code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase_( snake_case : Dict , snake_case : Union[str, Any] , snake_case : Tuple ): '''simple docstring''' snake_case_ = LxmertConfig.from_json_file(snake_case ) print(f'Building PyTorch model from configuration: {config}' ) snake_case_ = LxmertForPreTraining(snake_case ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(snake_case , snake_case , snake_case ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , snake_case ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
400
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _snake_case ( lowercase_ ): lowerCAmelCase_ : torch.FloatTensor class _snake_case ( nn.Module ): def __init__( self , a__=3 , a__=3 , a__=("DownEncoderBlock2D",) , a__=(64,) , a__=2 , a__=32 , a__="silu" , a__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() snake_case_ = layers_per_block snake_case_ = torch.nn.Convad( a__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) snake_case_ = None snake_case_ = nn.ModuleList([] ) # down snake_case_ = block_out_channels[0] for i, down_block_type in enumerate(a__ ): snake_case_ = output_channel snake_case_ = block_out_channels[i] snake_case_ = i == len(a__ ) - 1 snake_case_ = get_down_block( a__ , num_layers=self.layers_per_block , in_channels=a__ , out_channels=a__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=a__ , resnet_groups=a__ , attention_head_dim=a__ , temb_channels=a__ , ) self.down_blocks.append(a__ ) # mid snake_case_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a__ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=a__ , temb_channels=a__ , ) # out snake_case_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=a__ , eps=1e-6 ) snake_case_ = nn.SiLU() snake_case_ = 2 * out_channels if double_z else out_channels snake_case_ = nn.Convad(block_out_channels[-1] , a__ , 3 , padding=1 ) snake_case_ = False def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' snake_case_ = x snake_case_ = self.conv_in(a__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(a__ ): def custom_forward(*a__ ): return module(*a__ ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: snake_case_ = torch.utils.checkpoint.checkpoint( create_custom_forward(a__ ) , a__ , use_reentrant=a__ ) # middle snake_case_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a__ , use_reentrant=a__ ) else: for down_block in self.down_blocks: snake_case_ = torch.utils.checkpoint.checkpoint(create_custom_forward(a__ ) , a__ ) # middle snake_case_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , a__ ) else: # down for down_block in self.down_blocks: snake_case_ = down_block(a__ ) # middle snake_case_ = self.mid_block(a__ ) # post-process snake_case_ = self.conv_norm_out(a__ ) snake_case_ = self.conv_act(a__ ) snake_case_ = self.conv_out(a__ ) return sample class _snake_case ( nn.Module ): def __init__( self , a__=3 , a__=3 , a__=("UpDecoderBlock2D",) , a__=(64,) , a__=2 , a__=32 , a__="silu" , a__="group" , ) -> int: '''simple docstring''' super().__init__() snake_case_ = layers_per_block snake_case_ = nn.Convad( a__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) snake_case_ = None snake_case_ = nn.ModuleList([] ) snake_case_ = in_channels if norm_type == "spatial" else None # mid snake_case_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a__ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=a__ , temb_channels=a__ , ) # up snake_case_ = list(reversed(a__ ) ) snake_case_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(a__ ): snake_case_ = output_channel snake_case_ = reversed_block_out_channels[i] snake_case_ = i == len(a__ ) - 1 snake_case_ = get_up_block( a__ , num_layers=self.layers_per_block + 1 , in_channels=a__ , out_channels=a__ , prev_output_channel=a__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=a__ , resnet_groups=a__ , attention_head_dim=a__ , temb_channels=a__ , resnet_time_scale_shift=a__ , ) self.up_blocks.append(a__ ) snake_case_ = output_channel # out if norm_type == "spatial": snake_case_ = SpatialNorm(block_out_channels[0] , a__ ) else: snake_case_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=a__ , eps=1e-6 ) snake_case_ = nn.SiLU() snake_case_ = nn.Convad(block_out_channels[0] , a__ , 3 , padding=1 ) snake_case_ = False def lowerCAmelCase__ ( self , a__ , a__=None ) -> Union[str, Any]: '''simple docstring''' snake_case_ = z snake_case_ = self.conv_in(a__ ) snake_case_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(a__ ): def custom_forward(*a__ ): return module(*a__ ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle snake_case_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a__ , a__ , use_reentrant=a__ ) snake_case_ = sample.to(a__ ) # up for up_block in self.up_blocks: snake_case_ = torch.utils.checkpoint.checkpoint( create_custom_forward(a__ ) , a__ , a__ , use_reentrant=a__ ) else: # middle snake_case_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a__ , a__ ) snake_case_ = sample.to(a__ ) # up for up_block in self.up_blocks: snake_case_ = torch.utils.checkpoint.checkpoint(create_custom_forward(a__ ) , a__ , a__ ) else: # middle snake_case_ = self.mid_block(a__ , a__ ) snake_case_ = sample.to(a__ ) # up for up_block in self.up_blocks: snake_case_ = up_block(a__ , a__ ) # post-process if latent_embeds is None: snake_case_ = self.conv_norm_out(a__ ) else: snake_case_ = self.conv_norm_out(a__ , a__ ) snake_case_ = self.conv_act(a__ ) snake_case_ = self.conv_out(a__ ) return sample class _snake_case ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__=None , a__="random" , a__=False , a__=True ) -> Optional[Any]: '''simple docstring''' super().__init__() snake_case_ = n_e snake_case_ = vq_embed_dim snake_case_ = beta snake_case_ = legacy snake_case_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) snake_case_ = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) snake_case_ = self.used.shape[0] snake_case_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": snake_case_ = self.re_embed snake_case_ = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: snake_case_ = n_e snake_case_ = sane_index_shape def lowerCAmelCase__ ( self , a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = inds.shape assert len(a__ ) > 1 snake_case_ = inds.reshape(ishape[0] , -1 ) snake_case_ = self.used.to(a__ ) snake_case_ = (inds[:, :, None] == used[None, None, ...]).long() snake_case_ = match.argmax(-1 ) snake_case_ = match.sum(2 ) < 1 if self.unknown_index == "random": snake_case_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: snake_case_ = self.unknown_index return new.reshape(a__ ) def lowerCAmelCase__ ( self , a__ ) -> str: '''simple docstring''' snake_case_ = inds.shape assert len(a__ ) > 1 snake_case_ = inds.reshape(ishape[0] , -1 ) snake_case_ = self.used.to(a__ ) if self.re_embed > self.used.shape[0]: # extra token snake_case_ = 0 # simply set to zero snake_case_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , a__ ) return back.reshape(a__ ) def lowerCAmelCase__ ( self , a__ ) -> str: '''simple docstring''' snake_case_ = z.permute(0 , 2 , 3 , 1 ).contiguous() snake_case_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z snake_case_ = torch.argmin(torch.cdist(a__ , self.embedding.weight ) , dim=1 ) snake_case_ = self.embedding(a__ ).view(z.shape ) snake_case_ = None snake_case_ = None # compute loss for embedding if not self.legacy: snake_case_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: snake_case_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients snake_case_ = z + (z_q - z).detach() # reshape back to match original input shape snake_case_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: snake_case_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis snake_case_ = self.remap_to_used(a__ ) snake_case_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: snake_case_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCAmelCase__ ( self , a__ , a__ ) -> List[str]: '''simple docstring''' if self.remap is not None: snake_case_ = indices.reshape(shape[0] , -1 ) # add batch axis snake_case_ = self.unmap_to_all(a__ ) snake_case_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors snake_case_ = self.embedding(a__ ) if shape is not None: snake_case_ = z_q.view(a__ ) # reshape back to match original input shape snake_case_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _snake_case ( lowercase_ ): def __init__( self , a__ , a__=False ) -> Optional[int]: '''simple docstring''' snake_case_ = parameters snake_case_ , snake_case_ = torch.chunk(a__ , 2 , dim=1 ) snake_case_ = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) snake_case_ = deterministic snake_case_ = torch.exp(0.5 * self.logvar ) snake_case_ = torch.exp(self.logvar ) if self.deterministic: snake_case_ = snake_case_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCAmelCase__ ( self , a__ = None ) -> torch.FloatTensor: '''simple docstring''' snake_case_ = randn_tensor( self.mean.shape , generator=a__ , device=self.parameters.device , dtype=self.parameters.dtype ) snake_case_ = self.mean + self.std * sample return x def lowerCAmelCase__ ( self , a__=None ) -> List[str]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCAmelCase__ ( self , a__ , a__=[1, 2, 3] ) -> Optional[int]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) snake_case_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=a__ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return self.mean
400
1
"""simple docstring""" def lowercase__ ( lowercase_ = 10 ) -> List[str]: """simple docstring""" if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ) or n < 0: raise ValueError("Invalid input" ) _UpperCamelCase : List[str] = 10**n _UpperCamelCase : Tuple = 28_433 * (pow(2 ,7_830_457 ,lowerCamelCase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
714
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int: """simple docstring""" _UpperCamelCase : defaultdict = defaultdict(lowercase_ ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCamelCase : Any = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: _UpperCamelCase : str = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
51
0
import argparse from collections import defaultdict import yaml lowerCAmelCase = """docs/source/en/_toctree.yml""" def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = defaultdict(lowercase_ ) for doc in model_doc: counts[doc["local"]] += 1 __UpperCAmelCase : List[str] = [key for key, value in counts.items() if value > 1] __UpperCAmelCase : Optional[int] = [] for duplicate_key in duplicates: __UpperCAmelCase : Optional[int] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(lowercase_ ) > 1: raise ValueError( f"{duplicate_key} is present several times in the documentation table of content at " '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(lowercase_ , key=lambda lowercase_ : s["title"].lower() ) def __SCREAMING_SNAKE_CASE ( lowercase_=False ) -> str: '''simple docstring''' with open(lowercase_ , encoding='''utf-8''' ) as f: __UpperCAmelCase : Tuple = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase : Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase : Union[str, Any] = content[api_idx]['''sections'''] # Then to the model doc __UpperCAmelCase : Optional[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __UpperCAmelCase : Union[str, Any] = api_doc[model_idx]['''sections'''] __UpperCAmelCase : int = [(idx, section) for idx, section in enumerate(lowercase_ ) if '''sections''' in section] __UpperCAmelCase : Dict = False for idx, modality_doc in modalities_docs: __UpperCAmelCase : Optional[int] = modality_doc['''sections'''] __UpperCAmelCase : Dict = clean_model_doc_toc(lowercase_ ) if old_modality_doc != new_modality_doc: __UpperCAmelCase : Optional[Any] = True if overwrite: __UpperCAmelCase : Dict = new_modality_doc if diff: if overwrite: __UpperCAmelCase : Tuple = model_doc __UpperCAmelCase : Optional[Any] = api_doc with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(lowercase_ , allow_unicode=lowercase_ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
462
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase = None lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } lowerCAmelCase = { """facebook/mbart-large-en-ro""": 1_024, """facebook/mbart-large-cc25""": 1_024, } # fmt: off lowerCAmelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = VOCAB_FILES_NAMES _lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase : Optional[int] = MBartTokenizer _lowerCAmelCase : List[int] = [] _lowerCAmelCase : List[int] = [] def __init__( self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Any = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) __UpperCAmelCase : Optional[Any] = vocab_file __UpperCAmelCase : int = False if not self.vocab_file else True __UpperCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens}) __UpperCAmelCase : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(lowercase__) for lang_code in FAIRSEQ_LANGUAGE_CODES } __UpperCAmelCase : Any = src_lang if src_lang is not None else '''en_XX''' __UpperCAmelCase : Optional[int] = self.convert_tokens_to_ids(self._src_lang) __UpperCAmelCase : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def A( self): return self._src_lang @src_lang.setter def A( self , lowercase__): __UpperCAmelCase : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def A( self , lowercase__ , lowercase__ = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''') __UpperCAmelCase : Optional[Any] = src_lang __UpperCAmelCase : Union[str, Any] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__) __UpperCAmelCase : int = self.convert_tokens_to_ids(lowercase__) __UpperCAmelCase : Tuple = tgt_lang_id return inputs def A( self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): __UpperCAmelCase : Any = src_lang __UpperCAmelCase : Tuple = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__) def A( self): return self.set_src_lang_special_tokens(self.src_lang) def A( self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def A( self , lowercase__): __UpperCAmelCase : Optional[Any] = self.convert_tokens_to_ids(lowercase__) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] __UpperCAmelCase : int = self.convert_ids_to_tokens(self.prefix_tokens) __UpperCAmelCase : Dict = self.convert_ids_to_tokens(self.suffix_tokens) __UpperCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def A( self , lowercase__): __UpperCAmelCase : List[str] = self.convert_tokens_to_ids(lowercase__) __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : List[Any] = [self.eos_token_id, self.cur_lang_code] __UpperCAmelCase : Tuple = self.convert_ids_to_tokens(self.prefix_tokens) __UpperCAmelCase : Tuple = self.convert_ids_to_tokens(self.suffix_tokens) __UpperCAmelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def A( self , lowercase__ , lowercase__ = None): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(lowercase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return __UpperCAmelCase : List[Any] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase__): copyfile(self.vocab_file , lowercase__) return (out_vocab_file,)
