , A__ : Dict ) -> str: lowercase = RegNetModel(config=A__ ) model.to(A__ ) model.eval() lowercase = model(A__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def UpperCAmelCase__ (self : List[str] , A__ : List[str] , A__ : Union[str, Any] , A__ : str ) -> Dict: lowercase = self.num_labels lowercase = RegNetForImageClassification(A__ ) model.to(A__ ) model.eval() lowercase = model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ (self : Any ) -> Union[str, Any]: lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( _lowercase , _lowercase , unittest.TestCase ): UpperCAmelCase : str = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () UpperCAmelCase : Dict = ( {'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification} if is_torch_available() else {} ) UpperCAmelCase : Dict = False UpperCAmelCase : int = False UpperCAmelCase : Tuple = False UpperCAmelCase : Tuple = False def UpperCAmelCase__ (self : Optional[int] ) -> Tuple: lowercase = RegNetModelTester(self ) lowercase = ConfigTester(self , config_class=A__ , has_text_modality=A__ ) def UpperCAmelCase__ (self : List[Any] ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ (self : Optional[Any] ) -> int: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def UpperCAmelCase__ (self : int ) -> Optional[int]: pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def UpperCAmelCase__ (self : List[Any] ) -> Optional[Any]: pass def UpperCAmelCase__ (self : Any ) -> str: lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(A__ ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , A__ ) def UpperCAmelCase__ (self : List[Any] ) -> Union[str, Any]: lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCAmelCase__ (self : List[str] ) -> Tuple: lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(config=A__ ) for name, module in model.named_modules(): if isinstance(A__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def UpperCAmelCase__ (self : Optional[Any] ) -> List[str]: def check_hidden_states_output(A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ): lowercase = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(A__ , A__ ) ) lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase = self.model_tester.num_stages self.assertEqual(len(A__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase = layer_type lowercase = True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(A__ , A__ , A__ ) def UpperCAmelCase__ (self : List[Any] ) -> Tuple: lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) @slow def UpperCAmelCase__ (self : Tuple ) -> Any: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = RegNetModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def UpperCAmelCase_ ( ): """simple docstring""" lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase__ (self : Optional[int] ) -> Union[str, Any]: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ (self : List[str] ) -> int: lowercase = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A__ ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=A__ , return_tensors="pt" ).to(A__ ) # forward pass with torch.no_grad(): lowercase = model(**A__ ) # verify the logits lowercase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , A__ ) lowercase = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A__ , atol=1e-4 ) )
459
0
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case=1_3 , __snake_case=[3_0, 3_0] , __snake_case=2 , __snake_case=3 , __snake_case=True , __snake_case=True , __snake_case=3_2 , __snake_case=5 , __snake_case=4 , __snake_case=3_7 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=1_0 , __snake_case=0.02 , __snake_case=3 , __snake_case=None , __snake_case=8 , __snake_case=1_0 , ): snake_case = parent snake_case = batch_size snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = is_training snake_case = use_labels snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = scope snake_case = n_targets snake_case = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens snake_case = (image_size[1] // patch_size) * (image_size[0] // patch_size) snake_case = num_patches + 1 + self.num_detection_tokens def a_ ( self ): snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) snake_case = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) snake_case = [] for i in range(self.batch_size ): snake_case = {} snake_case = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) snake_case = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) snake_case = self.get_config() return config, pixel_values, labels def a_ ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(pixel_values=__snake_case ) snake_case = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) snake_case = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def a_ ( self ): snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case = config_and_inputs snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A__ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __magic_name__ = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def a_ ( self , __snake_case , __snake_case , __snake_case=False ): snake_case = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": snake_case = [] for i in range(self.model_tester.batch_size ): snake_case = {} snake_case = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) snake_case = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) snake_case = labels return inputs_dict def a_ ( self ): snake_case = YolosModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=3_7 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): # YOLOS does not use inputs_embeds pass def a_ ( self ): snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def a_ ( self ): snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(__snake_case ) snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def a_ ( self ): snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = True # in YOLOS, the seq_len is different snake_case = self.model_tester.expected_seq_len for model_class in self.all_model_classes: snake_case = True snake_case = False snake_case = True snake_case = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): snake_case = model(**self._prepare_for_class(__snake_case , __snake_case ) ) snake_case = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case = True snake_case = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): snake_case = model(**self._prepare_for_class(__snake_case , __snake_case ) ) snake_case = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) snake_case = len(__snake_case ) # Check attention is always last and order is fine snake_case = True snake_case = True snake_case = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): snake_case = model(**self._prepare_for_class(__snake_case , __snake_case ) ) snake_case = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) snake_case = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def a_ ( self ): def check_hidden_states_output(__snake_case , __snake_case , __snake_case ): snake_case = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): snake_case = model(**self._prepare_for_class(__snake_case , __snake_case ) ) snake_case = outputs.hidden_states snake_case = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length snake_case = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def a_ ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def UpperCAmelCase__ (): """simple docstring""" snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def a_ ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def a_ ( self ): snake_case = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): snake_case = model(inputs.pixel_values ) # verify outputs snake_case = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , __snake_case ) snake_case = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=__snake_case , ) snake_case = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1E-4 ) ) # verify postprocessing snake_case = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] snake_case = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(__snake_case ) snake_case = [7_5, 7_5, 1_7, 6_3, 1_7] snake_case = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1E-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
550
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = StableDiffusionPipeline.from_pretrained(UpperCamelCase_ ,torch_dtype=torch.floataa ) # load LoRA weight from .safetensors snake_case = load_file(UpperCamelCase_ ) snake_case = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: snake_case = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) snake_case = pipeline.text_encoder else: snake_case = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) snake_case = pipeline.unet # find the target layer snake_case = layer_infos.pop(0 ) while len(UpperCamelCase_ ) > -1: try: snake_case = curr_layer.__getattr__(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: snake_case = layer_infos.pop(0 ) elif len(UpperCamelCase_ ) == 0: break except Exception: if len(UpperCamelCase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: snake_case = layer_infos.pop(0 ) snake_case = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' ,'''lora_up''' ) ) pair_keys.append(UpperCamelCase_ ) else: pair_keys.append(UpperCamelCase_ ) pair_keys.append(key.replace('''lora_up''' ,'''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: snake_case = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) snake_case = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCamelCase_ ,UpperCamelCase_ ).unsqueeze(2 ).unsqueeze(3 ) else: snake_case = state_dict[pair_keys[0]].to(torch.floataa ) snake_case = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCamelCase_ ,UpperCamelCase_ ) # update visited list for item in pair_keys: visited.append(UpperCamelCase_ ) return pipeline if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() _SCREAMING_SNAKE_CASE : Optional[int] = args.base_model_path _SCREAMING_SNAKE_CASE : Dict = args.checkpoint_path _SCREAMING_SNAKE_CASE : List[str] = args.dump_path _SCREAMING_SNAKE_CASE : Dict = args.lora_prefix_unet _SCREAMING_SNAKE_CASE : List[str] = args.lora_prefix_text_encoder _SCREAMING_SNAKE_CASE : Optional[Any] = args.alpha _SCREAMING_SNAKE_CASE : Optional[int] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _SCREAMING_SNAKE_CASE : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
550
1
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self ,*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ): warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' ,__SCREAMING_SNAKE_CASE ,) super().__init__(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
702
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def SCREAMING_SNAKE_CASE_ ( snake_case_ : np.ndarray ) -> np.ndarray: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def SCREAMING_SNAKE_CASE_ ( snake_case_ : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def SCREAMING_SNAKE_CASE_ ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ) -> np.ndarray: SCREAMING_SNAKE_CASE : List[Any] = np.zeros_like(snake_case_ ) SCREAMING_SNAKE_CASE : Tuple = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE : Optional[int] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE : Optional[int] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE : int = int(summation > 0 ) return output if __name__ == "__main__": # read original image __UpperCAmelCase = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' __UpperCAmelCase = np.array(Image.open(lena_path)) # kernel to be applied __UpperCAmelCase = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __UpperCAmelCase = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __UpperCAmelCase = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
220
0
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' ,['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' ,['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' ,[None, '''v2'''] ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE_ = hf_hub_url(repo_id=UpperCAmelCase ,path=UpperCAmelCase ,revision=UpperCAmelCase ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(UpperCAmelCase )}'''
393
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass A_ = (3, 9, -1_1, 0, 7, 5, 1, -1) A_ = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class snake_case : '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : Node | None class snake_case : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Iterable[int] ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ = None for i in sorted(lowerCAmelCase_ , reverse=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_ = Node(lowerCAmelCase_ , self.head ) def __iter__( self : Union[str, Any] ) -> Iterator[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.head while node: yield node.data SCREAMING_SNAKE_CASE_ = node.next_node def __len__( self : Union[str, Any] ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Dict ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase_ ) for node in self] ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase )-> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(UpperCAmelCase ) + list(UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() A_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
393
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __UpperCAmelCase = ['gpt2'] __UpperCAmelCase = 'gpt2' if is_tf_available(): class _a ( tf.Module ): """simple docstring""" def __init__( self ,__SCREAMING_SNAKE_CASE ): super().__init__() SCREAMING_SNAKE_CASE : Any = tokenizer SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = TFGPTaLMHeadModel.from_config(__SCREAMING_SNAKE_CASE ) @tf.function(input_signature=(tf.TensorSpec((None,) ,tf.string ,name='text' ),) ) def __a ( self ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : int = self.tokenizer(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = tokenized['input_ids'].to_tensor() SCREAMING_SNAKE_CASE : Any = tf.cast(input_ids_dense > 0 ,tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) SCREAMING_SNAKE_CASE : Optional[int] = self.model(input_ids=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE )['logits'] return outputs @require_tf @require_keras_nlp class _a ( unittest.TestCase ): """simple docstring""" def __a ( self ): super().setUp() SCREAMING_SNAKE_CASE : List[str] = [GPTaTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) for checkpoint in (TOKENIZER_CHECKPOINTS)] SCREAMING_SNAKE_CASE : Optional[Any] = [TFGPTaTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) SCREAMING_SNAKE_CASE : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] SCREAMING_SNAKE_CASE : Tuple = list(zip(self.test_sentences ,self.test_sentences[::-1] ) ) def __a ( self ): for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ): for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE : List[str] = tokenizer([test_inputs] ,return_tensors='tf' ) SCREAMING_SNAKE_CASE : str = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors SCREAMING_SNAKE_CASE : Dict = python_outputs[key].numpy() SCREAMING_SNAKE_CASE : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__SCREAMING_SNAKE_CASE ,tf.intaa ) == tf_outputs_values ) ) @slow def __a ( self ): for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : List[Any] = tf.function(__SCREAMING_SNAKE_CASE ) for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE : Tuple = tf.constant(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = compiled_tokenizer(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = tf_tokenizer(__SCREAMING_SNAKE_CASE ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __a ( self ): for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : int = ModelToSave(tokenizer=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Optional[Any] = model.serving(__SCREAMING_SNAKE_CASE ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE : int = Path(__SCREAMING_SNAKE_CASE ) / 'saved.model' tf.saved_model.save(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,signatures={'serving_default': model.serving} ) SCREAMING_SNAKE_CASE : int = tf.saved_model.load(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = loaded_model.signatures['serving_default'](__SCREAMING_SNAKE_CASE )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def __a ( self ): for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf_tokenizer(__SCREAMING_SNAKE_CASE ) # Build model with some sample inputs SCREAMING_SNAKE_CASE : Union[str, Any] = tf_tokenizer.get_config() SCREAMING_SNAKE_CASE : List[str] = TFGPTaTokenizer.from_config(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = model_from_config(__SCREAMING_SNAKE_CASE ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def __a ( self ): for tf_tokenizer in self.tf_tokenizers: # for the test to run SCREAMING_SNAKE_CASE : str = 123123 for max_length in [3, 5, 1024]: SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Any = tf_tokenizer(__SCREAMING_SNAKE_CASE ,max_length=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = out['input_ids'].numpy().shape[1] assert out_length == max_length
220
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" A = KandinskyVaaImgaImgPipeline A = ['image_embeds', 'negative_image_embeds', 'image'] A = [ 'image_embeds', 'negative_image_embeds', 'image', ] A = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] A = False @property def __a ( self ): return 32 @property def __a ( self ): return 32 @property def __a ( self ): return self.time_input_dim @property def __a ( self ): return self.time_input_dim * 4 @property def __a ( self ): return 100 @property def __a ( self ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def __a ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self ): SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : List[str] = self.dummy_movq SCREAMING_SNAKE_CASE : int = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } SCREAMING_SNAKE_CASE : int = DDIMScheduler(**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE=0 ): SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) ,rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0 ,2 ,3 ,1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert('RGB' ).resize((256, 256) ) if str(__SCREAMING_SNAKE_CASE ).startswith('mps' ): SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __a ( self ): SCREAMING_SNAKE_CASE : Optional[Any] = 'cpu' SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : Tuple = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ,return_dict=__SCREAMING_SNAKE_CASE ,)[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Any = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ): SCREAMING_SNAKE_CASE : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) SCREAMING_SNAKE_CASE : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) SCREAMING_SNAKE_CASE : Optional[Any] = 'A red cartoon frog, 4k' SCREAMING_SNAKE_CASE : str = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' ,torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' ,torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = pipe_prior( __SCREAMING_SNAKE_CASE ,generator=__SCREAMING_SNAKE_CASE ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( image=__SCREAMING_SNAKE_CASE ,image_embeds=__SCREAMING_SNAKE_CASE ,negative_image_embeds=__SCREAMING_SNAKE_CASE ,generator=__SCREAMING_SNAKE_CASE ,num_inference_steps=100 ,height=768 ,width=768 ,strength=0.2 ,output_type='np' ,) SCREAMING_SNAKE_CASE : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
220
1
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _A = TypeVar("""KEY""") _A = TypeVar("""VAL""") @dataclass(frozen=_snake_case , slots=_snake_case ) class lowerCamelCase ( Generic[KEY, VAL] ): '''simple docstring''' SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 class lowerCamelCase ( _Item ): '''simple docstring''' def __init__(self ): """simple docstring""" super().__init__(_UpperCamelCase , _UpperCamelCase ) def __bool__(self ): """simple docstring""" return False _A = _DeletedItem() class lowerCamelCase ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self , _lowerCamelCase = 8 , _lowerCamelCase = 0.75 ): """simple docstring""" UpperCAmelCase__ : str = initial_block_size UpperCAmelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 UpperCAmelCase__ : Union[str, Any] = capacity_factor UpperCAmelCase__ : Union[str, Any] = 0 def _a (self , _lowerCamelCase ): """simple docstring""" return hash(_UpperCamelCase ) % len(self._buckets ) def _a (self , _lowerCamelCase ): """simple docstring""" return (ind + 1) % len(self._buckets ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Dict = self._buckets[ind] if not stored: UpperCAmelCase__ : int = _Item(_UpperCamelCase , _UpperCamelCase ) self._len += 1 return True elif stored.key == key: UpperCAmelCase__ : int = _Item(_UpperCamelCase , _UpperCamelCase ) return True else: return False def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_UpperCamelCase ) def _a (self ): """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False UpperCAmelCase__ : str = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self._buckets UpperCAmelCase__ : Optional[Any] = [None] * new_size UpperCAmelCase__ : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _a (self ): """simple docstring""" self._resize(len(self._buckets ) * 2 ) def _a (self ): """simple docstring""" self._resize(len(self._buckets ) // 2 ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[str] = self._get_bucket_index(_UpperCamelCase ) for _ in range(len(self._buckets ) ): yield ind UpperCAmelCase__ : str = self._get_next_ind(_UpperCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" for ind in self._iterate_buckets(_UpperCamelCase ): if self._try_set(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): break def __setitem__(self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if self._is_full(): self._size_up() self._add_item(_UpperCamelCase , _UpperCamelCase ) def __delitem__(self , _lowerCamelCase ): """simple docstring""" for ind in self._iterate_buckets(_UpperCamelCase ): UpperCAmelCase__ : str = self._buckets[ind] if item is None: raise KeyError(_UpperCamelCase ) if item is _deleted: continue if item.key == key: UpperCAmelCase__ : List[str] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self , _lowerCamelCase ): """simple docstring""" for ind in self._iterate_buckets(_UpperCamelCase ): UpperCAmelCase__ : Optional[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_UpperCamelCase ) def __len__(self ): """simple docstring""" return self._len def __iter__(self ): """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__(self ): """simple docstring""" UpperCAmelCase__ : List[Any] = ' ,'.join( F"""{item.key}: {item.val}""" for item in self._buckets if item ) return F"""HashMap({val_string})"""
182
__UpperCAmelCase = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
406
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
662
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : int ) -> Dict: a = tempfile.mkdtemp() a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) a = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], "do_convert_rgb": True, } a = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict , **__lowerCamelCase : Union[str, Any] ) -> List[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : str , **__lowerCamelCase : Optional[int] ) -> str: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , **__lowerCamelCase : Optional[int] ) -> Tuple: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: a = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self : int ) -> List[str]: a = self.get_tokenizer() a = self.get_rust_tokenizer() a = self.get_image_processor() a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) a = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCamelCase ) a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) a = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: a = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) a = self.get_image_processor(do_normalize=__lowerCamelCase ) a = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=__lowerCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> Dict: a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) a = self.prepare_image_inputs() a = image_processor(__lowerCamelCase , return_tensors="np" ) a = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase ( self : str ) -> Optional[int]: a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) a = "Alexandra,T-shirt的价格是15便士。" a = processor(text=__lowerCamelCase ) a = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self : List[Any] ) -> Any: a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) a = "Alexandra,T-shirt的价格是15便士。" a = self.prepare_image_inputs() a = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__lowerCamelCase ) a = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> List[str]: a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) a = "Alexandra,T-shirt的价格是15便士。" a = self.prepare_image_inputs() a = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
662
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A : Any = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any = ["""PoolFormerFeatureExtractor"""] _A : Dict = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[int] = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _A : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
100
'''simple docstring''' import math lowerCamelCase :int = 1_0 lowerCamelCase :List[Any] = 7 lowerCamelCase :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def a ( lowerCamelCase__ = 20 ): '''simple docstring''' A_ : Dict = math.comb(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCamelCase__ ) A_ : List[str] = NUM_COLOURS * (1 - missing_colour / total) return f'{result:.9f}' if __name__ == "__main__": print(solution(2_0))
667
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowercase__ : Union[str, Any] = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE (__snake_case ): lowerCAmelCase = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_UpperCAmelCase): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __A : Optional[Any] = deprecated_arg[3:] setattr(self , _lowercase , not kwargs.pop(_lowercase)) logger.warning( F'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}') __A : Any = kwargs.pop('torchscript' , self.torchscript) __A : Dict = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics) __A : Any = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level) super().__init__(**_lowercase) lowerCAmelCase = field(default=__snake_case , metadata={'''help''': '''Trace the models using torchscript'''} ) lowerCAmelCase = field(default=__snake_case , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) lowerCAmelCase = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' requires_backends(self , ['torch']) logger.info('PyTorch: setting up devices') if not self.cuda: __A : str = torch.device('cpu') __A : Optional[Any] = 0 elif is_torch_tpu_available(): __A : Optional[int] = xm.xla_device() __A : Any = 0 else: __A : List[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu') __A : Dict = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' requires_backends(self , ['torch']) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' requires_backends(self , ['torch']) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' requires_backends(self , ['torch']) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.n_gpu > 0
719
'''simple docstring''' import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def _lowerCAmelCase ( __snake_case : Dataset , __snake_case : Dict[str, str] ) -> Any: __A : List[str] = args.log_outputs __A : Tuple = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __A : Tuple = load_metric('wer' ) __A : Union[str, Any] = load_metric('cer' ) # compute metrics __A : List[str] = wer.compute(references=result['target'] , predictions=result['prediction'] ) __A : str = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __A : List[str] = f'WER: {wer_result}\nCER: {cer_result}' print(__snake_case ) with open(f'{dataset_id}_eval_results.txt' , 'w' ) as f: f.write(__snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __A : Optional[int] = f'log_{dataset_id}_predictions.txt' __A : List[str] = f'log_{dataset_id}_targets.txt' with open(__snake_case , 'w' ) as p, open(__snake_case , 'w' ) as t: # mapping function to write output def write_to_file(__snake_case : List[str] , __snake_case : List[Any] ): p.write(f'{i}' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f'{i}' + '\n' ) t.write(batch['target'] + '\n' ) result.map(__snake_case , with_indices=__snake_case ) def _lowerCAmelCase ( __snake_case : str ) -> str: __A : Any = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __A : List[Any] = re.sub(__snake_case , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __A : Optional[int] = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __A : Optional[int] = ' '.join(text.split(__snake_case ) ) return text def _lowerCAmelCase ( __snake_case : Any ) -> List[Any]: # load dataset __A : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=__snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __A : Union[str, Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) __A : Optional[int] = feature_extractor.sampling_rate # resample audio __A : List[Any] = dataset.cast_column('audio' , Audio(sampling_rate=__snake_case ) ) # load eval pipeline if args.device is None: __A : List[Any] = 0 if torch.cuda.is_available() else -1 __A : Union[str, Any] = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__snake_case : Optional[Any] ): __A : int = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __A : Optional[Any] = prediction['text'] __A : str = normalize_text(batch['sentence'] ) return batch # run inference on all examples __A : Dict = dataset.map(__snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__snake_case , __snake_case ) if __name__ == "__main__": lowercase__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) lowercase__ : Optional[Any] = parser.parse_args() main(args)
338
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCamelCase : List[Any] = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = path + """.py""" assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = path + """.py""" assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ): lowerCamelCase__ = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): lowerCamelCase__ = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ): lowerCamelCase__ = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs lowerCamelCase__ = expected_configs[0] assert expected_config in infos lowerCamelCase__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] ): lowerCamelCase__ = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos lowerCamelCase__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
50
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : str = '''▁''' _UpperCAmelCase : Union[str, Any] = {'''vocab_file''': '''spiece.model'''} _UpperCAmelCase : Union[str, Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } _UpperCAmelCase : List[Any] = { '''google/pegasus-xsum''': 5_12, } _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self , snake_case_ , snake_case_="<pad>" , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<mask_2>" , snake_case_="<mask_1>" , snake_case_=None , snake_case_=1_03 , snake_case_ = None , **snake_case_ , ): lowercase =offset if additional_special_tokens is not None: if not isinstance(snake_case_ , snake_case_ ): raise TypeError( f'additional_special_tokens should be of type {type(snake_case_ )}, but is' f' {type(snake_case_ )}' ) lowercase =( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(snake_case_ ) , self.offset - 1 ) ] if len(set(snake_case_ ) ) != len(snake_case_ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) lowercase =additional_special_tokens_extended else: lowercase =[mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , mask_token=snake_case_ , pad_token=snake_case_ , mask_token_sent=snake_case_ , offset=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) lowercase =mask_token_sent lowercase =vocab_file lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) # add special tokens to encoder dict lowercase ={ 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowercase ={v: k for k, v in self.encoder.items()} @property def _A( self ): return len(self.sp_model ) + self.offset def _A( self ): lowercase ={self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowercase =self.__dict__.copy() lowercase =None return state def __setstate__( self , snake_case_ ): lowercase =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase ={} lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def _A( self , snake_case_ ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowercase =self.sp_model.piece_to_id(snake_case_ ) return sp_id + self.offset def _A( self , snake_case_ ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowercase =self.sp_model.IdToPiece(index - self.offset ) return token def _A( self , snake_case_ ): lowercase =[] lowercase ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token lowercase =[] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def _A( self , snake_case_=False ): return 1 def _A( self , snake_case_ ): lowercase =set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _A( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return self._special_token_mask(snake_case_ ) elif token_ids_a is None: return self._special_token_mask(snake_case_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A( self , snake_case_ , snake_case_=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A( self , snake_case_ , snake_case_ = None ): if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase =os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , '''wb''' ) as fi: lowercase =self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
72
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( __a ): """simple docstring""" snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''BlipImageProcessor''' snake_case_ = '''AutoTokenizer''' def __init__( self : List[Any] , a : Any , a : Dict ) ->int: SCREAMING_SNAKE_CASE__ : Tuple = False super().__init__(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor def __call__( self : List[str] , a : ImageInput = None , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : str , ) ->Tuple: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: SCREAMING_SNAKE_CASE__ : int = self.tokenizer SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_token_type_ids=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) return text_encoding # add pixel_values SCREAMING_SNAKE_CASE__ : Optional[int] = self.image_processor(snake_case__ , return_tensors=snake_case__ ) if text is not None: SCREAMING_SNAKE_CASE__ : str = self.tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_token_type_ids=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) else: SCREAMING_SNAKE_CASE__ : Any = None if text_encoding is not None: encoding_image_processor.update(snake_case__ ) return encoding_image_processor def A_ ( self : Dict , *a : int , **a : List[str] ) ->Tuple: return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def A_ ( self : str , *a : int , **a : int ) ->Optional[int]: return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def A_ ( self : List[str] ) ->Dict: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
705
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , a : Any , a : bool = True , a : Dict[str, int] = None , a : int = 32 , a : bool = True , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = [0.4814_5466, 0.457_8275, 0.4082_1073] , a : Optional[Union[float, List[float]]] = [0.2686_2954, 0.2613_0258, 0.2757_7711] , a : bool = True , a : Any=7 , a : str=30 , a : Dict=4_00 , a : Optional[int]=3 , ) ->int: SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : Dict = do_resize SCREAMING_SNAKE_CASE__ : List[str] = size if size is not None else {"shortest_edge": 2_88} SCREAMING_SNAKE_CASE__ : List[Any] = size_divisor SCREAMING_SNAKE_CASE__ : List[Any] = do_rescale SCREAMING_SNAKE_CASE__ : Tuple = rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_center_crop SCREAMING_SNAKE_CASE__ : Optional[int] = image_mean SCREAMING_SNAKE_CASE__ : Dict = image_std SCREAMING_SNAKE_CASE__ : List[str] = do_pad SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_resolution def A_ ( self : List[str] ) ->Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def A_ ( self : int , a : Optional[int] , a : Union[str, Any]=False ) ->Optional[Any]: if not batched: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.size["shortest_edge"] SCREAMING_SNAKE_CASE__ : Dict = image_inputs[0] if isinstance(a , Image.Image ): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = image.size else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[str] = image.shape[1], image.shape[2] SCREAMING_SNAKE_CASE__ : Any = size / min(a , a ) if h < w: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = size, scale * w else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[str] = scale * h, size SCREAMING_SNAKE_CASE__ : List[Any] = int((13_33 / 8_00) * size ) if max(a , a ) > max_size: SCREAMING_SNAKE_CASE__ : List[Any] = max_size / max(a , a ) SCREAMING_SNAKE_CASE__ : int = newh * scale SCREAMING_SNAKE_CASE__ : Optional[int] = neww * scale SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = int(newh + 0.5 ), int(neww + 0.5 ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: SCREAMING_SNAKE_CASE__ : List[Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ : Tuple = max(a , key=lambda a : item[0] )[0] SCREAMING_SNAKE_CASE__ : Tuple = max(a , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( lowercase__ , unittest.TestCase ): """simple docstring""" snake_case_ = BridgeTowerImageProcessor if is_vision_available() else None def A_ ( self : List[Any] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Any = BridgeTowerImageProcessingTester(self ) @property def A_ ( self : Optional[int] ) ->Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self : Tuple ) ->str: SCREAMING_SNAKE_CASE__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "image_mean" ) ) self.assertTrue(hasattr(a , "image_std" ) ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "size" ) ) self.assertTrue(hasattr(a , "size_divisor" ) ) def A_ ( self : List[Any] ) ->List[Any]: pass def A_ ( self : Tuple ) ->Optional[Any]: # Initialize image processor SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : int = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : Optional[int] ) ->Any: # Initialize image processor SCREAMING_SNAKE_CASE__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : Tuple = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : str ) ->Optional[int]: # Initialize image processor SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Tuple = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ : Any = image_processing(a , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
26
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :torch.FloatTensor class _lowerCAmelCase ( a , a ): """simple docstring""" @register_to_config def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = ("DownEncoderBlock2D",) , __UpperCAmelCase = ("UpDecoderBlock2D",) , __UpperCAmelCase = (6_4,) , __UpperCAmelCase = 1 , __UpperCAmelCase = "silu" , __UpperCAmelCase = 3 , __UpperCAmelCase = 3_2 , __UpperCAmelCase = 2_5_6 , __UpperCAmelCase = 3_2 , __UpperCAmelCase = None , __UpperCAmelCase = 0.1_82_15 , __UpperCAmelCase = "group" , ): '''simple docstring''' super().__init__() # pass init params to Encoder lowerCAmelCase__ :Optional[Any] = Encoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , down_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , double_z=__UpperCAmelCase , ) lowerCAmelCase__ :Optional[int] = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase__ :List[str] = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) lowerCAmelCase__ :List[str] = VectorQuantizer(__UpperCAmelCase , __UpperCAmelCase , beta=0.25 , remap=__UpperCAmelCase , sane_index_shape=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) # pass init params to Decoder lowerCAmelCase__ :Tuple = Decoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , up_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , norm_type=__UpperCAmelCase , ) @apply_forward_hook def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' lowerCAmelCase__ :int = self.encoder(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = self.quant_conv(__UpperCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__UpperCAmelCase ) @apply_forward_hook def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True ): '''simple docstring''' if not force_not_quantize: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = self.quantize(__UpperCAmelCase ) else: lowerCAmelCase__ :List[str] = h lowerCAmelCase__ :Dict = self.post_quant_conv(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.decoder(__UpperCAmelCase , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' lowerCAmelCase__ :int = sample lowerCAmelCase__ :Optional[int] = self.encode(__UpperCAmelCase ).latents lowerCAmelCase__ :Tuple = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
93
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a : Any = logging.get_logger(__name__) _a : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _a : Tuple = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } _a : str = { """gpt2""": 1024, """gpt2-medium""": 1024, """gpt2-large""": 1024, """gpt2-xl""": 1024, """distilgpt2""": 1024, } class _UpperCAmelCase ( _A ): """simple docstring""" A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['''input_ids''', '''attention_mask'''] A = GPTaTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase=False , **_lowerCAmelCase , ): '''simple docstring''' super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) lowerCAmelCase__ :List[str] = kwargs.pop("add_bos_token" , _lowerCAmelCase ) lowerCAmelCase__ :List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _lowerCAmelCase ) != add_prefix_space: lowerCAmelCase__ :Any = getattr(_lowerCAmelCase , pre_tok_state.pop("type" ) ) lowerCAmelCase__ :List[str] = add_prefix_space lowerCAmelCase__ :Union[str, Any] = pre_tok_class(**_lowerCAmelCase ) lowerCAmelCase__ :int = add_prefix_space def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Tuple = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) + [self.eos_token_id] ) if len(_lowerCAmelCase ) > self.model_max_length: lowerCAmelCase__ :int = input_ids[-self.model_max_length :] return input_ids
145
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_a) class _lowerCAmelCase( _a): """simple docstring""" def __init__( self , **UpperCAmelCase )-> Dict: super().__init__(**UpperCAmelCase ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) self.check_model_type(UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , **UpperCAmelCase )-> Optional[int]: __A = {} __A = {} __A = {} # preprocess args if "points_per_batch" in kwargs: __A = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: __A = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: __A = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: __A = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: __A = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: __A = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: __A = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: __A = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: __A = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: __A = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: __A = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: __A = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , UpperCAmelCase , *UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase )-> List[str]: return super().__call__(UpperCAmelCase , *UpperCAmelCase , num_workers=UpperCAmelCase , batch_size=UpperCAmelCase , **UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase=64 , UpperCAmelCase = 0 , UpperCAmelCase = 5_12 / 15_00 , UpperCAmelCase = 32 , UpperCAmelCase = 1 , )-> Dict: __A = load_image(UpperCAmelCase ) __A = self.image_processor.size['''longest_edge'''] __A , __A , __A , __A = self.image_processor.generate_crop_boxes( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __A = self.image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": __A = self.get_inference_context() with inference_context(): __A = self._ensure_tensor_on_device(UpperCAmelCase , device=self.device ) __A = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) __A = image_embeddings __A = grid_points.shape[1] __A = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , UpperCAmelCase , UpperCAmelCase ): __A = grid_points[:, i : i + points_per_batch, :, :] __A = input_labels[:, i : i + points_per_batch] __A = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase=0.88 , UpperCAmelCase=0.95 , UpperCAmelCase=0 , UpperCAmelCase=1 , )-> Tuple: __A = model_inputs.pop('''input_boxes''' ) __A = model_inputs.pop('''is_last''' ) __A = model_inputs.pop('''original_sizes''' ).tolist() __A = model_inputs.pop('''reshaped_input_sizes''' ).tolist() __A = self.model(**UpperCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __A = model_outputs['''pred_masks'''] __A = self.image_processor.post_process_masks( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , binarize=UpperCAmelCase ) __A = model_outputs['''iou_scores'''] __A , __A , __A = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=0.7 , )-> Any: __A = [] __A = [] __A = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) __A = torch.cat(UpperCAmelCase ) __A = torch.cat(UpperCAmelCase ) __A , __A , __A , __A = self.image_processor.post_process_for_mask_generation( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __A = defaultdict(UpperCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase ) __A = {} if output_rle_mask: __A = rle_mask if output_bboxes_mask: __A = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
719
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _UpperCamelCase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def __UpperCamelCase ( snake_case , snake_case , snake_case = 1_6_0_0_0 ) -> Tuple: '''simple docstring''' __A = int(round(sample_rate * max_length ) ) if len(snake_case ) <= sample_length: return wav __A = randint(0 , len(snake_case ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _lowerCAmelCase: """simple docstring""" lowerCamelCase__ = field(default=_a , metadata={'''help''': '''Name of a dataset from the datasets package'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''A file containing the training audio paths and labels.'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''A file containing the validation audio paths and labels.'''}) lowerCamelCase__ = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) lowerCamelCase__ = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) lowerCamelCase__ = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) lowerCamelCase__ = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''}) lowerCamelCase__ = field( default=_a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCamelCase__ = field( default=_a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) lowerCamelCase__ = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class _lowerCAmelCase: """simple docstring""" lowerCamelCase__ = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''}) lowerCamelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Name or path of preprocessor config.'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''}) lowerCamelCase__ = field( default=_a , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''}) lowerCamelCase__ = field( default=_a , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def SCREAMING_SNAKE_CASE__ ( self )-> List[str]: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , UpperCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def __UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __A , __A , __A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __A , __A , __A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , snake_case , snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __A = training_args.get_process_log_level() logger.setLevel(snake_case ) transformers.utils.logging.set_verbosity(snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. __A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. __A = DatasetDict() __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " '''Make sure to set `--label_column_name` to the correct text column - one of ''' F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy __A = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. __A = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) __A = feature_extractor.model_input_names[0] def train_transforms(snake_case ): __A = [] for audio in batch[data_args.audio_column_name]: __A = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(snake_case ) __A = feature_extractor(snake_case , sampling_rate=feature_extractor.sampling_rate ) __A = {model_input_name: inputs.get(snake_case )} __A = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(snake_case ): __A = [audio['''array'''] for audio in batch[data_args.audio_column_name]] __A = feature_extractor(snake_case , sampling_rate=feature_extractor.sampling_rate ) __A = {model_input_name: inputs.get(snake_case )} __A = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __A = raw_datasets['''train'''].features[data_args.label_column_name].names __A , __A = {}, {} for i, label in enumerate(snake_case ): __A = str(snake_case ) __A = label # Load the accuracy metric from the datasets package __A = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(snake_case ): __A = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=snake_case , references=eval_pred.label_ids ) __A = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(snake_case ) , labelaid=snake_case , idalabel=snake_case , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __A = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: __A = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(snake_case , output_all_columns=snake_case ) if training_args.do_eval: if data_args.max_eval_samples is not None: __A = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(snake_case , output_all_columns=snake_case ) # Initialize our trainer __A = Trainer( model=snake_case , args=snake_case , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=snake_case , tokenizer=snake_case , ) # Training if training_args.do_train: __A = None if training_args.resume_from_checkpoint is not None: __A = training_args.resume_from_checkpoint elif last_checkpoint is not None: __A = last_checkpoint __A = trainer.train(resume_from_checkpoint=snake_case ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __A = trainer.evaluate() trainer.log_metrics('''eval''' , snake_case ) trainer.save_metrics('''eval''' , snake_case ) # Write model card and (optionally) push to hub __A = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case ) else: trainer.create_model_card(**snake_case ) if __name__ == "__main__": main()
341
0
"""simple docstring""" def __magic_name__ ( lowercase ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =0 SCREAMING_SNAKE_CASE_: Union[str, Any] =len(__lowerCamelCase ) # No of vertices in graph SCREAMING_SNAKE_CASE_: int =[0] * n SCREAMING_SNAKE_CASE_: List[str] =[False] * n def dfs(lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =True SCREAMING_SNAKE_CASE_: int =id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , id_ ) SCREAMING_SNAKE_CASE_: List[str] =min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge SCREAMING_SNAKE_CASE_: List[str] =min(low[at] , low[to] ) SCREAMING_SNAKE_CASE_: Optional[Any] =[] for i in range(__lowerCamelCase ): if not visited[i]: dfs(__lowerCamelCase , -1 , __lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
409
"""simple docstring""" import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _UpperCamelCase ,unittest.TestCase ): UpperCamelCase : Optional[Any] = LxmertTokenizer UpperCamelCase : str = LxmertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Optional[int] = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() _lowerCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = 'UNwant\u00E9d,running' _lowerCAmelCase = 'unwanted, running' return input_text, output_text def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer_class(self.vocab_file ) _lowerCAmelCase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__magic_name__ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [7, 4, 5, 1_0, 8, 9] ) def _lowerCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = 'I was born in 92000, and this is falsé.' _lowerCAmelCase = tokenizer.tokenize(__magic_name__ ) _lowerCAmelCase = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) _lowerCAmelCase = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) _lowerCAmelCase = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = tokenizer.encode(__magic_name__ ) _lowerCAmelCase = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ )
589
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _UpperCamelCase : Any = logging.get_logger(__name__) class _lowerCAmelCase( _a): """simple docstring""" lowerCamelCase__ = '''AutoTokenizer''' lowerCamelCase__ = ['''tokenizer'''] lowerCamelCase__ = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self , UpperCAmelCase , UpperCAmelCase=None )-> Tuple: super().__init__(UpperCAmelCase ) __A = speaker_embeddings @classmethod def SCREAMING_SNAKE_CASE__ ( cls , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , **UpperCAmelCase )-> str: if speaker_embeddings_dict_path is not None: __A = get_file_from_repo( UpperCAmelCase , UpperCAmelCase , subfolder=kwargs.pop('''subfolder''' , UpperCAmelCase ) , cache_dir=kwargs.pop('''cache_dir''' , UpperCAmelCase ) , force_download=kwargs.pop('''force_download''' , UpperCAmelCase ) , proxies=kwargs.pop('''proxies''' , UpperCAmelCase ) , resume_download=kwargs.pop('''resume_download''' , UpperCAmelCase ) , local_files_only=kwargs.pop('''local_files_only''' , UpperCAmelCase ) , use_auth_token=kwargs.pop('''use_auth_token''' , UpperCAmelCase ) , revision=kwargs.pop('''revision''' , UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( f"`{os.path.join(UpperCAmelCase , UpperCAmelCase )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) __A = None else: with open(UpperCAmelCase ) as speaker_embeddings_json: __A = json.load(UpperCAmelCase ) else: __A = None __A = AutoTokenizer.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) return cls(tokenizer=UpperCAmelCase , speaker_embeddings=UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , UpperCAmelCase="speaker_embeddings" , UpperCAmelCase = False , **UpperCAmelCase , )-> Dict: if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCAmelCase , UpperCAmelCase , '''v2''' ) , exist_ok=UpperCAmelCase ) __A = {} __A = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": __A = self._load_voice_preset(UpperCAmelCase ) __A = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['''repo_or_path'''] , UpperCAmelCase , f"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=UpperCAmelCase , ) __A = os.path.join(UpperCAmelCase , f"{prompt_key}_{key}.npy" ) __A = tmp_dict with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , '''w''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) super().save_pretrained(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase = None , **UpperCAmelCase )-> Tuple: __A = self.speaker_embeddings[voice_preset] __A = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) __A = get_file_from_repo( self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , UpperCAmelCase ) , cache_dir=kwargs.pop('''cache_dir''' , UpperCAmelCase ) , force_download=kwargs.pop('''force_download''' , UpperCAmelCase ) , proxies=kwargs.pop('''proxies''' , UpperCAmelCase ) , resume_download=kwargs.pop('''resume_download''' , UpperCAmelCase ) , local_files_only=kwargs.pop('''local_files_only''' , UpperCAmelCase ) , use_auth_token=kwargs.pop('''use_auth_token''' , UpperCAmelCase ) , revision=kwargs.pop('''revision''' , UpperCAmelCase ) , ) if path is None: raise ValueError( f"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) __A = np.load(UpperCAmelCase ) return voice_preset_dict def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase = None )-> Any: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="pt" , UpperCAmelCase=2_56 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , )-> int: if voice_preset is not None and not isinstance(UpperCAmelCase , UpperCAmelCase ): if ( isinstance(UpperCAmelCase , UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): __A = self._load_voice_preset(UpperCAmelCase ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ) and not voice_preset.endswith('''.npz''' ): __A = voice_preset + '''.npz''' __A = np.load(UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCAmelCase , **UpperCAmelCase ) __A = BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) __A = self.tokenizer( UpperCAmelCase , return_tensors=UpperCAmelCase , padding='''max_length''' , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , add_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) if voice_preset is not None: __A = voice_preset return encoded_text
341
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase( _a , unittest.TestCase): """simple docstring""" lowerCamelCase__ = GPTSanJapaneseTokenizer lowerCamelCase__ = False lowerCamelCase__ = {'''do_clean_text''': False, '''add_prefix_space''': False} def SCREAMING_SNAKE_CASE__ ( self )-> List[Any]: super().setUp() # fmt: off __A = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on __A = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 __A = {'''unk_token''': '''<unk>'''} __A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self , **UpperCAmelCase )-> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Union[str, Any]: __A = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' __A = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Optional[int]: __A , __A = self.get_input_output_texts(UpperCAmelCase ) __A = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) __A = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) return text, ids def SCREAMING_SNAKE_CASE__ ( self )-> Tuple: pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self )-> Optional[Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self )-> Union[str, Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self )-> str: __A = self.get_tokenizer() # Testing tokenization __A = '''こんにちは、世界。 こんばんは、㔺界。''' __A = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] __A = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Testing conversion to ids without special tokens __A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __A = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Testing conversion to ids with special tokens __A = tokens + [tokenizer.unk_token] __A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __A = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self )-> Union[str, Any]: __A = self.get_tokenizer() # Testing tokenization __A = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' __A = '''こんにちは、、、、世界。こんばんは、、、、世界。''' __A = tokenizer.encode(UpperCAmelCase ) __A = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self )-> Dict: __A = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __A = '''こんにちは、世界。''' __A = '''こんばんは、㔺界。😀''' __A = '''こんにちは、世界。こんばんは、世界。😀''' __A = tokenizer.encode(prefix_text + input_text ) __A = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) __A = tokenizer.encode(UpperCAmelCase , prefix_text=UpperCAmelCase ) __A = tokenizer.decode(UpperCAmelCase ) __A = tokenizer.decode(UpperCAmelCase ) __A = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self )-> Optional[Any]: __A = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __A = '''こんにちは、世界。''' __A = '''こんばんは、㔺界。😀''' __A = len(tokenizer.encode(UpperCAmelCase ) ) - 2 __A = len(tokenizer.encode(UpperCAmelCase ) ) - 2 __A = [1] + [0] * (len_prefix + len_text + 1) __A = [1] * (len_prefix + len_text + 1) + [0] __A = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __A = tokenizer(prefix_text + input_text ).token_type_ids __A = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids __A = tokenizer(UpperCAmelCase , prefix_text=UpperCAmelCase ).token_type_ids self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self )-> Optional[Any]: __A = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __A = tokenizer.encode('''あンいワ''' ) __A = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) __A = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(UpperCAmelCase ) , tokenizer.decode(UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(UpperCAmelCase ) , tokenizer.decode(UpperCAmelCase ) ) self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def SCREAMING_SNAKE_CASE__ ( self )-> Optional[Any]: __A = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __A = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] __A = tokenizer(UpperCAmelCase , padding=UpperCAmelCase ) __A = tokenizer.batch_encode_plus(UpperCAmelCase , padding=UpperCAmelCase ) # fmt: off __A = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] __A = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __A = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids , UpperCAmelCase ) self.assertListEqual(x_token.attention_mask , UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids , UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask , UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self )-> int: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def SCREAMING_SNAKE_CASE__ ( self )-> List[str]: # tokenizer has no padding token pass
341
1
from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE_ : int = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys SCREAMING_SNAKE_CASE_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
375
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) SCREAMING_SNAKE_CASE_ : str = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def SCREAMING_SNAKE_CASE ( snake_case ) -> Tuple: __lowercase = {} state_dict.pop('pixel_mean' , snake_case ) state_dict.pop('pixel_std' , snake_case ) __lowercase = r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowercase = key.replace(snake_case , snake_case ) if re.match(snake_case , snake_case ): __lowercase = int(re.match(snake_case , snake_case ).group(2 ) ) if layer_nb == 0: __lowercase = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: __lowercase = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: __lowercase = key.replace('layers.2' , 'proj_out' ) __lowercase = value __lowercase = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case="ybelkada/segment-anything" ) -> int: __lowercase = hf_hub_download(snake_case , F"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: __lowercase = SamConfig() elif "sam_vit_l" in model_name: __lowercase = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __lowercase = SamConfig( vision_config=snake_case , ) elif "sam_vit_h" in model_name: __lowercase = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __lowercase = SamConfig( vision_config=snake_case , ) __lowercase = torch.load(snake_case , map_location='cpu' ) __lowercase = replace_keys(snake_case ) __lowercase = SamImageProcessor() __lowercase = SamProcessor(image_processor=snake_case ) __lowercase = SamModel(snake_case ) hf_model.load_state_dict(snake_case ) __lowercase = hf_model.to('cuda' ) __lowercase = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' __lowercase = Image.open(requests.get(snake_case , stream=snake_case ).raw ).convert('RGB' ) __lowercase = [[[400, 650]]] __lowercase = [[1]] __lowercase = processor(images=np.array(snake_case ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 __lowercase = processor( images=np.array(snake_case ) , input_points=snake_case , input_labels=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 __lowercase = ((75, 275, 1_725, 850),) __lowercase = processor(images=np.array(snake_case ) , input_boxes=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. __lowercase = [[[400, 650], [800, 650]]] __lowercase = [[1, 1]] __lowercase = processor( images=np.array(snake_case ) , input_points=snake_case , input_labels=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = argparse.ArgumentParser() SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
375
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): UpperCAmelCase_ = StableUnCLIPPipeline UpperCAmelCase_ = TEXT_TO_IMAGE_PARAMS UpperCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase_ = False def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = 32 UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase_ , projection_dim=UpperCamelCase_ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=UpperCamelCase_ , num_layers=1 , ) torch.manual_seed(0 ) UpperCamelCase = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=UpperCamelCase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase_ ) UpperCamelCase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase_ , layers_per_block=1 , upcast_attention=UpperCamelCase_ , use_linear_projection=UpperCamelCase_ , ) torch.manual_seed(0 ) UpperCamelCase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCamelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL() UpperCamelCase = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def snake_case_ (self , __a , __a=0 ) -> int: if str(UpperCamelCase_ ).startswith("mps" ): UpperCamelCase = torch.manual_seed(UpperCamelCase_ ) else: UpperCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCamelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def snake_case_ (self ) -> Optional[int]: UpperCamelCase = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase_ ) def snake_case_ (self ) -> Dict: UpperCamelCase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase_ ) @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) UpperCamelCase = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCamelCase = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase = pipe("anime turle" , generator=UpperCamelCase_ , output_type="np" ) UpperCamelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ ) def snake_case_ (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) UpperCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCamelCase = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
714
"""simple docstring""" import argparse from collections import defaultdict def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = F"{file}_{class_name}_{test_name}" done_test[_id] += 1 with open(_SCREAMING_SNAKE_CASE , "r" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = F"class {class_name}(" UpperCamelCase = F"{4 * ' '}def {test_name}(" UpperCamelCase = F"{8 * ' '}{correct_line.split()[0]}" UpperCamelCase = F"{16 * ' '}{correct_line.split()[0]}" UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = [] for line in lines: if line.startswith(_SCREAMING_SNAKE_CASE ): UpperCamelCase = True elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ): UpperCamelCase = True elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )): UpperCamelCase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCamelCase = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCamelCase = True if in_class and in_func and in_line and insert_line: new_lines.append(F"{spaces * ' '}{correct_line}" ) UpperCamelCase = UpperCamelCase = UpperCamelCase = UpperCamelCase = False else: new_lines.append(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for line in new_lines: f.write(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" if fail is not None: with open(_SCREAMING_SNAKE_CASE , "r" ) as f: UpperCamelCase = {l.strip() for l in f.readlines()} else: UpperCamelCase = None with open(_SCREAMING_SNAKE_CASE , "r" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = defaultdict(_SCREAMING_SNAKE_CASE ) for line in correct_lines: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) lowerCAmelCase__ = parser.parse_args() main(args.correct_filename, args.fail_filename)
544
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : int = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : int ='''umt5''' a : Optional[Any] =['''past_key_values'''] def __init__( self , _lowerCamelCase=2_5_0_1_1_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=6_4 , _lowerCamelCase=1_0_2_4 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase=6 , _lowerCamelCase=3_2 , _lowerCamelCase=1_2_8 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-6 , _lowerCamelCase=1.0 , _lowerCamelCase="gated-gelu" , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="T5Tokenizer" , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=0 , **_lowerCamelCase , ): super().__init__( is_encoder_decoder=_lowerCamelCase , tokenizer_class=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_: str = vocab_size UpperCamelCase_: Any = d_model UpperCamelCase_: Any = d_kv UpperCamelCase_: Optional[Any] = d_ff UpperCamelCase_: str = num_layers UpperCamelCase_: Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase_: Optional[Any] = num_heads UpperCamelCase_: List[str] = relative_attention_num_buckets UpperCamelCase_: Union[str, Any] = relative_attention_max_distance UpperCamelCase_: List[str] = dropout_rate UpperCamelCase_: str = layer_norm_epsilon UpperCamelCase_: Dict = initializer_factor UpperCamelCase_: Optional[int] = feed_forward_proj UpperCamelCase_: List[Any] = use_cache UpperCamelCase_: Dict = self.feed_forward_proj.split('-' ) UpperCamelCase_: List[str] = act_info[-1] UpperCamelCase_: str = act_info[0] == 'gated' if len(_lowerCamelCase ) > 1 and act_info[0] != "gated" or len(_lowerCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": UpperCamelCase_: int = 'gelu_new' @property def _a ( self ): return self.d_model @property def _a ( self ): return self.num_heads @property def _a ( self ): return self.num_layers class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _a ( self ): UpperCamelCase_: Dict = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: UpperCamelCase_: Tuple = 'past_encoder_sequence + sequence' UpperCamelCase_: Any = {0: 'batch'} UpperCamelCase_: Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCamelCase_: Tuple = {0: 'batch', 1: 'decoder_sequence'} UpperCamelCase_: Any = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _a ( self ): return 1_3 @property def _a ( self ): return 5e-4
57
import collections import os import re from pathlib import Path lowerCAmelCase_ = """src/transformers""" # Matches is_xxx_available() lowerCAmelCase_ = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowerCAmelCase_ = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase_ = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowerCAmelCase_ = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase_ = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase_ = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase_ = re.compile(R"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase_ = re.compile(R"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowerCAmelCase_ = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowerCAmelCase_ = re.compile(R"""^\s*try:""") # Catches a line with else: lowerCAmelCase_ = re.compile(R"""^\s*else:""") def __lowerCAmelCase ( UpperCamelCase ) -> int: if _re_test_backend.search(UpperCamelCase ) is None: return None lowerCAmelCase__ : int = [b[0] for b in _re_backend.findall(UpperCamelCase )] backends.sort() return "_and_".join(UpperCamelCase ) def __lowerCAmelCase ( UpperCamelCase ) -> Any: with open(UpperCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase__ : Union[str, Any] = f.readlines() lowerCAmelCase__ : Tuple = 0 while line_index < len(UpperCamelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase ): lowerCAmelCase__ : str = _re_one_line_import_struct.search(UpperCamelCase ).groups()[0] lowerCAmelCase__ : Optional[Any] = re.findall(R'''\[([^\]]+)\]''' , UpperCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase__ : Tuple = _re_import_struct_key_value.search(UpperCamelCase ) if single_line_import_search is not None: lowerCAmelCase__ : Optional[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(UpperCamelCase ) > 0] objects.extend(UpperCamelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ : Any = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ : Union[str, Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase__ : str = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase ) is not None: lowerCAmelCase__ : Optional[int] = _re_import_struct_add_many.search(UpperCamelCase ).groups()[0].split(''', ''' ) lowerCAmelCase__ : List[Any] = [obj[1:-1] for obj in imports if len(UpperCamelCase ) > 0] objects.extend(UpperCamelCase ) elif _re_between_brackets.search(UpperCamelCase ) is not None: lowerCAmelCase__ : List[Any] = _re_between_brackets.search(UpperCamelCase ).groups()[0].split(''', ''' ) lowerCAmelCase__ : Optional[int] = [obj[1:-1] for obj in imports if len(UpperCamelCase ) > 0] objects.extend(UpperCamelCase ) elif _re_quote_object.search(UpperCamelCase ) is not None: objects.append(_re_quote_object.search(UpperCamelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ : Optional[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ : Any = [] while ( line_index < len(UpperCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase__ : Tuple = lines[line_index] lowerCAmelCase__ : List[Any] = _re_import.search(UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ : Dict = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase__ : Any = lines[line_index] lowerCAmelCase__ : Union[str, Any] = _re_import.search(UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ : str = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> List[Any]: def find_duplicates(UpperCamelCase ): return [k for k, v in collections.Counter(UpperCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ : Optional[Any] = [] for key in import_dict_objects.keys(): lowerCAmelCase__ : str = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowerCAmelCase__ : int = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ : List[Any] = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __lowerCAmelCase ( ) -> Optional[Any]: lowerCAmelCase__ : Dict = [] for root, _, files in os.walk(UpperCamelCase ): if "__init__.py" in files: lowerCAmelCase__ : Any = os.path.join(UpperCamelCase , '''__init__.py''' ) lowerCAmelCase__ : List[Any] = parse_init(UpperCamelCase ) if objects is not None: lowerCAmelCase__ : Optional[int] = analyze_results(*UpperCamelCase ) if len(UpperCamelCase ) > 0: lowerCAmelCase__ : Tuple = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(UpperCamelCase ) ) if len(UpperCamelCase ) > 0: raise ValueError('''\n\n'''.join(UpperCamelCase ) ) def __lowerCAmelCase ( ) -> Tuple: lowerCAmelCase__ : str = [] for path, directories, files in os.walk(UpperCamelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(UpperCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase__ : Tuple = str((Path(UpperCamelCase ) / folder).relative_to(UpperCamelCase ) ) lowerCAmelCase__ : Dict = short_path.replace(os.path.sep , '''.''' ) submodules.append(UpperCamelCase ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ : Union[str, Any] = str((Path(UpperCamelCase ) / fname).relative_to(UpperCamelCase ) ) lowerCAmelCase__ : Tuple = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(UpperCamelCase ) return submodules lowerCAmelCase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def __lowerCAmelCase ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import lowerCAmelCase__ : Dict = direct_transformers_import(UpperCamelCase ) lowerCAmelCase__ : int = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(UpperCamelCase , '''__init__.py''' ) , '''r''' ) as f: lowerCAmelCase__ : str = f.read() import_structure_keys.update(set(re.findall(R'''import_structure\[\"([^\"]*)\"\]''' , UpperCamelCase ) ) ) lowerCAmelCase__ : Optional[int] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(UpperCamelCase ) > 0: lowerCAmelCase__ : List[Any] = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
678
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Tuple = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ["OwlViTFeatureExtractor"] __UpperCamelCase : Union[str, Any] = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
712
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = ["""names""", """prefix"""] __UpperCamelCase : List[str] = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] __UpperCamelCase : Dict = ["""encoding_errors""", """on_bad_lines"""] __UpperCamelCase : Any = ["""date_format"""] @dataclass class __SCREAMING_SNAKE_CASE( datasets.BuilderConfig ): _UpperCAmelCase = "," _UpperCAmelCase = None _UpperCAmelCase = "infer" _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = True _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = False _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = None _UpperCAmelCase = "." _UpperCAmelCase = None _UpperCAmelCase = '"' _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 0 _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = None _UpperCAmelCase = 1_0_0_0_0 _UpperCAmelCase = None _UpperCAmelCase = "strict" _UpperCAmelCase = "error" _UpperCAmelCase = None def lowerCAmelCase_ ( self: Tuple ) -> int: if self.delimiter is not None: snake_case__ = self.delimiter if self.column_names is not None: snake_case__ = self.column_names @property def lowerCAmelCase_ ( self: Optional[int] ) -> List[str]: snake_case__ = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , UpperCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __SCREAMING_SNAKE_CASE( datasets.ArrowBasedBuilder ): _UpperCAmelCase = CsvConfig def lowerCAmelCase_ ( self: str ) -> int: return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Dict ) -> int: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase , (str, list, tuple) ): snake_case__ = data_files if isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = [files] snake_case__ = [dl_manager.iter_files(UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] snake_case__ = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = [files] snake_case__ = [dl_manager.iter_files(UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCamelCase , gen_kwargs={'files': files} ) ) return splits def lowerCAmelCase_ ( self: int , UpperCamelCase: pa.Table ) -> pa.Table: if self.config.features is not None: snake_case__ = self.config.features.arrow_schema if all(not require_storage_cast(UpperCamelCase ) for feature in self.config.features.values() ): # cheaper cast snake_case__ = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=UpperCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example snake_case__ = table_cast(UpperCamelCase , UpperCamelCase ) return pa_table def lowerCAmelCase_ ( self: str , UpperCamelCase: Tuple ) -> Tuple: snake_case__ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str snake_case__ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase ) ): snake_case__ = pd.read_csv(UpperCamelCase , iterator=UpperCamelCase , dtype=UpperCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCamelCase ): snake_case__ = pa.Table.from_pandas(UpperCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCamelCase ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCamelCase )}: {e}''' ) raise
372
0
"""simple docstring""" from __future__ import annotations def UpperCamelCase ( _A ) -> Union[str, Any]: if len(_a ) == 0: return [] lowercase : Union[str, Any] = min(_a ), max(_a ) lowercase : List[str] = int(max_value - min_value ) + 1 lowercase : list[list] = [[] for _ in range(_a )] for i in my_list: buckets[int(i - min_value )].append(_a ) return [v for bucket in buckets for v in sorted(_a )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
264
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __lowerCamelCase : Optional[Any] = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
385
0
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def UpperCAmelCase ( a_=None, a_=None ): '''simple docstring''' return field(default_factory=lambda: default, metadata=a_ ) @dataclass class _lowercase : lowercase_ = field( metadata={'help': 'The csv file to plot.'} , ) lowercase_ = field( default=__UpperCAmelCase , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) lowercase_ = field( default=__UpperCAmelCase , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) lowercase_ = field( default=__UpperCAmelCase , metadata={'help': 'Disable logarithmic scale when plotting'} , ) lowercase_ = field( default=__UpperCAmelCase , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) lowercase_ = field( default=__UpperCAmelCase , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) lowercase_ = list_field( default=__UpperCAmelCase , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def UpperCAmelCase ( a_ ): '''simple docstring''' try: int(a_ ) return True except ValueError: return False def UpperCAmelCase ( a_ ): '''simple docstring''' try: float(a_ ) return True except ValueError: return False class _lowercase : def __init__( self , UpperCAmelCase_ ) -> str: lowerCamelCase : Dict = args lowerCamelCase : Union[str, Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: lowerCamelCase : List[str] = csv.DictReader(UpperCAmelCase_ ) for row in reader: lowerCamelCase : str = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None lowerCamelCase : Dict = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None lowerCamelCase : Optional[Any] = float(row['result'] ) def _UpperCamelCase ( self ) -> int: lowerCamelCase : Optional[int] = plt.subplots() lowerCamelCase : Tuple = 'Time usage' if self.args.is_time else 'Memory usage' lowerCamelCase : Dict = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowerCamelCase : List[str] = sorted(set(self.result_dict[model_name]['bsz'] ) ) lowerCamelCase : Tuple = sorted(set(self.result_dict[model_name]['seq_len'] ) ) lowerCamelCase : List[str] = self.result_dict[model_name]['result'] (lowerCamelCase) : Optional[int] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowerCamelCase : Dict = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowerCamelCase : int = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=UpperCAmelCase_ , ) else: lowerCamelCase : int = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) (lowerCamelCase) : Tuple = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) lowerCamelCase : str = np.asarray(UpperCAmelCase_ , UpperCAmelCase_ )[: len(UpperCAmelCase_ )] plt.scatter( UpperCAmelCase_ , UpperCAmelCase_ , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ , '--' ) title_str += F""" {label_model_name} vs.""" lowerCamelCase : Optional[Any] = title_str[:-4] lowerCamelCase : Union[str, Any] = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(UpperCAmelCase_ ) plt.xlabel(UpperCAmelCase_ ) plt.ylabel(UpperCAmelCase_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : Union[str, Any] = HfArgumentParser(a_ ) lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] lowerCamelCase : int = Plot(args=a_ ) plot.plot() if __name__ == "__main__": main()
714
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowercase ( __UpperCAmelCase ): lowercase_ = ['image_processor', 'tokenizer'] lowercase_ = 'BlipImageProcessor' lowercase_ = 'AutoTokenizer' def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> Dict: lowerCamelCase : Tuple = False super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : List[Any] = self.image_processor def __call__( self , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = True , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = 0 , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = True , UpperCAmelCase_ = None , **UpperCAmelCase_ , ) -> BatchEncoding: if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: lowerCamelCase : str = self.tokenizer lowerCamelCase : List[str] = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) return text_encoding # add pixel_values lowerCamelCase : Any = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) if text is not None: lowerCamelCase : List[Any] = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) else: lowerCamelCase : str = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase_ ) return encoding_image_processor def _UpperCamelCase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> str: return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _UpperCamelCase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : List[Any] = self.tokenizer.model_input_names lowerCamelCase : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
133
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] , a_ : Any , a_ : Union[str, Any]=13 , a_ : Dict=7 , a_ : int=True , a_ : Union[str, Any]=True , a_ : Union[str, Any]=True , a_ : List[Any]=True , a_ : Optional[Any]=99 , a_ : str=32 , a_ : List[str]=2 , a_ : List[Any]=4 , a_ : Optional[Any]=37 , a_ : int="gelu" , a_ : Dict=0.1 , a_ : Union[str, Any]=0.1 , a_ : List[str]=512 , a_ : List[Any]=16 , a_ : Union[str, Any]=2 , a_ : Any=0.02 , a_ : Tuple=3 , a_ : Tuple=4 , a_ : int=None , ): """simple docstring""" __snake_case = parent __snake_case = 13 __snake_case = 7 __snake_case = True __snake_case = True __snake_case = True __snake_case = True __snake_case = 99 __snake_case = 32 __snake_case = 2 __snake_case = 4 __snake_case = 37 __snake_case = "gelu" __snake_case = 0.1 __snake_case = 0.1 __snake_case = 512 __snake_case = 16 __snake_case = 2 __snake_case = 0.02 __snake_case = 3 __snake_case = 4 __snake_case = None def A ( self : List[str] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=a_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Union[str, Any] , a_ : List[Any] , a_ : List[str] , a_ : Dict , a_ : str , a_ : Dict , a_ : List[str] , a_ : List[Any] ): """simple docstring""" __snake_case = TFRoFormerModel(config=a_ ) __snake_case = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __snake_case = [input_ids, input_mask] __snake_case = model(a_ ) __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[str] , a_ : str , a_ : int , a_ : Any , a_ : Tuple , a_ : List[str] , a_ : Any , a_ : List[Any] ): """simple docstring""" __snake_case = True __snake_case = TFRoFormerForCausalLM(config=a_ ) __snake_case = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __snake_case = model(a_ )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A ( self : Any , a_ : List[Any] , a_ : Tuple , a_ : List[Any] , a_ : Any , a_ : List[Any] , a_ : str , a_ : List[str] ): """simple docstring""" __snake_case = TFRoFormerForMaskedLM(config=a_ ) __snake_case = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __snake_case = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : str , a_ : Tuple , a_ : Tuple , a_ : str , a_ : Tuple , a_ : Dict , a_ : Any , a_ : Dict ): """simple docstring""" __snake_case = self.num_labels __snake_case = TFRoFormerForSequenceClassification(config=a_ ) __snake_case = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __snake_case = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : int , a_ : int , a_ : str , a_ : Any , a_ : Optional[Any] , a_ : Any , a_ : Tuple , a_ : List[Any] ): """simple docstring""" __snake_case = self.num_choices __snake_case = TFRoFormerForMultipleChoice(config=a_ ) __snake_case = tf.tile(tf.expand_dims(a_ , 1 ) , (1, self.num_choices, 1) ) __snake_case = tf.tile(tf.expand_dims(a_ , 1 ) , (1, self.num_choices, 1) ) __snake_case = tf.tile(tf.expand_dims(a_ , 1 ) , (1, self.num_choices, 1) ) __snake_case = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __snake_case = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Optional[int] , a_ : Any , a_ : List[Any] , a_ : List[Any] , a_ : Any , a_ : List[str] , a_ : Dict , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = TFRoFormerForTokenClassification(config=a_ ) __snake_case = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __snake_case = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Dict , a_ : str , a_ : int , a_ : Any , a_ : List[str] , a_ : Optional[int] , a_ : List[Any] , a_ : str ): """simple docstring""" __snake_case = TFRoFormerForQuestionAnswering(config=a_ ) __snake_case = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __snake_case = model(a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Dict ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Any , a_ : Union[str, Any] , a_ : List[str] , a_ : Any , a_ : List[Any] , a_ : Dict ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A ( self : Tuple ): """simple docstring""" __snake_case = TFRoFormerModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , hidden_size=37 ) def A ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) def A ( self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def A ( self : Any ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) @slow def A ( self : Dict ): """simple docstring""" __snake_case = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(a_ ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : List[Any] ): """simple docstring""" __snake_case = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) __snake_case = tf.constant([[0, 1, 2, 3, 4, 5]] ) __snake_case = model(a_ )[0] # TODO Replace vocab size __snake_case = 50_000 __snake_case = [1, 6, vocab_size] self.assertEqual(output.shape , a_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __snake_case = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , a_ , atol=1e-4 ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = 1E-4 def A ( self : Optional[int] ): """simple docstring""" __snake_case = tf.constant([[4, 10]] ) __snake_case = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __snake_case = emba(input_ids.shape ) __snake_case = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(a_ , a_ , atol=self.tolerance ) def A ( self : List[str] ): """simple docstring""" __snake_case = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __snake_case = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __snake_case = emba.weight[:3, :5] tf.debugging.assert_near(a_ , a_ , atol=self.tolerance ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = 1E-4 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __snake_case = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __snake_case = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __snake_case = embed_positions([2, 16, 768] )[None, None, :, :] __snake_case , __snake_case = TFRoFormerSelfAttention.apply_rotary_position_embeddings( a_ , a_ , a_ ) __snake_case = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __snake_case = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , a_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , a_ , atol=self.tolerance )
69
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCAmelCase_ : '''simple docstring''' def _snake_case ( self , __A ): """simple docstring""" raise NotImplementedError() def _snake_case ( self ): """simple docstring""" raise NotImplementedError() class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A , __A = False , **__A ): """simple docstring""" lowerCamelCase : Optional[int] = tokenizer lowerCamelCase : str = skip_prompt lowerCamelCase : Union[str, Any] = decode_kwargs # variables used in the streaming process lowerCamelCase : int = [] lowerCamelCase : Union[str, Any] = 0 lowerCamelCase : List[str] = True def _snake_case ( self , __A ): """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: lowerCamelCase : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowerCamelCase : List[str] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowerCamelCase : List[str] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): lowerCamelCase : int = text[self.print_len :] lowerCamelCase : Optional[Any] = [] lowerCamelCase : List[Any] = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowerCamelCase : str = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowerCamelCase : Dict = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def _snake_case ( self ): """simple docstring""" if len(self.token_cache ) > 0: lowerCamelCase : Tuple = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowerCamelCase : Union[str, Any] = text[self.print_len :] lowerCamelCase : List[Any] = [] lowerCamelCase : Optional[int] = 0 else: lowerCamelCase : Tuple = "" lowerCamelCase : str = True self.on_finalized_text(__A , stream_end=__A ) def _snake_case ( self , __A , __A = False ): """simple docstring""" print(__A , flush=__A , end="" if not stream_end else None ) def _snake_case ( self , __A ): """simple docstring""" if ( (cp >= 0x4E_00 and cp <= 0x9F_FF) or (cp >= 0x34_00 and cp <= 0x4D_BF) # or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) # or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) # or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) # or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) # or (cp >= 0xF9_00 and cp <= 0xFA_FF) or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) # ): # return True return False class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A , __A = False , __A = None , **__A ): """simple docstring""" super().__init__(__A , __A , **__A ) lowerCamelCase : int = Queue() lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[Any] = timeout def _snake_case ( self , __A , __A = False ): """simple docstring""" self.text_queue.put(__A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): """simple docstring""" return self def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
340
0
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __lowercase = logging.get_logger(__name__) @dataclass class _A : """simple docstring""" UpperCAmelCase : List[str] = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) UpperCAmelCase : int = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) UpperCAmelCase : Optional[int] = field( default=1_2_8 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) UpperCAmelCase : Union[str, Any] = field( default=_a ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __snake_case ( self : Optional[int]): a : List[str] = self.task_name.lower() class _A ( _a ): """simple docstring""" UpperCAmelCase : List[str] = """train""" UpperCAmelCase : List[Any] = """dev""" UpperCAmelCase : Optional[int] = """test""" class _A ( _a ): """simple docstring""" UpperCAmelCase : str = 4_2 UpperCAmelCase : int = 4_2 UpperCAmelCase : Optional[Any] = 4_2 def __init__( self : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] = None , __UpperCAmelCase : Dict = Split.train , __UpperCAmelCase : Optional[Any] = None , ): warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , __lowerCAmelCase , ) a : Tuple = args a : Tuple = glue_processors[args.task_name]() a : str = glue_output_modes[args.task_name] if isinstance(__lowerCAmelCase , __lowerCAmelCase): try: a : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name") # Load data features from cache or dataset file a : int = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) a : str = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) a , a : int = label_list[2], label_list[1] a : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a : Tuple = cached_features_file + ".lock" with FileLock(__lowerCAmelCase): if os.path.exists(__lowerCAmelCase) and not args.overwrite_cache: a : Dict = time.time() a : Union[str, Any] = torch.load(__lowerCAmelCase) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''') if mode == Split.dev: a : int = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: a : int = self.processor.get_test_examples(args.data_dir) else: a : Optional[Any] = self.processor.get_train_examples(args.data_dir) if limit_length is not None: a : Union[str, Any] = examples[:limit_length] a : Tuple = glue_convert_examples_to_features( __lowerCAmelCase , __lowerCAmelCase , max_length=args.max_seq_length , label_list=__lowerCAmelCase , output_mode=self.output_mode , ) a : List[str] = time.time() torch.save(self.features , __lowerCAmelCase) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''') def __len__( self : Optional[Any]): return len(self.features) def __getitem__( self : Tuple , __UpperCAmelCase : Tuple): return self.features[i] def __snake_case ( self : Optional[int]): return self.label_list