462
1
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
720
"""simple docstring""" import argparse from collections import defaultdict def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->List[str]: """simple docstring""" __lowercase : Tuple = F'{file}_{class_name}_{test_name}' done_test[_id] += 1 with open(_lowerCamelCase, "r" ) as f: __lowercase : Union[str, Any] = f.readlines() __lowercase : str = F'class {class_name}(' __lowercase : Union[str, Any] = F'{4 * " "}def {test_name}(' __lowercase : List[Any] = F'{8 * " "}{correct_line.split()[0]}' __lowercase : Optional[int] = F'{16 * " "}{correct_line.split()[0]}' __lowercase : List[Any] = False __lowercase : int = False __lowercase : int = False __lowercase : List[Any] = False __lowercase : str = 0 __lowercase : Dict = 0 __lowercase : Optional[int] = [] for line in lines: if line.startswith(_lowerCamelCase ): __lowercase : Optional[int] = True elif in_class and line.startswith(_lowerCamelCase ): __lowercase : Optional[int] = True elif in_class and in_func and (line.startswith(_lowerCamelCase ) or line.startswith(_lowerCamelCase )): __lowercase : int = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __lowercase : Any = True if in_class and in_func and in_line: if ")" not in line: continue else: __lowercase : int = True if in_class and in_func and in_line and insert_line: new_lines.append(F'{spaces * " "}{correct_line}' ) __lowercase : List[Any] = False else: new_lines.append(_lowerCamelCase ) with open(_lowerCamelCase, "w" ) as f: for line in new_lines: f.write(_lowerCamelCase ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase=None ) ->List[Any]: """simple docstring""" if fail is not None: with open(_lowerCamelCase, "r" ) as f: __lowercase : str = {l.strip() for l in f.readlines()} else: __lowercase : List[Any] = None with open(_lowerCamelCase, "r" ) as f: __lowercase : str = f.readlines() __lowercase : List[str] = defaultdict(_lowerCamelCase ) for line in correct_lines: __lowercase ,__lowercase ,__lowercase ,__lowercase : str = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __A : Union[str, Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
281
0
"""simple docstring""" from __future__ import annotations def __A ( a_ :float , a_ :float , a_ :float , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError('''You cannot supply more or less than 2 values''') elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''') elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''') elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''') elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
52
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): A_ : List[str] = AlbertTokenizer A_ : List[Any] = AlbertTokenizerFast A_ : List[str] = True A_ : Any = True A_ : List[Any] = True def _A ( self : Optional[int] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : int = AlbertTokenizer(a__ ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self : Tuple , a__ : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = "this is a test" lowerCAmelCase__ : Optional[Any] = "this is a test" return input_text, output_text def _A ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = "<pad>" lowerCAmelCase__ : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def _A ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(a__ ) , 3_0000 ) def _A ( self : Optional[int] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def _A ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase__ : List[Any] = self.get_tokenizer() lowerCAmelCase__ : Optional[int] = self.get_rust_tokenizer() lowerCAmelCase__ : List[str] = "I was born in 92000, and this is falsé." lowerCAmelCase__ : Dict = tokenizer.tokenize(a__ ) lowerCAmelCase__ : str = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) lowerCAmelCase__ : List[Any] = tokenizer.encode(a__ , add_special_tokens=a__ ) lowerCAmelCase__ : Tuple = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) lowerCAmelCase__ : Optional[int] = self.get_rust_tokenizer() lowerCAmelCase__ : str = tokenizer.encode(a__ ) lowerCAmelCase__ : Optional[int] = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) def _A ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = AlbertTokenizer(a__ , keep_accents=a__ ) lowerCAmelCase__ : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a__ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [48, 25, 21, 1289] ) lowerCAmelCase__ : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) lowerCAmelCase__ : Tuple = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual(a__ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) lowerCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def _A ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = AlbertTokenizer(a__ ) lowerCAmelCase__ : List[str] = tokenizer.encode("sequence builders" ) lowerCAmelCase__ : Optional[int] = tokenizer.encode("multi-sequence build" ) lowerCAmelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(a__ ) lowerCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _A ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Any = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
378
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
704
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 ) -> List[Any]: lowercase__ = None if token is not None: lowercase__ = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowercase__ = '636036' lowercase__ = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowercase__ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run['id'] break return workflow_run_id def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): lowercase__ = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: lowercase__ = f.read().decode('UTF-8' ) return results
45
0
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : def __init__( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : Optional[Any]=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : List[Any]="last" , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=0 , ): UpperCamelCase__ : Optional[Any] = parent UpperCamelCase__ : int = batch_size UpperCamelCase__ : List[Any] = seq_length UpperCamelCase__ : Optional[Any] = is_training UpperCamelCase__ : List[str] = use_input_lengths UpperCamelCase__ : List[Any] = use_token_type_ids UpperCamelCase__ : Dict = use_labels UpperCamelCase__ : Tuple = gelu_activation UpperCamelCase__ : Union[str, Any] = sinusoidal_embeddings UpperCamelCase__ : Dict = causal UpperCamelCase__ : Dict = asm UpperCamelCase__ : List[Any] = n_langs UpperCamelCase__ : Dict = vocab_size UpperCamelCase__ : Optional[Any] = n_special UpperCamelCase__ : Tuple = hidden_size UpperCamelCase__ : List[Any] = num_hidden_layers UpperCamelCase__ : Optional[int] = num_attention_heads UpperCamelCase__ : int = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : Any = max_position_embeddings UpperCamelCase__ : List[str] = type_sequence_label_size UpperCamelCase__ : Tuple = initializer_range UpperCamelCase__ : Optional[int] = num_labels UpperCamelCase__ : List[str] = num_choices UpperCamelCase__ : str = summary_type UpperCamelCase__ : Optional[int] = use_proj UpperCamelCase__ : Optional[int] = scope UpperCamelCase__ : Tuple = bos_token_id def __UpperCamelCase ( self : Any): UpperCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase__ : Optional[int] = None if self.use_input_lengths: UpperCamelCase__ : int = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ : List[str] = None if self.use_token_type_ids: UpperCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) UpperCamelCase__ : List[str] = None UpperCamelCase__ : Tuple = None UpperCamelCase__ : Optional[Any] = None if self.use_labels: UpperCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , 2).float() UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices) UpperCamelCase__ : Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __UpperCamelCase ( self : int): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , ): UpperCamelCase__ : Optional[int] = XLMModel(config=SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() UpperCamelCase__ : List[str] = model(SCREAMING_SNAKE_CASE_ , lengths=SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_) UpperCamelCase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_) UpperCamelCase__ : Any = model(SCREAMING_SNAKE_CASE_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , ): UpperCamelCase__ : Union[str, Any] = XLMWithLMHeadModel(SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() UpperCamelCase__ : List[str] = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , ): UpperCamelCase__ : int = XLMForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() UpperCamelCase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_) UpperCamelCase__ : List[str] = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_) UpperCamelCase__ : Tuple = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , ): UpperCamelCase__ : List[Any] = XLMForQuestionAnswering(SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() UpperCamelCase__ : Any = model(SCREAMING_SNAKE_CASE_) UpperCamelCase__ : int = model( SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , p_mask=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ : List[str] = model( SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , ) ((UpperCamelCase__ ), ) : Tuple = result_with_labels.to_tuple() UpperCamelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_) ((UpperCamelCase__ ), ) : Optional[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def __UpperCamelCase ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Tuple = XLMForSequenceClassification(SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() UpperCamelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_) UpperCamelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , ): UpperCamelCase__ : Dict = self.num_labels UpperCamelCase__ : Any = XLMForTokenClassification(SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() UpperCamelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , ): UpperCamelCase__ : Optional[int] = self.num_choices UpperCamelCase__ : Tuple = XLMForMultipleChoice(config=SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() UpperCamelCase__ : str = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCamelCase__ : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCamelCase__ : int = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __UpperCamelCase ( self : int): UpperCamelCase__ : int = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ) : Dict = config_and_inputs UpperCamelCase__ : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __lowercase (__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): _lowerCamelCase = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict=False): UpperCamelCase__ : List[str] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCamelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_) UpperCamelCase__ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_) return inputs_dict def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Tuple = XLMModelTester(self) UpperCamelCase__ : str = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , emb_dim=37) def __UpperCamelCase ( self : int): self.config_tester.run_common_tests() def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*SCREAMING_SNAKE_CASE_) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*SCREAMING_SNAKE_CASE_) def __UpperCamelCase ( self : str): UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*SCREAMING_SNAKE_CASE_) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*SCREAMING_SNAKE_CASE_) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*SCREAMING_SNAKE_CASE_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*SCREAMING_SNAKE_CASE_) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*SCREAMING_SNAKE_CASE_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Optional[int]=1): self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual( [isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for iter_attentions in attentions] , [True] * len(SCREAMING_SNAKE_CASE_)) self.assertEqual(len(SCREAMING_SNAKE_CASE_) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(SCREAMING_SNAKE_CASE_): # adds PAD dummy token UpperCamelCase__ : Union[str, Any] = min_length + idx + 1 UpperCamelCase__ : str = min_length + idx + 1 UpperCamelCase__ : List[str] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(SCREAMING_SNAKE_CASE_)) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : int=1): self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual( [isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for iter_hidden_states in hidden_states] , [True] * len(SCREAMING_SNAKE_CASE_) , ) self.assertEqual(len(SCREAMING_SNAKE_CASE_) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(SCREAMING_SNAKE_CASE_): # adds PAD dummy token UpperCamelCase__ : str = min_length + idx + 1 UpperCamelCase__ : Dict = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(SCREAMING_SNAKE_CASE_) , ) pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = XLMModel.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertIsNotNone(SCREAMING_SNAKE_CASE_) @require_torch class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Optional[int] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(SCREAMING_SNAKE_CASE_) UpperCamelCase__ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_) # the president UpperCamelCase__ : int = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCamelCase__ : List[str] = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , SCREAMING_SNAKE_CASE_)
596