707
"""simple docstring""" def lowercase ( A_ )-> list[int]: '''simple docstring''' if num <= 0: raise ValueError("Input must be a positive integer" ) a : List[Any] = [True] * (num + 1) a : Union[str, Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , A_ ): a : List[str] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __lowercase = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
135
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase : int = StableDiffusionDiffEditPipeline UpperCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} UpperCamelCase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} UpperCamelCase : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase : int = frozenset([] ) def _lowercase ( self : str ) -> Optional[int]: torch.manual_seed(0 ) _a : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase__ , ) _a : List[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) _a : str = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase__ , set_alpha_to_zero=UpperCamelCase__ , ) torch.manual_seed(0 ) _a : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) _a : Optional[int] = CLIPTextModel(UpperCamelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict=0 ) -> Dict: _a : List[str] = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) _a : Optional[int] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("""mps""" ): _a : Optional[Any] = torch.manual_seed(UpperCamelCase__ ) else: _a : Union[str, Any] = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) _a : Union[str, Any] = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple=0 ) -> List[str]: _a : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) _a : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[Any] = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): _a : List[Any] = torch.manual_seed(UpperCamelCase__ ) else: _a : Any = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) _a : Optional[Any] = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=0 ) -> Tuple: _a : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) _a : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : List[Any] = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): _a : Optional[Any] = torch.manual_seed(UpperCamelCase__ ) else: _a : Optional[int] = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) _a : Union[str, Any] = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def _lowercase ( self : List[str] ) -> List[Any]: if not hasattr(self.pipeline_class , """_optional_components""" ): return _a : Optional[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) _a : Dict = self.get_dummy_inputs(UpperCamelCase__ ) _a : Any = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) _a : Optional[int] = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) _a : List[Any] = self.get_dummy_inputs(UpperCamelCase__ ) _a : Optional[Any] = pipe_loaded(**UpperCamelCase__ )[0] _a : Tuple = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase__ , 1E-4 ) def _lowercase ( self : List[Any] ) -> Union[str, Any]: _a : List[Any] = """cpu""" _a : Any = self.get_dummy_components() _a : Optional[Any] = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a : Optional[int] = self.get_dummy_mask_inputs(UpperCamelCase__ ) _a : Any = pipe.generate_mask(**UpperCamelCase__ ) _a : int = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) _a : Optional[int] = np.array([0] * 9 ) _a : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: _a : Any = """cpu""" _a : Any = self.get_dummy_components() _a : Tuple = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a : int = self.get_dummy_inversion_inputs(UpperCamelCase__ ) _a : Dict = pipe.invert(**UpperCamelCase__ ).images _a : Union[str, Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _a : int = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) _a : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1E-3 ) def _lowercase ( self : List[str] ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def _lowercase ( self : Any ) -> Optional[Any]: _a : Any = """cpu""" _a : int = self.get_dummy_components() _a : List[Any] = {"""beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """beta_schedule""": """scaled_linear"""} _a : Union[str, Any] = DPMSolverMultistepScheduler(**UpperCamelCase__ ) _a : List[str] = DPMSolverMultistepInverseScheduler(**UpperCamelCase__ ) _a : Tuple = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a : Union[str, Any] = self.get_dummy_inversion_inputs(UpperCamelCase__ ) _a : List[Any] = pipe.invert(**UpperCamelCase__ ).images _a : int = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _a : List[Any] = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) _a : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1E-3 ) @require_torch_gpu @slow class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Dict ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _lowercase ( cls : Dict ) -> List[str]: _a : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) _a : int = raw_image.convert("""RGB""" ).resize((768, 768) ) _a : Dict = raw_image def _lowercase ( self : Optional[int] ) -> str: _a : Union[str, Any] = torch.manual_seed(0 ) _a : Tuple = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) _a : Union[str, Any] = DDIMScheduler.from_config(pipe.scheduler.config ) _a : Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a : List[str] = """a bowl of fruit""" _a : Tuple = """a bowl of pears""" _a : List[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) _a : Tuple = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ ).latents _a : str = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] _a : List[Any] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[int] = torch.manual_seed(0 ) _a : Any = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) _a : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _a : List[Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a : Optional[Any] = """a bowl of fruit""" _a : Tuple = """a bowl of pears""" _a : Any = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase__ , target_prompt=UpperCamelCase__ , generator=UpperCamelCase__ , ) _a : Dict = pipe.invert( prompt=UpperCamelCase__ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase__ , num_inference_steps=25 , ).latents _a : str = pipe( prompt=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_latents=UpperCamelCase__ , generator=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] _a : List[Any] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
389
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] def __init__( self :Any , UpperCamelCase__ :Tuple="</s>" , UpperCamelCase__ :str="<unk>" , UpperCamelCase__ :List[Any]="<pad>" , UpperCamelCase__ :Optional[int]=125 , UpperCamelCase__ :Union[str, Any]=None , **UpperCamelCase__ :List[Any] , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _a = [f'<extra_id_{i}>' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _a = len(set(filter(lambda UpperCamelCase__ : bool("extra_id" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) _a = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token _a = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token _a = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token super().__init__( eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) _a = extra_ids _a = 2**8 # utf is 8 bits # define special tokens dict _a = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _a = len(self.special_tokens_encoder ) _a = len(UpperCamelCase__ ) for i, token in enumerate(UpperCamelCase__ ): _a = self.vocab_size + i - n _a = {v: k for k, v in self.special_tokens_encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self :Any ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def SCREAMING_SNAKE_CASE_ ( self :int , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None , UpperCamelCase__ :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase__ )) + [1] return ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :List[int] ): if len(UpperCamelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None ): _a = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None ): _a = self._add_eos_if_not_present(UpperCamelCase__ ) if token_ids_a is None: return token_ids_a else: _a = self._add_eos_if_not_present(UpperCamelCase__ ) return token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE_ ( self :List[str] , UpperCamelCase__ :str ): _a = [chr(UpperCamelCase__ ) for i in text.encode("utf-8" )] return tokens def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :List[Any] ): if token in self.special_tokens_encoder: _a = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _a = self.added_tokens_encoder[token] elif len(UpperCamelCase__ ) != 1: _a = self.unk_token_id else: _a = ord(UpperCamelCase__ ) + self._num_special_tokens return token_id def SCREAMING_SNAKE_CASE_ ( self :List[str] , UpperCamelCase__ :List[str] ): if index in self.special_tokens_decoder: _a = self.special_tokens_decoder[index] else: _a = chr(index - self._num_special_tokens ) return token def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :Any ): _a = B"" for token in tokens: if token in self.special_tokens_decoder: _a = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: _a = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: _a = token.encode("utf-8" ) elif token in self.added_tokens_encoder: _a = token.encode("utf-8" ) else: _a = bytes([ord(UpperCamelCase__ )] ) bstring += tok_string _a = bstring.decode("utf-8" , errors="ignore" ) return string def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :str , UpperCamelCase__ :Optional[str] = None ): return ()
388
0
import numpy as np lowercase__ : Tuple = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self )-> None: '''simple docstring''' __UpperCamelCase = np.array(lowerCAmelCase_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> np.ndarray: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = np.where(letter == self.SQUARE ) __UpperCamelCase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.SQUARE[indexa - 1, indexa - 1] return letter def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = message.lower() __UpperCamelCase = message.replace(''' ''' , '''''' ) __UpperCamelCase = message.replace('''j''' , '''i''' ) __UpperCamelCase = np.empty((2, len(lowerCAmelCase_ )) ) for letter_index in range(len(lowerCAmelCase_ ) ): __UpperCamelCase = self.letter_to_numbers(message[letter_index] ) __UpperCamelCase = numbers[0] __UpperCamelCase = numbers[1] __UpperCamelCase = first_step.reshape(2 * len(lowerCAmelCase_ ) ) __UpperCamelCase = '''''' for numbers_index in range(len(lowerCAmelCase_ ) ): __UpperCamelCase = int(second_step[numbers_index * 2] ) __UpperCamelCase = int(second_step[(numbers_index * 2) + 1] ) __UpperCamelCase = self.numbers_to_letter(lowerCAmelCase_ , lowerCAmelCase_ ) __UpperCamelCase = encoded_message + letter return encoded_message def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = message.lower() message.replace(''' ''' , '''''' ) __UpperCamelCase = np.empty(2 * len(lowerCAmelCase_ ) ) for letter_index in range(len(lowerCAmelCase_ ) ): __UpperCamelCase = self.letter_to_numbers(message[letter_index] ) __UpperCamelCase = numbers[0] __UpperCamelCase = numbers[1] __UpperCamelCase = first_step.reshape((2, len(lowerCAmelCase_ )) ) __UpperCamelCase = '''''' for numbers_index in range(len(lowerCAmelCase_ ) ): __UpperCamelCase = int(second_step[0, numbers_index] ) __UpperCamelCase = int(second_step[1, numbers_index] ) __UpperCamelCase = self.numbers_to_letter(lowerCAmelCase_ , lowerCAmelCase_ ) __UpperCamelCase = decoded_message + letter return decoded_message
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = ["ViTFeatureExtractor"] lowercase__ : str = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase__ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
451
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A = { # 1536-bit 5: { "prime": int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), "generator": 2, }, } class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase = 14 ): """simple docstring""" if group not in primes: raise ValueError('Unsupported Group' ) snake_case_ = primes[group]["""prime"""] snake_case_ = primes[group]["""generator"""] snake_case_ = int(hexlify(urandom(32 ) ) , base=16 ) def __lowerCAmelCase ( self ): """simple docstring""" return hex(self.__private_key )[2:] def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = pow(self.generator , self.__private_key , self.prime ) return hex(_a )[2:] def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(_a , (self.prime - 1) // 2 , self.prime ) == 1 ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = int(_a , base=16 ) if not self.is_valid_public_key(_a ): raise ValueError('Invalid public key' ) snake_case_ = pow(_a , self.__private_key , self.prime ) return shaaaa(str(_a ).encode() ).hexdigest() @staticmethod def __lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(_a , (prime - 1) // 2 , _a ) == 1 ) @staticmethod def __lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 14 ): """simple docstring""" snake_case_ = int(_a , base=16 ) snake_case_ = int(_a , base=16 ) snake_case_ = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(_a , _a ): raise ValueError('Invalid public key' ) snake_case_ = pow(_a , _a , _a ) return shaaaa(str(_a ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
187
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> int: assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = 1, 1 for _ in range(number_of_steps - 1 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' def snake_case ( a_ : Optional[Any] ) -> List[Any]: """simple docstring""" if not head: return True # split the list to two parts UpperCamelCase_ : str = head.next, head while fast and fast.next: UpperCamelCase_ : Union[str, Any] = fast.next.next UpperCamelCase_ : Any = slow.next UpperCamelCase_ : Union[str, Any] = slow.next UpperCamelCase_ : Tuple = None # Don't forget here! But forget still works! # reverse the second part UpperCamelCase_ : List[Any] = None while second: UpperCamelCase_ : str = second.next UpperCamelCase_ : Dict = node UpperCamelCase_ : str = second UpperCamelCase_ : List[str] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCamelCase_ : List[Any] = node.next UpperCamelCase_ : Optional[int] = head.next return True def snake_case ( a_ : List[str] ) -> Dict: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCamelCase_ : str = head while fast and fast.next: UpperCamelCase_ : Tuple = fast.next.next, slow.next # 2. Push the second half into the stack UpperCamelCase_ : List[Any] = [slow.val] while slow.next: UpperCamelCase_ : str = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCamelCase_ : Optional[Any] = cur.next return True def snake_case ( a_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if not head or not head.next: return True UpperCamelCase_ : List[Any] = {} UpperCamelCase_ : Tuple = 0 while head: if head.val in d: d[head.val].append(a_ ) else: UpperCamelCase_ : List[Any] = [pos] UpperCamelCase_ : Optional[Any] = head.next pos += 1 UpperCamelCase_ : Optional[Any] = pos - 1 UpperCamelCase_ : Tuple = 0 for v in d.values(): if len(a_ ) % 2 != 0: middle += 1 else: UpperCamelCase_ : List[str] = 0 for i in range(0 , len(a_ ) ): if v[i] + v[len(a_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
718
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A ( unittest.TestCase ): """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=3 , __lowerCAmelCase=18 , __lowerCAmelCase=30 , __lowerCAmelCase=4_00 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=True , ): UpperCamelCase_ : Dict = size if size is not None else {"""height""": 18, """width""": 18} UpperCamelCase_ : List[str] = parent UpperCamelCase_ : List[str] = batch_size UpperCamelCase_ : List[Any] = num_channels UpperCamelCase_ : List[str] = image_size UpperCamelCase_ : Tuple = min_resolution UpperCamelCase_ : List[str] = max_resolution UpperCamelCase_ : Optional[int] = do_resize UpperCamelCase_ : List[Any] = size UpperCamelCase_ : Any = apply_ocr def _UpperCAmelCase ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A ( SCREAMING_SNAKE_CASE__, unittest.TestCase ): """simple docstring""" __a : Optional[int] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _UpperCAmelCase ( self ): UpperCamelCase_ : int = LayoutLMvaImageProcessingTester(self ) @property def _UpperCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """apply_ocr""" ) ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) UpperCamelCase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): # Initialize image_processing UpperCamelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input UpperCamelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __lowerCAmelCase ) self.assertIsInstance(encoding.boxes , __lowerCAmelCase ) # Test batched UpperCamelCase_ : List[str] = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _UpperCAmelCase ( self ): # Initialize image_processing UpperCamelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input UpperCamelCase_ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched UpperCamelCase_ : List[str] = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _UpperCAmelCase ( self ): # Initialize image_processing UpperCamelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched UpperCamelCase_ : Union[str, Any] = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _UpperCAmelCase ( self ): # with apply_OCR = True UpperCamelCase_ : Optional[int] = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) UpperCamelCase_ : int = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) UpperCamelCase_ : Union[str, Any] = image_processing(__lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase_ : Optional[Any] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 UpperCamelCase_ : List[Any] = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __lowerCAmelCase ) self.assertListEqual(encoding.boxes , __lowerCAmelCase ) # with apply_OCR = False UpperCamelCase_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=__lowerCAmelCase ) UpperCamelCase_ : Optional[int] = image_processing(__lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
543
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int | str] ): create_state_space_tree(UpperCamelCase__ , [] , 0 , [0 for i in range(len(UpperCamelCase__ ) )] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int | str] , UpperCamelCase__: list[int | str] , UpperCamelCase__: int , UpperCamelCase__: list[int] , ): if index == len(UpperCamelCase__ ): print(UpperCamelCase__ ) return for i in range(len(UpperCamelCase__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE__ = True create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 , UpperCamelCase__ ) current_sequence.pop() SCREAMING_SNAKE_CASE__ = False _lowerCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
6
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( __lowercase ): __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def A__ (self , **lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = { """num_train_timesteps""": 1_100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowerCamelCase ) return config def A__ (self ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def A__ (self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def A__ (self ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def A__ (self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = output.prev_sample _lowerCAmelCase = torch.sum(torch.abs(lowerCamelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def A__ (self ): '''simple docstring''' if torch_device == "mps": return _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = output.prev_sample _lowerCAmelCase = torch.sum(torch.abs(lowerCamelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def A__ (self ): '''simple docstring''' if torch_device == "mps": return _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.to(lowerCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = model(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = output.prev_sample _lowerCAmelCase = torch.sum(torch.abs(lowerCamelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(lowerCamelCase ) ) if str(lowerCamelCase ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
156
0
from __future__ import annotations class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __A = 0 ): """simple docstring""" lowerCamelCase : Any = key def _snake_case ( self , __A , __A ): """simple docstring""" assert isinstance(__A , __A ) and isinstance(__A , __A ) lowerCamelCase : str = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__A ) ^ key ) for ch in content] def _snake_case ( self , __A , __A ): """simple docstring""" assert isinstance(__A , __A ) and isinstance(__A , __A ) lowerCamelCase : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__A ) ^ key ) for ch in content] def _snake_case ( self , __A , __A = 0 ): """simple docstring""" assert isinstance(__A , __A ) and isinstance(__A , __A ) lowerCamelCase : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCamelCase : Union[str, Any] = '' for ch in content: ans += chr(ord(__A ) ^ key ) return ans def _snake_case ( self , __A , __A = 0 ): """simple docstring""" assert isinstance(__A , __A ) and isinstance(__A , __A ) lowerCamelCase : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCamelCase : Any = '' for ch in content: ans += chr(ord(__A ) ^ key ) return ans def _snake_case ( self , __A , __A = 0 ): """simple docstring""" assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__A , __A ) ) except OSError: return False return True def _snake_case ( self , __A , __A ): """simple docstring""" assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__A , __A ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
703
def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) lowerCamelCase : Tuple = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" lowerCamelCase : Any = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" lowerCamelCase : Any = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
231
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE ( a ): """simple docstring""" a_ : List[str] =( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) a_ : List[str] ="CIDAS/clipseg-rd64-refined" a_ : str ="image_segmenter" a_ : Any =CLIPSegForImageSegmentation a_ : List[Any] =["image", "text"] a_ : List[str] =["image"] def __init__( self : Dict , *_snake_case : Dict , **_snake_case : List[str] ) -> List[str]: '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*_snake_case , **_snake_case ) def _lowerCAmelCase ( self : str , _snake_case : "Image" , _snake_case : str ) -> Dict: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=_snake_case , return_tensors='pt' ) def _lowerCAmelCase ( self : str , _snake_case : Optional[int] ) -> List[str]: '''simple docstring''' with torch.no_grad(): a__ = self.model(**_snake_case ).logits return logits def _lowerCAmelCase ( self : int , _snake_case : List[Any] ) -> Dict: '''simple docstring''' a__ = outputs.cpu().detach().numpy() a__ = 0 a__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
232
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( a ): """simple docstring""" a_ : Union[str, Any] ="audio-spectrogram-transformer" def __init__( self : Optional[int] , _snake_case : Tuple=768 , _snake_case : Optional[int]=12 , _snake_case : Dict=12 , _snake_case : List[Any]=3072 , _snake_case : Dict="gelu" , _snake_case : List[Any]=0.0 , _snake_case : List[Any]=0.0 , _snake_case : int=0.02 , _snake_case : Dict=1E-12 , _snake_case : int=16 , _snake_case : str=True , _snake_case : Any=10 , _snake_case : Any=10 , _snake_case : Tuple=1024 , _snake_case : Dict=128 , **_snake_case : List[str] , ) -> Any: '''simple docstring''' super().__init__(**_snake_case ) a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = initializer_range a__ = layer_norm_eps a__ = patch_size a__ = qkv_bias a__ = frequency_stride a__ = time_stride a__ = max_length a__ = num_mel_bins
232
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename _a = "http://www.mocksite.com/file1.txt" _a = "\"text\": [\"foo\", \"foo\"]" _a = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class __A : '''simple docstring''' lowerCAmelCase_ = 200 lowerCAmelCase_ = {"""Content-Length""": """100"""} lowerCAmelCase_ = {} def __lowerCamelCase ( self , **__lowerCAmelCase ): '''simple docstring''' return [bytes(__lowerCAmelCase , '''utf-8''' )] def lowerCAmelCase__(*__snake_case ,**__snake_case ) -> Dict: '''simple docstring''' return MockResponse() @pytest.mark.parametrize('''urls_type''' ,[str, list, dict] ) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> Tuple: '''simple docstring''' import requests monkeypatch.setattr(__snake_case ,'''request''' ,__snake_case ) lowerCamelCase__ = URL if issubclass(__snake_case ,__snake_case ): lowerCamelCase__ = url elif issubclass(__snake_case ,__snake_case ): lowerCamelCase__ = [url] elif issubclass(__snake_case ,__snake_case ): lowerCamelCase__ = {'''train''': url} lowerCamelCase__ = '''dummy''' lowerCamelCase__ = '''downloads''' lowerCamelCase__ = tmp_path lowerCamelCase__ = DownloadConfig( cache_dir=os.path.join(__snake_case ,__snake_case ) ,use_etag=__snake_case ,) lowerCamelCase__ = DownloadManager(dataset_name=__snake_case ,download_config=__snake_case ) lowerCamelCase__ = dl_manager.download(__snake_case ) lowerCamelCase__ = urls for downloaded_paths in [downloaded_paths]: if isinstance(__snake_case ,__snake_case ): lowerCamelCase__ = [downloaded_paths] lowerCamelCase__ = [urls] elif isinstance(__snake_case ,__snake_case ): assert "train" in downloaded_paths.keys() lowerCamelCase__ = downloaded_paths.values() lowerCamelCase__ = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__snake_case ,__snake_case ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCamelCase__ = Path(__snake_case ) lowerCamelCase__ = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCamelCase__ = downloaded_path.read_text() assert content == CONTENT lowerCamelCase__ = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() lowerCamelCase__ = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' ,[str, list, dict] ) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ = str(__snake_case ) if issubclass(__snake_case ,__snake_case ): lowerCamelCase__ = filename elif issubclass(__snake_case ,__snake_case ): lowerCamelCase__ = [filename] elif issubclass(__snake_case ,__snake_case ): lowerCamelCase__ = {'''train''': filename} lowerCamelCase__ = '''dummy''' lowerCamelCase__ = xz_file.parent lowerCamelCase__ = '''extracted''' lowerCamelCase__ = DownloadConfig( cache_dir=__snake_case ,use_etag=__snake_case ,) lowerCamelCase__ = DownloadManager(dataset_name=__snake_case ,download_config=__snake_case ) lowerCamelCase__ = dl_manager.extract(__snake_case ) lowerCamelCase__ = paths for extracted_paths in [extracted_paths]: if isinstance(__snake_case ,__snake_case ): lowerCamelCase__ = [extracted_paths] lowerCamelCase__ = [paths] elif isinstance(__snake_case ,__snake_case ): assert "train" in extracted_paths.keys() lowerCamelCase__ = extracted_paths.values() lowerCamelCase__ = paths.values() assert extracted_paths for extracted_path, input_path in zip(__snake_case ,__snake_case ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCamelCase__ = Path(__snake_case ) lowerCamelCase__ = extracted_path.parts assert parts[-1] == hash_url_to_filename(__snake_case ,etag=__snake_case ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCamelCase__ = extracted_path.read_text() lowerCamelCase__ = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCAmelCase__(__snake_case ,__snake_case ) -> Tuple: '''simple docstring''' assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__snake_case ,start=1 ): lowerCamelCase__ = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' ,['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> Dict: '''simple docstring''' lowerCamelCase__ = request.getfixturevalue(__snake_case ) lowerCamelCase__ = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__snake_case ) ,start=1 ): _test_jsonl(__snake_case ,__snake_case ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' ,['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = request.getfixturevalue(__snake_case ) lowerCamelCase__ = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__snake_case ) ,start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__snake_case ) ,start=1 ): _test_jsonl(__snake_case ,__snake_case ) assert num_tar == 1 assert num_jsonl == 2 def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__snake_case ) ,start=1 ): assert os.path.basename(__snake_case ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
29
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _a = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
29
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _snake_case (__SCREAMING_SNAKE_CASE): def __init__( self ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = False ,_snake_case = False ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : int = path_or_paths UpperCAmelCase_ : Optional[int] = split if split or isinstance(_snake_case ,_snake_case ) else "train" UpperCAmelCase_ : Tuple = features UpperCAmelCase_ : int = cache_dir UpperCAmelCase_ : Optional[Any] = keep_in_memory UpperCAmelCase_ : Any = streaming UpperCAmelCase_ : List[str] = num_proc UpperCAmelCase_ : int = kwargs @abstractmethod def UpperCamelCase__ ( self ): pass class _snake_case (__SCREAMING_SNAKE_CASE): def __init__( self ,_snake_case = None ,_snake_case = None ,_snake_case = False ,_snake_case = False ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : Union[str, Any] = features UpperCAmelCase_ : Dict = cache_dir UpperCAmelCase_ : int = keep_in_memory UpperCAmelCase_ : int = streaming UpperCAmelCase_ : Tuple = num_proc UpperCAmelCase_ : Optional[Any] = kwargs @abstractmethod def UpperCamelCase__ ( self ): pass
71
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger() def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True ) -> str: """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": _a : str = timm.create_model('''levit_128s''' , pretrained=snake_case__ ) else: _a : int = timm.create_model('''levit_128''' , pretrained=snake_case__ ) if hidden_sizes == 192: _a : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=snake_case__ ) if hidden_sizes == 256: _a : Optional[int] = timm.create_model('''levit_256''' , pretrained=snake_case__ ) if hidden_sizes == 384: _a : List[Any] = timm.create_model('''levit_384''' , pretrained=snake_case__ ) from_model.eval() _a : List[Any] = LevitForImageClassificationWithTeacher(snake_case__ ).eval() _a : Tuple = OrderedDict() _a : Optional[Any] = from_model.state_dict() _a : List[Any] = list(from_model.state_dict().keys() ) _a : List[Any] = list(our_model.state_dict().keys() ) print(len(snake_case__ ) , len(snake_case__ ) ) for i in range(len(snake_case__ ) ): _a : Optional[int] = weights[og_keys[i]] our_model.load_state_dict(snake_case__ ) _a : Union[str, Any] = torch.randn((2, 3, 224, 224) ) _a : Any = from_model(snake_case__ ) _a : Dict = our_model(snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ ), "The model logits don't match the original one." _a : Optional[int] = name print(snake_case__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) _a : Dict = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = True ) -> Optional[Any]: """simple docstring""" _a : List[Any] = '''imagenet-1k-id2label.json''' _a : Dict = 1000 _a : int = (1, num_labels) _a : List[Any] = '''huggingface/label-files''' _a : Optional[int] = num_labels _a : Union[str, Any] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) _a : int = {int(snake_case__ ): v for k, v in idalabel.items()} _a : Tuple = idalabel _a : Union[str, Any] = {v: k for k, v in idalabel.items()} _a : Any = partial(snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ ) _a : str = { '''levit-128S''': 128, '''levit-128''': 128, '''levit-192''': 192, '''levit-256''': 256, '''levit-384''': 384, } _a : Union[str, Any] = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , snake_case__ , names_to_config[model_name] , snake_case__ , snake_case__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return config, expected_shape if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
717
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __lowerCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) __lowerCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase=100 , UpperCAmelCase=" " ) -> List[str]: """simple docstring""" _a : int = text.split(UpperCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(UpperCAmelCase ) , UpperCAmelCase )] def UpperCamelCase__ ( UpperCAmelCase ) -> dict: """simple docstring""" _a , _a : List[Any] = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(UpperCAmelCase ): titles.append(title if title is not None else '''''' ) texts.append(UpperCAmelCase ) return {"title": titles, "text": texts} def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> dict: """simple docstring""" _a : str = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] _a : int = ctx_encoder(input_ids.to(device=UpperCAmelCase ) , return_dict=UpperCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> str: """simple docstring""" logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _a : Any = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _a : Union[str, Any] = dataset.map(UpperCAmelCase , batched=UpperCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _a : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=UpperCAmelCase ) _a : Dict = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _a : Optional[Any] = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space _a : str = dataset.map( partial(UpperCAmelCase , ctx_encoder=UpperCAmelCase , ctx_tokenizer=UpperCAmelCase ) , batched=UpperCAmelCase , batch_size=processing_args.batch_size , features=UpperCAmelCase , ) # And finally save your dataset _a : List[Any] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(UpperCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _a : Optional[int] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=UpperCAmelCase ) # And save the index _a : List[Any] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(UpperCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class UpperCamelCase_ : lowercase = field( default=str(Path(UpperCamelCase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) lowercase = field( default=UpperCamelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) lowercase = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) lowercase = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) lowercase = field( default=str(Path(UpperCamelCase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class UpperCamelCase_ : lowercase = field( default=UpperCamelCase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) lowercase = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class UpperCamelCase_ : lowercase = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) lowercase = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __lowerCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __lowerCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
307
0
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __lowerCAmelCase = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = _TestCommandArgs(dataset=_SCREAMING_SNAKE_CASE , all_configs=_SCREAMING_SNAKE_CASE , save_infos=_SCREAMING_SNAKE_CASE ) _snake_case = TestCommand(*_SCREAMING_SNAKE_CASE ) test_command.run() _snake_case = os.path.join(_SCREAMING_SNAKE_CASE , """README.md""" ) assert os.path.exists(_SCREAMING_SNAKE_CASE ) _snake_case = DatasetInfosDict.from_directory(_SCREAMING_SNAKE_CASE ) _snake_case = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 235_1563, """num_examples""": 1_0000, }, { """name""": """validation""", """num_bytes""": 23_8418, """num_examples""": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: _snake_case, _snake_case = getattr(dataset_infos["""default"""] , _SCREAMING_SNAKE_CASE ), getattr(expected_dataset_infos["""default"""] , _SCREAMING_SNAKE_CASE ) if key == "num_bytes": assert is_apercent_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif key == "splits": assert list(_SCREAMING_SNAKE_CASE ) == list(_SCREAMING_SNAKE_CASE ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
585
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase = { 'configuration_roberta_prelayernorm': [ 'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaPreLayerNormConfig', 'RobertaPreLayerNormOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaPreLayerNormForCausalLM', 'RobertaPreLayerNormForMaskedLM', 'RobertaPreLayerNormForMultipleChoice', 'RobertaPreLayerNormForQuestionAnswering', 'RobertaPreLayerNormForSequenceClassification', 'RobertaPreLayerNormForTokenClassification', 'RobertaPreLayerNormModel', 'RobertaPreLayerNormPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaPreLayerNormForCausalLM', 'TFRobertaPreLayerNormForMaskedLM', 'TFRobertaPreLayerNormForMultipleChoice', 'TFRobertaPreLayerNormForQuestionAnswering', 'TFRobertaPreLayerNormForSequenceClassification', 'TFRobertaPreLayerNormForTokenClassification', 'TFRobertaPreLayerNormMainLayer', 'TFRobertaPreLayerNormModel', 'TFRobertaPreLayerNormPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FlaxRobertaPreLayerNormForCausalLM', 'FlaxRobertaPreLayerNormForMaskedLM', 'FlaxRobertaPreLayerNormForMultipleChoice', 'FlaxRobertaPreLayerNormForQuestionAnswering', 'FlaxRobertaPreLayerNormForSequenceClassification', 'FlaxRobertaPreLayerNormForTokenClassification', 'FlaxRobertaPreLayerNormModel', 'FlaxRobertaPreLayerNormPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
585
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
714
__lowerCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } __lowerCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A__ ( _a : float , _a : str , _a : str ): '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: snake_case__ : Tuple =( f"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n" f"Valid values are: {', '.join(_a )}" ) raise ValueError(_a ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
448
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _snake_case ( A__ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ =KandinskyInpaintPipeline UpperCamelCase__ =["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase__ =[ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase__ =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase__ =False @property def snake_case_ ( self : Optional[Any] ): return 32 @property def snake_case_ ( self : List[Any] ): return 32 @property def snake_case_ ( self : List[Any] ): return self.time_input_dim @property def snake_case_ ( self : Dict ): return self.time_input_dim * 4 @property def snake_case_ ( self : int ): return 100 @property def snake_case_ ( self : Any ): UpperCAmelCase_ :List[Any] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def snake_case_ ( self : Any ): torch.manual_seed(0 ) UpperCAmelCase_ :Any = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) UpperCAmelCase_ :Union[str, Any] = MultilingualCLIP(__A ) UpperCAmelCase_ :List[str] = text_encoder.eval() return text_encoder @property def snake_case_ ( self : Tuple ): torch.manual_seed(0 ) UpperCAmelCase_ :Optional[int] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase_ :int = UNetaDConditionModel(**__A ) return model @property def snake_case_ ( self : List[str] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCAmelCase_ :Tuple = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self : Tuple ): UpperCAmelCase_ :Optional[Any] = self.dummy_text_encoder UpperCAmelCase_ :Optional[Any] = self.dummy_tokenizer UpperCAmelCase_ :Dict = self.dummy_unet UpperCAmelCase_ :Any = self.dummy_movq UpperCAmelCase_ :Optional[int] = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='''linear''' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=__A , set_alpha_to_one=__A , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__A , ) UpperCAmelCase_ :Optional[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def snake_case_ ( self : int , snake_case : Any , snake_case : List[Any]=0 ): UpperCAmelCase_ :Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__A ) ).to(__A ) UpperCAmelCase_ :Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__A ) # create init_image UpperCAmelCase_ :Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__A ) ).to(__A ) UpperCAmelCase_ :int = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ :Any = Image.fromarray(np.uinta(__A ) ).convert('''RGB''' ).resize((256, 256) ) # create mask UpperCAmelCase_ :List[Any] = np.ones((64, 64) , dtype=np.floataa ) UpperCAmelCase_ :Optional[int] = 0 if str(__A ).startswith('''mps''' ): UpperCAmelCase_ :Optional[int] = torch.manual_seed(__A ) else: UpperCAmelCase_ :Any = torch.Generator(device=__A ).manual_seed(__A ) UpperCAmelCase_ :List[Any] = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def snake_case_ ( self : Optional[Any] ): UpperCAmelCase_ :int = '''cpu''' UpperCAmelCase_ :List[str] = self.get_dummy_components() UpperCAmelCase_ :Optional[int] = self.pipeline_class(**__A ) UpperCAmelCase_ :List[str] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) UpperCAmelCase_ :int = pipe(**self.get_dummy_inputs(__A ) ) UpperCAmelCase_ :List[Any] = output.images UpperCAmelCase_ :str = pipe( **self.get_dummy_inputs(__A ) , return_dict=__A , )[0] UpperCAmelCase_ :Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ :Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ :List[Any] = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def snake_case_ ( self : List[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self : List[Any] ): UpperCAmelCase_ :Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) UpperCAmelCase_ :Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase_ :Dict = np.ones((768, 768) , dtype=np.floataa ) UpperCAmelCase_ :Dict = 0 UpperCAmelCase_ :int = '''a hat''' UpperCAmelCase_ :List[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__A ) UpperCAmelCase_ :Dict = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) UpperCAmelCase_ :int = pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) UpperCAmelCase_ :List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase_ :Dict = pipe_prior( __A , generator=__A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase_ :List[Any] = pipeline( __A , image=__A , mask_image=__A , image_embeds=__A , negative_image_embeds=__A , generator=__A , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) UpperCAmelCase_ :List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__A , __A )
608
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : list ) -> float: SCREAMING_SNAKE_CASE_ : Dict =0 while len(UpperCAmelCase_ ) > 1: SCREAMING_SNAKE_CASE_ : Tuple =0 # Consider two files with minimum cost to be merged for _ in range(2 ): SCREAMING_SNAKE_CASE_ : int =files.index(min(UpperCAmelCase_ ) ) temp += files[min_index] files.pop(UpperCAmelCase_ ) files.append(UpperCAmelCase_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
443
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCamelCase_ = getLogger(__name__) UpperCamelCase_ = 'cuda' if torch.cuda.is_available() else 'cpu' def _UpperCAmelCase ( A , A , A , A = 8 , A = DEFAULT_DEVICE , A=False , A="summarization" , A=None , **A , ): '''simple docstring''' UpperCAmelCase__ =Path(_SCREAMING_SNAKE_CASE ).open("w" , encoding="utf-8" ) UpperCAmelCase__ =str(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ =AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) if fpaa: UpperCAmelCase__ =model.half() UpperCAmelCase__ =AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. UpperCAmelCase__ =time.time() # update config with task specific params use_task_specific_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if prefix is None: UpperCAmelCase__ =prefix or getattr(model.config , "prefix" , "" ) or "" for examples_chunk in tqdm(list(chunks(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ): UpperCAmelCase__ =[prefix + text for text in examples_chunk] UpperCAmelCase__ =tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="pt" , truncation=_SCREAMING_SNAKE_CASE , padding="longest" ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ =model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase__ =tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() UpperCAmelCase__ =int(time.time() - start_time ) # seconds UpperCAmelCase__ =len(_SCREAMING_SNAKE_CASE ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _UpperCAmelCase ( ): '''simple docstring''' return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def _UpperCAmelCase ( A=True ): '''simple docstring''' UpperCAmelCase__ =argparse.ArgumentParser() parser.add_argument("model_name" , type=_SCREAMING_SNAKE_CASE , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path" , type=_SCREAMING_SNAKE_CASE , help="like cnn_dm/test.source" ) parser.add_argument("save_path" , type=_SCREAMING_SNAKE_CASE , help="where to save summaries" ) parser.add_argument("--reference_path" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="like cnn_dm/test.target" ) parser.add_argument("--score_path" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , default="metrics.json" , help="where to save metrics" ) parser.add_argument("--device" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="will be added to the begininng of src examples" ) parser.add_argument("--task" , type=_SCREAMING_SNAKE_CASE , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=_SCREAMING_SNAKE_CASE , default=8 , required=_SCREAMING_SNAKE_CASE , help="batch size" ) parser.add_argument( "--n_obs" , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help="How many observations. Defaults to all." ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--dump-args" , action="store_true" , help="print the custom hparams with the results" ) parser.add_argument( "--info" , nargs="?" , type=_SCREAMING_SNAKE_CASE , const=datetime_now() , help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate UpperCAmelCase__ , UpperCAmelCase__ =parser.parse_known_args() UpperCAmelCase__ =parse_numeric_n_bool_cl_kwargs(_SCREAMING_SNAKE_CASE ) if parsed_args and verbose: print(F"""parsed the following generate kwargs: {parsed_args}""" ) UpperCAmelCase__ =[" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: UpperCAmelCase__ =examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) UpperCAmelCase__ =generate_summaries_or_translations( _SCREAMING_SNAKE_CASE , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_SCREAMING_SNAKE_CASE , ) if args.reference_path is None: return {} # Compute scores UpperCAmelCase__ =calculate_bleu if "translation" in args.task else calculate_rouge UpperCAmelCase__ =[x.rstrip() for x in open(args.save_path ).readlines()] UpperCAmelCase__ =[x.rstrip() for x in open(args.reference_path ).readlines()][: len(_SCREAMING_SNAKE_CASE )] UpperCAmelCase__ =score_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) scores.update(_SCREAMING_SNAKE_CASE ) if args.dump_args: scores.update(_SCREAMING_SNAKE_CASE ) if args.info: UpperCAmelCase__ =args.info if verbose: print(_SCREAMING_SNAKE_CASE ) if args.score_path is not None: json.dump(_SCREAMING_SNAKE_CASE , open(args.score_path , "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
702
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase_ = logging.getLogger(__name__) def _UpperCAmelCase ( A , A ): '''simple docstring''' return (preds == labels).mean() @dataclass class snake_case_ : '''simple docstring''' __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=a, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=a, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=a, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) @dataclass class snake_case_ : '''simple docstring''' __UpperCamelCase = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) __UpperCamelCase = field(metadata={'help': 'Should contain the data files for the task.'} ) __UpperCamelCase = field( default=1_2_8, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) __UpperCamelCase = field( default=a, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , A ) # Set seed set_seed(training_args.seed ) try: UpperCAmelCase__ =processors[data_args.task_name]() UpperCAmelCase__ =processor.get_labels() UpperCAmelCase__ =len(A ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase__ =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCAmelCase__ =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase__ =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase__ =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=A , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase__ =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=A , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(A ) -> Dict: UpperCAmelCase__ =np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(A , p.label_ids )} # Data collator UpperCAmelCase__ =DataCollatorWithPadding(A , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase__ =Trainer( model=A , args=A , train_dataset=A , eval_dataset=A , compute_metrics=A , data_collator=A , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase__ ={} if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase__ =trainer.evaluate() UpperCAmelCase__ =os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(A , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , A , A ) writer.write("%s = %s\n" % (key, value) ) results.update(A ) return results def _UpperCAmelCase ( A ): '''simple docstring''' main() if __name__ == "__main__": main()
510
0
def snake_case (UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: Optional[Any] = [] UpperCamelCase_: Any = [] UpperCamelCase_: Union[str, Any] = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator UpperCamelCase_: Optional[int] = len(SCREAMING_SNAKE_CASE__ ) if (len(SCREAMING_SNAKE_CASE__ ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(SCREAMING_SNAKE_CASE__ ) , 'Postfix'.center(SCREAMING_SNAKE_CASE__ ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(SCREAMING_SNAKE_CASE__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(SCREAMING_SNAKE_CASE__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(SCREAMING_SNAKE_CASE__ ) == 0: stack.append(SCREAMING_SNAKE_CASE__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(SCREAMING_SNAKE_CASE__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(SCREAMING_SNAKE_CASE__ ) # push x to stack print( x.center(8 ) , (''.join(SCREAMING_SNAKE_CASE__ )).ljust(SCREAMING_SNAKE_CASE__ ) , (''.join(SCREAMING_SNAKE_CASE__ )).ljust(SCREAMING_SNAKE_CASE__ ) , sep=' | ' , ) # Output in tabular format while len(SCREAMING_SNAKE_CASE__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(SCREAMING_SNAKE_CASE__ )).ljust(SCREAMING_SNAKE_CASE__ ) , (''.join(SCREAMING_SNAKE_CASE__ )).ljust(SCREAMING_SNAKE_CASE__ ) , sep=' | ' , ) # Output in tabular format return "".join(SCREAMING_SNAKE_CASE__ ) # return Postfix as str def snake_case (UpperCAmelCase__ ) -> Tuple: UpperCamelCase_: int = list(infix[::-1] ) # reverse the infix equation for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if infix[i] == "(": UpperCamelCase_: Any = ')' # change "(" to ")" elif infix[i] == ")": UpperCamelCase_: Any = '(' # change ")" to "(" return (infix_2_postfix(''.join(SCREAMING_SNAKE_CASE__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A_ : str = input('\nEnter an Infix Equation = ') # Input an Infix equation A_ : Any = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
57
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A ( UpperCamelCase_ ): UpperCamelCase__ : List[str] =(PNDMScheduler,) UpperCamelCase__ : Dict =(('num_inference_steps', 50),) def lowerCamelCase ( self : Dict , **lowercase_ : Dict ) -> str: """simple docstring""" _lowerCamelCase : List[Any] ={ 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**lowercase_ ) return config def lowerCamelCase ( self : Any , lowercase_ : str=0 , **lowercase_ : str ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Optional[Any] =dict(self.forward_default_kwargs ) _lowerCamelCase : Optional[Any] =kwargs.pop('num_inference_steps' , lowercase_ ) _lowerCamelCase : Tuple =self.dummy_sample _lowerCamelCase : int =0.1 * sample _lowerCamelCase : int =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCamelCase : str =self.get_scheduler_config(**lowercase_ ) _lowerCamelCase : str =scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals _lowerCamelCase : Any =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) _lowerCamelCase : Optional[Any] =scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals _lowerCamelCase : Any =dummy_past_residuals[:] _lowerCamelCase : Union[str, Any] =scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : List[str] =new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCamelCase : Optional[int] =scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : Optional[Any] =new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any] , lowercase_ : List[str]=0 , **lowercase_ : int ) -> int: """simple docstring""" _lowerCamelCase : Any =dict(self.forward_default_kwargs ) _lowerCamelCase : Dict =kwargs.pop('num_inference_steps' , lowercase_ ) _lowerCamelCase : Union[str, Any] =self.dummy_sample _lowerCamelCase : Optional[int] =0.1 * sample _lowerCamelCase : List[str] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCamelCase : Any =self.get_scheduler_config() _lowerCamelCase : int =scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) _lowerCamelCase : Any =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) _lowerCamelCase : Optional[Any] =scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) _lowerCamelCase : Optional[int] =dummy_past_residuals[:] _lowerCamelCase : List[str] =scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : str =new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCamelCase : Optional[Any] =scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : List[str] =new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Optional[Any] , **lowercase_ : Any ) -> Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] =self.scheduler_classes[0] _lowerCamelCase : Optional[Any] =self.get_scheduler_config(**lowercase_ ) _lowerCamelCase : Any =scheduler_class(**lowercase_ ) _lowerCamelCase : Union[str, Any] =10 _lowerCamelCase : str =self.dummy_model() _lowerCamelCase : Union[str, Any] =self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): _lowerCamelCase : Union[str, Any] =model(lowercase_ , lowercase_ ) _lowerCamelCase : Any =scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowerCamelCase : List[Any] =model(lowercase_ , lowercase_ ) _lowerCamelCase : int =scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def lowerCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" _lowerCamelCase : Any =dict(self.forward_default_kwargs ) _lowerCamelCase : Optional[int] =kwargs.pop('num_inference_steps' , lowercase_ ) for scheduler_class in self.scheduler_classes: _lowerCamelCase : List[str] =self.get_scheduler_config() _lowerCamelCase : List[Any] =scheduler_class(**lowercase_ ) _lowerCamelCase : Union[str, Any] =self.dummy_sample _lowerCamelCase : Optional[int] =0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , 'set_timesteps' ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , 'set_timesteps' ): _lowerCamelCase : Tuple =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCamelCase : List[Any] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCamelCase : Union[str, Any] =dummy_past_residuals[:] _lowerCamelCase : List[Any] =scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : str =scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowerCamelCase : Tuple =scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : Optional[Any] =scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase ( self : Dict ) -> Any: """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def lowerCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) _lowerCamelCase : Optional[int] =self.scheduler_classes[0] _lowerCamelCase : Dict =self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : List[Any] =scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowerCamelCase ( self : List[str] ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def lowerCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def lowerCamelCase ( self : Tuple ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def lowerCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def lowerCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] =27 for scheduler_class in self.scheduler_classes: _lowerCamelCase : Dict =self.dummy_sample _lowerCamelCase : List[Any] =0.1 * sample _lowerCamelCase : List[Any] =self.get_scheduler_config() _lowerCamelCase : List[str] =scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowerCamelCase : Tuple =scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def lowerCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" with self.assertRaises(lowercase_ ): _lowerCamelCase : Dict =self.scheduler_classes[0] _lowerCamelCase : Optional[Any] =self.get_scheduler_config() _lowerCamelCase : List[Any] =scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowerCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" _lowerCamelCase : Tuple =self.full_loop() _lowerCamelCase : Optional[Any] =torch.sum(torch.abs(lowercase_ ) ) _lowerCamelCase : Union[str, Any] =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _lowerCamelCase : int =self.full_loop(prediction_type='v_prediction' ) _lowerCamelCase : Dict =torch.sum(torch.abs(lowercase_ ) ) _lowerCamelCase : str =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def lowerCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple =self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) _lowerCamelCase : Optional[Any] =torch.sum(torch.abs(lowercase_ ) ) _lowerCamelCase : Union[str, Any] =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def lowerCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _lowerCamelCase : str =self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) _lowerCamelCase : Union[str, Any] =torch.sum(torch.abs(lowercase_ ) ) _lowerCamelCase : str =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
464
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : Any = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : str = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys UpperCAmelCase__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
"""simple docstring""" def lowercase_ ( _snake_case ,_snake_case ): return int((input_a, input_a).count(1 ) != 0 ) def lowercase_ ( ): assert or_gate(0 ,0 ) == 0 assert or_gate(0 ,1 ) == 1 assert or_gate(1 ,0 ) == 1 assert or_gate(1 ,1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
545
0
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version __lowerCamelCase = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') __lowerCamelCase = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization __lowerCamelCase = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } __lowerCamelCase = sorted(arg_to_scheduler.keys()) __lowerCamelCase = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class UpperCAmelCase ( pl.LightningModule ): def __init__( self : Optional[int] , __lowerCamelCase : argparse.Namespace , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Dict="base" , __lowerCamelCase : Dict=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple , ): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__lowerCamelCase ) UpperCAmelCase__ :List[str] = 0 UpperCAmelCase__ :Any = Path(self.hparams.output_dir ) UpperCAmelCase__ :Optional[Any] = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase__ :Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=__lowerCamelCase , **__lowerCamelCase , ) else: UpperCAmelCase__ :PretrainedConfig = config UpperCAmelCase__ :int = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , __lowerCamelCase , __lowerCamelCase ): assert hasattr(self.config , __lowerCamelCase ), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , __lowerCamelCase , getattr(self.hparams , __lowerCamelCase ) ) if tokenizer is None: UpperCAmelCase__ :List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__lowerCamelCase , ) else: UpperCAmelCase__ :PreTrainedTokenizer = tokenizer UpperCAmelCase__ :List[Any] = MODEL_MODES[mode] if model is None: UpperCAmelCase__ :List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__lowerCamelCase , ) else: UpperCAmelCase__ :List[Any] = model def __SCREAMING_SNAKE_CASE ( self : List[str] , *__lowerCamelCase : int , **__lowerCamelCase : str ): UpperCAmelCase__ :Union[str, Any] = self.model_type.from_pretrained(*__lowerCamelCase , **__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Any ): UpperCAmelCase__ :Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase__ :str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCAmelCase__ :Any = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def __SCREAMING_SNAKE_CASE ( self : str ): UpperCAmelCase__ :Union[str, Any] = self.model UpperCAmelCase__ :int = ['''bias''', '''LayerNorm.weight'''] UpperCAmelCase__ :List[str] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase__ :List[Any] = Adafactor( __lowerCamelCase , lr=self.hparams.learning_rate , scale_parameter=__lowerCamelCase , relative_step=__lowerCamelCase ) else: UpperCAmelCase__ :List[str] = AdamW( __lowerCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCAmelCase__ :List[Any] = optimizer UpperCAmelCase__ :Any = self.get_lr_scheduler() return [optimizer], [scheduler] def __SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] ): return self.validation_step(__lowerCamelCase , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCamelCase : Dict ): return self.validation_end(__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : int ): UpperCAmelCase__ :Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase__ :Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCamelCase : Tuple ): if stage == "test": UpperCAmelCase__ :str = len(self.test_dataloader().dataset ) else: UpperCAmelCase__ :Union[str, Any] = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = len(self.train_dataloader().dataset ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : bool = False ): raise NotImplementedError('''You must implement this for your task''' ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.train_loader def __SCREAMING_SNAKE_CASE ( self : int ): return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCamelCase : int ): return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( __lowerCamelCase , list(filter(__lowerCamelCase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __SCREAMING_SNAKE_CASE ( self : Any , __lowerCamelCase : Dict[str, Any] ): UpperCAmelCase__ :Tuple = self.output_dir.joinpath('''best_tfmr''' ) UpperCAmelCase__ :List[Any] = self.step_count self.model.save_pretrained(__lowerCamelCase ) self.tokenizer.save_pretrained(__lowerCamelCase ) @staticmethod def __SCREAMING_SNAKE_CASE ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ): parser.add_argument( '''--model_name_or_path''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=__lowerCamelCase , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=__lowerCamelCase , type=__lowerCamelCase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(__lowerCamelCase ).parent / '''test_run''' / '''cache''' ) , type=__lowerCamelCase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=__lowerCamelCase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=__lowerCamelCase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=__lowerCamelCase , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=__lowerCamelCase , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5e-5 , type=__lowerCamelCase , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=__lowerCamelCase , metavar=__lowerCamelCase , type=__lowerCamelCase , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=__lowerCamelCase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=__lowerCamelCase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=__lowerCamelCase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=__lowerCamelCase , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=__lowerCamelCase ) parser.add_argument('''--train_batch_size''' , default=3_2 , type=__lowerCamelCase ) parser.add_argument('''--eval_batch_size''' , default=3_2 , type=__lowerCamelCase ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class UpperCAmelCase ( pl.Callback ): def __SCREAMING_SNAKE_CASE ( self : str , __lowerCamelCase : Dict , __lowerCamelCase : Dict ): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class UpperCAmelCase ( pl.Callback ): def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any] ): # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__lowerCamelCase ) class UpperCAmelCase ( pl.Callback ): def __SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): UpperCAmelCase__ :Optional[int] = trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase__ :Optional[int] = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : int , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule ): rank_zero_info('''***** Validation results *****''' ) UpperCAmelCase__ :List[Any] = trainer.callback_metrics # Log results for key in sorted(__lowerCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(__lowerCamelCase , str(metrics[key] ) ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule ): rank_zero_info('''***** Test results *****''' ) UpperCAmelCase__ :Optional[Any] = trainer.callback_metrics # Log and save results to file UpperCAmelCase__ :Union[str, Any] = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(__lowerCamelCase , '''w''' ) as writer: for key in sorted(__lowerCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(__lowerCamelCase , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(__lowerCamelCase , str(metrics[key] ) ) ) def a__ ( UpperCamelCase_ : List[Any], UpperCamelCase_ : Tuple ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''', default=str(Path(UpperCamelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ), type=UpperCamelCase_, help='''The output directory where the model predictions and checkpoints will be written.''', ) parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''', ) parser.add_argument( '''--fp16_opt_level''', type=UpperCamelCase_, default='''O2''', help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ), ) parser.add_argument('''--n_tpu_cores''', dest='''tpu_cores''', type=UpperCamelCase_ ) parser.add_argument('''--max_grad_norm''', dest='''gradient_clip_val''', default=1.0, type=UpperCamelCase_, help='''Max gradient norm''' ) parser.add_argument('''--do_train''', action='''store_true''', help='''Whether to run training.''' ) parser.add_argument('''--do_predict''', action='''store_true''', help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''', dest='''accumulate_grad_batches''', type=UpperCamelCase_, default=1, help='''Number of updates steps to accumulate before performing a backward/update pass.''', ) parser.add_argument('''--seed''', type=UpperCamelCase_, default=42, help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''', default=str(Path(UpperCamelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ), type=UpperCamelCase_, help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''', ) def a__ ( UpperCamelCase_ : BaseTransformer, UpperCamelCase_ : argparse.Namespace, UpperCamelCase_ : int=None, UpperCamelCase_ : str=True, UpperCamelCase_ : Union[str, Any]=[], UpperCamelCase_ : Union[str, Any]=None, UpperCamelCase_ : str=None, **UpperCamelCase_ : str, ): pl.seed_everything(args.seed ) # init model UpperCAmelCase__ :Optional[int] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=UpperCamelCase_ ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase__ :List[str] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir, prefix='''checkpoint''', monitor='''val_loss''', mode='''min''', save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(UpperCamelCase_ ) if logging_callback is None: UpperCAmelCase__ :Tuple = LoggingCallback() UpperCAmelCase__ :List[str] = {} if args.fpaa: UpperCAmelCase__ :Optional[Any] = 16 if args.gpus > 1: UpperCAmelCase__ :Optional[Any] = '''auto''' UpperCAmelCase__ :str = '''ddp''' UpperCAmelCase__ :Dict = args.accumulate_grad_batches UpperCAmelCase__ :Dict = None UpperCAmelCase__ :Dict = '''auto''' UpperCAmelCase__ :List[Any] = pl.Trainer.from_argparse_args( UpperCamelCase_, weights_summary=UpperCamelCase_, callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback], logger=UpperCamelCase_, val_check_interval=1, num_sanity_val_steps=2, **UpperCamelCase_, ) if args.do_train: trainer.fit(UpperCamelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
467
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class UpperCAmelCase : def __init__( self : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple=9_9 , __lowerCamelCase : int=1_3 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Dict=9 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : List[Any]=3_2 , __lowerCamelCase : int=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Tuple=3_7 , __lowerCamelCase : Any=8 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Any=0.0_02 , __lowerCamelCase : List[str]=1 , __lowerCamelCase : str=0 , __lowerCamelCase : str=0 , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , ): UpperCAmelCase__ :Tuple = parent UpperCAmelCase__ :str = batch_size UpperCAmelCase__ :int = encoder_seq_length UpperCAmelCase__ :Optional[int] = decoder_seq_length # For common tests UpperCAmelCase__ :int = self.decoder_seq_length UpperCAmelCase__ :List[Any] = is_training UpperCAmelCase__ :Any = use_attention_mask UpperCAmelCase__ :Tuple = use_labels UpperCAmelCase__ :Optional[int] = vocab_size UpperCAmelCase__ :Optional[Any] = hidden_size UpperCAmelCase__ :Optional[Any] = num_hidden_layers UpperCAmelCase__ :Tuple = num_attention_heads UpperCAmelCase__ :str = d_ff UpperCAmelCase__ :Tuple = relative_attention_num_buckets UpperCAmelCase__ :int = dropout_rate UpperCAmelCase__ :Dict = initializer_factor UpperCAmelCase__ :int = eos_token_id UpperCAmelCase__ :Tuple = pad_token_id UpperCAmelCase__ :Tuple = decoder_start_token_id UpperCAmelCase__ :List[str] = None UpperCAmelCase__ :List[str] = decoder_layers def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return TaConfig.from_pretrained('''google/umt5-base''' ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[Any]=None , ): if attention_mask is None: UpperCAmelCase__ :Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase__ :Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase__ :List[str] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__lowerCamelCase ) if decoder_head_mask is None: UpperCAmelCase__ :Optional[Any] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__lowerCamelCase ) if cross_attn_head_mask is None: UpperCAmelCase__ :List[Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __SCREAMING_SNAKE_CASE ( self : List[str] ): UpperCAmelCase__ :Optional[int] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCAmelCase__ :List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase__ :int = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase__ :Tuple = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase__ :Dict = self.get_config() UpperCAmelCase__ :Union[str, Any] = config.num_attention_heads UpperCAmelCase__ :Dict = self.prepare_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, input_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ , UpperCAmelCase__ :int = self.prepare_config_and_inputs() return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , ): UpperCAmelCase__ :str = UMTaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase__ :Optional[int] = model( input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , decoder_attention_mask=__lowerCamelCase , ) UpperCAmelCase__ :List[Any] = model(input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ) UpperCAmelCase__ :Dict = result.last_hidden_state UpperCAmelCase__ :Tuple = result.past_key_values UpperCAmelCase__ :Dict = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__lowerCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , ): UpperCAmelCase__ :Tuple = UMTaModel(config=__lowerCamelCase ).get_decoder().to(__lowerCamelCase ).eval() # first forward pass UpperCAmelCase__ :Dict = model(__lowerCamelCase , use_cache=__lowerCamelCase ) UpperCAmelCase__ :Any = model(__lowerCamelCase ) UpperCAmelCase__ :List[str] = model(__lowerCamelCase , use_cache=__lowerCamelCase ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) + 1 ) UpperCAmelCase__ , UpperCAmelCase__ :int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ :int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCAmelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ :Union[str, Any] = model(__lowerCamelCase )['''last_hidden_state'''] UpperCAmelCase__ :str = model(__lowerCamelCase , past_key_values=__lowerCamelCase )['''last_hidden_state'''] # select random slice UpperCAmelCase__ :Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ :Any = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase__ :Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : str , ): UpperCAmelCase__ :Optional[Any] = UMTaModel(config=__lowerCamelCase ).to(__lowerCamelCase ).half().eval() UpperCAmelCase__ :Any = model(**__lowerCamelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__lowerCamelCase ).any().item() ) @require_torch class UpperCAmelCase ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): UpperCAmelCase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase = [0.8, 0.9] def __SCREAMING_SNAKE_CASE ( self : str ): UpperCAmelCase__ :Optional[Any] = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __SCREAMING_SNAKE_CASE ( self : int ): UpperCAmelCase__ :int = self.model_tester.prepare_config_and_inputs() UpperCAmelCase__ :Optional[int] = UMTaModel(config_and_inputs[0] ).to(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __lowerCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=__lowerCamelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): UpperCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ :Tuple = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] UpperCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase__ :int = config_and_inputs[0] UpperCAmelCase__ :Optional[Any] = UMTaForConditionalGeneration(__lowerCamelCase ).eval() model.to(__lowerCamelCase ) UpperCAmelCase__ :List[str] = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__lowerCamelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__lowerCamelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__lowerCamelCase ), } for attn_name, (name, mask) in zip(__lowerCamelCase , head_masking.items() ): UpperCAmelCase__ :Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCAmelCase__ :Optional[Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=__lowerCamelCase ) UpperCAmelCase__ :Union[str, Any] = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__lowerCamelCase , return_dict_in_generate=__lowerCamelCase , **__lowerCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCAmelCase__ :List[Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __SCREAMING_SNAKE_CASE ( self : Any ): UpperCAmelCase__ :Optional[Any] = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__lowerCamelCase ).to(__lowerCamelCase ) UpperCAmelCase__ :List[str] = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__lowerCamelCase , legacy=__lowerCamelCase ) UpperCAmelCase__ :Dict = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] UpperCAmelCase__ :Optional[Any] = tokenizer(__lowerCamelCase , return_tensors='''pt''' , padding=__lowerCamelCase ).input_ids # fmt: off UpperCAmelCase__ :List[Any] = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :Dict = model.generate(input_ids.to(__lowerCamelCase ) ) UpperCAmelCase__ :str = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] UpperCAmelCase__ :Dict = tokenizer.batch_decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
467
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCamelCase__ ( snake_case_ ): """simple docstring""" __magic_name__ = ["""pixel_values"""] def __init__( self , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = PILImageResampling.BICUBIC , UpperCAmelCase__ = True , UpperCAmelCase__ = 1 / 2_5_5 , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = True , **UpperCAmelCase__ , ) -> None: super().__init__(**UpperCAmelCase__ ) _A : Optional[Any] = size if size is not None else {'''height''': 3_8_4, '''width''': 3_8_4} _A : Tuple = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) _A : Any = do_resize _A : str = size _A : Any = resample _A : Optional[int] = do_rescale _A : List[Any] = rescale_factor _A : List[Any] = do_normalize _A : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _A : str = image_std if image_std is not None else OPENAI_CLIP_STD _A : int = do_convert_rgb def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = PILImageResampling.BICUBIC , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> np.ndarray: _A : int = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) _A : Optional[Any] = (size['''height'''], size['''width''']) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> str: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> np.ndarray: return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = ChannelDimension.FIRST , **UpperCAmelCase__ , ) -> PIL.Image.Image: _A : str = do_resize if do_resize is not None else self.do_resize _A : Optional[int] = resample if resample is not None else self.resample _A : Tuple = do_rescale if do_rescale is not None else self.do_rescale _A : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _A : Tuple = do_normalize if do_normalize is not None else self.do_normalize _A : int = image_mean if image_mean is not None else self.image_mean _A : Dict = image_std if image_std is not None else self.image_std _A : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _A : Tuple = size if size is not None else self.size _A : Any = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) _A : List[Any] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _A : int = [convert_to_rgb(UpperCAmelCase__ ) for image in images] # All transformations expect numpy arrays. _A : int = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: _A : Optional[int] = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: _A : List[str] = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: _A : Any = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] _A : List[Any] = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _A : str = BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase__ ) return encoded_outputs
417
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=1_3 , UpperCAmelCase__=7 , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=9_9 , UpperCAmelCase__=3_2 , UpperCAmelCase__=5 , UpperCAmelCase__=4 , UpperCAmelCase__=3_7 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=5_1_2 , UpperCAmelCase__=1_6 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=False , UpperCAmelCase__=True , UpperCAmelCase__="None" , UpperCAmelCase__=3 , UpperCAmelCase__=4 , UpperCAmelCase__=None , ) -> List[str]: _A : Tuple = parent _A : List[Any] = batch_size _A : str = seq_length _A : Tuple = is_training _A : Tuple = use_input_mask _A : Tuple = use_token_type_ids _A : Any = use_labels _A : Tuple = vocab_size _A : List[Any] = hidden_size _A : Tuple = num_hidden_layers _A : Optional[Any] = num_attention_heads _A : str = intermediate_size _A : Dict = hidden_act _A : int = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : List[Any] = max_position_embeddings _A : Tuple = type_vocab_size _A : str = type_sequence_label_size _A : Tuple = initializer_range _A : Union[str, Any] = num_labels _A : Union[str, Any] = num_choices _A : Optional[Any] = relative_attention _A : Optional[Any] = position_biased_input _A : int = pos_att_type _A : int = scope def _lowerCamelCase ( self ) -> Optional[Any]: _A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Optional[int] = None if self.use_input_mask: _A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _A : List[str] = None if self.use_token_type_ids: _A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Tuple = None _A : Any = None _A : List[Any] = None if self.use_labels: _A : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : int = ids_tensor([self.batch_size] , self.num_choices ) _A : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ) -> Any: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _lowerCamelCase ( self ) -> str: _A : List[str] = self.get_config() _A : Union[str, Any] = 3_0_0 return config def _lowerCamelCase ( self , UpperCAmelCase__ ) -> Optional[Any]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: _A : List[Any] = DebertaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _A : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ )[0] _A : Tuple = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ )[0] _A : Any = model(UpperCAmelCase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: _A : Any = DebertaForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _A : List[Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: _A : Any = self.num_labels _A : List[Any] = DebertaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _A : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: _A : List[Any] = self.num_labels _A : int = DebertaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _A : Dict = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: _A : Optional[Any] = DebertaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _A : Union[str, Any] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self ) -> Optional[int]: _A : Tuple = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Union[str, Any] = config_and_inputs _A : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" __magic_name__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __magic_name__ = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def _lowerCamelCase ( self ) -> Dict: _A : str = DebertaModelTester(self ) _A : int = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def _lowerCamelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> int: _A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Dict: _A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> int: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> List[str]: _A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCAmelCase__ ) @slow def _lowerCamelCase ( self ) -> int: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[int] = DebertaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def _lowerCamelCase ( self ) -> int: pass @slow def _lowerCamelCase ( self ) -> int: _A : Dict = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) _A : List[str] = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) _A : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _A : Optional[int] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] # compare the actual values for a slice. _A : Optional[Any] = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1e-4 ) , F"""{output[:, 1:4, 1:4]}""" )
417
1
'''simple docstring''' from string import ascii_uppercase A = {str(ord(c) - 55): c for c in ascii_uppercase} def UpperCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int): if isinstance(UpperCAmelCase__ , UpperCAmelCase__): raise TypeError('int() can\'t convert non-string with explicit base') if num < 0: raise ValueError('parameter must be positive int') if isinstance(UpperCAmelCase__ , UpperCAmelCase__): raise TypeError('\'str\' object cannot be interpreted as an integer') if isinstance(UpperCAmelCase__ , UpperCAmelCase__): raise TypeError('\'float\' object cannot be interpreted as an integer') if base in (0, 1): raise ValueError('base must be >= 2') if base > 36: raise ValueError('base must be <= 36') lowerCamelCase : Optional[int] = '' lowerCamelCase : Optional[Any] = 0 lowerCamelCase : Any = 0 while div != 1: lowerCamelCase , lowerCamelCase : Tuple = divmod(UpperCAmelCase__ , UpperCAmelCase__) if base >= 11 and 9 < mod < 36: lowerCamelCase : Union[str, Any] = ALPHABET_VALUES[str(UpperCAmelCase__)] else: lowerCamelCase : Union[str, Any] = str(UpperCAmelCase__) new_value += actual_value lowerCamelCase : List[Any] = num // base lowerCamelCase : int = div if div == 0: return str(new_value[::-1]) elif div == 1: new_value += str(UpperCAmelCase__) return str(new_value[::-1]) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
320
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __snake_case ( a__): _lowerCAmelCase = '''roformer''' def __init__( self, A=5_0000, A=None, A=768, A=12, A=12, A=3072, A="gelu", A=0.1, A=0.1, A=1536, A=2, A=0.02, A=1e-12, A=0, A=False, A=True, **A, ): """simple docstring""" super().__init__(pad_token_id=A, **A ) lowerCamelCase : Optional[int] = vocab_size lowerCamelCase : int = hidden_size if embedding_size is None else embedding_size lowerCamelCase : List[Any] = hidden_size lowerCamelCase : str = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : int = hidden_act lowerCamelCase : List[Any] = intermediate_size lowerCamelCase : List[str] = hidden_dropout_prob lowerCamelCase : List[str] = attention_probs_dropout_prob lowerCamelCase : Union[str, Any] = max_position_embeddings lowerCamelCase : Tuple = type_vocab_size lowerCamelCase : Dict = initializer_range lowerCamelCase : List[str] = layer_norm_eps lowerCamelCase : List[Any] = rotary_value lowerCamelCase : Dict = use_cache class __snake_case ( a__): @property def UpperCAmelCase_ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} lowerCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
320
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class A__ : def __init__( self : str , _a : Union[str, Any] , ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =13 _SCREAMING_SNAKE_CASE =7 _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =99 _SCREAMING_SNAKE_CASE =32 _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =4 _SCREAMING_SNAKE_CASE =37 _SCREAMING_SNAKE_CASE ='''gelu''' _SCREAMING_SNAKE_CASE =0.1 _SCREAMING_SNAKE_CASE =0.1 _SCREAMING_SNAKE_CASE =512 _SCREAMING_SNAKE_CASE =16 _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =0.02 _SCREAMING_SNAKE_CASE =3 _SCREAMING_SNAKE_CASE =4 _SCREAMING_SNAKE_CASE =None def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE =EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __UpperCamelCase ( self : Dict , _a : Dict , _a : str , _a : Optional[Any] , _a : List[Any] , _a : Optional[Any] , _a : int ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =TFEsmModel(config=_a ) _SCREAMING_SNAKE_CASE ={'''input_ids''': input_ids, '''attention_mask''': input_mask} _SCREAMING_SNAKE_CASE =model(_a ) _SCREAMING_SNAKE_CASE =[input_ids, input_mask] _SCREAMING_SNAKE_CASE =model(_a ) _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : List[str] , _a : int , _a : Any , _a : Tuple , _a : Any , _a : Optional[Any] , _a : Union[str, Any] , _a : Any , _a : List[str] , ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =TFEsmModel(config=_a ) _SCREAMING_SNAKE_CASE ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } _SCREAMING_SNAKE_CASE =model(_a ) _SCREAMING_SNAKE_CASE =[input_ids, input_mask] _SCREAMING_SNAKE_CASE =model(_a , encoder_hidden_states=_a ) # Also check the case where encoder outputs are not passed _SCREAMING_SNAKE_CASE =model(_a , attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Optional[Any] , _a : List[Any] , _a : List[Any] , _a : Dict , _a : int , _a : List[str] , _a : Dict ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =TFEsmForMaskedLM(config=_a ) _SCREAMING_SNAKE_CASE =model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : int , _a : List[Any] , _a : Any , _a : Optional[Any] , _a : Dict , _a : List[Any] , _a : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFEsmForTokenClassification(config=_a ) _SCREAMING_SNAKE_CASE ={'''input_ids''': input_ids, '''attention_mask''': input_mask} _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) =config_and_inputs _SCREAMING_SNAKE_CASE ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =TFEsmModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , hidden_size=37 ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_a ) def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def __UpperCamelCase ( self : Any ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =TFEsmModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def __UpperCamelCase ( self : int ) -> str: """simple docstring""" pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_a ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _SCREAMING_SNAKE_CASE =model.get_bias() assert isinstance(_a , _a ) for k, v in name.items(): assert isinstance(_a , tf.Variable ) else: _SCREAMING_SNAKE_CASE =model.get_output_embeddings() assert x is None _SCREAMING_SNAKE_CASE =model.get_bias() assert name is None @require_tf class A__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Any ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) _SCREAMING_SNAKE_CASE =tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE =model(_a )[0] _SCREAMING_SNAKE_CASE =[1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _a ) # compare the actual values for a slice. _SCREAMING_SNAKE_CASE =tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) _SCREAMING_SNAKE_CASE =tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE =model(_a )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE =tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
710
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal snake_case_ : Any = datasets.utils.logging.get_logger(__name__) snake_case_ : List[Any] = ['''names''', '''prefix'''] snake_case_ : Dict = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] snake_case_ : Dict = ['''encoding_errors''', '''on_bad_lines'''] snake_case_ : Optional[Any] = ['''date_format'''] @dataclass class A__ ( datasets.BuilderConfig ): UpperCAmelCase = "," UpperCAmelCase = None UpperCAmelCase = "infer" UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = False UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = "." UpperCAmelCase = None UpperCAmelCase = '"' UpperCAmelCase = 0 UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 0 UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = None UpperCAmelCase = 10000 UpperCAmelCase = None UpperCAmelCase = "strict" UpperCAmelCase = "error" UpperCAmelCase = None def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" if self.delimiter is not None: _SCREAMING_SNAKE_CASE =self.delimiter if self.column_names is not None: _SCREAMING_SNAKE_CASE =self.column_names @property def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={ '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _a ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): UpperCAmelCase = CsvConfig def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __UpperCamelCase ( self : Dict , _a : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) _SCREAMING_SNAKE_CASE =dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _SCREAMING_SNAKE_CASE =data_files if isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =[files] _SCREAMING_SNAKE_CASE =[dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _SCREAMING_SNAKE_CASE =[] for split_name, files in data_files.items(): if isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =[files] _SCREAMING_SNAKE_CASE =[dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __UpperCamelCase ( self : Tuple , _a : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _SCREAMING_SNAKE_CASE =self.config.features.arrow_schema if all(not require_storage_cast(_a ) for feature in self.config.features.values() ): # cheaper cast _SCREAMING_SNAKE_CASE =pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_a ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _SCREAMING_SNAKE_CASE =table_cast(_a , _a ) return pa_table def __UpperCamelCase ( self : str , _a : Union[str, Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _SCREAMING_SNAKE_CASE =( { name: dtype.to_pandas_dtype() if not require_storage_cast(_a ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): _SCREAMING_SNAKE_CASE =pd.read_csv(_a , iterator=_a , dtype=_a , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_a ): _SCREAMING_SNAKE_CASE =pa.Table.from_pandas(_a ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(_a )}: {e}" ) raise
191
0
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') _lowerCamelCase = parser.parse_args() if args.model_type == "roberta": _lowerCamelCase = RobertaForMaskedLM.from_pretrained(args.model_name) _lowerCamelCase = 'roberta' elif args.model_type == "gpt2": _lowerCamelCase = GPTaLMHeadModel.from_pretrained(args.model_name) _lowerCamelCase = 'transformer' _lowerCamelCase = model.state_dict() _lowerCamelCase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: _lowerCamelCase = state_dict[F'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: _lowerCamelCase = F'''{prefix}.embeddings.{w}.weight''' _lowerCamelCase = state_dict[param_name] for w in ["weight", "bias"]: _lowerCamelCase = F'''{prefix}.embeddings.LayerNorm.{w}''' _lowerCamelCase = state_dict[param_name] # Transformer Blocks # _lowerCamelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: _lowerCamelCase = state_dict[ F'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] _lowerCamelCase = state_dict[F'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: _lowerCamelCase = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: _lowerCamelCase = state_dict[F'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: _lowerCamelCase = state_dict[F'''lm_head.dense.{w}'''] _lowerCamelCase = state_dict[F'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: _lowerCamelCase = state_dict[F'''{prefix}.ln_f.{w}'''] _lowerCamelCase = state_dict['lm_head.weight'] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
114