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __magic_name__ =logging.getLogger(__name__) class _A ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] ="token-classification" def __init__(self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' if type(SCREAMING_SNAKE_CASE_ ) == dict: UpperCamelCase__ = Namespace(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = import_module('''tasks''' ) try: UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE_ , hparams.task_type ) UpperCamelCase__ = token_classification_task_clazz() except AttributeError: raise ValueError( F"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " F"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) UpperCamelCase__ = self.token_classification_task.get_labels(hparams.labels ) UpperCamelCase__ = CrossEntropyLoss().ignore_index super().__init__(SCREAMING_SNAKE_CASE_ , len(self.labels ) , self.mode ) def _a (self , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' return self.model(**SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' UpperCamelCase__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ = self(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = self.hparams for mode in ["train", "dev", "test"]: UpperCamelCase__ = self._feature_file(SCREAMING_SNAKE_CASE_ ) if os.path.exists(SCREAMING_SNAKE_CASE_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.load(SCREAMING_SNAKE_CASE_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCamelCase__ = self.token_classification_task.read_examples_from_file(args.data_dir , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.token_classification_task.convert_examples_to_features( SCREAMING_SNAKE_CASE_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=SCREAMING_SNAKE_CASE_ , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , SCREAMING_SNAKE_CASE_ ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> DataLoader: '''simple docstring''' UpperCamelCase__ = self._feature_file(SCREAMING_SNAKE_CASE_ ) logger.info('''Loading features from cached file %s''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.load(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCamelCase__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCamelCase__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCamelCase__ = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCamelCase__ = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , batch_size=SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' """Compute validation""" "" UpperCamelCase__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ = self(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = outputs[:2] UpperCamelCase__ = logits.detach().cpu().numpy() UpperCamelCase__ = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _a (self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCamelCase__ = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCamelCase__ = np.argmax(SCREAMING_SNAKE_CASE_ , axis=2 ) UpperCamelCase__ = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCamelCase__ = dict(enumerate(self.labels ) ) UpperCamelCase__ = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase__ = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCamelCase__ = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), '''precision''': precision_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), '''recall''': recall_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), '''f1''': fa_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), } UpperCamelCase__ = dict(results.items() ) UpperCamelCase__ = results return ret, preds_list, out_label_list def _a (self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._eval_end(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _a (self , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._eval_end(SCREAMING_SNAKE_CASE_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCamelCase__ = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _a (SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' BaseTransformer.add_model_specific_args(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) parser.add_argument( '''--task_type''' , default='''NER''' , type=SCREAMING_SNAKE_CASE_ , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=SCREAMING_SNAKE_CASE_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=SCREAMING_SNAKE_CASE_ , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=SCREAMING_SNAKE_CASE_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __magic_name__ =argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __magic_name__ =NERTransformer.add_model_specific_args(parser, os.getcwd()) __magic_name__ =parser.parse_args() __magic_name__ =NERTransformer(args) __magic_name__ =generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __magic_name__ =sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) __magic_name__ =model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
415
0
import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """facebook/bart-large-mnli""" _SCREAMING_SNAKE_CASE = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) _SCREAMING_SNAKE_CASE = """text_classifier""" _SCREAMING_SNAKE_CASE = AutoTokenizer _SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification _SCREAMING_SNAKE_CASE = ["""text""", ["""text"""]] _SCREAMING_SNAKE_CASE = ["""text"""] def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): super().setup() lowerCAmelCase_ : List[str] = self.model.config lowerCAmelCase_ : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): lowerCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE_ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str ): lowerCAmelCase_ : str = labels return self.pre_processor( [text] * len(SCREAMING_SNAKE_CASE_ ) , [F"This example is {label}" for label in labels] , return_tensors='pt' , padding='max_length' , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : Tuple = outputs.logits lowerCAmelCase_ : Union[str, Any] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
716
"""simple docstring""" import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowercase__ : Optional[int] = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } lowercase__ : Optional[Any] = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase_ : str = list(state_dict.keys() ) for name in state_dict_keys: lowerCAmelCase_ : List[Any] = state_dict.pop(lowerCAmelCase__ ) # emb -> embedding if name.startswith('emb.' ): lowerCAmelCase_ : Dict = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): lowerCAmelCase_ : str = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention lowerCAmelCase_ : Optional[Any] = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , lowerCAmelCase__ ) # ffn -> feed_forward lowerCAmelCase_ : Any = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , lowerCAmelCase__ ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): lowerCAmelCase_ : str = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): lowerCAmelCase_ : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): lowerCAmelCase_ : Any = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": lowerCAmelCase_ : Optional[int] = 'rwkv.' + name lowerCAmelCase_ : int = weight return state_dict def UpperCamelCase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : int=None ) -> int: """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) lowerCAmelCase_ : int = 5_0277 lowerCAmelCase_ : List[str] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: lowerCAmelCase_ : Dict = PreTrainedTokenizerFast(tokenizer_file=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = len(lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) # 2. Build the config lowerCAmelCase_ : int = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCAmelCase_ : Tuple = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." ) lowerCAmelCase_ : Dict = RwkvConfig( vocab_size=lowerCAmelCase__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowerCAmelCase__ ) # 3. Download model file then convert state_dict lowerCAmelCase_ : Dict = hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = torch.load(lowerCAmelCase__ , map_location='cpu' ) lowerCAmelCase_ : int = convert_state_dict(lowerCAmelCase__ ) # 4. Split in shards and save lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = shard_checkpoint(lowerCAmelCase__ ) for shard_file, shard in shards.items(): torch.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) if index is not None: lowerCAmelCase_ : List[str] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) # Save the index as well with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: lowerCAmelCase_ : str = json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + '\n' f.write(lowerCAmelCase__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) lowerCAmelCase_ : List[str] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCAmelCase_ : List[Any] = torch.load(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) lowerCAmelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ , max_shard_size='2GB' ) tokenizer.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) lowercase__ : List[str] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
317
0
'''simple docstring''' # Algorithm for the pigeonhole sorting def __snake_case ( lowerCAmelCase : Optional[int] ): __UpperCAmelCase = min(lowerCAmelCase ) # min() finds the minimum value __UpperCAmelCase = max(lowerCAmelCase ) # max() finds the maximum value __UpperCAmelCase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __UpperCAmelCase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowerCAmelCase , lowerCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __UpperCAmelCase = 0 for count in range(lowerCAmelCase ): while holes[count] > 0: holes[count] -= 1 __UpperCAmelCase = count + min_val i += 1 def __snake_case ( ): __UpperCAmelCase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowerCAmelCase ) print('Sorted order is:' , ' '.join(lowerCAmelCase ) ) if __name__ == "__main__": main()
396
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __snake_case ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any ): # Load checkpoint __UpperCAmelCase = torch.load(lowerCAmelCase , map_location='cpu' ) __UpperCAmelCase = chkpt['model'] # We have the base model one level deeper than the original XLM repository __UpperCAmelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: __UpperCAmelCase = v else: __UpperCAmelCase = v __UpperCAmelCase = chkpt['params'] __UpperCAmelCase = {n: v for n, v in config.items() if not isinstance(lowerCAmelCase , (torch.FloatTensor, numpy.ndarray) )} __UpperCAmelCase = chkpt['dico_word2id'] __UpperCAmelCase = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model __UpperCAmelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCAmelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME __UpperCAmelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase , lowerCAmelCase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase , indent=2 ) + '\n' ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase , indent=2 ) + '\n' ) if __name__ == "__main__": _UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase : List[str] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
396
1
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING a = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class _A ( __lowercase ): def __init__( self , **_SCREAMING_SNAKE_CASE ): super().__init__(**_SCREAMING_SNAKE_CASE ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , **_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = {} _UpperCAmelCase = {} _UpperCAmelCase = {} # preprocess args if "points_per_batch" in kwargs: _UpperCAmelCase = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _UpperCAmelCase = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _UpperCAmelCase = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _UpperCAmelCase = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _UpperCAmelCase = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _UpperCAmelCase = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _UpperCAmelCase = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _UpperCAmelCase = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _UpperCAmelCase = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _UpperCAmelCase = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _UpperCAmelCase = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _UpperCAmelCase = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): return super().__call__(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , num_workers=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 512 / 1500 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 1 , ): _UpperCAmelCase = load_image(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.image_processor.size["""longest_edge"""] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.image_processor.generate_crop_boxes( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _UpperCAmelCase = self.get_inference_context() with inference_context(): _UpperCAmelCase = self._ensure_tensor_on_device(_SCREAMING_SNAKE_CASE , device=self.device ) _UpperCAmelCase = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _UpperCAmelCase = image_embeddings _UpperCAmelCase = grid_points.shape[1] _UpperCAmelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = grid_points[:, i : i + points_per_batch, :, :] _UpperCAmelCase = input_labels[:, i : i + points_per_batch] _UpperCAmelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.88 , _SCREAMING_SNAKE_CASE=0.95 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , ): _UpperCAmelCase = model_inputs.pop("""input_boxes""" ) _UpperCAmelCase = model_inputs.pop("""is_last""" ) _UpperCAmelCase = model_inputs.pop("""original_sizes""" ).tolist() _UpperCAmelCase = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _UpperCAmelCase = self.model(**_SCREAMING_SNAKE_CASE ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _UpperCAmelCase = model_outputs["""pred_masks"""] _UpperCAmelCase = self.image_processor.post_process_masks( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , binarize=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model_outputs["""iou_scores"""] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.7 , ): _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _UpperCAmelCase = torch.cat(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.cat(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.image_processor.post_process_for_mask_generation( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = defaultdict(_SCREAMING_SNAKE_CASE ) for output in model_outputs: for k, v in output.items(): extra[k].append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = {} if output_rle_mask: _UpperCAmelCase = rle_mask if output_bboxes_mask: _UpperCAmelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
700