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowerCamelCase = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __UpperCAmelCase( lowercase_ ): if isinstance(lowercase_ , torch.Tensor ): return image elif isinstance(lowercase_ , PIL.Image.Image ): _lowerCamelCase : List[str] = [image] _lowerCamelCase : Optional[int] = [trans(img.convert('''RGB''' ) ) for img in image] _lowerCamelCase : Dict = torch.stack(lowercase_ ) return image class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , a__ , a__): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _lowerCamelCase : Optional[Any] = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=a__ , scheduler=a__) def __snake_case ( self , a__): """simple docstring""" if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""") def __snake_case ( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : List[str] = min(int(num_inference_steps * strength) , a__) _lowerCamelCase : Tuple = max(num_inference_steps - init_timestep , 0) _lowerCamelCase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __snake_case ( self , a__ , a__ , a__ , a__ , a__ , a__=None): """simple docstring""" if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__)}""") _lowerCamelCase : Any = image.to(device=a__ , dtype=a__) if isinstance(a__ , a__) and len(a__) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(a__)}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""") _lowerCamelCase : Any = init_latents.shape _lowerCamelCase : Tuple = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__) # get latents print('''add noise to latents at timestep''' , a__) _lowerCamelCase : List[Any] = self.scheduler.add_noise(a__ , a__ , a__) _lowerCamelCase : List[Any] = init_latents return latents @torch.no_grad() def __call__( self , a__ = None , a__ = 0.8 , a__ = 1 , a__ = None , a__ = 0.0 , a__ = 50 , a__ = None , a__ = "pil" , a__ = True , ): """simple docstring""" self.check_inputs(a__) # 2. Preprocess image _lowerCamelCase : Union[str, Any] = preprocess(a__) # 3. set timesteps self.scheduler.set_timesteps(a__ , device=self.device) _lowerCamelCase, _lowerCamelCase : Any = self.get_timesteps(a__ , a__ , self.device) _lowerCamelCase : Union[str, Any] = timesteps[:1].repeat(a__) # 4. Prepare latent variables _lowerCamelCase : int = self.prepare_latents(a__ , a__ , a__ , self.unet.dtype , self.device , a__) _lowerCamelCase : int = latents # 5. Denoising loop for t in self.progress_bar(a__): # 1. predict noise model_output _lowerCamelCase : Dict = self.unet(a__ , a__).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCamelCase : Tuple = self.scheduler.step( a__ , a__ , a__ , eta=a__ , use_clipped_model_output=a__ , generator=a__ , ).prev_sample _lowerCamelCase : str = (image / 2 + 0.5).clamp(0 , 1) _lowerCamelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _lowerCamelCase : Any = self.numpy_to_pil(a__) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=a__)
114
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self , a__ , a__=7 , a__=3 , a__=30 , a__=4_00 , a__=True , a__=None , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , a__=True , a__=1 / 2_55 , a__=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def _UpperCAmelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self , a__ , a__=False ): if not batched: _lowerCamelCase = image_inputs[0] if isinstance(a__ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(a__ , key=lambda a__ : item[0] )[0] _lowerCamelCase = max(a__ , key=lambda a__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __magic_name__ ( lowercase_ ,unittest.TestCase ): """simple docstring""" _UpperCamelCase = DetaImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ): _lowerCamelCase = DetaImageProcessingTester(self ) @property def _UpperCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ): _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , '''image_mean''' ) ) self.assertTrue(hasattr(a__ , '''image_std''' ) ) self.assertTrue(hasattr(a__ , '''do_normalize''' ) ) self.assertTrue(hasattr(a__ , '''do_resize''' ) ) self.assertTrue(hasattr(a__ , '''do_rescale''' ) ) self.assertTrue(hasattr(a__ , '''do_pad''' ) ) self.assertTrue(hasattr(a__ , '''size''' ) ) def _UpperCAmelCase ( self ): _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , a__ ) def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) _lowerCamelCase = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ): # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(a__ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ): # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(a__ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCAmelCase ( self ): # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = DetaImageProcessor() _lowerCamelCase = image_processing(images=a__ , annotations=a__ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , a__ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , a__ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , a__ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , a__ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , a__ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , a__ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , a__ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , a__ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , a__ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , a__ ) ) @slow def _UpperCAmelCase ( self ): # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = DetaImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=a__ , annotations=a__ , masks_path=a__ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , a__ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , a__ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , a__ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , a__ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , a__ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , a__ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , a__ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , a__ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , a__ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , a__ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , a__ ) )
297
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self , a__ , a__=7 , a__=3 , a__=30 , a__=4_00 , a__=True , a__=None , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , a__=True , a__=1 / 2_55 , a__=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_pad def _UpperCAmelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self , a__ , a__=False ): if not batched: _lowerCamelCase = image_inputs[0] if isinstance(a__ , Image.Image ): _lowerCamelCase , _lowerCamelCase = image.size else: _lowerCamelCase , _lowerCamelCase = image.shape[1], image.shape[2] if w < h: _lowerCamelCase = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase = self.size['''shortest_edge'''] _lowerCamelCase = self.size['''shortest_edge'''] else: _lowerCamelCase = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase = max(a__ , key=lambda a__ : item[0] )[0] _lowerCamelCase = max(a__ , key=lambda a__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __magic_name__ ( lowercase_ ,unittest.TestCase ): """simple docstring""" _UpperCamelCase = DetaImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ): _lowerCamelCase = DetaImageProcessingTester(self ) @property def _UpperCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ): _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , '''image_mean''' ) ) self.assertTrue(hasattr(a__ , '''image_std''' ) ) self.assertTrue(hasattr(a__ , '''do_normalize''' ) ) self.assertTrue(hasattr(a__ , '''do_resize''' ) ) self.assertTrue(hasattr(a__ , '''do_rescale''' ) ) self.assertTrue(hasattr(a__ , '''do_pad''' ) ) self.assertTrue(hasattr(a__ , '''size''' ) ) def _UpperCAmelCase ( self ): _lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , a__ ) def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) _lowerCamelCase = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ): # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(a__ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ): # Initialize image_processing _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase = image_processing(a__ , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCAmelCase ( self ): # prepare image and target _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _lowerCamelCase = DetaImageProcessor() _lowerCamelCase = image_processing(images=a__ , annotations=a__ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , a__ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , a__ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , a__ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , a__ ) _lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , a__ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , a__ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , a__ ) ) # verify class_labels _lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , a__ ) ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , a__ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , a__ ) ) @slow def _UpperCAmelCase ( self ): # prepare image, target and masks_path _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _lowerCamelCase = json.loads(f.read() ) _lowerCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _lowerCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _lowerCamelCase = DetaImageProcessor(format='''coco_panoptic''' ) _lowerCamelCase = image_processing(images=a__ , annotations=a__ , masks_path=a__ , return_tensors='''pt''' ) # verify pixel values _lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , a__ ) _lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , a__ , atol=1E-4 ) ) # verify area _lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , a__ ) ) # verify boxes _lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , a__ ) _lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , a__ , atol=1E-3 ) ) # verify image_id _lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , a__ ) ) # verify is_crowd _lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , a__ ) ) # verify class_labels _lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , a__ ) ) # verify masks _lowerCamelCase = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , a__ ) # verify orig_size _lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , a__ ) ) # verify size _lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , a__ ) )
297
1
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) __SCREAMING_SNAKE_CASE :Tuple = None __SCREAMING_SNAKE_CASE :List[Any] = { '''7B''': 11008, '''13B''': 13824, '''30B''': 17920, '''65B''': 22016, '''70B''': 28672, } __SCREAMING_SNAKE_CASE :Dict = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Dict=1 , __lowercase : Optional[Any]=256 ) -> List[str]: '''simple docstring''' return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> Dict: '''simple docstring''' with open(__lowercase , "r" ) as f: return json.load(__lowercase ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : int ) -> Any: '''simple docstring''' with open(__lowercase , "w" ) as f: json.dump(__lowercase , __lowercase ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : int=True ) -> str: '''simple docstring''' os.makedirs(__lowercase , exist_ok=__lowercase ) _UpperCAmelCase = os.path.join(__lowercase , "tmp" ) os.makedirs(__lowercase , exist_ok=__lowercase ) _UpperCAmelCase = read_json(os.path.join(__lowercase , "params.json" ) ) _UpperCAmelCase = NUM_SHARDS[model_size] _UpperCAmelCase = params["n_layers"] _UpperCAmelCase = params["n_heads"] _UpperCAmelCase = n_heads // num_shards _UpperCAmelCase = params["dim"] _UpperCAmelCase = dim // n_heads _UpperCAmelCase = 1_0000.0 _UpperCAmelCase = 1.0 / (base ** (torch.arange(0 , __lowercase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _UpperCAmelCase = params["n_kv_heads"] # for GQA / MQA _UpperCAmelCase = n_heads_per_shard // num_key_value_heads _UpperCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints _UpperCAmelCase = n_heads _UpperCAmelCase = n_heads_per_shard _UpperCAmelCase = dim # permute for sliced rotary def permute(__lowercase : Optional[Any] , __lowercase : List[Any]=n_heads , __lowercase : List[str]=dim , __lowercase : str=dim ): return w.view(__lowercase , dima // n_heads // 2 , 2 , __lowercase ).transpose(1 , 2 ).reshape(__lowercase , __lowercase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _UpperCAmelCase = torch.load(os.path.join(__lowercase , "consolidated.00.pth" ) , map_location="cpu" ) else: # Sharded _UpperCAmelCase = [ torch.load(os.path.join(__lowercase , f'consolidated.{i:02d}.pth' ) , map_location="cpu" ) for i in range(__lowercase ) ] _UpperCAmelCase = 0 _UpperCAmelCase = {"weight_map": {}} for layer_i in range(__lowercase ): _UpperCAmelCase = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _UpperCAmelCase = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _UpperCAmelCase = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _UpperCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__lowercase , __lowercase , __lowercase ) for i in range(__lowercase ) ] , dim=0 , ).reshape(__lowercase , __lowercase ) ) _UpperCAmelCase = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __lowercase , __lowercase , __lowercase ) for i in range(__lowercase ) ] , dim=0 , ).reshape(__lowercase , __lowercase ) , __lowercase , __lowercase , __lowercase , ) _UpperCAmelCase = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __lowercase , __lowercase , __lowercase ) for i in range(__lowercase ) ] , dim=0 , ).reshape(__lowercase , __lowercase ) _UpperCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__lowercase )] , dim=1 ) _UpperCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__lowercase )] , dim=0 ) _UpperCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__lowercase )] , dim=1 ) _UpperCAmelCase = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__lowercase )] , dim=0 ) _UpperCAmelCase = inv_freq for k, v in state_dict.items(): _UpperCAmelCase = filename param_count += v.numel() torch.save(__lowercase , os.path.join(__lowercase , __lowercase ) ) _UpperCAmelCase = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _UpperCAmelCase = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: _UpperCAmelCase = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(__lowercase )] , dim=1 ), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(__lowercase )] , dim=0 ), } for k, v in state_dict.items(): _UpperCAmelCase = filename param_count += v.numel() torch.save(__lowercase , os.path.join(__lowercase , __lowercase ) ) # Write configs _UpperCAmelCase = {"total_size": param_count * 2} write_json(__lowercase , os.path.join(__lowercase , "pytorch_model.bin.index.json" ) ) _UpperCAmelCase = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 _UpperCAmelCase = params["multiple_of"] if "multiple_of" in params else 256 _UpperCAmelCase = LlamaConfig( hidden_size=__lowercase , intermediate_size=compute_intermediate_size(__lowercase , __lowercase , __lowercase ) , num_attention_heads=params["n_heads"] , num_hidden_layers=params["n_layers"] , rms_norm_eps=params["norm_eps"] , num_key_value_heads=__lowercase , ) config.save_pretrained(__lowercase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Llama model." ) _UpperCAmelCase = LlamaForCausalLM.from_pretrained(__lowercase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowercase ) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format." ) model.save_pretrained(__lowercase , safe_serialization=__lowercase ) shutil.rmtree(__lowercase ) def UpperCAmelCase_ ( __lowercase : Tuple , __lowercase : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _UpperCAmelCase = tokenizer_class(__lowercase ) tokenizer.save_pretrained(__lowercase ) def UpperCAmelCase_ ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--input_dir" , help="Location of LLaMA weights, which contains tokenizer.model and model folders" , ) parser.add_argument( "--model_size" , choices=["7B", "7Bf", "13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"] , ) parser.add_argument( "--output_dir" , help="Location to write HF model and tokenizer" , ) parser.add_argument("--safe_serialization" , type=__lowercase , help="Whether or not to save using `safetensors`." ) _UpperCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _UpperCAmelCase = os.path.join(args.input_dir , "tokenizer.model" ) write_tokenizer(args.output_dir , __lowercase ) if __name__ == "__main__": main()
236
'''simple docstring''' from ...configuration_utils import PretrainedConfig __SCREAMING_SNAKE_CASE :str = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Tuple = """tapas""" def __init__( self : Any , snake_case_ : Union[str, Any]=3_0_5_2_2 , snake_case_ : Tuple=7_6_8 , snake_case_ : List[Any]=1_2 , snake_case_ : Tuple=1_2 , snake_case_ : Dict=3_0_7_2 , snake_case_ : Dict="gelu" , snake_case_ : List[Any]=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : List[str]=1_0_2_4 , snake_case_ : Dict=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] , snake_case_ : Dict=0.0_2 , snake_case_ : Optional[int]=1e-12 , snake_case_ : List[Any]=0 , snake_case_ : List[str]=1_0.0 , snake_case_ : Tuple=0 , snake_case_ : Optional[int]=1.0 , snake_case_ : Optional[Any]=None , snake_case_ : Any=1.0 , snake_case_ : List[str]=False , snake_case_ : Optional[Any]=None , snake_case_ : Optional[int]=1.0 , snake_case_ : Optional[int]=1.0 , snake_case_ : Tuple=False , snake_case_ : Optional[int]=False , snake_case_ : str="ratio" , snake_case_ : Dict=None , snake_case_ : Optional[Any]=None , snake_case_ : List[Any]=6_4 , snake_case_ : Optional[int]=3_2 , snake_case_ : List[str]=False , snake_case_ : int=True , snake_case_ : Any=False , snake_case_ : List[Any]=False , snake_case_ : List[Any]=True , snake_case_ : str=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=None , **snake_case_ : str , ): super().__init__(pad_token_id=snake_case_ , **snake_case_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_sizes _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps # Fine-tuning task hyperparameters _UpperCAmelCase = positive_label_weight _UpperCAmelCase = num_aggregation_labels _UpperCAmelCase = aggregation_loss_weight _UpperCAmelCase = use_answer_as_supervision _UpperCAmelCase = answer_loss_importance _UpperCAmelCase = use_normalized_answer_loss _UpperCAmelCase = huber_loss_delta _UpperCAmelCase = temperature _UpperCAmelCase = aggregation_temperature _UpperCAmelCase = use_gumbel_for_cells _UpperCAmelCase = use_gumbel_for_aggregation _UpperCAmelCase = average_approximation_function _UpperCAmelCase = cell_selection_preference _UpperCAmelCase = answer_loss_cutoff _UpperCAmelCase = max_num_rows _UpperCAmelCase = max_num_columns _UpperCAmelCase = average_logits_per_cell _UpperCAmelCase = select_one_column _UpperCAmelCase = allow_empty_column_selection _UpperCAmelCase = init_cell_selection_weights_to_zero _UpperCAmelCase = reset_position_index_per_cell _UpperCAmelCase = disable_per_token_loss # Aggregation hyperparameters _UpperCAmelCase = aggregation_labels _UpperCAmelCase = no_aggregation_label_index if isinstance(self.aggregation_labels , snake_case_ ): _UpperCAmelCase = {int(snake_case_ ): v for k, v in aggregation_labels.items()}
236
1
from __future__ import annotations a_ = tuple[int, int, int] a_ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase a_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- a_ = 'EGZWVONAHDCLFQMSIPJBYUKXTR' a_ = 'FOBHMDKEXQNRAULPGSJVTYICZW' a_ = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- a_ = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- a_ = 'RMDJXFUWGISLHVTCQNKYPBEZOA' a_ = 'SGLCPQWZHKXAREONTFBVIYJUDM' a_ = 'HVSICLTYKQUBXDWAJZOMFGPREN' a_ = 'RZWQHFMVDBKICJLNTUXAGYPSOE' a_ = 'LFKIJODBEGAMQPXVUHYSTCZRWN' a_ = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): # Checks if there are 3 unique rotors if (unique_rotsel := len(set(__UpperCamelCase ) )) < 3: __lowercase : Optional[Any] = f"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(__UpperCamelCase ) # Checks if rotor positions are valid __lowercase : List[str] = rotpos if not 0 < rotorposa <= len(__UpperCamelCase ): __lowercase : Any = f"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(__UpperCamelCase ) if not 0 < rotorposa <= len(__UpperCamelCase ): __lowercase : Optional[int] = f"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(__UpperCamelCase ) if not 0 < rotorposa <= len(__UpperCamelCase ): __lowercase : Tuple = f"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(__UpperCamelCase ) # Validates string and returns dict __lowercase : str = _plugboard(__UpperCamelCase ) return rotpos, rotsel, pbdict def __UpperCAmelCase ( __UpperCamelCase ): # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase : Union[str, Any] = f"""Plugboard setting isn't type string ({type(__UpperCamelCase )})""" raise TypeError(__UpperCamelCase ) elif len(__UpperCamelCase ) % 2 != 0: __lowercase : Optional[int] = f"""Odd number of symbols ({len(__UpperCamelCase )})""" raise Exception(__UpperCamelCase ) elif pbstring == "": return {} pbstring.replace(''' ''' , '''''' ) # Checks if all characters are unique __lowercase : List[Any] = set() for i in pbstring: if i not in abc: __lowercase : List[Any] = f"""'{i}' not in list of symbols""" raise Exception(__UpperCamelCase ) elif i in tmppbl: __lowercase : Any = f"""Duplicate symbol ({i})""" raise Exception(__UpperCamelCase ) else: tmppbl.add(__UpperCamelCase ) del tmppbl # Created the dictionary __lowercase : Tuple = {} for j in range(0 , len(__UpperCamelCase ) - 1 , 2 ): __lowercase : Any = pbstring[j + 1] __lowercase : str = pbstring[j] return pb def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = (rotora, rotora, rotora) , __UpperCamelCase = "" , ): __lowercase : Dict = text.upper() __lowercase : Any = _validator( __UpperCamelCase , __UpperCamelCase , plugb.upper() ) __lowercase : Dict = rotor_position __lowercase : Any = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 __lowercase : List[str] = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: __lowercase : Any = plugboard[symbol] # rotor ra -------------------------- __lowercase : str = abc.index(__UpperCamelCase ) + rotorposa __lowercase : Dict = rotora[index % len(__UpperCamelCase )] # rotor rb -------------------------- __lowercase : Union[str, Any] = abc.index(__UpperCamelCase ) + rotorposa __lowercase : List[Any] = rotora[index % len(__UpperCamelCase )] # rotor rc -------------------------- __lowercase : Optional[int] = abc.index(__UpperCamelCase ) + rotorposa __lowercase : Any = rotora[index % len(__UpperCamelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher __lowercase : Optional[int] = reflector[symbol] # 2nd rotors __lowercase : Union[str, Any] = abc[rotora.index(__UpperCamelCase ) - rotorposa] __lowercase : Any = abc[rotora.index(__UpperCamelCase ) - rotorposa] __lowercase : List[str] = abc[rotora.index(__UpperCamelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: __lowercase : Any = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(__UpperCamelCase ): __lowercase : List[str] = 0 rotorposa += 1 if rotorposa >= len(__UpperCamelCase ): __lowercase : Union[str, Any] = 0 rotorposa += 1 if rotorposa >= len(__UpperCamelCase ): __lowercase : str = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(__UpperCamelCase ) return "".join(__UpperCamelCase ) if __name__ == "__main__": a_ = 'This is my Python script that emulates the Enigma machine from WWII.' a_ = (1, 1, 1) a_ = 'pictures' a_ = (rotora, rotora, rotora) a_ = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
718
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase ): assert column_title.isupper() __lowercase : Optional[Any] = 0 __lowercase : Union[str, Any] = len(__UpperCamelCase ) - 1 __lowercase : Union[str, Any] = 0 while index >= 0: __lowercase : List[Any] = (ord(column_title[index] ) - 64) * pow(26 , __UpperCamelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
523
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = """xlm-roberta""" def __init__( self , lowerCAmelCase__=30_522 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3_072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> str: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = classifier_dropout class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
247
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = """convnextv2""" def __init__( self , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.02 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=0.0 , lowerCAmelCase__=224 , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> int: super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_stages SCREAMING_SNAKE_CASE = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes SCREAMING_SNAKE_CASE = [3, 3, 9, 3] if depths is None else depths SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = ['stem'] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
247
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( SCREAMING_SNAKE_CASE_,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing _A : List[str] = PegasusTokenizer(UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Dict: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> Any: return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def a__ ( self , _a ) -> Dict: return ("This is a test", "This is a test") def a__ ( self ) -> List[str]: _A : List[Any] = '''</s>''' _A : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def a__ ( self ) -> Dict: _A : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(UpperCamelCase__ ) , 1103 ) def a__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Optional[Any]: _A : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : List[Any] = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) _A : str = rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] _A : List[str] = py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def a__ ( self ) -> Optional[int]: _A : List[str] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : List[str] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' _A : List[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def a__ ( self ) -> Union[str, Any]: _A : Any = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : List[Any] = '''To ensure a smooth flow of bank resolutions.''' _A : Union[str, Any] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : List[str] = tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> int: _A : Union[str, Any] = ['''This is going to be way too long.''' * 150, '''short example'''] _A : Tuple = ['''not super long but more than 5 tokens''', '''tiny'''] _A : Tuple = self._large_tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="""pt""" ) _A : Any = self._large_tokenizer( text_target=UpperCamelCase__ , max_length=5 , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase__ ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Union[str, Any]: # fmt: off _A : Optional[Any] = {'''input_ids''': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( SCREAMING_SNAKE_CASE_,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : Optional[int] = PegasusTokenizer(UpperCamelCase__ , offset=0 , mask_token_sent=UpperCamelCase__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> str: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> List[Any]: return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> List[str]: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) _A : List[str] = rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] _A : str = py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @require_torch def a__ ( self ) -> List[str]: _A : Dict = ['''This is going to be way too long.''' * 1000, '''short example'''] _A : str = ['''not super long but more than 5 tokens''', '''tiny'''] _A : List[Any] = self._large_tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="""pt""" ) _A : Dict = self._large_tokenizer( text_target=UpperCamelCase__ , max_length=5 , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase__ ) == 2 # input_ids, attention_mask. def a__ ( self ) -> List[Any]: _A : Tuple = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) _A : List[str] = self._large_tokenizer(UpperCamelCase__ ).input_ids self.assertListEqual( UpperCamelCase__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
710
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : int = tempfile.mkdtemp() _A : Union[str, Any] = 8 # DPR tok _A : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A : Dict = {"""unk_token""": """<unk>"""} _A : Optional[Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _A : List[Any] = os.path.join(_a , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def a__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def a__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def a__ ( self ) -> str: _A : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _A : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) _A : Optional[Any] = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def a__ ( self ) -> str: _A : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _A : Tuple = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Tuple = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def a__ ( self ) -> Dict: _A : Dict = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _A : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Optional[Any] = tokenizer(_a ) self.assertIsNotNone(_a )
54
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=14, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=0.0_2, ) -> Tuple: UpperCAmelCase_: Optional[Any] = parent UpperCAmelCase_: Any = batch_size UpperCAmelCase_: int = seq_length UpperCAmelCase_: Optional[int] = is_training UpperCAmelCase_: List[Any] = use_input_mask UpperCAmelCase_: Optional[int] = use_token_type_ids UpperCAmelCase_: Optional[int] = use_labels UpperCAmelCase_: Dict = vocab_size UpperCAmelCase_: Optional[Any] = hidden_size UpperCAmelCase_: Tuple = rotary_dim UpperCAmelCase_: List[Any] = num_hidden_layers UpperCAmelCase_: List[str] = num_attention_heads UpperCAmelCase_: str = intermediate_size UpperCAmelCase_: str = hidden_act UpperCAmelCase_: List[str] = hidden_dropout_prob UpperCAmelCase_: Tuple = attention_probs_dropout_prob UpperCAmelCase_: List[Any] = max_position_embeddings UpperCAmelCase_: int = initializer_range UpperCAmelCase_: str = None UpperCAmelCase_: str = vocab_size - 1 UpperCAmelCase_: str = vocab_size - 1 UpperCAmelCase_: int = vocab_size - 1 def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase_: Tuple = None if self.use_input_mask: UpperCAmelCase_: List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_: Dict = GPTJConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, use_cache=SCREAMING_SNAKE_CASE_, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, rotary_dim=self.rotary_dim, ) return (config, input_ids, input_mask) def __snake_case (self ) -> str: UpperCAmelCase_: Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Tuple = config_and_inputs UpperCAmelCase_: Dict = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCAmelCase_: List[Any] = 20 UpperCAmelCase_: List[str] = model_class_name(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = model.init_cache(input_ids.shape[0], SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="""i4""" ) UpperCAmelCase_: int = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase_: Union[str, Any] = model( input_ids[:, :-1], attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=SCREAMING_SNAKE_CASE_, position_ids=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Optional[int] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="""i4""" ) UpperCAmelCase_: int = model( input_ids[:, -1:], attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=outputs_cache.past_key_values, position_ids=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=f'Max diff is {diff}' ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: str = 20 UpperCAmelCase_: Tuple = model_class_name(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )], axis=-1, ) UpperCAmelCase_: str = model.init_cache(input_ids.shape[0], SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase_: Any = model( input_ids[:, :-1], attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=SCREAMING_SNAKE_CASE_, position_ids=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="""i4""" ) UpperCAmelCase_: int = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=SCREAMING_SNAKE_CASE_, position_ids=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=f'Max diff is {diff}' ) @require_flax class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: int = FlaxGPTJModelTester(self ) def __snake_case (self ) -> List[str]: for model_class_name in self.all_model_classes: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[str]: for model_class_name in self.all_model_classes: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @tooslow def __snake_case (self ) -> List[str]: UpperCAmelCase_: List[Any] = GPTaTokenizer.from_pretrained("""gpt2""", pad_token="""<|endoftext|>""", padding_side="""left""" ) UpperCAmelCase_: Any = tokenizer(["""Hello this is a long string""", """Hey"""], return_tensors="""np""", padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) UpperCAmelCase_: Optional[int] = False UpperCAmelCase_: Optional[Any] = model.config.eos_token_id UpperCAmelCase_: List[str] = jax.jit(model.generate ) UpperCAmelCase_: str = jit_generate( inputs["""input_ids"""], attention_mask=inputs["""attention_mask"""], pad_token_id=tokenizer.pad_token_id ).sequences UpperCAmelCase_: Optional[int] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @is_pt_flax_cross_test def __snake_case (self ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase_: int = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase_: Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase_: Tuple = getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ , UpperCAmelCase_: Any = pt_inputs["""input_ids"""].shape UpperCAmelCase_: Union[str, Any] = np.random.randint(0, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Any = 0 UpperCAmelCase_: Any = 1 UpperCAmelCase_: Tuple = 0 UpperCAmelCase_: List[Any] = 1 UpperCAmelCase_: Tuple = pt_model_class(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase_: Optional[int] = model_class(SCREAMING_SNAKE_CASE_, dtype=jnp.floataa ) UpperCAmelCase_: Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = fx_state with torch.no_grad(): UpperCAmelCase_: str = pt_model(**SCREAMING_SNAKE_CASE_ ).to_tuple() UpperCAmelCase_: Optional[int] = fx_model(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ), """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = model_class.from_pretrained(SCREAMING_SNAKE_CASE_, from_pt=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = fx_model_loaded(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ), """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assert_almost_equals(fx_output_loaded[:, -1], pt_output[:, -1].numpy(), 4E-2 ) @is_pt_flax_cross_test def __snake_case (self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase_: Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase_: Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase_: List[str] = getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = pt_model_class(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase_: List[Any] = model_class(SCREAMING_SNAKE_CASE_, dtype=jnp.floataa ) UpperCAmelCase_: Tuple = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_, fx_model.params ) UpperCAmelCase_ , UpperCAmelCase_: List[Any] = pt_inputs["""input_ids"""].shape UpperCAmelCase_: List[Any] = np.random.randint(0, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Union[str, Any] = 0 UpperCAmelCase_: List[str] = 1 UpperCAmelCase_: int = 0 UpperCAmelCase_: Optional[int] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCAmelCase_: int = pt_model(**SCREAMING_SNAKE_CASE_ ).to_tuple() UpperCAmelCase_: Any = fx_model(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ), """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_, from_flax=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCAmelCase_: Dict = pt_model_loaded(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ), """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4E-2 ) @tooslow def __snake_case (self ) -> Any: for model_class_name in self.all_model_classes: UpperCAmelCase_: Tuple = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) UpperCAmelCase_: int = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
556
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=36, SCREAMING_SNAKE_CASE_=6, SCREAMING_SNAKE_CASE_=6, SCREAMING_SNAKE_CASE_=6, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> Tuple: UpperCAmelCase_: Any = parent UpperCAmelCase_: Union[str, Any] = batch_size UpperCAmelCase_: int = seq_length UpperCAmelCase_: Any = is_training UpperCAmelCase_: str = use_input_mask UpperCAmelCase_: Dict = use_token_type_ids UpperCAmelCase_: Any = use_labels UpperCAmelCase_: Any = vocab_size UpperCAmelCase_: Dict = embedding_size UpperCAmelCase_: Dict = hidden_size UpperCAmelCase_: Dict = num_hidden_layers UpperCAmelCase_: Dict = num_hidden_groups UpperCAmelCase_: int = num_attention_heads UpperCAmelCase_: List[str] = intermediate_size UpperCAmelCase_: Any = hidden_act UpperCAmelCase_: Dict = hidden_dropout_prob UpperCAmelCase_: Any = attention_probs_dropout_prob UpperCAmelCase_: Tuple = max_position_embeddings UpperCAmelCase_: Tuple = type_vocab_size UpperCAmelCase_: List[Any] = type_sequence_label_size UpperCAmelCase_: Any = initializer_range UpperCAmelCase_: int = num_labels UpperCAmelCase_: Optional[int] = num_choices UpperCAmelCase_: Tuple = scope def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase_: Tuple = None if self.use_input_mask: UpperCAmelCase_: Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_: Dict = None if self.use_token_type_ids: UpperCAmelCase_: int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase_: Tuple = None UpperCAmelCase_: Dict = None UpperCAmelCase_: Tuple = None if self.use_labels: UpperCAmelCase_: Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase_: Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase_: List[Any] = ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase_: Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case (self ) -> Optional[Any]: return AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, num_hidden_groups=self.num_hidden_groups, ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: int = AlbertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = model(SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: UpperCAmelCase_: Any = AlbertForPreTraining(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: List[Any] = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_, sentence_order_label=SCREAMING_SNAKE_CASE_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, config.num_labels) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Optional[int] = AlbertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Optional[Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCAmelCase_: Optional[Any] = AlbertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Any = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, start_positions=SCREAMING_SNAKE_CASE_, end_positions=SCREAMING_SNAKE_CASE_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCAmelCase_: Optional[Any] = self.num_labels UpperCAmelCase_: List[Any] = AlbertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: str = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCAmelCase_: List[str] = self.num_labels UpperCAmelCase_: Union[str, Any] = AlbertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: List[str] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: Dict = self.num_choices UpperCAmelCase_: Dict = AlbertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: str = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase_: str = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase_: List[Any] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase_: Union[str, Any] = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ): List[str] = config_and_inputs UpperCAmelCase_: Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) A = True def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> Any: UpperCAmelCase_: Tuple = super()._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = AlbertModelTester(self ) UpperCAmelCase_: Union[str, Any] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def __snake_case (self ) -> List[Any]: self.config_tester.run_common_tests() def __snake_case (self ) -> List[Any]: UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Any: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> str: UpperCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Any: UpperCAmelCase_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> str: UpperCAmelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Dict: UpperCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_: Union[str, Any] = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> List[Any]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_: Dict = AlbertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_torch class _a ( unittest.TestCase ): @slow def __snake_case (self ) -> Dict: UpperCAmelCase_: str = AlbertModel.from_pretrained("""albert-base-v2""" ) UpperCAmelCase_: List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCAmelCase_: List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ )[0] UpperCAmelCase_: List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], SCREAMING_SNAKE_CASE_, atol=1E-4 ) )
556
1
'''simple docstring''' lowerCamelCase = {} def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCAmelCase = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCAmelCase = _calculate(days - 1 , UpperCAmelCase__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCAmelCase = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCAmelCase = _calculate(days - 1 , UpperCAmelCase__ , 0 ) __lowerCAmelCase = state_late + state_absent + state_ontime __lowerCAmelCase = prizestrings return prizestrings def __lowercase ( UpperCAmelCase__ = 30 ): """simple docstring""" return _calculate(UpperCAmelCase__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
702
def __lowercase ( UpperCAmelCase__ = 10 , UpperCAmelCase__ = 1_000 , UpperCAmelCase__ = True ): """simple docstring""" assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" return int((number_a + number_a) / 2 ) def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(UpperCAmelCase__ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) __lowerCAmelCase = lower __lowerCAmelCase = higher __lowerCAmelCase = [] while True: __lowerCAmelCase = get_avg(UpperCAmelCase__ , UpperCAmelCase__ ) last_numbers.append(UpperCAmelCase__ ) if answer(UpperCAmelCase__ ) == "low": __lowerCAmelCase = number elif answer(UpperCAmelCase__ ) == "high": __lowerCAmelCase = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def __lowercase ( ): """simple docstring""" __lowerCAmelCase = int(input('Enter lower value : ' ).strip() ) __lowerCAmelCase = int(input('Enter high value : ' ).strip() ) __lowerCAmelCase = int(input('Enter value to guess : ' ).strip() ) guess_the_number(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
102
0
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np A_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 A_ = typing.Union[np.floataa, int, float] # noqa: UP007 def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return np.sqrt(np.sum((np.asarray(lowerCAmelCase__ ) - np.asarray(lowerCAmelCase__ )) ** 2 ) ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase__ ,lowerCAmelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def lowercase ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' ,number=10_000 ,globals=globals() ,) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' ,number=10_000 ,globals=globals() ,) ) benchmark()
29
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 ,lowerCAmelCase__ ,2 ): if is_prime[i]: primes.append(lowerCAmelCase__ ) return primes def lowercase ( lowerCAmelCase__ = 999_966_663_333 ): lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100 lowerCamelCase_ = prime_sieve(lowerCAmelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
29
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = BlipImageProcessor() _lowerCamelCase = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) _lowerCamelCase = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) _lowerCamelCase = InstructBlipProcessor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def snake_case__ ( self , **lowerCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer def snake_case__ ( self , **lowerCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def snake_case__ ( self , **lowerCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).qformer_tokenizer def snake_case__ ( self ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self ): _lowerCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _lowerCamelCase = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self ): _lowerCamelCase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _lowerCamelCase = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) _lowerCamelCase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.get_image_processor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_qformer_tokenizer() _lowerCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) _lowerCamelCase = self.prepare_image_inputs() _lowerCamelCase = image_processor(UpperCamelCase__ , return_tensors='''np''' ) _lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self ): _lowerCamelCase = self.get_image_processor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_qformer_tokenizer() _lowerCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) _lowerCamelCase = '''lower newer''' _lowerCamelCase = processor(text=UpperCamelCase__ ) _lowerCamelCase = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) _lowerCamelCase = qformer_tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def snake_case__ ( self ): _lowerCamelCase = self.get_image_processor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_qformer_tokenizer() _lowerCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) _lowerCamelCase = '''lower newer''' _lowerCamelCase = self.prepare_image_inputs() _lowerCamelCase = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def snake_case__ ( self ): _lowerCamelCase = self.get_image_processor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_qformer_tokenizer() _lowerCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) _lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase = processor.batch_decode(UpperCamelCase__ ) _lowerCamelCase = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.get_image_processor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_qformer_tokenizer() _lowerCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) _lowerCamelCase = '''lower newer''' _lowerCamelCase = self.prepare_image_inputs() _lowerCamelCase = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
711
"""simple docstring""" import numpy as np def lowerCAmelCase_( lowercase_ : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) def lowerCAmelCase_( lowercase_ : np.array ) -> np.array: return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
623
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _UpperCamelCase = "xvjiarui/stable-diffusion-2-inpainting" _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_ ) _UpperCamelCase = "Face of a yellow cat, high resolution, sitting on a park bench" _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = 50 _UpperCamelCase = jax.device_count() _UpperCamelCase = num_samples * [prompt] _UpperCamelCase = num_samples * [init_image] _UpperCamelCase = num_samples * [mask_image] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # shard inputs and rng _UpperCamelCase = replicate(lowerCamelCase_ ) _UpperCamelCase = jax.random.split(lowerCamelCase_ , jax.device_count() ) _UpperCamelCase = shard(lowerCamelCase_ ) _UpperCamelCase = shard(lowerCamelCase_ ) _UpperCamelCase = shard(lowerCamelCase_ ) _UpperCamelCase = pipeline( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_ ) _UpperCamelCase = output.images.reshape(lowerCamelCase_ , 5_12 , 5_12 , 3 ) _UpperCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
147
from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=lowercase ): __lowercase : str = ["note_seq"] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> List[str]: """simple docstring""" requires_backends(self , ["note_seq"] ) @classmethod def lowercase ( cls , *lowerCamelCase_ , **lowerCamelCase_ ) -> List[str]: """simple docstring""" requires_backends(cls , ["note_seq"] ) @classmethod def lowercase ( cls , *lowerCamelCase_ , **lowerCamelCase_ ) -> str: """simple docstring""" requires_backends(cls , ["note_seq"] )
147
1
def lowercase_ ( SCREAMING_SNAKE_CASE : int = 4_00_00_00 ): """simple docstring""" snake_case__ : Dict =[] snake_case__ : Optional[int] =0, 1 while b <= n: if b % 2 == 0: even_fibs.append(SCREAMING_SNAKE_CASE ) snake_case__ : Dict =b, a + b return sum(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
716
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowercase_ ( SCREAMING_SNAKE_CASE : str = "laptop" ): """simple docstring""" snake_case__ : Dict =F'''https://www.amazon.in/laptop/s?k={product}''' snake_case__ : List[str] ={ '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } snake_case__ : Optional[Any] =BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ).text ) # Initialize a Pandas dataframe with the column titles snake_case__ : int =DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: snake_case__ : str =item.ha.text snake_case__ : str ='''https://www.amazon.in/''' + item.ha.a['''href'''] snake_case__ : Tuple =item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: snake_case__ : Dict =item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: snake_case__ : Any ='''Not available''' try: snake_case__ : int =( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: snake_case__ : Optional[int] ='''''' try: snake_case__ : Dict =float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 1_00 ) except ValueError: snake_case__ : Tuple =float('''nan''' ) except AttributeError: pass snake_case__ : List[Any] =[ product_title, product_link, product_price, product_rating, product_mrp, discount, ] snake_case__ : Tuple =''' ''' snake_case__ : Any =''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCamelCase__ = '''headphones''' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
408
0
'''simple docstring''' def _lowercase ( UpperCamelCase__ : int, UpperCamelCase__ : list[int], UpperCamelCase__ : int ): def count_of_possible_combinations(UpperCamelCase__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(UpperCamelCase__ ) def _lowercase ( UpperCamelCase__ : int, UpperCamelCase__ : list[int], UpperCamelCase__ : int ): def count_of_possible_combinations_with_dp_array( UpperCamelCase__ : int, UpperCamelCase__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __A : List[str] = sum( count_of_possible_combinations_with_dp_array(target - item, UpperCamelCase__ ) for item in array ) __A : Dict = answer return answer __A : int = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(UpperCamelCase__, UpperCamelCase__ ) def _lowercase ( UpperCamelCase__ : int, UpperCamelCase__ : list[int], UpperCamelCase__ : int ): __A : List[str] = [0] * (target + 1) __A : Union[str, Any] = 1 for i in range(1, target + 1 ): for j in range(UpperCamelCase__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : str = 5 UpperCAmelCase_ : List[str] = [1, 2, 5] print(combination_sum_iv(n, array, target))
365
'''simple docstring''' from math import factorial UpperCAmelCase_ : List[str] = {str(d): factorial(d) for d in range(1_0)} def _lowercase ( UpperCamelCase__ : int ): return sum(DIGIT_FACTORIAL[d] for d in str(UpperCamelCase__ ) ) def _lowercase ( ): __A : Union[str, Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3, UpperCamelCase__ ) if sum_of_digit_factorial(UpperCamelCase__ ) == i ) if __name__ == "__main__": print(f'''{solution() = }''')
365
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): __magic_name__ = True from torch.cuda.amp import autocast __magic_name__ = logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : _A : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _A : Optional[str] = field( default=__UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) _A : Optional[bool] = field( default=__UpperCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _A : Optional[bool] = field( default=__UpperCamelCase , metadata={'help': 'Whether to log verbose messages or not.'} , ) _A : Optional[float] = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) _A : Optional[float] = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) _A : Optional[float] = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case__ = logging.WARNING if model_args.verbose_logging: snake_case__ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): snake_case__ = logging.INFO logger.setLevel(__lowerCAmelCase ) @dataclass class _SCREAMING_SNAKE_CASE : _A : str = field( default=__UpperCamelCase , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) _A : Optional[str] = field( default=__UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _A : Optional[str] = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _A : Optional[str] = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _A : Optional[str] = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) _A : bool = field( default=__UpperCamelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) _A : Optional[int] = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) _A : Optional[int] = field( default=__UpperCamelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) _A : Optional[float] = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class _SCREAMING_SNAKE_CASE : _A : WavaVecaForPreTraining _A : WavaVecaFeatureExtractor _A : Union[bool, str] = "longest" _A : Optional[int] = None _A : Optional[int] = None def __call__( self , lowerCamelCase ): # reformat list to dict and set to pytorch format snake_case__ = self.feature_extractor.pad( lowerCamelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) snake_case__ = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) snake_case__ = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula snake_case__ = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) snake_case__ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to snake_case__ = 1 snake_case__ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices snake_case__ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=lowerCamelCase , min_masks=2 , ) return batch class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): def __init__( self , *lowerCamelCase , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=1.0 , **lowerCamelCase ): super().__init__(*lowerCamelCase , **lowerCamelCase ) snake_case__ = 0 snake_case__ = max_gumbel_temp snake_case__ = min_gumbel_temp snake_case__ = gumbel_temp_decay def A_ ( self , lowerCamelCase , lowerCamelCase ): model.train() snake_case__ = self._prepare_inputs(lowerCamelCase ) if self.use_amp: with autocast(): snake_case__ = self.compute_loss(lowerCamelCase , lowerCamelCase ) else: snake_case__ = self.compute_loss(lowerCamelCase , lowerCamelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": snake_case__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": snake_case__ = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: snake_case__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCamelCase ).backward() elif self.use_apex: with amp.scale_loss(lowerCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCamelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case__ , snake_case__ , snake_case__ = parser.parse_args_into_dataclasses() configure_logger(__lowerCAmelCase , __lowerCAmelCase ) # Downloading and loading a dataset from the hub. snake_case__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" snake_case__ = DatasetDict() snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" snake_case__ = DatasetDict() snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported snake_case__ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__lowerCAmelCase ) def prepare_dataset(__lowerCAmelCase ): # check that all files have the correct sampling rate snake_case__ , snake_case__ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays snake_case__ = datasets.map( __lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long snake_case__ = vectorized_datasets.filter( lambda __lowerCAmelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__lowerCAmelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` snake_case__ = vectorized_datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 snake_case__ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) snake_case__ = WavaVecaForPreTraining(__lowerCAmelCase ) snake_case__ = DataCollatorForWavaVecaPretraining(model=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) snake_case__ = WavaVecaPreTrainer( model=__lowerCAmelCase , data_collator=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=__lowerCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
530
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): _A : Optional[Any] = ReformerTokenizer _A : str = ReformerTokenizerFast _A : List[str] = True _A : Tuple = False _A : str = True def A_ ( self ): super().setUp() snake_case__ = ReformerTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self ): snake_case__ = "<s>" snake_case__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def A_ ( self ): snake_case__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCamelCase ) , 10_00 ) def A_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A_ ( self ): if not self.test_rust_tokenizer: return snake_case__ = self.get_tokenizer() snake_case__ = self.get_rust_tokenizer() snake_case__ = "I was born in 92000, and this is falsé." snake_case__ = tokenizer.tokenize(lowerCamelCase ) snake_case__ = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) snake_case__ = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) snake_case__ = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) snake_case__ = self.get_rust_tokenizer() snake_case__ = tokenizer.encode(lowerCamelCase ) snake_case__ = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def A_ ( self , lowerCamelCase=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) # Simple input snake_case__ = "This is a simple input" snake_case__ = ["This is a simple input 1", "This is a simple input 2"] snake_case__ = ("This is a simple input", "This is a pair") snake_case__ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCamelCase , tokenizer_r.encode , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises(lowerCamelCase , tokenizer_r.encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises( lowerCamelCase , tokenizer_r.batch_encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" , ) # Pair input self.assertRaises(lowerCamelCase , tokenizer_r.encode , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises(lowerCamelCase , tokenizer_r.encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises( lowerCamelCase , tokenizer_r.batch_encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" , ) def A_ ( self ): pass def A_ ( self ): snake_case__ = ReformerTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) snake_case__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [2_85, 46, 10, 1_70, 3_82] , ) snake_case__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case__ = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case__ = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def A_ ( self ): return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def A_ ( self ): snake_case__ = "Hello World!" snake_case__ = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def A_ ( self ): snake_case__ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) snake_case__ = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @require_torch @slow def A_ ( self ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence snake_case__ = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case__ = " ".join(lowerCamelCase ) snake_case__ = self.big_tokenizer.encode_plus(lowerCamelCase , return_tensors="pt" ) snake_case__ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) snake_case__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) snake_case__ = encoded_sequence["input_ids"].shape snake_case__ = ReformerModel(lowerCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase ) model(**lowerCamelCase ) @slow def A_ ( self ): # fmt: off snake_case__ = {"input_ids": [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 snake_case__ = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=lowerCamelCase , sequences=lowerCamelCase , )
530
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _lowercase ( UpperCAmelCase_ = "laptop"): """simple docstring""" snake_case__ : Optional[Any] = F'https://www.amazon.in/laptop/s?k={product}' snake_case__ : str = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } snake_case__ : Union[str, Any] = BeautifulSoup(requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_).text) # Initialize a Pandas dataframe with the column titles snake_case__ : Optional[Any] = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""}) , ): try: snake_case__ : List[Any] = item.ha.text snake_case__ : Optional[int] = '''https://www.amazon.in/''' + item.ha.a['''href'''] snake_case__ : Optional[int] = item.find("""span""" , attrs={"""class""": """a-offscreen"""}).text try: snake_case__ : Optional[int] = item.find("""span""" , attrs={"""class""": """a-icon-alt"""}).text except AttributeError: snake_case__ : List[Any] = '''Not available''' try: snake_case__ : int = ( '''₹''' + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""}).text.split("""₹""")[1] ) except AttributeError: snake_case__ : Union[str, Any] = '''''' try: snake_case__ : Any = float( ( ( float(product_mrp.strip("""₹""").replace(""",""" , """""")) - float(product_price.strip("""₹""").replace(""",""" , """""")) ) / float(product_mrp.strip("""₹""").replace(""",""" , """""")) ) * 100) except ValueError: snake_case__ : Dict = float("""nan""") except AttributeError: pass snake_case__ : str = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] snake_case__ : Dict = ''' ''' snake_case__ : List[str] = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_: List[Any] = 'headphones' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
648
from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict = logging.get_logger(__name__) _A : Union[str, Any] = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = "luke" def __init__( self : int , A : Optional[int]=5_0_2_6_7 , A : Any=5_0_0_0_0_0 , A : Tuple=7_6_8 , A : List[Any]=2_5_6 , A : Any=1_2 , A : List[Any]=1_2 , A : Tuple=3_0_7_2 , A : str="gelu" , A : Optional[int]=0.1 , A : Tuple=0.1 , A : List[Any]=5_1_2 , A : Optional[int]=2 , A : Dict=0.02 , A : Union[str, Any]=1e-12 , A : Dict=True , A : Optional[Any]=None , A : Dict=1 , A : str=0 , A : int=2 , **A : Optional[int] , ) ->Optional[int]: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Dict = entity_vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Optional[int] = entity_emb_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : List[str] = num_attention_heads lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : str = initializer_range lowerCamelCase__ : Optional[int] = layer_norm_eps lowerCamelCase__ : Dict = use_entity_aware_attention lowerCamelCase__ : Optional[int] = classifier_dropout
315
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase ( unittest.TestCase ): def a ( self ): snake_case_ = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) snake_case_ = Vector() def a ( self ): snake_case_ = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(snake_case ) , '(0,0,0,0,0,1)' ) def a ( self ): snake_case_ = Vector([1, 2, 3, 4] ) self.assertEqual(len(snake_case ) , 4 ) def a ( self ): snake_case_ = Vector([1, 2] ) snake_case_ = Vector([1, 2, 3, 4, 5] ) snake_case_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) snake_case_ = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3 ) def a ( self ): snake_case_ = Vector([1, 2, 3] ) snake_case_ = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def a ( self ): snake_case_ = Vector([1, 2, 3] ) snake_case_ = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def a ( self ): snake_case_ = Vector([1, 2, 3] ) snake_case_ = Vector([2, -1, 4] ) # for test of dot product snake_case_ = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def a ( self ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def a ( self ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def a ( self ): snake_case_ = Vector([1, 2, 3] ) snake_case_ = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , snake_case , snake_case ) ) , '(3,4,7)' ) def a ( self ): snake_case_ = Vector([1, 0, 0, 0, 0, 0] ) snake_case_ = x.copy() self.assertEqual(str(snake_case ) , str(snake_case ) ) def a ( self ): snake_case_ = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(snake_case ) , '(0,1,0)' ) def a ( self ): snake_case_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(snake_case ) ) def a ( self ): snake_case_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) snake_case_ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(snake_case , snake_case ) ) def a ( self ): snake_case_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) snake_case_ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(snake_case , snake_case ) ) def a ( self ): snake_case_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def a ( self ): snake_case_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) snake_case_ = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def a ( self ): snake_case_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(snake_case ) ) def a ( self ): snake_case_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def a ( self ): snake_case_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) snake_case_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def a ( self ): snake_case_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) snake_case_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def a ( self ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
108
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _UpperCAmelCase : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _UpperCAmelCase : Dict = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("""\n""".join(upper_files) + """\n""") _UpperCAmelCase : Tuple = [file for file in filepaths if """ """ in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("""\n""".join(space_files) + """\n""") _UpperCAmelCase : Union[str, Any] = [file for file in filepaths if """-""" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("""\n""".join(hyphen_files) + """\n""") _UpperCAmelCase : List[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("""\n""".join(nodir_files) + """\n""") _UpperCAmelCase : List[str] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
108
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
119
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _snake_case : Union[str, Any] = logging.getLogger(__name__) def lowerCAmelCase_ ( ): __snake_case : int = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=__lowerCamelCase , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=__lowerCamelCase , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=__lowerCamelCase , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=__lowerCamelCase , default=1_0_0_0 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=__lowerCamelCase , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=__lowerCamelCase , type=__lowerCamelCase , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=__lowerCamelCase , default=5_1_2 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=__lowerCamelCase , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) __snake_case : List[str] = parser.parse_args() return args def lowerCAmelCase_ ( __lowerCamelCase ): def fn(__lowerCamelCase ): return tokenizer(examples["text"] ) return fn def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = [] for i in range(len(tokenized_data["input_ids"] ) ): __snake_case : Tuple = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } __snake_case : List[Any] = tf.train.Features(feature=__lowerCamelCase ) __snake_case : str = tf.train.Example(features=__lowerCamelCase ) __snake_case : List[str] = example.SerializeToString() records.append(__lowerCamelCase ) return records def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Optional[int] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __snake_case : Optional[Any] = min(len(__lowerCamelCase ) , args.limit ) __snake_case : Dict = dataset.select(range(__lowerCamelCase ) ) print(F'Limiting the dataset to {args.limit} entries.' ) __snake_case : Dict = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __snake_case : Dict = os.path.join(args.output_dir , args.split ) if not os.path.exists(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) else: __snake_case : str = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __snake_case : Any = tokenize_function(__lowerCamelCase ) __snake_case : Optional[Any] = dataset.map(__lowerCamelCase , batched=__lowerCamelCase , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__lowerCamelCase ): # Concatenate all texts. __snake_case : List[str] = {k: sum(examples[k] , [] ) for k in examples.keys()} __snake_case : List[Any] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __snake_case : Any = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __snake_case : int = { k: [t[i : i + args.max_length] for i in range(0 , __lowerCamelCase , args.max_length )] for k, t in concatenated_examples.items() } return result __snake_case : Any = dataset_tokenized.map(__lowerCamelCase , batched=__lowerCamelCase , batch_size=1_0_0_0 , num_proc=4 ) __snake_case : Optional[Any] = 0 __snake_case : Optional[Any] = 0 for shard in range(0 , len(__lowerCamelCase ) , args.shard_size ): __snake_case : List[str] = grouped_dataset[shard : shard + args.shard_size] __snake_case : Any = len(dataset_snapshot["input_ids"] ) __snake_case : List[Any] = os.path.join(__lowerCamelCase , F'dataset-{shard_count}-{records_containing}.tfrecord' ) __snake_case : Optional[Any] = get_serialized_examples(__lowerCamelCase ) with tf.io.TFRecordWriter(__lowerCamelCase ) as out_file: for i in range(len(__lowerCamelCase ) ): __snake_case : Union[str, Any] = serialized_examples[i] out_file.write(__lowerCamelCase ) print("Wrote file {} containing {} records".format(__lowerCamelCase , __lowerCamelCase ) ) shard_count += 1 total_records += records_containing with open(F'split-{args.split}-records-count.txt' , "w" ) as f: print(F'Total {args.split} records: {total_records}' , file=__lowerCamelCase ) if __name__ == "__main__": _snake_case : List[Any] = parse_args() main(args)
81
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ : Optional[Any] = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
295
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def _lowerCAmelCase ( lowerCamelCase__ : str ) -> Optional[int]: def decorator(lowerCamelCase__ : int ): _SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowerCamelCase__, "handle_key", [] ) handle += [key] setattr(lowerCamelCase__, "handle_key", lowerCamelCase__ ) return func return decorator def _lowerCAmelCase ( *lowerCamelCase__ : List[str] ) -> Tuple: def decorator(lowerCamelCase__ : Dict ): _SCREAMING_SNAKE_CASE : List[Any] = getattr(lowerCamelCase__, "handle_key", [] ) handle += keys setattr(lowerCamelCase__, "handle_key", lowerCamelCase__ ) return func return decorator class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __new__( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = super().__new__(cls , snake_case__ , snake_case__ , snake_case__ ) if not hasattr(snake_case__ , "key_handler" ): setattr(snake_case__ , "key_handler" , {} ) setattr(snake_case__ , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): _SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(snake_case__ , "handle_key" , [] ) for key in handled_keys: _SCREAMING_SNAKE_CASE : Tuple = value return new_cls @staticmethod def __SCREAMING_SNAKE_CASE ( cls ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = get_character() if char != KEYMAP["undefined"]: _SCREAMING_SNAKE_CASE : Dict = ord(snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = cls.key_handler.get(snake_case__ ) if handler: _SCREAMING_SNAKE_CASE : Optional[int] = char return handler(cls ) else: return None def _lowerCAmelCase ( cls : List[Any] ) -> str: return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
295
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class lowercase__ : '''simple docstring''' _UpperCAmelCase = MBartConfig _UpperCAmelCase = {} _UpperCAmelCase = '''gelu''' def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=False , snake_case=99 , snake_case=32 , snake_case=2 , snake_case=4 , snake_case=37 , snake_case=0.1 , snake_case=0.1 , snake_case=20 , snake_case=2 , snake_case=1 , snake_case=0 , ) -> List[Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase = prepare_mbart_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def lowerCamelCase_ ( self , snake_case , snake_case ) -> List[str]: _UpperCAmelCase = TFMBartModel(config=__UpperCamelCase ).get_decoder() _UpperCAmelCase = inputs_dict['input_ids'] _UpperCAmelCase = input_ids[:1, :] _UpperCAmelCase = inputs_dict['attention_mask'][:1, :] _UpperCAmelCase = inputs_dict['head_mask'] _UpperCAmelCase = 1 # first forward pass _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , head_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() _UpperCAmelCase = past_key_values[1] def UpperCAmelCase ( A : Any , A : List[Any] , A : List[Any] , A : Optional[Any]=None , A : Any=None , A : Optional[Any]=None , A : int=None , A : Union[str, Any]=None , ): '''simple docstring''' if attention_mask is None: _UpperCAmelCase = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase__ ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _UpperCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Any: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = TFMBartModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase ) def lowerCamelCase_ ( self ) -> str: self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] _UpperCAmelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] _UpperCAmelCase = '''facebook/mbart-large-en-ro''' @cached_property def lowerCamelCase_ ( self ) -> List[str]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase_ ( self , **snake_case ) -> int: _UpperCAmelCase = self.translate_src_text(**__UpperCamelCase ) self.assertListEqual(self.expected_text , __UpperCamelCase ) def lowerCamelCase_ ( self , **snake_case ) -> Optional[int]: _UpperCAmelCase = self.tokenizer(self.src_text , **__UpperCamelCase , return_tensors='tf' ) _UpperCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _UpperCAmelCase = self.tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) return generated_words @slow def lowerCamelCase_ ( self ) -> Tuple: self._assert_generated_batch_equal_expected()
573
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) A = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
187
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : int=13 , __UpperCamelCase : Optional[int]=7 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Any=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : List[Any]=False , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Any=99 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : List[Any]=32 , __UpperCamelCase : Tuple=5 , __UpperCamelCase : Union[str, Any]=4 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : Any=512 , __UpperCamelCase : Any=2 , __UpperCamelCase : str=0.02 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Tuple="last" , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Any=0 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_lengths _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = gelu_activation _UpperCAmelCase = sinusoidal_embeddings _UpperCAmelCase = causal _UpperCAmelCase = asm _UpperCAmelCase = n_langs _UpperCAmelCase = vocab_size _UpperCAmelCase = n_special _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = summary_type _UpperCAmelCase = use_proj _UpperCAmelCase = scope _UpperCAmelCase = bos_token_id def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_input_lengths: _UpperCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase__ ( self : Optional[Any] ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : str , ): _UpperCAmelCase = XLMModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCAmelCase = model(lowerCamelCase_ , lengths=lowerCamelCase_ , langs=lowerCamelCase_ ) _UpperCAmelCase = model(lowerCamelCase_ , langs=lowerCamelCase_ ) _UpperCAmelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : List[str] , ): _UpperCAmelCase = XLMWithLMHeadModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCAmelCase = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : List[Any] , ): _UpperCAmelCase = XLMForQuestionAnsweringSimple(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCAmelCase = model(lowerCamelCase_ ) _UpperCAmelCase = model(lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ ) _UpperCAmelCase = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , ): _UpperCAmelCase = XLMForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCAmelCase = model(lowerCamelCase_ ) _UpperCAmelCase = model( lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , cls_index=lowerCamelCase_ , is_impossible=lowerCamelCase_ , p_mask=lowerCamelCase_ , ) _UpperCAmelCase = model( lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , cls_index=lowerCamelCase_ , is_impossible=lowerCamelCase_ , ) (_UpperCAmelCase ) = result_with_labels.to_tuple() _UpperCAmelCase = model(lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ ) (_UpperCAmelCase ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase__ ( self : int , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , ): _UpperCAmelCase = XLMForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCAmelCase = model(lowerCamelCase_ ) _UpperCAmelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Tuple , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = XLMForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCAmelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : str , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = XLMForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.prepare_config_and_inputs() ( _UpperCAmelCase ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): __SCREAMING_SNAKE_CASE : str = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __SCREAMING_SNAKE_CASE : Dict = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Any=False ): _UpperCAmelCase = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = XLMModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowerCamelCase_ , emb_dim=37 ) def UpperCAmelCase__ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase_ ) def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase_ ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCamelCase_ ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase_ ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase_ ) def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase_ ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str=False , __UpperCamelCase : str=1 ): self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual( [isinstance(lowerCamelCase_ , lowerCamelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCamelCase_ ) ) self.assertEqual(len(lowerCamelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCamelCase_ ): # adds PAD dummy token _UpperCAmelCase = min_length + idx + 1 _UpperCAmelCase = min_length + idx + 1 _UpperCAmelCase = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCamelCase_ ) ) def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Dict=1 ): self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual( [isinstance(lowerCamelCase_ , lowerCamelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCamelCase_ ) , ) self.assertEqual(len(lowerCamelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCamelCase_ ): # adds PAD dummy token _UpperCAmelCase = min_length + idx + 1 _UpperCAmelCase = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCamelCase_ ) , ) pass @slow def UpperCAmelCase__ ( self : Optional[int] ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = XLMModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @slow def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(lowerCamelCase_ ) _UpperCAmelCase = torch.tensor([[14, 447]] , dtype=torch.long , device=lowerCamelCase_ ) # the president _UpperCAmelCase = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _UpperCAmelCase = model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCamelCase_ )
718
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __lowerCAmelCase = "sshleifer/bart-tiny-random" __lowerCAmelCase = "patrickvonplaten/t5-tiny-random" @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : Tuple ): return AutoConfig.from_pretrained(__UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=__UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=__UpperCamelCase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def UpperCAmelCase__ ( self : str ): with self.assertRaises(__UpperCamelCase ): create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=__UpperCamelCase , d=__UpperCamelCase )
129
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCamelCase_ (__A ): __magic_name__ = '''''' __magic_name__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __magic_name__ = None # compression type in fsspec. ex: "gzip" __magic_name__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[Any] , lowerCAmelCase_ : str = "" , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[dict] = None , **lowerCAmelCase_ : List[str] ) -> List[Any]: super().__init__(self , **lowerCAmelCase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase_ : Dict = fsspec.open( lowerCAmelCase_ , mode="rb" , protocol=lowerCAmelCase_ , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase_ : Optional[int] = os.path.basename(self.file.path.split("::" )[0] ) UpperCAmelCase_ : Any = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) UpperCAmelCase_ : Any = None @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCAmelCase_ ).lstrip("/" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: if self.dir_cache is None: UpperCAmelCase_ : Optional[Any] = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} UpperCAmelCase_ : str = {f["name"]: f} def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : str ) -> Any: return self.file.open().read() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str = "rb" , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Tuple , ) -> Tuple: UpperCAmelCase_ : List[str] = self._strip_protocol(lowerCAmelCase_ ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class UpperCamelCase_ (__A ): __magic_name__ = '''bz2''' __magic_name__ = '''bz2''' __magic_name__ = '''.bz2''' class UpperCamelCase_ (__A ): __magic_name__ = '''gzip''' __magic_name__ = '''gzip''' __magic_name__ = '''.gz''' class UpperCamelCase_ (__A ): __magic_name__ = '''lz4''' __magic_name__ = '''lz4''' __magic_name__ = '''.lz4''' class UpperCamelCase_ (__A ): __magic_name__ = '''xz''' __magic_name__ = '''xz''' __magic_name__ = '''.xz''' class UpperCamelCase_ (__A ): __magic_name__ = '''zstd''' __magic_name__ = '''zstd''' __magic_name__ = '''.zst''' def __init__( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : str = "rb" , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[dict] = None , lowerCAmelCase_ : int = DEFAULT_BLOCK_SIZE , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( fo=lowerCAmelCase_ , mode=lowerCAmelCase_ , target_protocol=lowerCAmelCase_ , target_options=lowerCAmelCase_ , block_size=lowerCAmelCase_ , **lowerCAmelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase_ : Optional[Any] = self.file.__enter__ class UpperCamelCase_ : def __init__( self : Tuple , lowerCAmelCase_ : List[Any] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = file_ def __enter__( self : Tuple ) -> List[Any]: self._file.__enter__() return self def __exit__( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : int ) -> Optional[int]: self._file.__exit__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __iter__( self : Optional[int] ) -> int: return iter(self._file ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return next(self._file ) def __getattr__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: return getattr(self._file , lowerCAmelCase_ ) def fixed_enter(*lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[Any] ): return WrappedFile(_enter(*lowerCAmelCase_ , **lowerCAmelCase_ ) ) UpperCAmelCase_ : List[Any] = fixed_enter
95
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( lowerCAmelCase_ ): '''simple docstring''' _lowerCAmelCase = ["""image_processor""", """tokenizer"""] _lowerCAmelCase = """LayoutLMv3ImageProcessor""" _lowerCAmelCase = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self , A_=None , A_=None , **A_ ): _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A_ , ) _UpperCamelCase = kwargs.pop("feature_extractor" ) _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(A_ , A_ ) def __call__( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 0 , A_ = None , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor _UpperCamelCase = self.image_processor(images=A_ , return_tensors=A_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(A_ , A_ ): _UpperCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) _UpperCamelCase = features["words"] _UpperCamelCase = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) # add pixel values _UpperCamelCase = features.pop("pixel_values" ) if return_overflowing_tokens is True: _UpperCamelCase = self.get_overflowing_images(A_ , encoded_inputs["overflow_to_sample_mapping"] ) _UpperCamelCase = images return encoded_inputs def a ( self , A_ , A_ ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _UpperCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(A_ ) != len(A_ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(A_ )} and {len(A_ )}" ) return images_with_overflow def a ( self , *A_ , **A_ ): return self.tokenizer.batch_decode(*A_ , **A_ ) def a ( self , *A_ , **A_ ): return self.tokenizer.decode(*A_ , **A_ ) @property def a ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def a ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , A_ , ) return self.image_processor_class @property def a ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , A_ , ) return self.image_processor
138
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class A ( __UpperCAmelCase ): def __lt__( self, UpperCamelCase__ ): """simple docstring""" return self[-1] < other[-1] def __eq__( self, UpperCamelCase__ ): """simple docstring""" return self[-1] == other[-1] def __UpperCamelCase ( _A ): lowerCAmelCase_ = [] # sort into stacks for element in collection: lowerCAmelCase_ = Stack([element] ) lowerCAmelCase_ = bisect_left(_A , _A ) if i != len(_A ): stacks[i].append(_A ) else: stacks.append(_A ) # use a heap-based merge to merge stack efficiently lowerCAmelCase_ = merge(*(reversed(_A ) for stack in stacks) ) return collection if __name__ == "__main__": _A = input('''Enter numbers separated by a comma:\n''').strip() _A = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
325
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _A = get_logger(__name__) class A : __snake_case = 'dummy_data' __snake_case = 'datasets' __snake_case = False def __init__( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = False, UpperCamelCase__ = True, UpperCamelCase__ = None, ): """simple docstring""" lowerCAmelCase_ = 0 lowerCAmelCase_ = dataset_name lowerCAmelCase_ = cache_dir lowerCAmelCase_ = use_local_dummy_data lowerCAmelCase_ = config # download_callbacks take a single url as input lowerCAmelCase_ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowerCAmelCase_ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowerCAmelCase_ = str(UpperCamelCase__ ) # to be downloaded lowerCAmelCase_ = None lowerCAmelCase_ = None @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self._dummy_file is None: lowerCAmelCase_ = self.download_dummy_data() return self._dummy_file @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''', self.config.name, self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''', self.version_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return os.path.join(self.dummy_data_folder, '''dummy_data.zip''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowerCAmelCase_ = cached_path( UpperCamelCase__, cache_dir=self.cache_dir, extract_compressed_file=UpperCamelCase__, force_extract=UpperCamelCase__ ) return os.path.join(UpperCamelCase__, self.dummy_file_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return os.path.join(self.datasets_scripts_dir, self.dataset_name, self.dummy_zip_file ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self._bucket_url is None: lowerCAmelCase_ = hf_github_url(self.dataset_name, self.dummy_zip_file.replace(os.sep, '''/''' ) ) return self._bucket_url @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep, '''/''' ).split('''/''' )[:-1] ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, *UpperCamelCase__ ): """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowerCAmelCase_ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowerCAmelCase_ = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase__, UpperCamelCase__ ): return self.create_dummy_data_dict(UpperCamelCase__, UpperCamelCase__ ) elif isinstance(UpperCamelCase__, (list, tuple) ): return self.create_dummy_data_list(UpperCamelCase__, UpperCamelCase__ ) else: return self.create_dummy_data_single(UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, *UpperCamelCase__ ): """simple docstring""" return self.download_and_extract(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" return self.download_and_extract(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return path def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return {} def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase__, UpperCamelCase__ ): for single_url in single_urls: download_callback(UpperCamelCase__ ) else: lowerCAmelCase_ = single_urls download_callback(UpperCamelCase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase__, UpperCamelCase__ ): lowerCAmelCase_ = [os.path.join(UpperCamelCase__, urllib.parse.quote_plus(Path(UpperCamelCase__ ).name ) ) for x in single_urls] else: lowerCAmelCase_ = single_urls lowerCAmelCase_ = os.path.join(UpperCamelCase__, urllib.parse.quote_plus(Path(UpperCamelCase__ ).name ) ) lowerCAmelCase_ = value # make sure that values are unique if all(isinstance(UpperCamelCase__, UpperCamelCase__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowerCAmelCase_ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowerCAmelCase_ = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''', UpperCamelCase__ ) ) for url in data_url ) lowerCAmelCase_ = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowerCAmelCase_ = [data_url[0]] * len(UpperCamelCase__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase_ = os.path.join(UpperCamelCase__, urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(UpperCamelCase__ ) return dummy_data_list def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" for download_callback in self.download_callbacks: download_callback(UpperCamelCase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase_ = os.path.join(UpperCamelCase__, urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(UpperCamelCase__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" def _iter_archive_members(UpperCamelCase__ ): # this preserves the order of the members inside the ZIP archive lowerCAmelCase_ = Path(self.dummy_file ).parent lowerCAmelCase_ = path.relative_to(UpperCamelCase__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowerCAmelCase_ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCamelCase__ ) lowerCAmelCase_ = Path(UpperCamelCase__ ) lowerCAmelCase_ = _iter_archive_members(UpperCamelCase__ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(UpperCamelCase__ ).as_posix(), file_path.open('''rb''' ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if not isinstance(UpperCamelCase__, UpperCamelCase__ ): lowerCAmelCase_ = [paths] for path in paths: if os.path.isfile(UpperCamelCase__ ): if os.path.basename(UpperCamelCase__ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase__ ): if os.path.basename(UpperCamelCase__ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(UpperCamelCase__ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(UpperCamelCase__, UpperCamelCase__ )
325
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Dict = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Optional[Any] = '''xlm-prophetnet''' _UpperCAmelCase : Any = ['''past_key_values'''] _UpperCAmelCase : Tuple = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self : str , lowerCAmelCase__ : Optional[float] = 0.1 , lowerCAmelCase__ : Optional[Union[str, Callable]] = "gelu" , lowerCAmelCase__ : Optional[int] = 3_0522 , lowerCAmelCase__ : Optional[int] = 1024 , lowerCAmelCase__ : Optional[int] = 4096 , lowerCAmelCase__ : Optional[int] = 12 , lowerCAmelCase__ : Optional[int] = 16 , lowerCAmelCase__ : Optional[int] = 4096 , lowerCAmelCase__ : Optional[int] = 12 , lowerCAmelCase__ : Optional[int] = 16 , lowerCAmelCase__ : Optional[float] = 0.1 , lowerCAmelCase__ : Optional[float] = 0.1 , lowerCAmelCase__ : Optional[int] = 512 , lowerCAmelCase__ : Optional[float] = 0.02 , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[int] = 0 , lowerCAmelCase__ : Optional[int] = 2 , lowerCAmelCase__ : Optional[int] = 32 , lowerCAmelCase__ : Optional[int] = 128 , lowerCAmelCase__ : Optional[bool] = False , lowerCAmelCase__ : Optional[float] = 0.0 , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[int] = 0 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 2 , **lowerCAmelCase__ : List[str] , ): SCREAMING_SNAKE_CASE_: List[Any] = vocab_size SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: Any = encoder_ffn_dim SCREAMING_SNAKE_CASE_: Tuple = num_encoder_layers SCREAMING_SNAKE_CASE_: List[Any] = num_encoder_attention_heads SCREAMING_SNAKE_CASE_: Dict = decoder_ffn_dim SCREAMING_SNAKE_CASE_: Any = num_decoder_layers SCREAMING_SNAKE_CASE_: Tuple = num_decoder_attention_heads SCREAMING_SNAKE_CASE_: str = max_position_embeddings SCREAMING_SNAKE_CASE_: str = init_std # Normal(0, this parameter) SCREAMING_SNAKE_CASE_: Dict = activation_function # parameters for xlmprophetnet SCREAMING_SNAKE_CASE_: Optional[int] = ngram SCREAMING_SNAKE_CASE_: Tuple = num_buckets SCREAMING_SNAKE_CASE_: Union[str, Any] = relative_max_distance SCREAMING_SNAKE_CASE_: List[str] = disable_ngram_loss SCREAMING_SNAKE_CASE_: Dict = eps # 3 Types of Dropout SCREAMING_SNAKE_CASE_: Any = attention_dropout SCREAMING_SNAKE_CASE_: Optional[int] = activation_dropout SCREAMING_SNAKE_CASE_: str = dropout SCREAMING_SNAKE_CASE_: Optional[int] = use_cache super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , add_cross_attention=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Any): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`.")