from __future__ import annotations from scipy.special import comb # type: ignore class _A : def __init__( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) - 1 def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _UpperCAmelCase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _SCREAMING_SNAKE_CASE ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_SCREAMING_SNAKE_CASE ) , 5 ) == 1 return output_values def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _UpperCAmelCase = self.basis_function(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0.0 _UpperCAmelCase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE = 0.01 ): from matplotlib import pyplot as plt # type: ignore _UpperCAmelCase = [] # x coordinates of points to plot _UpperCAmelCase = [] # y coordinates of points to plot _UpperCAmelCase = 0.0 while t <= 1: _UpperCAmelCase = self.bezier_curve_function(_SCREAMING_SNAKE_CASE ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _UpperCAmelCase = [i[0] for i in self.list_of_points] _UpperCAmelCase = [i[1] for i in self.list_of_points] plt.plot( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
175
0
'''simple docstring''' _lowercase = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Tuple , snake_case_ : int , snake_case_ : Union[str, Any]=1_3 , snake_case_ : Optional[Any]=7 , snake_case_ : List[str]=True , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=True , snake_case_ : List[str]=True , snake_case_ : Optional[Any]=9_9 , snake_case_ : int=3_2 , snake_case_ : str=5 , snake_case_ : int=4 , snake_case_ : List[str]=3_7 , snake_case_ : Tuple="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Union[str, Any]=5_1_2 , snake_case_ : Union[str, Any]=1_6 , snake_case_ : List[Any]=2 , snake_case_ : List[Any]=0.0_2 , snake_case_ : Any=False , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]="None" , snake_case_ : Dict=3 , snake_case_ : Optional[int]=4 , snake_case_ : Any=None , ): '''simple docstring''' snake_case__ : Union[str, Any] = parent snake_case__ : Any = batch_size snake_case__ : List[Any] = seq_length snake_case__ : Optional[int] = is_training snake_case__ : Dict = use_input_mask snake_case__ : List[str] = use_token_type_ids snake_case__ : int = use_labels snake_case__ : int = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Optional[Any] = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : Union[str, Any] = type_sequence_label_size snake_case__ : List[Any] = initializer_range snake_case__ : Any = num_labels snake_case__ : Tuple = num_choices snake_case__ : List[str] = relative_attention snake_case__ : Optional[int] = position_biased_input snake_case__ : Union[str, Any] = pos_att_type snake_case__ : Optional[Any] = scope def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = None if self.use_input_mask: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case__ : int = None if self.use_token_type_ids: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : List[str] = None snake_case__ : Tuple = None snake_case__ : Any = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Tuple ): '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : int ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __magic_name__ ( self : List[str] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): '''simple docstring''' snake_case__ : List[Any] = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] snake_case__ : Optional[int] = model(snake_case_ , token_type_ids=snake_case_ )[0] snake_case__ : Dict = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __magic_name__ ( self : Dict , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : Union[str, Any] ): '''simple docstring''' snake_case__ : Tuple = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : str , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Tuple ): '''simple docstring''' snake_case__ : Union[str, Any] = self.num_labels snake_case__ : Optional[int] = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def __magic_name__ ( self : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Any ): '''simple docstring''' snake_case__ : List[Any] = self.num_labels snake_case__ : Any = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Any , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : List[str] ): '''simple docstring''' snake_case__ : Union[str, Any] = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : List[str] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : int , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[Any] ): '''simple docstring''' snake_case__ : Union[str, Any] = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : int = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : Dict = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Dict = config_and_inputs snake_case__ : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : int = DebertaVaModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def __magic_name__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def __magic_name__ ( self : Any ): '''simple docstring''' snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def __magic_name__ ( self : List[str] ): '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : int = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def __magic_name__ ( self : str ): '''simple docstring''' pass @slow def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Optional[int] = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) snake_case__ : Tuple = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) snake_case__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case__ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. snake_case__ : Dict = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1e-4 ) , F"""{output[:, 1:4, 1:4]}""" )
347
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _snake_case : Optional[Any] = logging.get_logger(__name__) def A__ ( UpperCamelCase ): if isinstance(__snake_case , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__snake_case , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__snake_case ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class _UpperCAmelCase ( __lowercase ): UpperCamelCase = ['''pixel_values'''] def __init__( self :Dict , __UpperCamelCase :bool = True , __UpperCamelCase :Dict[str, int] = None , __UpperCamelCase :PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase :bool = True , __UpperCamelCase :Dict[str, int] = None , __UpperCamelCase :bool = True , __UpperCamelCase :Union[int, float] = 1 / 2_55 , __UpperCamelCase :bool = True , __UpperCamelCase :bool = True , __UpperCamelCase :Optional[Union[float, List[float]]] = None , __UpperCamelCase :Optional[Union[float, List[float]]] = None , **__UpperCamelCase :List[str] , ): super().__init__(**_A ) A = size if size is not None else {"shortest_edge": 2_56} A = get_size_dict(_A , default_to_square=_A ) A = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} A = get_size_dict(_A , param_name="crop_size" ) A = do_resize A = size A = do_center_crop A = crop_size A = resample A = do_rescale A = rescale_factor A = offset A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :np.ndarray , __UpperCamelCase :Dict[str, int] , __UpperCamelCase :PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase :Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase :Tuple , ): A = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: A = get_resize_output_image_size(_A , size["shortest_edge"] , default_to_square=_A ) elif "height" in size and "width" in size: A = (size["height"], size["width"]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def lowerCamelCase ( self :List[str] , __UpperCamelCase :np.ndarray , __UpperCamelCase :Dict[str, int] , __UpperCamelCase :Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase :Any , ): A = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(_A , size=(size["height"], size["width"]) , data_format=_A , **_A ) def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :np.ndarray , __UpperCamelCase :Union[int, float] , __UpperCamelCase :bool = True , __UpperCamelCase :Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase :Tuple , ): A = image.astype(np.floataa ) if offset: A = image - (scale / 2) return rescale(_A , scale=_A , data_format=_A , **_A ) def lowerCamelCase ( self :List[Any] , __UpperCamelCase :np.ndarray , __UpperCamelCase :Union[float, List[float]] , __UpperCamelCase :Union[float, List[float]] , __UpperCamelCase :Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase :str , ): return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :ImageInput , __UpperCamelCase :bool = None , __UpperCamelCase :Dict[str, int] = None , __UpperCamelCase :PILImageResampling = None , __UpperCamelCase :bool = None , __UpperCamelCase :Dict[str, int] = None , __UpperCamelCase :bool = None , __UpperCamelCase :float = None , __UpperCamelCase :bool = None , __UpperCamelCase :bool = None , __UpperCamelCase :Optional[Union[float, List[float]]] = None , __UpperCamelCase :Optional[Union[float, List[float]]] = None , __UpperCamelCase :Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. A = to_numpy_array(_A ) if do_resize: A = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: A = self.center_crop(_A , size=_A ) if do_rescale: A = self.rescale(image=_A , scale=_A , offset=_A ) if do_normalize: A = self.normalize(image=_A , mean=_A , std=_A ) A = to_channel_dimension_format(_A , _A ) return image def lowerCamelCase ( self :str , __UpperCamelCase :ImageInput , __UpperCamelCase :bool = None , __UpperCamelCase :Dict[str, int] = None , __UpperCamelCase :PILImageResampling = None , __UpperCamelCase :bool = None , __UpperCamelCase :Dict[str, int] = None , __UpperCamelCase :bool = None , __UpperCamelCase :float = None , __UpperCamelCase :bool = None , __UpperCamelCase :bool = None , __UpperCamelCase :Optional[Union[float, List[float]]] = None , __UpperCamelCase :Optional[Union[float, List[float]]] = None , __UpperCamelCase :Optional[Union[str, TensorType]] = None , __UpperCamelCase :ChannelDimension = ChannelDimension.FIRST , **__UpperCamelCase :Dict , ): A = do_resize if do_resize is not None else self.do_resize A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = offset if offset is not None else self.offset A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = size if size is not None else self.size A = get_size_dict(_A , default_to_square=_A ) A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_A , param_name="crop_size" ) if not valid_images(_A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) A = make_batched(_A ) A = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , offset=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] A = {"pixel_values": videos} return BatchFeature(data=_A , tensor_type=_A )
705
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _snake_case : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _snake_case : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = state_dict.pop(UpperCamelCase ) A = val def A__ ( UpperCamelCase ): A = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) A = value else: A = value return new_state_dict def A__ ( UpperCamelCase ): A = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:256, :] A = in_proj_bias[:256] A = in_proj_weight[256:512, :] A = in_proj_bias[256:512] A = in_proj_weight[-256:, :] A = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) A = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:256, :] A = in_proj_bias[:256] A = in_proj_weight[256:512, :] A = in_proj_bias[256:512] A = in_proj_weight[-256:, :] A = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention A = state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) A = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict A = in_proj_weight_cross_attn[:256, :] A = in_proj_bias_cross_attn[:256] A = in_proj_weight_cross_attn[256:512, :] A = in_proj_bias_cross_attn[256:512] A = in_proj_weight_cross_attn[-256:, :] A = in_proj_bias_cross_attn[-256:] def A__ ( UpperCamelCase , UpperCamelCase ): A, A = image.size A = max(UpperCamelCase , UpperCamelCase ) A = 800 if "detection" in checkpoint_url else 1_000 A = target_max_size / current_max_size A = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def A__ ( UpperCamelCase ): A = F.to_tensor(UpperCamelCase ) A = F.normalize(UpperCamelCase , mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): logger.info("Converting model..." ) # load original state dict A = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) A = rename_backbone_keys(UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): A = state_dict.pop(UpperCamelCase ) A = val # create HuggingFace model and load state dict A = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A = 15 A = 2 A = {0: "table", 1: "table rotated"} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 125 A = 6 A = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } A = idalabel A = {v: k for k, v in idalabel.items()} A = DetrImageProcessor( format="coco_detection" , max_size=800 if "detection" in checkpoint_url else 1_000 ) A = TableTransformerForObjectDetection(UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() # verify our conversion A = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" A = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=UpperCamelCase ) A = Image.open(UpperCamelCase ).convert("RGB" ) A = normalize(resize(UpperCamelCase , UpperCamelCase ) ).unsqueeze(0 ) A = model(UpperCamelCase ) if "detection" in checkpoint_url: A = (1, 15, 3) A = torch.tensor( [[-6.78_97, -16.99_85, 6.79_37], [-8.01_86, -22.21_92, 6.96_77], [-7.31_17, -21.07_08, 7.40_55]] ) A = torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: A = (1, 125, 7) A = torch.tensor( [[-18.14_30, -8.32_14, 4.82_74], [-18.46_85, -7.13_61, -4.26_67], [-26.36_93, -9.34_29, -4.99_62]] ) A = torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) model.save_pretrained(UpperCamelCase ) image_processor.save_pretrained(UpperCamelCase ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) A = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(UpperCamelCase ) image_processor.push_to_hub(UpperCamelCase ) if __name__ == "__main__": _snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : Any = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
524
0
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCAmelCase : int ="""\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __lowerCAmelCase : Union[str, Any] ="""\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ __lowerCAmelCase : Union[str, Any] =""" Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def A__ ( self ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = CHRF.CHAR_ORDER , __lowerCAmelCase = CHRF.WORD_ORDER , __lowerCAmelCase = CHRF.BETA , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , ): """simple docstring""" lowercase = len(references[0] ) if any(len(__lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase = [[refs[i] for refs in references] for i in range(__lowerCAmelCase )] lowercase = CHRF(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase = sb_chrf.corpus_score(__lowerCAmelCase , __lowerCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
359
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __lowerCAmelCase : int =pd.read_csv("""sample_data.csv""", header=None) __lowerCAmelCase : Optional[Any] =df.shape[:1][0] # If you're using some other dataset input the target column __lowerCAmelCase : Optional[int] =df.iloc[:, 1:2] __lowerCAmelCase : List[str] =actual_data.values.reshape(len_data, 1) __lowerCAmelCase : int =MinMaxScaler().fit_transform(actual_data) __lowerCAmelCase : List[Any] =1_0 __lowerCAmelCase : int =5 __lowerCAmelCase : str =2_0 __lowerCAmelCase : Union[str, Any] =len_data - periods * look_back __lowerCAmelCase : Dict =actual_data[:division] __lowerCAmelCase : List[str] =actual_data[division - look_back :] __lowerCAmelCase , __lowerCAmelCase : List[str] =[], [] __lowerCAmelCase , __lowerCAmelCase : Optional[int] =[], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __lowerCAmelCase : int =np.array(train_x) __lowerCAmelCase : List[str] =np.array(test_x) __lowerCAmelCase : Dict =np.array([list(i.ravel()) for i in train_y]) __lowerCAmelCase : str =np.array([list(i.ravel()) for i in test_y]) __lowerCAmelCase : Optional[Any] =Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") __lowerCAmelCase : Optional[int] =model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) __lowerCAmelCase : Dict =model.predict(x_test)
359
1
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : List[Any] = """ylacombe/bark-small""" lowercase_ : List[str] = tempfile.mkdtemp() lowercase_ : Tuple = """en_speaker_1""" lowercase_ : Union[str, Any] = """This is a test string""" lowercase_ : int = """speaker_embeddings_path.json""" lowercase_ : Any = """speaker_embeddings""" def SCREAMING_SNAKE_CASE_ ( self : Tuple , **lowercase_ : Optional[int] ): return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Any = self.get_tokenizer() lowercase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) lowercase_ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase_ : List[str] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase_ : Optional[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase_ : Optional[int] = 35 lowercase_ : int = 2 lowercase_ : Union[str, Any] = 8 lowercase_ : Union[str, Any] = { """semantic_prompt""": np.ones(lowercase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase_ : str = processor(text=self.input_string , voice_preset=lowercase_ ) lowercase_ : Dict = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase_ : Any = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowercase_ , **lowercase_ ) lowercase_ : Optional[Any] = processor(text=self.input_string , voice_preset=lowercase_ ) lowercase_ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase_ : Union[str, Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : List[str] = self.get_tokenizer() lowercase_ : int = BarkProcessor(tokenizer=lowercase_ ) lowercase_ : Any = processor(text=self.input_string ) lowercase_ : List[str] = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
30
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> Any: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , UpperCAmelCase__ ) lowercase_ : List[Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowercase_ : str = dataset_size < in_memory_max_size else: lowercase_ : List[Any] = False lowercase_ : Any = is_small_dataset(UpperCAmelCase__ ) assert result == expected
30
1
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=1024 ): A__ , A__ : Any = [], [] A__ : List[Any] = list(zip(lowerCAmelCase , lowerCAmelCase ) ) A__ , A__ : Optional[int] = sorted_examples[0] def is_too_big(lowerCAmelCase ): return tok(lowerCAmelCase , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): A__ : List[Any] = new_src + """ """ + src A__ : List[str] = new_tgt + """ """ + tgt if is_too_big(lowerCAmelCase ) or is_too_big(lowerCAmelCase ): # cant fit, finalize example finished_src.append(lowerCAmelCase ) finished_tgt.append(lowerCAmelCase ) A__ , A__ : str = src, tgt else: # can fit, keep adding A__ , A__ : Union[str, Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowerCAmelCase ) finished_tgt.append(lowerCAmelCase ) return finished_src, finished_tgt def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): A__ : Optional[int] = Path(lowerCAmelCase ) save_path.mkdir(exist_ok=lowerCAmelCase ) for split in ["train"]: A__ , A__ : List[Any] = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' A__ : Tuple = [x.rstrip() for x in Path(lowerCAmelCase ).open().readlines()] A__ : Union[str, Any] = [x.rstrip() for x in Path(lowerCAmelCase ).open().readlines()] A__ , A__ : Tuple = pack_examples(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) print(F'''packed {split} split from {len(lowerCAmelCase )} examples -> {len(lowerCAmelCase )}.''' ) Path(save_path / F'''{split}.source''' ).open("""w""" ).write("""\n""".join(lowerCAmelCase ) ) Path(save_path / F'''{split}.target''' ).open("""w""" ).write("""\n""".join(lowerCAmelCase ) ) for split in ["val", "test"]: A__ , A__ : Dict = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(lowerCAmelCase , save_path / F'''{split}.source''' ) shutil.copyfile(lowerCAmelCase , save_path / F'''{split}.target''' ) def _A( ): A__ : str = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=lowerCAmelCase , default=128 ) parser.add_argument("""--data_dir""" , type=lowerCAmelCase ) parser.add_argument("""--save_path""" , type=lowerCAmelCase ) A__ : str = parser.parse_args() A__ : Optional[Any] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowerCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
363
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _UpperCamelCase = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def _A( lowerCAmelCase ): A__ : Any = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) _UpperCamelCase = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def _A( lowerCAmelCase ): A__ : str = list(s_dict.keys() ) for key in keys: A__ : Optional[Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: A__ : Optional[Any] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(F'''{key} -> {new_key}''' ) A__ : Any = s_dict.pop(lowerCAmelCase ) return s_dict def _A( lowerCAmelCase ): A__ , A__ : Union[str, Any] = emb.weight.shape A__ : Optional[Any] = nn.Linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) A__ : int = emb.weight.data return lin_layer def _A( lowerCAmelCase , lowerCAmelCase ): os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) A__ : Union[str, Any] = os.path.basename(lowerCAmelCase ) A__ : str = url.split("""/""" )[-2] A__ : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) if os.path.exists(lowerCAmelCase ) and not os.path.isfile(lowerCAmelCase ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(lowerCAmelCase ): A__ : Tuple = open(lowerCAmelCase , """rb""" ).read() if hashlib.shaaaa(lowerCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(lowerCAmelCase ) as source, open(lowerCAmelCase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=lowerCAmelCase , unit_divisor=1024 ) as loop: while True: A__ : Dict = source.read(8192 ) if not buffer: break output.write(lowerCAmelCase ) loop.update(len(lowerCAmelCase ) ) A__ : List[str] = open(lowerCAmelCase , """rb""" ).read() if hashlib.shaaaa(lowerCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def _A( lowerCAmelCase , lowerCAmelCase ): if ".pt" not in checkpoint_path: A__ : str = _download(_MODELS[checkpoint_path] ) else: A__ : Optional[int] = torch.load(lowerCAmelCase , map_location="""cpu""" ) A__ : List[str] = original_checkpoint["""dims"""] A__ : List[Any] = original_checkpoint["""model_state_dict"""] A__ : Dict = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(lowerCAmelCase ) rename_keys(lowerCAmelCase ) A__ : Any = True A__ : List[str] = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] A__ : str = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=lowerCAmelCase , decoder_ffn_dim=lowerCAmelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) A__ : int = WhisperForConditionalGeneration(lowerCAmelCase ) A__ , A__ : List[Any] = model.model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) if len(lowerCAmelCase ) > 0 and not set(lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F''' but all the following weights are missing {missing}''' ) if tie_embeds: A__ : Tuple = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A__ : Any = proj_out_weights model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _UpperCamelCase = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
363
1
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
133
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( a_ ): '''simple docstring''' if num <= 0: lowerCamelCase : Tuple = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(a_ ) lowerCamelCase : Optional[Any] = [True] * (num + 1) lowerCamelCase : int = [] lowerCamelCase : Dict = 2 lowerCamelCase : List[str] = int(math.sqrt(a_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a_ ) # Set multiples of start be False for i in range(start * start, num + 1, a_ ): if sieve[i] is True: lowerCamelCase : Optional[int] = False start += 1 for j in range(end + 1, num + 1 ): if sieve[j] is True: prime.append(a_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
133
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class a ( lowercase__ ): """simple docstring""" a : Dict = 'speech_to_text_2' a : Optional[int] = ['past_key_values'] a : Union[str, Any] = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : List[str] , __lowercase : Union[str, Any]=10000 , __lowercase : List[Any]=6 , __lowercase : Tuple=2048 , __lowercase : int=4 , __lowercase : Dict=0.0 , __lowercase : int=True , __lowercase : Optional[int]="relu" , __lowercase : Optional[int]=256 , __lowercase : int=0.1 , __lowercase : Optional[int]=0.0 , __lowercase : Optional[Any]=0.0 , __lowercase : Union[str, Any]=0.02 , __lowercase : Any=2 , __lowercase : List[Any]=True , __lowercase : Tuple=1 , __lowercase : str=0 , __lowercase : Tuple=2 , __lowercase : List[Any]=1024 , **__lowercase : Tuple , ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : int = d_model __UpperCAmelCase : Any = decoder_ffn_dim __UpperCAmelCase : List[Any] = decoder_layers __UpperCAmelCase : Union[str, Any] = decoder_attention_heads __UpperCAmelCase : List[str] = dropout __UpperCAmelCase : List[Any] = attention_dropout __UpperCAmelCase : Tuple = activation_dropout __UpperCAmelCase : List[str] = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = decoder_layerdrop __UpperCAmelCase : Tuple = use_cache __UpperCAmelCase : Dict = decoder_layers __UpperCAmelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : str = max_target_positions super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , decoder_start_token_id=__lowercase , **__lowercase , )
63
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch a : List[Any] = True except ImportError: a : str = False try: from torch.hub import _get_torch_home a : List[Any] = _get_torch_home() except ImportError: a : int = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) a : Optional[Any] = os.path.join(torch_cache_home, "transformers") a : Optional[Any] = "https://cdn.huggingface.co" a : List[str] = "https://s3.amazonaws.com/models.huggingface.co/bert" a : Any = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) a : Optional[int] = os.path.join(PATH, "config.yaml") a : Dict = os.path.join(PATH, "attributes.txt") a : Tuple = os.path.join(PATH, "objects.txt") a : Dict = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) a : Dict = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) a : Optional[int] = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) a : Any = "pytorch_model.bin" a : int = "config.yaml" def lowerCamelCase__ ( __lowerCamelCase : str=OBJECTS , __lowerCamelCase : Union[str, Any]=ATTRIBUTES ): __UpperCAmelCase : Union[str, Any] = [] with open(__lowerCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(""",""" )[0].lower().strip() ) __UpperCAmelCase : Dict = [] with open(__lowerCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(""",""" )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCamelCase__ ( __lowerCamelCase : Any ): __UpperCAmelCase : List[str] = OrderedDict() with open(__lowerCamelCase , """rb""" ) as f: __UpperCAmelCase : int = pkl.load(__lowerCamelCase )["""model"""] for k in copy.deepcopy(list(ckp.keys() ) ): __UpperCAmelCase : List[Any] = ckp.pop(__lowerCamelCase ) if isinstance(__lowerCamelCase , np.ndarray ): __UpperCAmelCase : Union[str, Any] = torch.tensor(__lowerCamelCase ) else: assert isinstance(__lowerCamelCase , torch.tensor ), type(__lowerCamelCase ) __UpperCAmelCase : List[str] = v return r class a : """simple docstring""" a : Dict = {} def __init__( self : Dict , __lowercase : dict , __lowercase : str = "root" , __lowercase : Any=0 ) -> Dict: __UpperCAmelCase : List[str] = name __UpperCAmelCase : str = level __UpperCAmelCase : int = {} for k, v in dictionary.items(): if v is None: raise ValueError() __UpperCAmelCase : List[str] = copy.deepcopy(__lowercase ) __UpperCAmelCase : Dict = copy.deepcopy(__lowercase ) if isinstance(__lowercase , __lowercase ): __UpperCAmelCase : Union[str, Any] = Config(__lowercase , name=__lowercase , level=level + 1 ) __UpperCAmelCase : Union[str, Any] = v setattr(self , __lowercase , __lowercase ) __UpperCAmelCase : Any = d def __repr__( self : Optional[Any] ) -> Optional[int]: return str(list((self._pointer.keys()) ) ) def __setattr__( self : List[str] , __lowercase : List[str] , __lowercase : Tuple ) -> int: __UpperCAmelCase : int = val __UpperCAmelCase : List[str] = val __UpperCAmelCase : Union[str, Any] = key.split(""".""" ) __UpperCAmelCase : List[Any] = len(__lowercase ) - 1 __UpperCAmelCase : List[Any] = self._pointer if len(__lowercase ) > 1: for i, l in enumerate(__lowercase ): if hasattr(self , __lowercase ) and isinstance(getattr(self , __lowercase ) , __lowercase ): setattr(getattr(self , __lowercase ) , """.""".join(levels[i:] ) , __lowercase ) if l == last_level: __UpperCAmelCase : Union[str, Any] = val else: __UpperCAmelCase : Union[str, Any] = pointer[l] def UpperCAmelCase ( self : Tuple ) -> Optional[int]: return self._pointer def UpperCAmelCase ( self : str , __lowercase : Optional[int] , __lowercase : Any ) -> Optional[int]: with open(f"""{file_name}""" , """w""" ) as stream: dump(__lowercase , __lowercase ) def UpperCAmelCase ( self : List[str] , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] ) -> Any: with open(f"""{file_name}""" , """w""" ) as stream: json.dump(__lowercase , __lowercase ) @staticmethod def UpperCAmelCase ( __lowercase : List[Any] ) -> Optional[Any]: with open(__lowercase ) as stream: __UpperCAmelCase : Any = load(__lowercase , Loader=__lowercase ) return data def __str__( self : List[str] ) -> Tuple: __UpperCAmelCase : Any = """ """ if self._name != "root": __UpperCAmelCase : Optional[Any] = f"""{t * (self._level-1)}{self._name}:\n""" else: __UpperCAmelCase : List[Any] = """""" __UpperCAmelCase : Optional[Any] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__lowercase , __lowercase ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(__lowercase ).