671
from __future__ import annotations from collections.abc import Iterator from typing import Any class __lowercase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: Any = data SCREAMING_SNAKE_CASE_: Node | None = None class __lowercase : """simple docstring""" def __init__( self : int): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = None def __iter__( self : List[str]): SCREAMING_SNAKE_CASE_: Tuple = self.head while self.head: yield node.data SCREAMING_SNAKE_CASE_: List[str] = node.next if node == self.head: break def __len__( self : Dict): return sum(1 for _ in self) def __repr__( self : Dict): return "->".join(str(lowerCAmelCase__) for item in iter(self)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any): self.insert_nth(len(self) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any): self.insert_nth(0 , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any): if index < 0 or index > len(self): raise IndexError("list index out of range.") SCREAMING_SNAKE_CASE_: Any = Node(lowerCAmelCase__) if self.head is None: SCREAMING_SNAKE_CASE_: str = new_node # first node points itself SCREAMING_SNAKE_CASE_: Optional[Any] = new_node elif index == 0: # insert at head SCREAMING_SNAKE_CASE_: Optional[Any] = self.head SCREAMING_SNAKE_CASE_: str = new_node else: SCREAMING_SNAKE_CASE_: int = self.head for _ in range(index - 1): SCREAMING_SNAKE_CASE_: Optional[Any] = temp.next SCREAMING_SNAKE_CASE_: List[str] = temp.next SCREAMING_SNAKE_CASE_: int = new_node if index == len(self) - 1: # insert at tail SCREAMING_SNAKE_CASE_: Any = new_node def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return self.delete_nth(0) def _SCREAMING_SNAKE_CASE ( self : Any): return self.delete_nth(len(self) - 1) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : int = 0): if not 0 <= index < len(self): raise IndexError("list index out of range.") SCREAMING_SNAKE_CASE_: Optional[Any] = self.head if self.head == self.tail: # just one node SCREAMING_SNAKE_CASE_: List[str] = None elif index == 0: # delete head node SCREAMING_SNAKE_CASE_: int = self.tail.next.next SCREAMING_SNAKE_CASE_: Tuple = self.head.next else: SCREAMING_SNAKE_CASE_: Optional[int] = self.head for _ in range(index - 1): SCREAMING_SNAKE_CASE_: Any = temp.next SCREAMING_SNAKE_CASE_: Optional[Any] = temp.next SCREAMING_SNAKE_CASE_: int = temp.next.next if index == len(self) - 1: # delete at tail SCREAMING_SNAKE_CASE_: int = temp return delete_node.data def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return len(self) == 0 def A_ ( ): SCREAMING_SNAKE_CASE_: Dict = CircularLinkedList() assert len(_UpperCAmelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(_UpperCAmelCase ) == i circular_linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
671
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="pt" ): '''simple docstring''' SCREAMING_SNAKE_CASE = {"""add_prefix_space""": True} if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and not line.startswith(""" """ ) else {} SCREAMING_SNAKE_CASE = padding_side return tokenizer( [line] , max_length=lowerCamelCase_ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE = input_ids.ne(lowerCamelCase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase_ ( lowercase_ ): '''simple docstring''' def __init__( self : str , a : Tuple , a : Tuple , a : List[str] , a : List[str] , a : List[str]="train" , a : List[str]=None , a : List[Any]=None , a : int=None , a : Union[str, Any]="" , ) -> int: super().__init__() SCREAMING_SNAKE_CASE = Path(lowerCamelCase_ ).joinpath(type_path + """.source""" ) SCREAMING_SNAKE_CASE = Path(lowerCamelCase_ ).joinpath(type_path + """.target""" ) SCREAMING_SNAKE_CASE = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE = max_source_length SCREAMING_SNAKE_CASE = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" SCREAMING_SNAKE_CASE = tokenizer SCREAMING_SNAKE_CASE = prefix if n_obs is not None: SCREAMING_SNAKE_CASE = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE = src_lang SCREAMING_SNAKE_CASE = tgt_lang def __len__( self : List[Any] ) -> Union[str, Any]: return len(self.src_lens ) def __getitem__( self : Union[str, Any] , a : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE = self.prefix + linecache.getline(str(self.src_file ) , lowerCamelCase_ ).rstrip("""\n""" ) SCREAMING_SNAKE_CASE = linecache.getline(str(self.tgt_file ) , lowerCamelCase_ ).rstrip("""\n""" ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCamelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer ) SCREAMING_SNAKE_CASE = self.tokenizer.generator if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer SCREAMING_SNAKE_CASE = encode_line(lowerCamelCase_ , lowerCamelCase_ , self.max_source_length , """right""" ) SCREAMING_SNAKE_CASE = encode_line(lowerCamelCase_ , lowerCamelCase_ , self.max_target_length , """right""" ) SCREAMING_SNAKE_CASE = source_inputs["""input_ids"""].squeeze() SCREAMING_SNAKE_CASE = target_inputs["""input_ids"""].squeeze() SCREAMING_SNAKE_CASE = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _UpperCAmelCase ( a : Dict ) -> int: return [len(lowerCamelCase_ ) for x in Path(lowerCamelCase_ ).open().readlines()] def _UpperCAmelCase ( self : Tuple , a : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = torch.stack([x["""input_ids"""] for x in batch] ) SCREAMING_SNAKE_CASE = torch.stack([x["""attention_mask"""] for x in batch] ) SCREAMING_SNAKE_CASE = torch.stack([x["""decoder_input_ids"""] for x in batch] ) SCREAMING_SNAKE_CASE = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE = trim_batch(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE = trim_batch(lowerCamelCase_ , lowerCamelCase_ , attention_mask=lowerCamelCase_ ) SCREAMING_SNAKE_CASE = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __A : Union[str, Any] = getLogger(__name__) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return list(itertools.chain.from_iterable(lowerCamelCase_ ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = get_git_info() save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , """git_log.json""" ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=4 , **SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(lowerCamelCase_ , """w""" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(lowerCamelCase_ ) as f: return json.load(lowerCamelCase_ ) def lowerCamelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE = git.Repo(search_parent_directories=lowerCamelCase_ ) SCREAMING_SNAKE_CASE = { """repo_id""": str(lowerCamelCase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return list(map(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(lowerCamelCase_ , """wb""" ) as f: return pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def remove_articles(SCREAMING_SNAKE_CASE ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase_ ) def white_space_fix(SCREAMING_SNAKE_CASE ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = normalize_answer(lowerCamelCase_ ).split() SCREAMING_SNAKE_CASE = normalize_answer(lowerCamelCase_ ).split() SCREAMING_SNAKE_CASE = Counter(lowerCamelCase_ ) & Counter(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE = 1.0 * num_same / len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = 1.0 * num_same / len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = 0 for hypo, pred in zip(lowerCamelCase_ , lowerCamelCase_ ): em += exact_match_score(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: em /= len(lowerCamelCase_ ) return {"em": em} def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and not hasattr(lowerCamelCase_ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) continue SCREAMING_SNAKE_CASE = p if hasattr(lowerCamelCase_ , lowerCamelCase_ ) else equivalent_param[p] setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) return hparams, config
713
import os import sys import unittest __A : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __A : List[Any] = os.path.join(git_repo_path, """src""", """diffusers""") class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a , """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") SCREAMING_SNAKE_CASE = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a , """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") SCREAMING_SNAKE_CASE = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a , """torch_and_transformers_and_onnx""" ) def _UpperCAmelCase ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , a ) self.assertIn("""torch_and_transformers""" , a ) self.assertIn("""flax_and_transformers""" , a ) self.assertIn("""torch_and_transformers_and_onnx""" , a ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""" , objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""" , objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""" , objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""" , objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""" , objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""" , objects["""torch_and_transformers_and_onnx"""] ) def _UpperCAmelCase ( self : Any ) -> int: SCREAMING_SNAKE_CASE = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(a , """\nCONSTANT = None\n""" ) SCREAMING_SNAKE_CASE = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( a , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) SCREAMING_SNAKE_CASE = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ SCREAMING_SNAKE_CASE = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(a , a ) def _UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ SCREAMING_SNAKE_CASE = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , a )
450
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
258
import numpy # List of input, output pairs _A = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _A = (((515, 22, 13), 555), ((61, 35, 49), 150)) _A = [2, 4, 1, 5] _A = len(train_data) _A = 0.009 def lowerCAmelCase_ ( __a , __a="train" ) -> Optional[int]: """simple docstring""" return calculate_hypothesis_value(__a , __a ) - output( __a , __a ) def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple =0 for i in range(len(__a ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCAmelCase_ ( __a , __a=m ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple =0 for i in range(__a ): if index == -1: summation_value += _error(__a ) else: summation_value += _error(__a ) * train_data[i][0][index] return summation_value def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str =summation_of_cost_derivative(__a , __a ) / m return cost_derivative_value def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output SCREAMING_SNAKE_CASE : Tuple =0.000002 SCREAMING_SNAKE_CASE : Optional[Any] =0 SCREAMING_SNAKE_CASE : Tuple =0 while True: j += 1 SCREAMING_SNAKE_CASE : List[str] =[0, 0, 0, 0] for i in range(0 , len(__a ) ): SCREAMING_SNAKE_CASE : Tuple =get_cost_derivative(i - 1 ) SCREAMING_SNAKE_CASE : Tuple =( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __a , __a , atol=__a , rtol=__a , ): break SCREAMING_SNAKE_CASE : Union[str, Any] =temp_parameter_vector print(('''Number of iterations:''', j) ) def lowerCAmelCase_ ( ) -> int: """simple docstring""" for i in range(len(__a ) ): print(('''Actual output value:''', output(__a , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(__a , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
258
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
508
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowercase__( __UpperCamelCase: bytes ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : int = f"{sampling_rate}" SCREAMING_SNAKE_CASE : str = '1' SCREAMING_SNAKE_CASE : Optional[Any] = 'f32le' SCREAMING_SNAKE_CASE : Any = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(__UpperCamelCase ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(__UpperCamelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error SCREAMING_SNAKE_CASE : Union[str, Any] = output_stream[0] SCREAMING_SNAKE_CASE : Dict = np.frombuffer(__UpperCamelCase ,np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: float ,__UpperCamelCase: str = "f32le" ,): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = f"{sampling_rate}" SCREAMING_SNAKE_CASE : str = '1' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Optional[int] = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) SCREAMING_SNAKE_CASE : Optional[Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : List[str] = 'alsa' SCREAMING_SNAKE_CASE : str = 'default' elif system == "Darwin": SCREAMING_SNAKE_CASE : Dict = 'avfoundation' SCREAMING_SNAKE_CASE : int = ':0' elif system == "Windows": SCREAMING_SNAKE_CASE : str = 'dshow' SCREAMING_SNAKE_CASE : Any = 'default' SCREAMING_SNAKE_CASE : Any = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = _ffmpeg_stream(__UpperCamelCase ,__UpperCamelCase ) for item in iterator: yield item def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: float ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[Union[Tuple[float, float], float]] = None ,__UpperCamelCase: str = "f32le" ,): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Any = stream_chunk_s else: SCREAMING_SNAKE_CASE : Dict = chunk_length_s SCREAMING_SNAKE_CASE : Tuple = ffmpeg_microphone(__UpperCamelCase ,__UpperCamelCase ,format_for_conversion=__UpperCamelCase ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Optional[int] = np.floataa SCREAMING_SNAKE_CASE : List[Any] = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Optional[Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__UpperCamelCase ,(int, float) ): SCREAMING_SNAKE_CASE : str = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=__UpperCamelCase ) for item in chunk_bytes_iter(__UpperCamelCase ,__UpperCamelCase ,stride=(stride_left, stride_right) ,stream=__UpperCamelCase ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : List[Any] = np.frombuffer(item['raw'] ,dtype=__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Tuple[int, int] ,__UpperCamelCase: bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = B'' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(__UpperCamelCase ) < chunk_len: SCREAMING_SNAKE_CASE : Tuple = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__UpperCamelCase ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : Optional[int] = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'raw': acc[:chunk_len], 'stride': stride} if stream: SCREAMING_SNAKE_CASE : Optional[int] = False yield item SCREAMING_SNAKE_CASE : List[Any] = stride_left SCREAMING_SNAKE_CASE : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__UpperCamelCase ) > stride_left: SCREAMING_SNAKE_CASE : Tuple = {'raw': acc, 'stride': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : List[Any] = False yield item def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 2**24 # 16Mo try: with subprocess.Popen(__UpperCamelCase ,stdout=subprocess.PIPE ,bufsize=__UpperCamelCase ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : Any = ffmpeg_process.stdout.read(__UpperCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
508
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar snake_case__ : List[str] = TypeVar("""T""") def _snake_case (__lowercase): return (position - 1) // 2 def _snake_case (__lowercase): return (2 * position) + 1 def _snake_case (__lowercase): return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = [] UpperCamelCase_ = {} UpperCamelCase_ = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def _UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase_ , UpperCamelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase_ , UpperCamelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Update the weight of the given key UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ = (elem, weight) if position > 0: UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCamelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Swap the nodes at the given positions UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ , UpperCamelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase_ = nodea_pos UpperCamelCase_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = {} UpperCamelCase_ = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase_ = {} self.nodes += 1 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCamelCase_ = weight UpperCamelCase_ = weight def _snake_case (__lowercase , ): UpperCamelCase_ = {node: maxsize for node in graph.connections} UpperCamelCase_ = {node: None for node in graph.connections} UpperCamelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowercase , __lowercase) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase_ = priority_queue.extract_min() UpperCamelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node return dist, parent
23
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class UpperCAmelCase ( _snake_case ): UpperCAmelCase = "imagegpt" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , __lowerCamelCase : List[Any]=5_1_2 + 1 , __lowerCamelCase : Dict=3_2 * 3_2 , __lowerCamelCase : List[str]=5_1_2 , __lowerCamelCase : List[Any]=2_4 , __lowerCamelCase : Any=8 , __lowerCamelCase : Tuple=None , __lowerCamelCase : Any="quick_gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Dict=False , **__lowerCamelCase : str , ): UpperCAmelCase__ :Dict = vocab_size UpperCAmelCase__ :str = n_positions UpperCAmelCase__ :Tuple = n_embd UpperCAmelCase__ :Dict = n_layer UpperCAmelCase__ :List[Any] = n_head UpperCAmelCase__ :str = n_inner UpperCAmelCase__ :Optional[Any] = activation_function UpperCAmelCase__ :str = resid_pdrop UpperCAmelCase__ :Optional[Any] = embd_pdrop UpperCAmelCase__ :Tuple = attn_pdrop UpperCAmelCase__ :int = layer_norm_epsilon UpperCAmelCase__ :List[Any] = initializer_range UpperCAmelCase__ :List[Any] = scale_attn_weights UpperCAmelCase__ :List[str] = use_cache UpperCAmelCase__ :Tuple = scale_attn_by_inverse_layer_idx UpperCAmelCase__ :Union[str, Any] = reorder_and_upcast_attn UpperCAmelCase__ :List[Any] = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class UpperCAmelCase ( _snake_case ): @property def __SCREAMING_SNAKE_CASE ( self : str ): return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __SCREAMING_SNAKE_CASE ( self : Dict , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 3_2 , __lowerCamelCase : int = 3_2 , ): UpperCAmelCase__ :Tuple = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :Dict = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
467
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a : List[Any] = 0 _a : Union[str, Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a : Any = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a : Dict = tuple[int, int] class a_ : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None , ): """simple docstring""" snake_case : str = pos_x snake_case : int = pos_y snake_case : int = (pos_y, pos_x) snake_case : List[str] = goal_x snake_case : Tuple = goal_y snake_case : str = g_cost snake_case : Optional[Any] = parent snake_case : Dict = self.calculate_heuristic() snake_case : Dict = self.g_cost + self.h_cost def lowerCAmelCase( self : Union[str, Any] ): """simple docstring""" snake_case : Optional[Any] = self.pos_x - self.goal_x snake_case : List[Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(UpperCAmelCase__ ) + abs(UpperCAmelCase__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Optional[int] , UpperCAmelCase__ : Node ): """simple docstring""" return self.f_cost < other.f_cost class a_ : def __init__( self : Optional[int] , UpperCAmelCase__ : TPosition , UpperCAmelCase__ : TPosition ): """simple docstring""" snake_case : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCAmelCase__ ) snake_case : Optional[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , UpperCAmelCase__ ) snake_case : Tuple = [self.start] snake_case : list[Node] = [] snake_case : Tuple = False def lowerCAmelCase( self : Dict ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case : Tuple = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(UpperCAmelCase__ ) self.closed_nodes.append(UpperCAmelCase__ ) snake_case : str = self.get_successors(UpperCAmelCase__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCAmelCase__ ) else: # retrieve the best current path snake_case : Tuple = self.open_nodes.pop(self.open_nodes.index(UpperCAmelCase__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCAmelCase__ ) else: self.open_nodes.append(UpperCAmelCase__ ) return [self.start.pos] def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : Node ): """simple docstring""" snake_case : Dict = [] for action in delta: snake_case : List[Any] = parent.pos_x + action[1] snake_case : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCAmelCase__ , ) ) return successors def lowerCAmelCase( self : Optional[Any] , UpperCAmelCase__ : Node | None ): """simple docstring""" snake_case : Any = node snake_case : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case : Dict = current_node.parent path.reverse() return path class a_ : def __init__( self : str , UpperCAmelCase__ : TPosition , UpperCAmelCase__ : TPosition ): """simple docstring""" snake_case : str = AStar(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case : str = AStar(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case : Dict = False def lowerCAmelCase( self : List[Any] ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() snake_case : Dict = self.fwd_astar.open_nodes.pop(0 ) snake_case : Tuple = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) self.fwd_astar.closed_nodes.append(UpperCAmelCase__ ) self.bwd_astar.closed_nodes.append(UpperCAmelCase__ ) snake_case : int = current_bwd_node snake_case : Dict = current_fwd_node snake_case : List[Any] = { self.fwd_astar: self.fwd_astar.get_successors(UpperCAmelCase__ ), self.bwd_astar: self.bwd_astar.get_successors(UpperCAmelCase__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(UpperCAmelCase__ ) else: # retrieve the best current path snake_case : str = astar.open_nodes.pop( astar.open_nodes.index(UpperCAmelCase__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(UpperCAmelCase__ ) else: astar.open_nodes.append(UpperCAmelCase__ ) return [self.fwd_astar.start.pos] def lowerCAmelCase( self : Any , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ): """simple docstring""" snake_case : Union[str, Any] = self.fwd_astar.retrace_path(UpperCAmelCase__ ) snake_case : List[str] = self.bwd_astar.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() snake_case : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a : Dict = (0, 0) _a : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a : int = time.time() _a : int = AStar(init, goal) _a : List[Any] = a_star.search() _a : List[Any] = time.time() - start_time print(f"AStar execution time = {end_time:f} seconds") _a : Optional[int] = time.time() _a : str = BidirectionalAStar(init, goal) _a : Any = time.time() - bd_start_time print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
84
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( a ): A__ : List[str] = ['image_processor', 'tokenizer'] A__ : Any = 'CLIPImageProcessor' A__ : Optional[int] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Union[str, Any] , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Union[str, Any]=None , **UpperCAmelCase__ : Optional[int] ): """simple docstring""" snake_case : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase__ , ) snake_case : List[Any] = kwargs.pop('''feature_extractor''' ) snake_case : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) def __call__( self : Any , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : Union[str, Any] ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: snake_case : int = self.tokenizer(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ) if images is not None: snake_case : Dict = self.image_processor(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ) if text is not None and images is not None: snake_case : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase__ ) , tensor_type=UpperCAmelCase__ ) def lowerCAmelCase( self : List[str] , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : int ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCAmelCase( self : Optional[int] , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : str ): """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) @property def lowerCAmelCase( self : Tuple ): """simple docstring""" snake_case : int = self.tokenizer.model_input_names snake_case : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase( self : Tuple ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase__ , ) return self.image_processor_class @property def lowerCAmelCase( self : Any ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase__ , ) return self.image_processor
84
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def snake_case_ (__A : Dict ) -> List[Any]: __lowerCAmelCase : Any = """huggingface/label-files""" __lowerCAmelCase : List[Any] = """imagenet-1k-id2label.json""" __lowerCAmelCase : Dict = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase : List[str] = {int(__A ): v for k, v in idalabel.items()} __lowerCAmelCase : Tuple = {v: k for k, v in idalabel.items()} __lowerCAmelCase : Tuple = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __lowerCAmelCase : List[Any] = BitConfig( conv_layer=__A , num_labels=1_0_0_0 , idalabel=__A , labelaid=__A , ) return config def snake_case_ (__A : Dict ) -> str: if "stem.conv" in name: __lowerCAmelCase : List[str] = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __lowerCAmelCase : str = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: __lowerCAmelCase : str = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): __lowerCAmelCase : List[Any] = """bit.""" + name if "bit" not in name and "classifier" not in name: __lowerCAmelCase : Optional[int] = """bit.encoder.""" + name return name def snake_case_ () -> Optional[int]: __lowerCAmelCase : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase : str = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def snake_case_ (__A : Optional[int] , __A : List[str] , __A : Any=False ) -> str: __lowerCAmelCase : int = get_config(__A ) # load original model from timm __lowerCAmelCase : Any = create_model(__A , pretrained=__A ) timm_model.eval() # load state_dict of original model __lowerCAmelCase : List[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): __lowerCAmelCase : Dict = state_dict.pop(__A ) __lowerCAmelCase : str = val.squeeze() if """head""" in key else val # load HuggingFace model __lowerCAmelCase : Dict = BitForImageClassification(__A ) model.eval() model.load_state_dict(__A ) # create image processor __lowerCAmelCase : Optional[int] = create_transform(**resolve_data_config({} , model=__A ) ) __lowerCAmelCase : Optional[Any] = transform.transforms __lowerCAmelCase : List[Any] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } __lowerCAmelCase : int = BitImageProcessor( do_resize=__A , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__A , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__A , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __lowerCAmelCase : str = prepare_img() __lowerCAmelCase : str = transform(__A ).unsqueeze(0 ) __lowerCAmelCase : Optional[int] = processor(__A , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(__A , __A ) # verify logits with torch.no_grad(): __lowerCAmelCase : Dict = model(__A ) __lowerCAmelCase : List[Any] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) __lowerCAmelCase : List[Any] = timm_model(__A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__A , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__A ).mkdir(exist_ok=__A ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
651
import math def snake_case_ (__A : int = 1_0_0 ) -> int: __lowerCAmelCase : List[str] = sum(i * i for i in range(1 , n + 1 ) ) __lowerCAmelCase : int = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
651
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__lowerCamelCase )] ) __a = np.array(__lowerCamelCase ) __a = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __lowerCamelCase ) ) , x.transpose() ) , __lowerCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = (1, 2, 1) __a = (1, 1, 0, 7) __a = SARIMAX( __lowerCamelCase , exog=__lowerCamelCase , order=__lowerCamelCase , seasonal_order=__lowerCamelCase ) __a = model.fit(disp=__lowerCamelCase , maxiter=600 , method='nm' ) __a = model_fit.predict(1 , len(__lowerCamelCase ) , exog=[test_match] ) return result[0] def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__lowerCamelCase , __lowerCamelCase ) __a = regressor.predict(__lowerCamelCase ) return y_pred[0] def lowerCAmelCase( __lowerCamelCase ): train_user.sort() __a = np.percentile(__lowerCamelCase , 25 ) __a = np.percentile(__lowerCamelCase , 75 ) __a = qa - qa __a = qa - (iqr * 0.1) return low_lim def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = 0 __a = 0 for i in list_vote: if i > actual_result: __a = not_safe + 1 else: if abs(abs(__lowerCamelCase ) - abs(__lowerCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowerCamelCase_ : str = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] lowerCamelCase_ : List[str] = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) lowerCamelCase_ : Optional[int] = Normalizer().fit_transform(data_input_df.values) # split data lowerCamelCase_ : int = normalize_df[:, 2].tolist() lowerCamelCase_ : str = normalize_df[:, 0].tolist() lowerCamelCase_ : Any = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowerCamelCase_ : int = normalize_df[:, [1, 2]].tolist() lowerCamelCase_ : str = x[: len(x) - 1] lowerCamelCase_ : str = x[len(x) - 1 :] # for linear regression & sarimax lowerCamelCase_ : Dict = total_date[: len(total_date) - 1] lowerCamelCase_ : Tuple = total_user[: len(total_user) - 1] lowerCamelCase_ : Dict = total_match[: len(total_match) - 1] lowerCamelCase_ : str = total_date[len(total_date) - 1 :] lowerCamelCase_ : Tuple = total_user[len(total_user) - 1 :] lowerCamelCase_ : Optional[Any] = total_match[len(total_match) - 1 :] # voting system with forecasting lowerCamelCase_ : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowerCamelCase_ : Union[str, Any] = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
246
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCamelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") lowerCamelCase_ , lowerCamelCase_ : Optional[int] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") lowerCamelCase_ : Dict = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: lowerCamelCase_ : Optional[int] = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCamelCase_ : Union[str, Any] = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
246
1
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } __SCREAMING_SNAKE_CASE : List[Any] = { '''allenai/led-base-16384''': 16384, } class __lowerCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase : Dict =VOCAB_FILES_NAMES _UpperCAmelCase : Dict =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[Any] =LEDTokenizer _UpperCAmelCase : Dict =["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]="replace" , lowerCAmelCase : int="<s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : List[str]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : Union[str, Any]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Any=False , lowerCAmelCase : Dict=True , **lowerCAmelCase : str , ): super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) A_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase ) != add_prefix_space: A_ = getattr(lowerCAmelCase , pre_tok_state.pop("type" ) ) A_ = add_prefix_space A_ = pre_tok_class(**lowerCAmelCase ) A_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A_ = "post_processor" A_ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase ) if tokenizer_component_instance: A_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ = tuple(state["sep"] ) if "cls" in state: A_ = tuple(state["cls"] ) A_ = False if state.get("add_prefix_space" , lowerCAmelCase ) != add_prefix_space: A_ = add_prefix_space A_ = True if state.get("trim_offsets" , lowerCAmelCase ) != trim_offsets: A_ = trim_offsets A_ = True if changes_to_apply: A_ = getattr(lowerCAmelCase , state.pop("type" ) ) A_ = component_class(**lowerCAmelCase ) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : Tuple ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self : Dict , lowerCAmelCase : Optional[int] ): A_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else value A_ = value def _UpperCAmelCase ( self : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] ): A_ = kwargs.get("is_split_into_words" , lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any] ): A_ = kwargs.get("is_split_into_words" , lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None ): A_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self : List[str] , lowerCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[bool] = None , ): A_ = super()._pad( encoded_inputs=lowerCAmelCase , max_length=lowerCAmelCase , padding_strategy=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) # Load from model defaults if return_attention_mask is None: A_ = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A_ = len(encoded_inputs["global_attention_mask"] ) != len(lowerCAmelCase ) if needs_to_be_padded: A_ = len(lowerCAmelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A_ = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": A_ = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
452
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} __SCREAMING_SNAKE_CASE : str = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } __SCREAMING_SNAKE_CASE : List[Any] = { '''abeja/gpt-neox-japanese-2.7b''': 2048, } def a_ ( UpperCamelCase_ , UpperCamelCase_ ): with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f: A_ = json.loads(f.read() ) A_ = collections.OrderedDict() A_ = collections.OrderedDict() A_ = collections.OrderedDict() with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f: A_ = f.readlines() A_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(UpperCamelCase_ ): A_ = b A_ = idx for wd in b: A_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class __lowerCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase : str =VOCAB_FILES_NAMES _UpperCAmelCase : str =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] =["input_ids", "attention_mask"] def __init__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any]="<|endoftext|>" , lowerCAmelCase : Optional[int]="<|endoftext|>" , lowerCAmelCase : Tuple="<|startoftext|>" , lowerCAmelCase : Union[str, Any]="<|endoftext|>" , lowerCAmelCase : List[Any]=False , **lowerCAmelCase : Optional[Any] , ): super().__init__( unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , do_clean_text=lowerCAmelCase , **lowerCAmelCase , ) if not os.path.isfile(lowerCAmelCase ): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(lowerCAmelCase ): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) A_ = do_clean_text A_ , A_ , A_ , A_ = load_vocab_and_emoji(lowerCAmelCase , lowerCAmelCase ) A_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _UpperCAmelCase ( self : str ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def _UpperCAmelCase ( self : Optional[int] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Tuple ): return self.subword_tokenizer.tokenize(lowerCAmelCase , clean=self.do_clean_text ) def _UpperCAmelCase ( self : str , lowerCAmelCase : int ): return self.vocab.get(lowerCAmelCase , self.vocab.get(self.unk_token ) ) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase : List[str] ): return self.subword_tokenizer.convert_id_to_token(lowerCAmelCase ) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Optional[Any] ): A_ = "".join(lowerCAmelCase ).strip() return out_string def _UpperCAmelCase ( self : Any , lowerCAmelCase : "Conversation" ): A_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: A_ = input_ids[-self.model_max_length :] return input_ids def _UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): A_ = 0 if os.path.isdir(lowerCAmelCase ): A_ = os.path.join( lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A_ = os.path.join( lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: A_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) A_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) A_ = token_index writer.write(",".join(lowerCAmelCase ) + "\n" ) index += 1 with open(lowerCAmelCase , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , lowerCAmelCase ) return vocab_file, emoji_file class __lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ): A_ = vocab # same as swe A_ = ids_to_tokens # same as bpe A_ = emoji A_ = np.max([len(lowerCAmelCase ) for w in self.vocab.keys()] ) A_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) A_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) A_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) A_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) A_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) A_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) A_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" A_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" A_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : Union[str, Any] ): return len(self.ids_to_tokens ) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase : int ): A_ = self.content_repattera.sub("<URL>" , lowerCAmelCase ) A_ = self.content_repattera.sub("<EMAIL>" , lowerCAmelCase ) A_ = self.content_repattera.sub("<TEL>" , lowerCAmelCase ) A_ = self.content_repattera.sub("<DATE>" , lowerCAmelCase ) A_ = self.content_repattera.sub("<DATE>" , lowerCAmelCase ) A_ = self.content_repattera.sub("<PRICE>" , lowerCAmelCase ) A_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: A_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def _UpperCAmelCase ( self : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple=False ): A_ = text.replace(" " , "<SP>" ) A_ = text.replace(" " , "<SP>" ) A_ = text.replace("\r\n" , "<BR>" ) A_ = text.replace("\n" , "<BR>" ) A_ = text.replace("\r" , "<BR>" ) A_ = text.replace("\t" , "<TAB>" ) A_ = text.replace("—" , "ー" ) A_ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: A_ = text.replace(lowerCAmelCase , lowerCAmelCase ) if clean: A_ = self.clean_text(lowerCAmelCase ) def check_simbol(lowerCAmelCase : Tuple ): A_ = x.encode() if len(lowerCAmelCase ) == 1 and len(lowerCAmelCase ) == 2: A_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC2A1 and c <= 0xC2BF) or (c >= 0xC780 and c <= 0xC783) or (c >= 0xCAB9 and c <= 0xCBBF) or (c >= 0xCC80 and c <= 0xCDA2) ): return True return False def checkuae(lowerCAmelCase : Tuple ): A_ = x.encode() if len(lowerCAmelCase ) == 1 and len(lowerCAmelCase ) == 3: A_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE2_8080 and c <= 0xE2_B07F: return True return False A_ = 0 A_ = [] while pos < len(lowerCAmelCase ): A_ = min(len(lowerCAmelCase ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 A_ = [] # (token_id, token, pos) for e in range(lowerCAmelCase , lowerCAmelCase , -1 ): A_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowerCAmelCase ) > 2: A_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowerCAmelCase ) > 0: # the smallest token_id is adopted A_ , A_ , A_ = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x[0] )[0] result.append(lowerCAmelCase ) A_ = e else: A_ = pos + 1 A_ = text[pos:end] if check_simbol(lowerCAmelCase ): result.append("<KIGOU>" ) elif checkuae(lowerCAmelCase ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) A_ = end return result def _UpperCAmelCase ( self : Dict , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any]="\n" ): A_ = [] A_ = [] A_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowerCAmelCase ) > 0: words.append(bytearray(lowerCAmelCase ).decode("utf-8" , errors="replace" ) ) A_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(lowerCAmelCase ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: words.append(bytearray(lowerCAmelCase ).decode("utf-8" , errors="replace" ) ) A_ = "".join(lowerCAmelCase ) return text
452
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , _a , ) super().__init__(*_a , **_a )
721
from typing import TYPE_CHECKING from ....utils import _LazyModule SCREAMING_SNAKE_CASE__ = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
601
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case : List[str] = 16 _snake_case : int = 32 def snake_case_ (UpperCamelCase : Accelerator , UpperCamelCase : DatasetDict , UpperCamelCase : List[int] , UpperCamelCase : List[int] , UpperCamelCase : int = 16 ): '''simple docstring''' _a = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _a = DatasetDict( { '''train''': dataset['''train'''].select(UpperCamelCase ), '''validation''': dataset['''train'''].select(UpperCamelCase ), '''test''': dataset['''validation'''], } ) def tokenize_function(UpperCamelCase : List[str] ): # max_length=None => use the model max length (it's actually the default) _a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCamelCase , max_length=UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a = datasets.map( UpperCamelCase , batched=UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCamelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. _a = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a = 16 elif accelerator.mixed_precision != "no": _a = 8 else: _a = None return tokenizer.pad( UpperCamelCase , padding='''longest''' , max_length=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. _a = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) _a = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) _a = DataLoader( tokenized_datasets['''test'''] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ (UpperCamelCase : Any , UpperCamelCase : List[Any] ): '''simple docstring''' _a = [] # Download the dataset _a = load_dataset('''glue''' , '''mrpc''' ) # Create our splits _a = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _a = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a = config['''lr'''] _a = int(config['''num_epochs'''] ) _a = int(config['''seed'''] ) _a = int(config['''batch_size'''] ) _a = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _a = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a = batch_size // MAX_GPU_BATCH_SIZE _a = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase ) # New Code # # Create our folds: _a = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) _a = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(UpperCamelCase ): _a , _a , _a = get_fold_dataloaders( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a = model.to(accelerator.device ) # Instantiate optimizer _a = AdamW(params=model.parameters() , lr=UpperCamelCase ) # Instantiate scheduler _a = get_linear_schedule_with_warmup( optimizer=UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a = accelerator.prepare( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Now we train the model for epoch in range(UpperCamelCase ): model.train() for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a = model(**UpperCamelCase ) _a = outputs.loss _a = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a = model(**UpperCamelCase ) _a = outputs.logits.argmax(dim=-1 ) _a , _a = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCamelCase , references=UpperCamelCase , ) _a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , UpperCamelCase ) # New Code # # We also run predictions on the test set at the very end _a = [] for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a = model(**UpperCamelCase ) _a = outputs.logits _a , _a = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(UpperCamelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _a = torch.cat(UpperCamelCase , dim=0 ) _a = torch.stack(UpperCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _a = metric.compute(predictions=UpperCamelCase , references=UpperCamelCase ) accelerator.print('''Average test metrics from all folds:''' , UpperCamelCase ) def snake_case_ (): '''simple docstring''' _a = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCamelCase , default=UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=UpperCamelCase , default=3 , help='''The number of splits to perform across the dataset''' ) _a = parser.parse_args() _a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": main()
22
"""simple docstring""" import baseaa def lowerCamelCase ( _UpperCamelCase : str ) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("""utf-8""" ) ) def lowerCamelCase ( _UpperCamelCase : bytes ) -> str: '''simple docstring''' return baseaa.baadecode(_UpperCamelCase ).decode("""utf-8""" ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = 'Hello World!' UpperCAmelCase : Tuple = baseaa_encode(test) print(encoded) UpperCAmelCase : Any = baseaa_decode(encoded) print(decoded)
139
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ : int = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[int] = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __magic_name__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
706
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __magic_name__ : Union[str, Any] = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __magic_name__ : int = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE__ )[0] @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_51: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = bytestream.read(rows * cols * num_images ) _snake_case = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) _snake_case = data.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) return data @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.one_hot on tensors." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = labels_dense.shape[0] _snake_case = numpy.arange(SCREAMING_SNAKE_CASE__ ) * num_classes _snake_case = numpy.zeros((num_labels, num_classes) ) _snake_case = 1 return labels_one_hot @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=10 ): '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_49: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = bytestream.read(SCREAMING_SNAKE_CASE__ ) _snake_case = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return labels class __SCREAMING_SNAKE_CASE : '''simple docstring''' @deprecated( lowerCamelCase , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=dtypes.floataa , lowerCamelCase=True , lowerCamelCase=None , ): _snake_case , _snake_case = random_seed.get_seed(lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _snake_case = dtypes.as_dtype(lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: _snake_case = 10_000 _snake_case = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' _snake_case = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _snake_case = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _snake_case = images.astype(numpy.floataa ) _snake_case = numpy.multiply(lowerCamelCase , 1.0 / 255.0 ) _snake_case = images _snake_case = labels _snake_case = 0 _snake_case = 0 @property def UpperCamelCase( self ): return self._images @property def UpperCamelCase( self ): return self._labels @property def UpperCamelCase( self ): return self._num_examples @property def UpperCamelCase( self ): return self._epochs_completed def UpperCamelCase( self , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=True ): if fake_data: _snake_case = [1] * 784 _snake_case = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowerCamelCase )], [fake_label for _ in range(lowerCamelCase )], ) _snake_case = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) _snake_case = self.images[perma] _snake_case = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _snake_case = self._num_examples - start _snake_case = self._images[start : self._num_examples] _snake_case = self._labels[start : self._num_examples] # Shuffle the data if shuffle: _snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) _snake_case = self.images[perm] _snake_case = self.labels[perm] # Start next epoch _snake_case = 0 _snake_case = batch_size - rest_num_examples _snake_case = self._index_in_epoch _snake_case = self._images[start:end] _snake_case = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _snake_case = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(SCREAMING_SNAKE_CASE__ , "Please write your own downloading logic." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): gfile.MakeDirs(SCREAMING_SNAKE_CASE__ ) _snake_case = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): urllib.request.urlretrieve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # noqa: S310 with gfile.GFile(SCREAMING_SNAKE_CASE__ ) as f: _snake_case = f.size() print("Successfully downloaded" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "bytes." ) return filepath @deprecated( SCREAMING_SNAKE_CASE__ , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=dtypes.floataa , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=50_00 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , seed=SCREAMING_SNAKE_CASE__ ) _snake_case = fake() _snake_case = fake() _snake_case = fake() return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ ) if not source_url: # empty string check _snake_case = DEFAULT_SOURCE_URL _snake_case = "train-images-idx3-ubyte.gz" _snake_case = "train-labels-idx1-ubyte.gz" _snake_case = "t10k-images-idx3-ubyte.gz" _snake_case = "t10k-labels-idx1-ubyte.gz" _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_images(SCREAMING_SNAKE_CASE__ ) _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_images(SCREAMING_SNAKE_CASE__ ) _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE__ ): _snake_case = ( "Validation size should be between 0 and " f'''{len(SCREAMING_SNAKE_CASE__ )}. Received: {validation_size}.''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) _snake_case = train_images[:validation_size] _snake_case = train_labels[:validation_size] _snake_case = train_images[validation_size:] _snake_case = train_labels[validation_size:] _snake_case = {"dtype": dtype, "reshape": reshape, "seed": seed} _snake_case = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _snake_case = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _snake_case = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ )
368
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class UpperCAmelCase : def __init__( self : Dict , __lowerCamelCase : Any ): UpperCAmelCase__ :Any = data UpperCAmelCase__ :Node | None = None class UpperCAmelCase : def __init__( self : List[str] ): UpperCAmelCase__ :str = None UpperCAmelCase__ :Any = None def __iter__( self : List[Any] ): UpperCAmelCase__ :str = self.head while self.head: yield node.data UpperCAmelCase__ :Optional[int] = node.next if node == self.head: break def __len__( self : str ): return sum(1 for _ in self ) def __repr__( self : Tuple ): return "->".join(str(__lowerCamelCase ) for item in iter(self ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCamelCase : Any ): self.insert_nth(len(self ) , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : int , __lowerCamelCase : Any ): self.insert_nth(0 , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Any ): if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) UpperCAmelCase__ :List[Any] = Node(__lowerCamelCase ) if self.head is None: UpperCAmelCase__ :Union[str, Any] = new_node # first node points itself UpperCAmelCase__ :Optional[Any] = new_node elif index == 0: # insert at head UpperCAmelCase__ :Optional[int] = self.head UpperCAmelCase__ :Optional[Any] = new_node else: UpperCAmelCase__ :List[Any] = self.head for _ in range(index - 1 ): UpperCAmelCase__ :List[str] = temp.next UpperCAmelCase__ :Optional[int] = temp.next UpperCAmelCase__ :Union[str, Any] = new_node if index == len(self ) - 1: # insert at tail UpperCAmelCase__ :Optional[Any] = new_node def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): return self.delete_nth(0 ) def __SCREAMING_SNAKE_CASE ( self : int ): return self.delete_nth(len(self ) - 1 ) def __SCREAMING_SNAKE_CASE ( self : str , __lowerCamelCase : int = 0 ): if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) UpperCAmelCase__ :Optional[int] = self.head if self.head == self.tail: # just one node UpperCAmelCase__ :List[Any] = None elif index == 0: # delete head node UpperCAmelCase__ :Tuple = self.tail.next.next UpperCAmelCase__ :Any = self.head.next else: UpperCAmelCase__ :Dict = self.head for _ in range(index - 1 ): UpperCAmelCase__ :Union[str, Any] = temp.next UpperCAmelCase__ :Tuple = temp.next UpperCAmelCase__ :Dict = temp.next.next if index == len(self ) - 1: # delete at tail UpperCAmelCase__ :Union[str, Any] = temp return delete_node.data def __SCREAMING_SNAKE_CASE ( self : Tuple ): return len(self ) == 0 def a__ ( ): UpperCAmelCase__ :List[Any] = CircularLinkedList() assert len(UpperCamelCase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase_ ) == i circular_linked_list.insert_nth(UpperCamelCase_, i + 1 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1, 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1, 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(0, 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1, 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2, 3 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1, 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
467
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCamelCase = False class UpperCAmelCase ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __SCREAMING_SNAKE_CASE ( self : str ): return 1_2 @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): return 1_2 @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): return 3_2 @property def __SCREAMING_SNAKE_CASE ( self : List[str] ): torch.manual_seed(0 ) UpperCAmelCase__ :List[str] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __SCREAMING_SNAKE_CASE ( self : int ): UpperCAmelCase__ :Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __SCREAMING_SNAKE_CASE ( self : Tuple ): torch.manual_seed(0 ) UpperCAmelCase__ :Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(__lowerCamelCase ) @property def __SCREAMING_SNAKE_CASE ( self : List[str] ): torch.manual_seed(0 ) UpperCAmelCase__ :List[str] = 1_2 UpperCAmelCase__ :Optional[int] = 1_2 UpperCAmelCase__ :Optional[int] = { '''attention_bias''': True, '''cross_attention_dim''': 3_2, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 3_2, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } UpperCAmelCase__ :List[str] = TransformeraDModel(**__lowerCamelCase ) return model def __SCREAMING_SNAKE_CASE ( self : List[Any] ): UpperCAmelCase__ :Union[str, Any] = '''cpu''' UpperCAmelCase__ :Optional[Any] = self.dummy_vqvae UpperCAmelCase__ :Optional[int] = self.dummy_text_encoder UpperCAmelCase__ :Union[str, Any] = self.dummy_tokenizer UpperCAmelCase__ :List[Any] = self.dummy_transformer UpperCAmelCase__ :str = VQDiffusionScheduler(self.num_embed ) UpperCAmelCase__ :Optional[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=__lowerCamelCase ) UpperCAmelCase__ :Any = VQDiffusionPipeline( vqvae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , transformer=__lowerCamelCase , scheduler=__lowerCamelCase , learned_classifier_free_sampling_embeddings=__lowerCamelCase , ) UpperCAmelCase__ :Any = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase__ :str = '''teddy bear playing in the pool''' UpperCAmelCase__ :Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCAmelCase__ :Any = pipe([prompt] , generator=__lowerCamelCase , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase__ :str = output.images UpperCAmelCase__ :List[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCAmelCase__ :Dict = pipe( [prompt] , generator=__lowerCamelCase , output_type='''np''' , return_dict=__lowerCamelCase , num_inference_steps=2 )[0] UpperCAmelCase__ :int = image[0, -3:, -3:, -1] UpperCAmelCase__ :List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) UpperCAmelCase__ :int = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self : Tuple ): UpperCAmelCase__ :List[Any] = '''cpu''' UpperCAmelCase__ :int = self.dummy_vqvae UpperCAmelCase__ :List[str] = self.dummy_text_encoder UpperCAmelCase__ :Union[str, Any] = self.dummy_tokenizer UpperCAmelCase__ :Optional[Any] = self.dummy_transformer UpperCAmelCase__ :List[str] = VQDiffusionScheduler(self.num_embed ) UpperCAmelCase__ :List[str] = LearnedClassifierFreeSamplingEmbeddings( learnable=__lowerCamelCase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) UpperCAmelCase__ :List[Any] = VQDiffusionPipeline( vqvae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , transformer=__lowerCamelCase , scheduler=__lowerCamelCase , learned_classifier_free_sampling_embeddings=__lowerCamelCase , ) UpperCAmelCase__ :str = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase__ :str = '''teddy bear playing in the pool''' UpperCAmelCase__ :str = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCAmelCase__ :Union[str, Any] = pipe([prompt] , generator=__lowerCamelCase , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase__ :Any = output.images UpperCAmelCase__ :Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCAmelCase__ :int = pipe( [prompt] , generator=__lowerCamelCase , output_type='''np''' , return_dict=__lowerCamelCase , num_inference_steps=2 )[0] UpperCAmelCase__ :List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase__ :Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) UpperCAmelCase__ :Union[str, Any] = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ :Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) UpperCAmelCase__ :Optional[Any] = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) UpperCAmelCase__ :List[str] = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCAmelCase__ :int = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) UpperCAmelCase__ :Union[str, Any] = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=__lowerCamelCase , output_type='''np''' , ) UpperCAmelCase__ :List[str] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
467
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : Union[str, Any] = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowercase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
719
from scipy.stats import pearsonr import datasets lowercase : Any = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ lowercase : int = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ lowercase : int = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def __lowercase ( self , lowercase , lowercase , lowercase=False) -> int: '''simple docstring''' if return_pvalue: a__ : int = pearsonr(lowercase , lowercase) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase , lowercase)[0])}
392
0
def lowerCamelCase__ (_UpperCAmelCase = 50): SCREAMING_SNAKE_CASE = [[0] * 3 for _ in range(length + 1)] for row_length in range(length + 1): for tile_length in range(2 , 5): for tile_start in range(row_length - tile_length + 1): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length]) if __name__ == "__main__": print(f"""{solution() = }""")
73
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase : Optional[Any] = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
649
0
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a_ : int = logging.getLogger(__name__) class __lowercase( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __a : str = 'sequence-classification' def __init__( self , __a ): if type(UpperCamelCase__ ) == dict: __lowerCamelCase : Any = Namespace(**UpperCamelCase__ ) __lowerCamelCase : int = glue_output_modes[hparams.task] __lowerCamelCase : int = glue_tasks_num_labels[hparams.task] super().__init__(UpperCamelCase__ , UpperCamelCase__ , self.mode ) def snake_case_ ( self , **__a ): return self.model(**UpperCamelCase__ ) def snake_case_ ( self , __a , __a ): __lowerCamelCase : Dict = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __lowerCamelCase : Optional[int] = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None __lowerCamelCase : Optional[int] = self(**UpperCamelCase__ ) __lowerCamelCase : str = outputs[0] __lowerCamelCase : List[Any] = self.trainer.lr_schedulers[0]['''scheduler'''] __lowerCamelCase : Optional[Any] = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def snake_case_ ( self ): __lowerCamelCase : Dict = self.hparams __lowerCamelCase : Dict = processors[args.task]() __lowerCamelCase : Any = processor.get_labels() for mode in ["train", "dev"]: __lowerCamelCase : Union[str, Any] = self._feature_file(UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , UpperCamelCase__ ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) __lowerCamelCase : str = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) __lowerCamelCase : List[str] = convert_examples_to_features( UpperCamelCase__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , UpperCamelCase__ ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , __a , __a , __a = False ): __lowerCamelCase : Tuple = '''dev''' if mode == '''test''' else mode __lowerCamelCase : Tuple = self._feature_file(UpperCamelCase__ ) logger.info('Loading features from cached file %s' , UpperCamelCase__ ) __lowerCamelCase : List[str] = torch.load(UpperCamelCase__ ) __lowerCamelCase : Dict = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __lowerCamelCase : Optional[int] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __lowerCamelCase : List[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __lowerCamelCase : int = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __lowerCamelCase : Tuple = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , batch_size=UpperCamelCase__ , shuffle=UpperCamelCase__ , ) def snake_case_ ( self , __a , __a ): __lowerCamelCase : Optional[int] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __lowerCamelCase : int = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None __lowerCamelCase : Union[str, Any] = self(**UpperCamelCase__ ) __lowerCamelCase : int = outputs[:2] __lowerCamelCase : Optional[Any] = logits.detach().cpu().numpy() __lowerCamelCase : Optional[int] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def snake_case_ ( self , __a ): __lowerCamelCase : List[Any] = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() __lowerCamelCase : Union[str, Any] = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __lowerCamelCase : Optional[Any] = np.argmax(UpperCamelCase__ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __lowerCamelCase : List[Any] = np.squeeze(UpperCamelCase__ ) __lowerCamelCase : int = np.concatenate([x['target'] for x in outputs] , axis=0 ) __lowerCamelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] __lowerCamelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] __lowerCamelCase : Optional[Any] = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , UpperCamelCase__ , UpperCamelCase__ )} __lowerCamelCase : List[Any] = dict(results.items() ) __lowerCamelCase : Optional[Any] = results return ret, preds_list, out_label_list def snake_case_ ( self , __a ): __lowerCamelCase : Tuple = self._eval_end(UpperCamelCase__ ) __lowerCamelCase : Optional[int] = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def snake_case_ ( self , __a ): __lowerCamelCase : Union[str, Any] = self._eval_end(UpperCamelCase__ ) __lowerCamelCase : Dict = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def snake_case_ ( __a , __a ): BaseTransformer.add_model_specific_args(UpperCamelCase__ , UpperCamelCase__ ) parser.add_argument( '--max_seq_length' , default=128 , type=UpperCamelCase__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=UpperCamelCase__ , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCAmelCase ( ) -> Dict: __lowerCamelCase : List[Any] = argparse.ArgumentParser() add_generic_args(__UpperCamelCase , os.getcwd() ) __lowerCamelCase : Any = GLUETransformer.add_model_specific_args(__UpperCamelCase , os.getcwd() ) __lowerCamelCase : Tuple = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __lowerCamelCase : List[str] = os.path.join( './results' , f'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __lowerCamelCase : List[Any] = GLUETransformer(__UpperCamelCase ) __lowerCamelCase : List[str] = generic_train(__UpperCamelCase , __UpperCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __lowerCamelCase : Any = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__UpperCamelCase ) ) __lowerCamelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__UpperCamelCase ) if __name__ == "__main__": main()
711
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 a_ : Optional[int] = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_28, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.0_1), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class __lowercase( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case_ ( cls ): __lowerCamelCase : Tuple = TOKEN HfFolder.save_token(__a ) @classmethod def snake_case_ ( cls ): try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def snake_case_ ( self ): __lowerCamelCase : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCamelCase : Any = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a , repo_id='test-config' , push_to_hub=__a , use_auth_token=self._token ) __lowerCamelCase : Any = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def snake_case_ ( self ): __lowerCamelCase : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCamelCase : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id='valid_org/test-config-org' , push_to_hub=__a , use_auth_token=self._token ) __lowerCamelCase : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def snake_case_ ( self ): CustomConfig.register_for_auto_class() __lowerCamelCase : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCamelCase : Tuple = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=__a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class __lowercase( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): __lowerCamelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCamelCase : List[str] = c.n_embd + 1 # int __lowerCamelCase : Dict = c.resid_pdrop + 1.0 # float __lowerCamelCase : int = not c.scale_attn_weights # bool __lowerCamelCase : Optional[int] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__a , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__a , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__a , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__a , c.summary_type , 'mismatch for key: summary_type' ) def snake_case_ ( self ): __lowerCamelCase : Tuple = PretrainedConfig() __lowerCamelCase : Dict = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __a , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCamelCase : int = [key for key, value in config_common_kwargs.items() if value == getattr(__a , __a )] if len(__a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {", ".join(__a )}.''' ) def snake_case_ ( self ): with self.assertRaises(__a ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCamelCase : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCamelCase : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__a ) def snake_case_ ( self ): # A mock response for an HTTP head request to emulate server down __lowerCamelCase : List[str] = mock.Mock() __lowerCamelCase : Tuple = 500 __lowerCamelCase : Tuple = {} __lowerCamelCase : Optional[Any] = HTTPError __lowerCamelCase : str = {} # Download this model to make sure it's in the cache. __lowerCamelCase : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__a ) as mock_head: __lowerCamelCase : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self ): # This test is for deprecated behavior and can be removed in v5 __lowerCamelCase : Optional[Any] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def snake_case_ ( self ): __lowerCamelCase : List[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCamelCase : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__a ) __lowerCamelCase : Optional[int] = 2 json.dump(configuration.to_dict() , open(os.path.join(__a , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCamelCase : Any = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCamelCase : Any = ['config.42.0.0.json'] __lowerCamelCase : Tuple = 768 configuration.save_pretrained(__a ) shutil.move(os.path.join(__a , 'config.4.0.0.json' ) , os.path.join(__a , 'config.42.0.0.json' ) ) __lowerCamelCase : Dict = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 768 ) def snake_case_ ( self ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCamelCase : List[str] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCamelCase : Tuple = 'v4.0.0' __lowerCamelCase , __lowerCamelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( __a , return_unused_kwargs=__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__a , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCamelCase : Union[str, Any] = 'v3.0.0' __lowerCamelCase : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(__a ) self.assertEqual(old_configuration.hidden_size , 768 )
263
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Optional[int] ="""pt""" elif is_tf_available(): A_ : int ="""tf""" else: A_ : Tuple ="""jax""" class __a ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Dict = ByTaTokenizer SCREAMING_SNAKE_CASE__ : List[str] = False def snake_case_ ( self ): super().setUp() _lowerCamelCase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case_ ( self ): return ByTaTokenizer.from_pretrained('google/byt5-small' ) def snake_case_ ( self , **a__ ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def snake_case_ ( self , a__ , a__=False , a__=20 , a__=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowerCamelCase = [] for i in range(len(a__ ) ): try: _lowerCamelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=a__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowerCamelCase = list(filter(lambda a__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , a__ ) ) _lowerCamelCase = list(filter(lambda a__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=a__ ) , a__ ) ) if max_length is not None and len(a__ ) > max_length: _lowerCamelCase = toks[:max_length] if min_length is not None and len(a__ ) < min_length and len(a__ ) > 0: while len(a__ ) < min_length: _lowerCamelCase = toks + toks # toks_str = [t[1] for t in toks] _lowerCamelCase = [t[0] for t in toks] # Ensure consistency _lowerCamelCase = tokenizer.decode(a__ , clean_up_tokenization_spaces=a__ ) if " " not in output_txt and len(a__ ) > 1: _lowerCamelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a__ ) ) if with_prefix_space: _lowerCamelCase = ' ' + output_txt _lowerCamelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) return output_txt, output_ids def snake_case_ ( self ): _lowerCamelCase = self.ta_base_tokenizer _lowerCamelCase = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowerCamelCase = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def snake_case_ ( self ): _lowerCamelCase = self.ta_base_tokenizer _lowerCamelCase = 'Unicode €.' _lowerCamelCase = tokenizer(a__ ) _lowerCamelCase = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , a__ ) # decoding _lowerCamelCase = tokenizer.decode(a__ ) self.assertEqual(a__ , 'Unicode €.</s>' ) _lowerCamelCase = tokenizer('e è é ê ë' ) _lowerCamelCase = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , a__ ) # decoding _lowerCamelCase = tokenizer.decode(a__ ) self.assertEqual(a__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def snake_case_ ( self ): _lowerCamelCase = self.ta_base_tokenizer _lowerCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowerCamelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on _lowerCamelCase = tokenizer(a__ , padding=a__ , return_tensors=a__ ) self.assertIsInstance(a__ , a__ ) if FRAMEWORK != "jax": _lowerCamelCase = list(batch.input_ids.numpy()[0] ) else: _lowerCamelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a__ , a__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def snake_case_ ( self ): _lowerCamelCase = self.ta_base_tokenizer _lowerCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowerCamelCase = tokenizer(a__ , padding=a__ , return_tensors=a__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , a__ ) self.assertIn('attention_mask' , a__ ) self.assertNotIn('decoder_input_ids' , a__ ) self.assertNotIn('decoder_attention_mask' , a__ ) def snake_case_ ( self ): _lowerCamelCase = self.ta_base_tokenizer _lowerCamelCase = [ 'Summary of the text.', 'Another summary.', ] _lowerCamelCase = tokenizer( text_target=a__ , max_length=32 , padding='max_length' , truncation=a__ , return_tensors=a__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def snake_case_ ( self ): _lowerCamelCase = self.ta_base_tokenizer _lowerCamelCase = ['A long paragraph for summarization. </s>'] _lowerCamelCase = ['Summary of the text. </s>'] # fmt: off _lowerCamelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] _lowerCamelCase = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on _lowerCamelCase = tokenizer(a__ , text_target=a__ ) self.assertEqual(a__ , batch['input_ids'][0] ) self.assertEqual(a__ , batch['labels'][0] ) def snake_case_ ( self ): # safety check on max_len default value so we are sure the test works _lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = ' He is very happy, UNwant\u00E9d,running' _lowerCamelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) tokenizer.save_pretrained(a__ ) _lowerCamelCase = tokenizer.__class__.from_pretrained(a__ ) _lowerCamelCase = after_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) shutil.rmtree(a__ ) _lowerCamelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowerCamelCase = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowerCamelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) tokenizer.save_pretrained(a__ ) _lowerCamelCase = tokenizer.__class__.from_pretrained(a__ ) _lowerCamelCase = after_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowerCamelCase = tokenizer.__class__.from_pretrained(a__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a__ ) def snake_case_ ( self ): _lowerCamelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a__ ) with open(os.path.join(a__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowerCamelCase = json.load(a__ ) with open(os.path.join(a__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowerCamelCase = json.load(a__ ) _lowerCamelCase = [F'<extra_id_{i}>' for i in range(1_25 )] _lowerCamelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowerCamelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(a__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(a__ , a__ ) with open(os.path.join(a__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(a__ , a__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowerCamelCase = tokenizer_class.from_pretrained( a__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowerCamelCase = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=a__ )] _lowerCamelCase = tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def snake_case_ ( self ): _lowerCamelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a__ ) _lowerCamelCase = tokenizer_class.from_pretrained(a__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def snake_case_ ( self ): pass def snake_case_ ( self ): pass def snake_case_ ( self ): pass def snake_case_ ( self ): pass def snake_case_ ( self ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens _lowerCamelCase = self.get_tokenizers(fast=a__ , do_lower_case=a__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _lowerCamelCase = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowerCamelCase = tokenizer.convert_tokens_to_string(a__ ) self.assertIsInstance(a__ , a__ ) def snake_case_ ( self ): _lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _lowerCamelCase = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowerCamelCase = 0 _lowerCamelCase = tokenizer.convert_ids_to_tokens( a__ , skip_special_tokens=a__ ) for attr in attributes_list: setattr(a__ , attr + '_id' , a__ ) self.assertEqual(getattr(a__ , a__ ) , a__ ) self.assertEqual(getattr(a__ , attr + '_id' ) , a__ ) setattr(a__ , attr + '_id' , a__ ) self.assertEqual(getattr(a__ , a__ ) , a__ ) self.assertEqual(getattr(a__ , attr + '_id' ) , a__ ) setattr(a__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(a__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(a__ , 'additional_special_tokens_ids' ) , [] ) setattr(a__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(a__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(a__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
650
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup A_ : Union[str, Any] ={ """User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""" } def SCREAMING_SNAKE_CASE_ ( snake_case : str = "dhaka" , snake_case : int = 5 )-> int: _lowerCamelCase = min(snake_case , 50 ) # Prevent abuse! _lowerCamelCase = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } _lowerCamelCase = requests.get('https://www.google.com/search' , params=snake_case , headers=snake_case ) _lowerCamelCase = BeautifulSoup(html.text , 'html.parser' ) _lowerCamelCase = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) _lowerCamelCase = json.dumps(snake_case ) _lowerCamelCase = json.loads(snake_case ) _lowerCamelCase = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , snake_case , ) if not matched_google_image_data: return 0 _lowerCamelCase = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(snake_case ) , ) _lowerCamelCase = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , snake_case , ) for index, fixed_full_res_image in enumerate(snake_case ): if index >= max_images: return index _lowerCamelCase = bytes(snake_case , 'ascii' ).decode( 'unicode-escape' ) _lowerCamelCase = bytes(snake_case , 'ascii' ).decode( 'unicode-escape' ) _lowerCamelCase = urllib.request.build_opener() _lowerCamelCase = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(snake_case ) _lowerCamelCase = f'query_{query.replace(" " , "_" )}' if not os.path.exists(snake_case ): os.makedirs(snake_case ) urllib.request.urlretrieve( # noqa: S310 snake_case , f'{path_name}/original_size_img_{index}.jpg' ) return index if __name__ == "__main__": try: A_ : Any =download_images_from_google_query(sys.argv[1]) print(f'{image_count} images were downloaded to disk.') except IndexError: print("""Please provide a search term.""") raise
650
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = {"""vocab_file""": """vocab.json"""} __lowerCamelCase : List[str] = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } __lowerCamelCase : Any = {"""mgp-str""": 27} class A__ ( __snake_case ): _UpperCAmelCase :Union[str, Any] = VOCAB_FILES_NAMES _UpperCAmelCase :List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A_ , A_="[GO]" , A_="[GO]" , A_="[s]" , A_="[GO]" , **A_ ): '''simple docstring''' super().__init__( unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ , ) with open(A_ , encoding="utf-8" ) as vocab_handle: UpperCamelCase : List[str] = json.load(A_ ) UpperCamelCase : Tuple = {v: k for k, v in self.vocab.items()} @property def __UpperCamelCase( self ): '''simple docstring''' return len(self.vocab ) def __UpperCamelCase( self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Any = [] for s in text: char_tokens.extend(A_ ) return char_tokens def __UpperCamelCase( self , A_ ): '''simple docstring''' return self.vocab.get(A_ , self.vocab.get(self.unk_token ) ) def __UpperCamelCase( self , A_ ): '''simple docstring''' return self.decoder.get(A_ ) def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error("Vocabulary path ({}) should be a directory".format(A_ ) ) return UpperCamelCase : Optional[int] = os.path.join( A_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(A_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + "\n" ) return (vocab_file,)
38
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCamelCase : Dict = logging.get_logger(__name__) class A__ ( __snake_case ): _UpperCAmelCase :Tuple = ['audio_values', 'audio_mask'] def __init__( self , A_=2048 , A_=1 , A_=[16, 16] , A_=128 , A_=4_4100 , A_=86 , A_=2048 , A_=0.0 , **A_ , ): '''simple docstring''' super().__init__( feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ , ) UpperCamelCase : Optional[int] = spectrogram_length UpperCamelCase : Dict = num_channels UpperCamelCase : Optional[Any] = patch_size UpperCamelCase : str = feature_size // self.patch_size[1] UpperCamelCase : List[str] = n_fft UpperCamelCase : int = sampling_rate // hop_length_to_sampling_rate UpperCamelCase : Optional[int] = sampling_rate UpperCamelCase : int = padding_value UpperCamelCase : str = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A_ , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=A_ , norm="slaney" , mel_scale="slaney" , ).T def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = spectrogram( A_ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=80.0 , ) UpperCamelCase : List[Any] = log_spec[:, :-1] UpperCamelCase : Optional[int] = log_spec - 20.0 UpperCamelCase : str = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , A_ , A_ = None , A_ = True , A_ = None , A_ = False , A_ = False , **A_ , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) UpperCamelCase : Optional[int] = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : int = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): UpperCamelCase : str = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Tuple = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis UpperCamelCase : str = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , A_ ): UpperCamelCase : int = [np.asarray(A_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask UpperCamelCase : List[str] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: UpperCamelCase : str = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] UpperCamelCase : Tuple = np.array(A_ ).astype(np.floataa ) # convert into correct format for padding UpperCamelCase : Union[str, Any] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch UpperCamelCase : Any = np.ones([len(A_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) UpperCamelCase : List[str] = padded_audio_features * self.padding_value for i in range(len(A_ ) ): UpperCamelCase : Union[str, Any] = audio_features[i] UpperCamelCase : Optional[int] = feature # return as BatchFeature if return_attention_mask: UpperCamelCase : Optional[Any] = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: UpperCamelCase : int = {"audio_values": padded_audio_features} UpperCamelCase : Any = BatchFeature(data=A_ , tensor_type=A_ ) return encoded_inputs
38
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : Union[str, Any] = logging.get_logger(__name__) __a : Optional[Any] = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Tuple = '''realm''' def __init__( self , lowerCAmelCase__=3_05_22 , lowerCAmelCase__=7_68 , lowerCAmelCase__=1_28 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=8 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=2_56 , lowerCAmelCase__=10 , lowerCAmelCase__=1E-3 , lowerCAmelCase__=5 , lowerCAmelCase__=3_20 , lowerCAmelCase__=13_35_37_18 , lowerCAmelCase__=50_00 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) # Common config __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = retriever_proj_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = num_candidates __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = type_vocab_size __lowercase = layer_norm_eps # Reader config __lowercase = span_hidden_size __lowercase = max_span_width __lowercase = reader_layer_norm_eps __lowercase = reader_beam_size __lowercase = reader_seq_len # Retrieval config __lowercase = num_block_records __lowercase = searcher_beam_size
534
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __a : Dict = logging.get_logger(__name__) def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __lowercase = [144, 192, 240] __lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __lowercase = [96, 120, 144] __lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __lowercase = [64, 80, 96] __lowercase = [16, 16, 24, 48, 64, 80, 320] __lowercase = 0.05 __lowercase = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): __lowercase = 512 __lowercase = 16 __lowercase = 21 __lowercase = '''pascal-voc-id2label.json''' else: __lowercase = 1000 __lowercase = '''imagenet-1k-id2label.json''' __lowercase = '''huggingface/label-files''' __lowercase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='''dataset''' ) , '''r''' ) ) __lowercase = {int(lowercase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase ( lowercase , lowercase=False ): """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: __lowercase = name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: __lowercase = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: __lowercase = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: __lowercase = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: __lowercase = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: __lowercase = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: __lowercase = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: __lowercase = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: __lowercase = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: __lowercase = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: __lowercase = name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: __lowercase = name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: __lowercase = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: __lowercase = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: __lowercase = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: __lowercase = name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: __lowercase = name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: __lowercase = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: __lowercase = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: __lowercase = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: __lowercase = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: __lowercase = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: __lowercase = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: __lowercase = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: __lowercase = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: __lowercase = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: __lowercase = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: __lowercase = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: __lowercase = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): __lowercase = '''mobilevit.''' + name return name def UpperCAmelCase ( lowercase , lowercase , lowercase=False ): """simple docstring""" if base_model: __lowercase = '''''' else: __lowercase = '''mobilevit.''' for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(lowercase ) if key[:8] == "encoder.": __lowercase = key[8:] if "qkv" in key: __lowercase = key.split('''.''' ) __lowercase = int(key_split[0][6:] ) - 1 __lowercase = int(key_split[3] ) __lowercase = model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) __lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size __lowercase = ( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[dim : dim * 2] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def UpperCAmelCase ( ): """simple docstring""" __lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase=False ): """simple docstring""" __lowercase = get_mobilevit_config(lowercase ) # load original state_dict __lowercase = torch.load(lowercase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): __lowercase = MobileViTForSemanticSegmentation(lowercase ).eval() else: __lowercase = MobileViTForImageClassification(lowercase ).eval() __lowercase = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor __lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __lowercase = image_processor(images=prepare_img() , return_tensors='''pt''' ) __lowercase = model(**lowercase ) __lowercase = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __lowercase = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __lowercase = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __lowercase = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __lowercase = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __lowercase = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __lowercase = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , lowercase , atol=1E-4 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase ) if push_to_hub: __lowercase = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) __lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase , organization='''apple''' ) model.push_to_hub(lowercase , organization='''apple''' ) if __name__ == "__main__": __a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __a : Dict = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
534
1
"""simple docstring""" from __future__ import annotations import math def _snake_case ( snake_case__ : int ): if num <= 0: A = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(snake_case__ ) A = [True] * (num + 1) A = [] A = 2 A = int(math.sqrt(snake_case__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(snake_case__ ) # Set multiples of start be False for i in range(start * start , num + 1 , snake_case__ ): if sieve[i] is True: A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(snake_case__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
22
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( snake_case__ : int ): A = SwinvaConfig() A = swinva_name.split('_' ) A = name_split[1] if "to" in name_split[3]: A = int(name_split[3][-3:] ) else: A = int(name_split[3] ) if "to" in name_split[2]: A = int(name_split[2][-2:] ) else: A = int(name_split[2][6:] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "to" in swinva_name: A = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A = 2_1841 A = 'huggingface/label-files' A = 'imagenet-22k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[Any] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: A = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: A = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: A = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: A = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swinv2.' + name return name def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[ dim : dim * 2 ] A = val[-dim:] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swinva_config(snake_case__ ) A = SwinvaForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowercase_ = logging.get_logger(__name__) class A__ ( _A ): def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> Dict: """simple docstring""" warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
154
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class a ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , __snake_case : Tuple , __snake_case : Tuple=7 , __snake_case : int=3 , __snake_case : List[str]=30 , __snake_case : Optional[Any]=4_00 , __snake_case : Dict=True , __snake_case : Optional[Any]=None , __snake_case : Dict=True , __snake_case : Any=[0.5, 0.5, 0.5] , __snake_case : Tuple=[0.5, 0.5, 0.5] , __snake_case : Any=True , __snake_case : str=1 / 2_55 , __snake_case : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_pad def lowerCamelCase_ ( self : Tuple ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self : int , __snake_case : Union[str, Any] , __snake_case : List[Any]=False ): if not batched: UpperCAmelCase_ = image_inputs[0] if isinstance(__snake_case , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = self.size['''shortest_edge'''] else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ = max(__snake_case , key=lambda __snake_case : item[0] )[0] UpperCAmelCase_ = max(__snake_case , key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Any = DetaImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Optional[Any] ): UpperCAmelCase_ = DetaImageProcessingTester(self ) @property def lowerCamelCase_ ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Optional[Any] ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_rescale''' ) ) self.assertTrue(hasattr(__snake_case , '''do_pad''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) def lowerCamelCase_ ( self : List[Any] ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __snake_case ) def lowerCamelCase_ ( self : Optional[int] ): pass def lowerCamelCase_ ( self : Optional[int] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self : Union[str, Any] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self : Tuple ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): # prepare image and target UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = {'''image_id''': 3_97_69, '''annotations''': target} # encode them UpperCAmelCase_ = DetaImageProcessor() UpperCAmelCase_ = image_processing(images=__snake_case , annotations=__snake_case , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase_ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __snake_case ) UpperCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area UpperCAmelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __snake_case ) ) # verify boxes UpperCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __snake_case ) UpperCAmelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __snake_case , atol=1E-3 ) ) # verify image_id UpperCAmelCase_ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __snake_case ) ) # verify is_crowd UpperCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __snake_case ) ) # verify class_labels UpperCAmelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __snake_case ) ) # verify orig_size UpperCAmelCase_ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __snake_case ) ) # verify size UpperCAmelCase_ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __snake_case ) ) @slow def lowerCamelCase_ ( self : int ): # prepare image, target and masks_path UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} UpperCAmelCase_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase_ = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase_ = image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase_ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __snake_case ) UpperCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area UpperCAmelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __snake_case ) ) # verify boxes UpperCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __snake_case ) UpperCAmelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __snake_case , atol=1E-3 ) ) # verify image_id UpperCAmelCase_ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __snake_case ) ) # verify is_crowd UpperCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __snake_case ) ) # verify class_labels UpperCAmelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __snake_case ) ) # verify masks UpperCAmelCase_ = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __snake_case ) # verify orig_size UpperCAmelCase_ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __snake_case ) ) # verify size UpperCAmelCase_ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __snake_case ) )
144
0
from __future__ import annotations __a = list[list[int]] # assigning initial values to the grid __a = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __a = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( _lowercase ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if location := find_empty_location(_lowercase ): UpperCAmelCase_, UpperCAmelCase_ : Tuple = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_lowercase , _lowercase , _lowercase , _lowercase ): UpperCAmelCase_ : List[str] = digit if sudoku(_lowercase ) is not None: return grid UpperCAmelCase_ : List[Any] = 0 return None def lowerCamelCase__ ( _lowercase ): '''simple docstring''' for row in grid: for cell in row: print(_lowercase , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') __a = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
300
from __future__ import annotations def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_, UpperCAmelCase_ : List[str] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : Optional[Any] = result + left + right return input_list def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if len(_lowercase ) <= 1: return input_list UpperCAmelCase_ : List[Any] = list(_lowercase ) # iteration for two-way merging UpperCAmelCase_ : Dict = 2 while p <= len(_lowercase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(_lowercase ) , _lowercase ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : Union[str, Any] = i + p - 1 UpperCAmelCase_ : Optional[int] = (low + high + 1) // 2 UpperCAmelCase_ : Tuple = merge(_lowercase , _lowercase , _lowercase , _lowercase ) # final merge of last two parts if p * 2 >= len(_lowercase ): UpperCAmelCase_ : List[Any] = i UpperCAmelCase_ : Tuple = merge(_lowercase , 0 , _lowercase , len(_lowercase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() if user_input == "": __a = [] else: __a = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
300
1