__name__})\n""" __UpperCAmelCase : int = level return r[:-1] @classmethod def UpperCAmelCase ( cls : List[str] , __lowercase : str , **__lowercase : Any ) -> Any: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = cls.get_config_dict(__lowercase , **__lowercase ) return cls(__lowercase ) @classmethod def UpperCAmelCase ( cls : Dict , __lowercase : str , **__lowercase : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : int = kwargs.pop("""cache_dir""" , __lowercase ) __UpperCAmelCase : int = kwargs.pop("""force_download""" , __lowercase ) __UpperCAmelCase : str = kwargs.pop("""resume_download""" , __lowercase ) __UpperCAmelCase : Dict = kwargs.pop("""proxies""" , __lowercase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("""local_files_only""" , __lowercase ) if os.path.isdir(__lowercase ): __UpperCAmelCase : List[Any] = os.path.join(__lowercase , __lowercase ) elif os.path.isfile(__lowercase ) or is_remote_url(__lowercase ): __UpperCAmelCase : Tuple = pretrained_model_name_or_path else: __UpperCAmelCase : Optional[int] = hf_bucket_url(__lowercase , filename=__lowercase , use_cdn=__lowercase ) try: # Load from URL or cache if already cached __UpperCAmelCase : Optional[int] = cached_path( __lowercase , cache_dir=__lowercase , force_download=__lowercase , proxies=__lowercase , resume_download=__lowercase , local_files_only=__lowercase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __UpperCAmelCase : Optional[int] = Config.load_yaml(__lowercase ) except EnvironmentError: __UpperCAmelCase : str = """Can't load config for""" raise EnvironmentError(__lowercase ) if resolved_config_file == config_file: print("""loading configuration file from path""" ) else: print("""loading configuration file cache""" ) return Config.load_yaml(__lowercase ), kwargs def lowerCamelCase__ ( __lowerCamelCase : Dict ): __UpperCAmelCase : Optional[int] = torch.load("""dump.pt""" , map_location=in_tensor.device ) __UpperCAmelCase : Tuple = in_tensor.numpy() __UpperCAmelCase : Optional[int] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(__lowerCamelCase , __lowerCamelCase , rtol=0.0_1 , atol=0.1 ), ( f"""{sum([1 for x in np.isclose(__lowerCamelCase , __lowerCamelCase , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %""" " element-wise mismatch" ) raise Exception("""tensors are all good""" ) # Hugging face functions below def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Tuple = urlparse(__lowerCamelCase ) return parsed.scheme in ("http", "https") def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int=True ): __UpperCAmelCase : int = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __UpperCAmelCase : Optional[int] = """/""" not in model_id if legacy_format: return f"""{endpoint}/{model_id}-{filename}""" else: return f"""{endpoint}/{model_id}/{filename}""" def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[int]=None , ): __UpperCAmelCase : Optional[int] = """python/{}""".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__lowerCamelCase , __lowerCamelCase ): ua += "; " + "; ".join("""{}/{}""".format(__lowerCamelCase , __lowerCamelCase ) for k, v in user_agent.items() ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): ua += "; " + user_agent __UpperCAmelCase : List[str] = {"""user-agent""": ua} if resume_size > 0: __UpperCAmelCase : Union[str, Any] = """bytes=%d-""" % (resume_size,) __UpperCAmelCase : Union[str, Any] = requests.get(__lowerCamelCase , stream=__lowerCamelCase , proxies=__lowerCamelCase , headers=__lowerCamelCase ) if response.status_code == 416: # Range not satisfiable return __UpperCAmelCase : List[str] = response.headers.get("""Content-Length""" ) __UpperCAmelCase : str = resume_size + int(__lowerCamelCase ) if content_length is not None else None __UpperCAmelCase : List[Any] = tqdm( unit="""B""" , unit_scale=__lowerCamelCase , total=__lowerCamelCase , initial=__lowerCamelCase , desc="""Downloading""" , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__lowerCamelCase ) ) temp_file.write(__lowerCamelCase ) progress.close() def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=10 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Dict=None , __lowerCamelCase : List[str]=False , ): if cache_dir is None: __UpperCAmelCase : Optional[Any] = TRANSFORMERS_CACHE if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[str] = str(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[Any] = None if not local_files_only: try: __UpperCAmelCase : Optional[Any] = requests.head(__lowerCamelCase , allow_redirects=__lowerCamelCase , proxies=__lowerCamelCase , timeout=__lowerCamelCase ) if response.status_code == 200: __UpperCAmelCase : Dict = response.headers.get("""ETag""" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __UpperCAmelCase : List[str] = url_to_filename(__lowerCamelCase , __lowerCamelCase ) # get cache path to put the file __UpperCAmelCase : Optional[int] = os.path.join(__lowerCamelCase , __lowerCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__lowerCamelCase ): return cache_path else: __UpperCAmelCase : List[Any] = [ file for file in fnmatch.filter(os.listdir(__lowerCamelCase ) , filename + """.*""" ) if not file.endswith(""".json""" ) and not file.endswith(""".lock""" ) ] if len(__lowerCamelCase ) > 0: return os.path.join(__lowerCamelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( """Cannot find the requested files in the cached path and outgoing traffic has been""" """ disabled. To enable model look-ups and downloads online, set 'local_files_only'""" """ to False.""" ) return None # From now on, etag is not None. if os.path.exists(__lowerCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __UpperCAmelCase : str = cache_path + """.lock""" with FileLock(__lowerCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(__lowerCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __UpperCAmelCase : int = cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(__lowerCamelCase , """a+b""" ) as f: yield f __UpperCAmelCase : str = _resumable_file_manager if os.path.exists(__lowerCamelCase ): __UpperCAmelCase : List[Any] = os.stat(__lowerCamelCase ).st_size else: __UpperCAmelCase : List[Any] = 0 else: __UpperCAmelCase : str = partial(tempfile.NamedTemporaryFile , dir=__lowerCamelCase , delete=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( """%s not found in cache or force_download set to True, downloading to %s""" , __lowerCamelCase , temp_file.name , ) http_get( __lowerCamelCase , __lowerCamelCase , proxies=__lowerCamelCase , resume_size=__lowerCamelCase , user_agent=__lowerCamelCase , ) os.replace(temp_file.name , __lowerCamelCase ) __UpperCAmelCase : Any = {"""url""": url, """etag""": etag} __UpperCAmelCase : Union[str, Any] = cache_path + """.json""" with open(__lowerCamelCase , """w""" ) as meta_file: json.dump(__lowerCamelCase , __lowerCamelCase ) return cache_path def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any]=None ): __UpperCAmelCase : Tuple = url.encode("""utf-8""" ) __UpperCAmelCase : Optional[Any] = shaaaa(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = url_hash.hexdigest() if etag: __UpperCAmelCase : int = etag.encode("""utf-8""" ) __UpperCAmelCase : List[str] = shaaaa(__lowerCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(""".h5""" ): filename += ".h5" return filename def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : int=None , __lowerCamelCase : int=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=False , ): if cache_dir is None: __UpperCAmelCase : List[str] = TRANSFORMERS_CACHE if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Any = str(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Tuple = str(__lowerCamelCase ) if is_remote_url(__lowerCamelCase ): # URL, so get it from the cache (downloading if necessary) __UpperCAmelCase : Tuple = get_from_cache( __lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , user_agent=__lowerCamelCase , local_files_only=__lowerCamelCase , ) elif os.path.exists(__lowerCamelCase ): # File, and it exists. __UpperCAmelCase : Tuple = url_or_filename elif urlparse(__lowerCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("""file {} not found""".format(__lowerCamelCase ) ) else: # Something unknown raise ValueError("""unable to parse {} as a URL or as a local path""".format(__lowerCamelCase ) ) if extract_compressed_file: if not is_zipfile(__lowerCamelCase ) and not tarfile.is_tarfile(__lowerCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __UpperCAmelCase , __UpperCAmelCase : int = os.path.split(__lowerCamelCase ) __UpperCAmelCase : Any = output_file.replace(""".""" , """-""" ) + """-extracted""" __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ) and os.listdir(__lowerCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions __UpperCAmelCase : str = output_path + """.lock""" with FileLock(__lowerCamelCase ): shutil.rmtree(__lowerCamelCase , ignore_errors=__lowerCamelCase ) os.makedirs(__lowerCamelCase ) if is_zipfile(__lowerCamelCase ): with ZipFile(__lowerCamelCase , """r""" ) as zip_file: zip_file.extractall(__lowerCamelCase ) zip_file.close() elif tarfile.is_tarfile(__lowerCamelCase ): __UpperCAmelCase : Any = tarfile.open(__lowerCamelCase ) tar_file.extractall(__lowerCamelCase ) tar_file.close() else: raise EnvironmentError("""Archive format of {} could not be identified""".format(__lowerCamelCase ) ) return output_path_extracted return output_path def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : int="," ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ): with open(__lowerCamelCase ) as f: __UpperCAmelCase : List[Any] = eval(f.read() ) else: __UpperCAmelCase : List[str] = requests.get(__lowerCamelCase ) try: __UpperCAmelCase : int = requests.json() except Exception: __UpperCAmelCase : List[Any] = req.content.decode() assert data is not None, "could not connect" try: __UpperCAmelCase : str = eval(__lowerCamelCase ) except Exception: __UpperCAmelCase : List[Any] = data.split("""\n""" ) req.close() return data def lowerCamelCase__ ( __lowerCamelCase : Any ): __UpperCAmelCase : Optional[int] = requests.get(__lowerCamelCase ) __UpperCAmelCase : List[Any] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCamelCase__ ( __lowerCamelCase : str ): __UpperCAmelCase : int = url.split("""/""" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__lowerCamelCase ) with open(__lowerCamelCase , """rb""" ) as stream: __UpperCAmelCase : List[str] = pkl.load(__lowerCamelCase ) __UpperCAmelCase : Dict = weights.pop("""model""" ) __UpperCAmelCase : Union[str, Any] = {} for k, v in model.items(): __UpperCAmelCase : int = torch.from_numpy(__lowerCamelCase ) if "running_var" in k: __UpperCAmelCase : Optional[int] = torch.tensor([0] ) __UpperCAmelCase : Tuple = k.replace("""running_var""" , """num_batches_tracked""" ) __UpperCAmelCase : Any = zero return new def lowerCamelCase__ ( ): print(f"""{os.path.abspath(os.path.join(__lowerCamelCase , os.pardir ) )}/demo.ipynb""" ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[Any]="RGB" ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ): __UpperCAmelCase : List[str] = cva.imread(__lowerCamelCase ) else: __UpperCAmelCase : int = get_image_from_url(__lowerCamelCase ) assert img is not None, f"""could not connect to: {im}""" __UpperCAmelCase : Any = cva.cvtColor(__lowerCamelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": __UpperCAmelCase : Optional[int] = img[:, :, ::-1] return img def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : int=1 ): return (images[i : i + batch] for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ))
63
1
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =RemBertConfig.from_json_file(__UpperCamelCase ) print("""Building PyTorch model from configuration: {}""".format(str(__UpperCamelCase ) ) ) SCREAMING_SNAKE_CASE__ =RemBertModel(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(__UpperCamelCase ) ) torch.save(model.state_dict(), __UpperCamelCase ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
709
import math def UpperCAmelCase_ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =[] SCREAMING_SNAKE_CASE__ =2 SCREAMING_SNAKE_CASE__ =int(math.sqrt(__UpperCamelCase ) ) # Size of every segment SCREAMING_SNAKE_CASE__ =[True] * (end + 1) SCREAMING_SNAKE_CASE__ =[] while start <= end: if temp[start] is True: in_prime.append(__UpperCamelCase ) for i in range(start * start, end + 1, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =False start += 1 prime += in_prime SCREAMING_SNAKE_CASE__ =end + 1 SCREAMING_SNAKE_CASE__ =min(2 * end, __UpperCamelCase ) while low <= n: SCREAMING_SNAKE_CASE__ =[True] * (high - low + 1) for each in in_prime: SCREAMING_SNAKE_CASE__ =math.floor(low / each ) * each if t < low: t += each for j in range(__UpperCamelCase, high + 1, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =False for j in range(len(__UpperCamelCase ) ): if temp[j] is True: prime.append(j + low ) SCREAMING_SNAKE_CASE__ =high + 1 SCREAMING_SNAKE_CASE__ =min(high + end, __UpperCamelCase ) return prime print(sieve(10**6))
588
0
'''simple docstring''' def UpperCamelCase__ ( ) -> Tuple: snake_case__ : List[Any] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] snake_case__ : Union[str, Any] = 6 snake_case__ : Any = 1 snake_case__ : List[str] = 1901 snake_case__ : str = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 snake_case__ : Tuple = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 snake_case__ : Optional[Any] = day - 29 else: if day > days_per_month[month - 1]: month += 1 snake_case__ : str = day - days_per_month[month - 2] if month > 12: year += 1 snake_case__ : Any = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
270
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : def __init__( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any]=13 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Any=4 , __lowerCamelCase : str=[10, 20, 30, 40] , __lowerCamelCase : Any=[2, 2, 3, 2] , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=37 , __lowerCamelCase : int="gelu" , __lowerCamelCase : List[Any]=10 , __lowerCamelCase : Tuple=0.0_2 , __lowerCamelCase : str=["stage2", "stage3", "stage4"] , __lowerCamelCase : Optional[Any]=[2, 3, 4] , __lowerCamelCase : Dict=None , ): snake_case__ : List[str] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : int = image_size snake_case__ : Tuple = num_channels snake_case__ : Any = num_stages snake_case__ : Any = hidden_sizes snake_case__ : Optional[Any] = depths snake_case__ : Optional[Any] = is_training snake_case__ : Dict = use_labels snake_case__ : Any = intermediate_size snake_case__ : int = hidden_act snake_case__ : Any = num_labels snake_case__ : Optional[int] = initializer_range snake_case__ : Union[str, Any] = out_features snake_case__ : Optional[Any] = out_indices snake_case__ : Optional[int] = scope def _lowerCAmelCase ( self : List[Any] ): snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Optional[int] = None if self.use_labels: snake_case__ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : Any = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : Tuple ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): snake_case__ : Optional[int] = ConvNextModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case__ : Union[str, Any] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCAmelCase ( self : Any , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] ): snake_case__ : Optional[Any] = ConvNextForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case__ : Optional[Any] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : int ): snake_case__ : Dict = ConvNextBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case__ : str = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ : List[str] = None snake_case__ : Union[str, Any] = ConvNextBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() snake_case__ : int = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCAmelCase ( self : Tuple ): snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Optional[Any] = config_and_inputs snake_case__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) A_ = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) A_ = True A_ = False A_ = False A_ = False A_ = False def _lowerCAmelCase ( self : Any ): snake_case__ : Tuple = ConvNextModelTester(self ) snake_case__ : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCAmelCase ( self : Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self : Dict ): return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[Any] ): pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def _lowerCAmelCase ( self : Tuple ): pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def _lowerCAmelCase ( self : List[Any] ): pass def _lowerCAmelCase ( self : str ): snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(__lowerCamelCase ) snake_case__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[Any] = [*signature.parameters.keys()] snake_case__ : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCAmelCase ( self : int ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCAmelCase ( self : int ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def _lowerCAmelCase ( self : str ): def check_hidden_states_output(__lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Tuple ): snake_case__ : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): snake_case__ : int = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) snake_case__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Tuple = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCAmelCase ( self : List[Any] ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCAmelCase ( self : str ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[int] = ConvNextModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def UpperCamelCase__ ( ) -> Optional[Any]: snake_case__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): @cached_property def _lowerCAmelCase ( self : List[Any] ): return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : str = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(__lowerCamelCase ) snake_case__ : str = self.default_image_processor snake_case__ : List[str] = prepare_img() snake_case__ : List[Any] = image_processor(images=__lowerCamelCase , return_tensors='pt' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): snake_case__ : int = model(**__lowerCamelCase ) # verify the logits snake_case__ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) snake_case__ : int = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) ) @require_torch class lowercase_ ( unittest.TestCase , lowerCAmelCase_ ): A_ = (ConvNextBackbone,) if is_torch_available() else () A_ = ConvNextConfig A_ = False def _lowerCAmelCase ( self : List[Any] ): snake_case__ : List[Any] = ConvNextModelTester(self )
270
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=7 , UpperCamelCase=3 , UpperCamelCase=18 , UpperCamelCase=30 , UpperCamelCase=4_00 , UpperCamelCase=True , UpperCamelCase=None , UpperCamelCase=True , ): lowerCamelCase__ = size if size is not None else {"height": 18, "width": 18} lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = min_resolution lowerCamelCase__ = max_resolution lowerCamelCase__ = do_resize lowerCamelCase__ = size lowerCamelCase__ = apply_ocr def __UpperCAmelCase ( self): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class snake_case_ ( A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : str =LayoutLMvaImageProcessor if is_pytesseract_available() else None def __UpperCAmelCase ( self): lowerCamelCase__ = LayoutLMvaImageProcessingTester(self) @property def __UpperCAmelCase ( self): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self): lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCamelCase , "do_resize")) self.assertTrue(hasattr(UpperCamelCase , "size")) self.assertTrue(hasattr(UpperCamelCase , "apply_ocr")) def __UpperCAmelCase ( self): lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"height": 18, "width": 18}) lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {"height": 42, "width": 42}) def __UpperCAmelCase ( self): pass def __UpperCAmelCase ( self): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] , return_tensors="pt") self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , UpperCamelCase) self.assertIsInstance(encoding.boxes , UpperCamelCase) # Test batched lowerCamelCase__ = image_processing(UpperCamelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __UpperCAmelCase ( self): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase__ = image_processing(UpperCamelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __UpperCAmelCase ( self): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase__ = image_processing(UpperCamelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __UpperCAmelCase ( self): # with apply_OCR = True lowerCamelCase__ = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCamelCase__ = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test") lowerCamelCase__ = Image.open(ds[0]["file"]).convert("RGB") lowerCamelCase__ = image_processing(UpperCamelCase , return_tensors="pt") self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCamelCase__ = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 lowerCamelCase__ = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , UpperCamelCase) self.assertListEqual(encoding.boxes , UpperCamelCase) # with apply_OCR = False lowerCamelCase__ = LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase) lowerCamelCase__ = image_processing(UpperCamelCase , return_tensors="pt") self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24))
426
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class snake_case_ : """simple docstring""" __lowerCAmelCase : int __lowerCAmelCase : Node | None =None __lowerCAmelCase : Node | None =None def lowerCAmelCase( ): '''simple docstring''' lowerCamelCase__ = Node(1 ) lowerCamelCase__ = Node(2 ) lowerCamelCase__ = Node(3 ) lowerCamelCase__ = Node(4 ) lowerCamelCase__ = Node(5 ) return tree def lowerCAmelCase( a__ : Node | None ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCAmelCase( a__ : Node | None ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCAmelCase( a__ : Node | None ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCAmelCase( a__ : Node | None ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCAmelCase( a__ : Node | None ): '''simple docstring''' lowerCamelCase__ = [] if root is None: return output lowerCamelCase__ = deque([root] ) while process_queue: lowerCamelCase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCAmelCase( a__ : Node | None , a__ : int ): '''simple docstring''' lowerCamelCase__ = [] def populate_output(a__ : Node | None , a__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(a__ , a__ ) return output def lowerCAmelCase( a__ : Node | None , a__ : int ): '''simple docstring''' lowerCamelCase__ = [] def populate_output(a__ : Node | None , a__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(a__ , a__ ) return output def lowerCAmelCase( a__ : Node | None ): '''simple docstring''' if root is None: return [] lowerCamelCase__ = [] lowerCamelCase__ = 0 lowerCamelCase__ = height(a__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(a__ , a__ ) ) lowerCamelCase__ = 1 else: output.append(get_nodes_from_right_to_left(a__ , a__ ) ) lowerCamelCase__ = 0 return output def lowerCAmelCase( ): # Main function for testing. '''simple docstring''' lowerCamelCase__ = make_tree() print(f"""In-order Traversal: {inorder(a__ )}""" ) print(f"""Pre-order Traversal: {preorder(a__ )}""" ) print(f"""Post-order Traversal: {postorder(a__ )}""" , "\n" ) print(f"""Height of Tree: {height(a__ )}""" , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(a__ ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(a__ ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(a__ , level=a__ ) ) print("\nZigZag order Traversal: " ) print(zigzag(a__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
426
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
224
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: UpperCamelCase_ = _modexpt(SCREAMING_SNAKE_CASE_ , exponent // 2 , SCREAMING_SNAKE_CASE_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(SCREAMING_SNAKE_CASE_ , exponent - 1 , SCREAMING_SNAKE_CASE_ )) % modulo_value def lowerCAmelCase( SCREAMING_SNAKE_CASE_ = 1_7_7_7 , SCREAMING_SNAKE_CASE_ = 1_8_5_5 , SCREAMING_SNAKE_CASE_ = 8 )-> int: """simple docstring""" UpperCamelCase_ = base for _ in range(1 , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = _modexpt(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1_0**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
628
0
from __future__ import annotations def _lowerCAmelCase( __A ): if not nums: raise ValueError("List is empty" ) return sum(__A ) / len(__A ) if __name__ == "__main__": import doctest doctest.testmod()
1
def _lowerCAmelCase( __A ): if not isinstance(__A , __A ): raise TypeError("only integers accepted as input" ) else: UpperCAmelCase = str(abs(__A ) ) UpperCAmelCase = [list(__A ) for char in range(len(__A ) )] for index in range(len(__A ) ): num_transpositions[index].pop(__A ) return max( int("".join(list(__A ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
1
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } __UpperCAmelCase = {'mobilebert-uncased': 512} __UpperCAmelCase = {} class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Any = VOCAB_FILES_NAMES _snake_case : Dict = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[Any] = PRETRAINED_INIT_CONFIGURATION _snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : str = MobileBertTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase="[UNK]" , _UpperCamelCase="[SEP]" , _UpperCamelCase="[PAD]" , _UpperCamelCase="[CLS]" , _UpperCamelCase="[MASK]" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ) -> Optional[Any]: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCamelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ : List[str] = getattr(_UpperCamelCase , normalizer_state.pop('type' ) ) UpperCAmelCase_ : Optional[Any] = do_lower_case UpperCAmelCase_ : Dict = strip_accents UpperCAmelCase_ : Any = tokenize_chinese_chars UpperCAmelCase_ : Any = normalizer_class(**_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = do_lower_case def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=None ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: UpperCAmelCase_ : str = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
406
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' if "model" in orig_key: UpperCAmelCase_ : Optional[int] = orig_key.replace('model.' , '' ) if "norm1" in orig_key: UpperCAmelCase_ : Optional[Any] = orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: UpperCAmelCase_ : Dict = orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: UpperCAmelCase_ : Any = orig_key.split('.' )[0].split('_' )[-1] UpperCAmelCase_ : Optional[Any] = orig_key.replace(F"transformer_{layer_num}" , F"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: UpperCAmelCase_ : Union[str, Any] = orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: UpperCAmelCase_ : Any = orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: UpperCAmelCase_ : Tuple = orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: UpperCAmelCase_ : str = orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: UpperCAmelCase_ : Dict = orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: UpperCAmelCase_ : Optional[int] = orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: UpperCAmelCase_ : Optional[Any] = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: UpperCAmelCase_ : Union[str, Any] = orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: UpperCAmelCase_ : List[Any] = 'yoso.' + orig_key return orig_key def lowercase__ ( __snake_case : str , __snake_case : int ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : Any = orig_state_dict.pop(__snake_case ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCAmelCase_ : Union[str, Any] = val UpperCAmelCase_ : List[Any] = orig_state_dict['cls.predictions.decoder.bias'] UpperCAmelCase_ : Tuple = torch.arange(__snake_case ).expand((1, -1) ) + 2 return orig_state_dict def lowercase__ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = torch.load(__snake_case , map_location='cpu' )['model_state_dict'] UpperCAmelCase_ : Dict = YosoConfig.from_json_file(__snake_case ) UpperCAmelCase_ : str = YosoForMaskedLM(__snake_case ) UpperCAmelCase_ : Dict = convert_checkpoint_helper(config.max_position_embeddings , __snake_case ) print(model.load_state_dict(__snake_case ) ) model.eval() model.save_pretrained(__snake_case ) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCAmelCase = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
406
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): A_ : List[str] = '''backbone.''' if is_semantic else '''''' A_ : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''), (f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): for i in range(config.num_hidden_layers ): A_ : Union[str, Any] = '''backbone.''' if is_semantic else '''''' # queries, keys and values A_ : Union[str, Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) A_ : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) A_ : Optional[int] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) A_ : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] A_ : Tuple = q_bias A_ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] A_ : Optional[Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A_ : Dict = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) A_ : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) A_ : Dict = gamma_a A_ : int = gamma_a def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = dct.pop(SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = val def _SCREAMING_SNAKE_CASE ( ): A_ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A_ : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): A_ : List[str] = False if '''rvlcdip''' in checkpoint_url else True A_ : Optional[int] = BeitConfig(use_absolute_position_embeddings=SCREAMING_SNAKE_CASE , use_mask_token=SCREAMING_SNAKE_CASE ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A_ : Any = 1_024 A_ : int = 4_096 A_ : Optional[Any] = 24 A_ : int = 16 # labels if "rvlcdip" in checkpoint_url: A_ : int = 16 A_ : Any = '''huggingface/label-files''' A_ : Tuple = '''rvlcdip-id2label.json''' A_ : Optional[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) A_ : Tuple = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} A_ : List[Any] = idalabel A_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A_ : str = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] A_ : str = create_rename_keys(SCREAMING_SNAKE_CASE , has_lm_head=SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , has_lm_head=SCREAMING_SNAKE_CASE ) # load HuggingFace model A_ : Union[str, Any] = BeitForMaskedImageModeling(SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image A_ : Optional[Any] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = prepare_img() A_ : Dict = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) A_ : Optional[Any] = encoding['''pixel_values'''] A_ : str = model(SCREAMING_SNAKE_CASE ) A_ : str = outputs.logits # verify logits A_ : Any = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(SCREAMING_SNAKE_CASE ), "Shape of logits not as expected" Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: if has_lm_head: A_ : int = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: A_ : Optional[int] = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) UpperCamelCase = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
152
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = DiTPipeline snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS snake_case = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS snake_case = False def _snake_case ( self )->Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ : str = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) A_ : Union[str, Any] = AutoencoderKL() A_ : Optional[Any] = DDIMScheduler() A_ : str = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )->Union[str, Any]: '''simple docstring''' if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ : Any = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Optional[int] = '''cpu''' A_ : Any = self.get_dummy_components() A_ : Optional[Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : str = pipe(**_SCREAMING_SNAKE_CASE ).images A_ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) A_ : Tuple = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) A_ : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self )->int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Optional[int] = torch.manual_seed(0 ) A_ : int = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) A_ : Any = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] A_ : Any = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) A_ : List[str] = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : List[Any] = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _snake_case ( self )->str: '''simple docstring''' A_ : Tuple = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) A_ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) A_ : List[str] = ['''vase''', '''umbrella'''] A_ : List[Any] = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = torch.manual_seed(0 ) A_ : Tuple = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
152
1
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __UpperCamelCase : def __init__( self :Optional[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Dict=None ,_UpperCamelCase :str=None ,_UpperCamelCase :int=None ,_UpperCamelCase :Dict="resnet50" ,_UpperCamelCase :Any=3 ,_UpperCamelCase :str=3_2 ,_UpperCamelCase :Any=3 ,_UpperCamelCase :str=True ,_UpperCamelCase :Dict=True ,): snake_case_ : List[Any] = parent snake_case_ : Union[str, Any] = out_indices if out_indices is not None else [4] snake_case_ : Any = stage_names snake_case_ : Optional[Any] = out_features snake_case_ : Any = backbone snake_case_ : Optional[Any] = batch_size snake_case_ : Tuple = image_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = use_pretrained_backbone snake_case_ : str = is_training def a__ ( self :Optional[Any] ): snake_case_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : List[str] = self.get_config() return config, pixel_values def a__ ( self :Tuple ): return TimmBackboneConfig( image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,) def a__ ( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :Dict ): snake_case_ : str = TimmBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): snake_case_ : Tuple = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 1_4, 1_4) ,) def a__ ( self :List[Any] ): snake_case_ : List[Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ : str = config_and_inputs snake_case_ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class __UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): lowercase : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () lowercase : Dict = {'feature-extraction': TimmBackbone} if is_torch_available() else {} lowercase : Optional[Any] = False lowercase : List[str] = False lowercase : List[Any] = False lowercase : str = False def a__ ( self :int ): snake_case_ : int = TimmBackboneModelTester(self ) snake_case_ : str = ConfigTester(self ,config_class=__SCREAMING_SNAKE_CASE ,has_text_modality=__SCREAMING_SNAKE_CASE ) def a__ ( self :Union[str, Any] ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self :Optional[Any] ): snake_case_ : Any = """resnet18""" snake_case_ : Tuple = """microsoft/resnet-18""" snake_case_ : str = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE ,use_timm_backbone=__SCREAMING_SNAKE_CASE ) snake_case_ : int = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) ,len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices ,(-1,) ) self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names ) - 1] ) snake_case_ : Optional[Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE ,use_timm_backbone=__SCREAMING_SNAKE_CASE ,out_indices=[1, 2, 3] ) snake_case_ : List[str] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE ,out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices ,transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) @unittest.skip("""TimmBackbone doesn\'t support feed forward chunking""" ) def a__ ( self :int ): pass @unittest.skip("""TimmBackbone doesn\'t have num_hidden_layers attribute""" ) def a__ ( self :Any ): pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def a__ ( self :List[str] ): pass @unittest.skip("""TimmBackbone models doesn\'t have inputs_embeds""" ) def a__ ( self :List[str] ): pass @unittest.skip("""TimmBackbone models doesn\'t have inputs_embeds""" ) def a__ ( self :Dict ): pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def a__ ( self :List[str] ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def a__ ( self :Tuple ): pass @unittest.skip("""model weights aren\'t tied in TimmBackbone.""" ) def a__ ( self :Dict ): pass @unittest.skip("""model weights aren\'t tied in TimmBackbone.""" ) def a__ ( self :List[Any] ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def a__ ( self :List[str] ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def a__ ( self :Any ): pass @unittest.skip("""TimmBackbone doesn\'t have hidden size info in its configuration.""" ) def a__ ( self :Dict ): pass @unittest.skip("""TimmBackbone doesn\'t support output_attentions.""" ) def a__ ( self :int ): pass @unittest.skip("""Safetensors is not supported by timm.""" ) def a__ ( self :Union[str, Any] ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a__ ( self :Any ): pass def a__ ( self :Optional[Any] ): snake_case_ , snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Dict = model_class(__SCREAMING_SNAKE_CASE ) snake_case_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Optional[Any] = [*signature.parameters.keys()] snake_case_ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,__SCREAMING_SNAKE_CASE ) def a__ ( self :Optional[int] ): snake_case_ , snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : List[Any] = True snake_case_ : int = self.has_attentions # no need to test all models as different heads yield the same functionality snake_case_ : List[str] = self.all_model_classes[0] snake_case_ : int = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) snake_case_ : Any = model(**__SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = outputs[0][-1] # Encoder-/Decoder-only models snake_case_ : Dict = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: snake_case_ : Tuple = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a__ ( self :Any ): snake_case_ , snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : int = model(**__SCREAMING_SNAKE_CASE ) self.assertEqual(len(result.feature_maps ) ,len(config.out_indices ) ) self.assertEqual(len(model.channels ) ,len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None snake_case_ : Optional[Any] = copy.deepcopy(__SCREAMING_SNAKE_CASE ) snake_case_ : str = None snake_case_ : Optional[int] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Optional[Any] = model(**__SCREAMING_SNAKE_CASE ) self.assertEqual(len(result.feature_maps ) ,1 ) self.assertEqual(len(model.channels ) ,1 ) # Check backbone can be initialized with fresh weights snake_case_ : Optional[Any] = copy.deepcopy(__SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = False snake_case_ : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE )
334
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = True ) -> Union[str, Any]: print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __SCREAMING_SNAKE_CASE = timm.create_model('''levit_128s''' , pretrained=UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = timm.create_model('''levit_128''' , pretrained=UpperCAmelCase__ ) if hidden_sizes == 1_92: __SCREAMING_SNAKE_CASE = timm.create_model('''levit_192''' , pretrained=UpperCAmelCase__ ) if hidden_sizes == 2_56: __SCREAMING_SNAKE_CASE = timm.create_model('''levit_256''' , pretrained=UpperCAmelCase__ ) if hidden_sizes == 3_84: __SCREAMING_SNAKE_CASE = timm.create_model('''levit_384''' , pretrained=UpperCAmelCase__ ) from_model.eval() __SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() __SCREAMING_SNAKE_CASE = OrderedDict() __SCREAMING_SNAKE_CASE = from_model.state_dict() __SCREAMING_SNAKE_CASE = list(from_model.state_dict().keys() ) __SCREAMING_SNAKE_CASE = list(our_model.state_dict().keys() ) print(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for i in range(len(UpperCAmelCase__ ) ): __SCREAMING_SNAKE_CASE = weights[og_keys[i]] our_model.load_state_dict(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.randn((2, 3, 2_24, 2_24) ) __SCREAMING_SNAKE_CASE = from_model(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = our_model(UpperCAmelCase__ ).logits assert torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ ), "The model logits don't match the original one." __SCREAMING_SNAKE_CASE = name print(UpperCAmelCase__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __SCREAMING_SNAKE_CASE = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = True ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = '''imagenet-1k-id2label.json''' __SCREAMING_SNAKE_CASE = 10_00 __SCREAMING_SNAKE_CASE = (1, num_labels) __SCREAMING_SNAKE_CASE = '''huggingface/label-files''' __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = partial(UpperCAmelCase__ , num_labels=UpperCAmelCase__ , idalabel=UpperCAmelCase__ , labelaid=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } __SCREAMING_SNAKE_CASE = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , UpperCAmelCase__ , names_to_config[model_name] , UpperCAmelCase__ , UpperCAmelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) lowerCAmelCase__ =parser.parse_args() lowerCAmelCase__ =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
482
0
from bisect import bisect from itertools import accumulate def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = sorted(zip(lowerCAmelCase , lowerCAmelCase ) , key=lambda lowerCAmelCase : x[0] / x[1] , reverse=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = [i[0] for i in r], [i[1] for i in r] SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(accumulate(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = bisect(lowerCAmelCase , lowerCAmelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
316
from __future__ import annotations from scipy.special import comb # type: ignore class a__ : def __init__( self : Union[str, Any],_A : list[tuple[float, float]] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. SCREAMING_SNAKE_CASE_ : List[Any] = len(_A ) - 1 def __UpperCamelCase ( self : Any,_A : float ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE_ : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,_A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_A ),5 ) == 1 return output_values def __UpperCamelCase ( self : str,_A : float ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE_ : Optional[Any] = self.basis_function(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = 0.0 SCREAMING_SNAKE_CASE_ : List[str] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __UpperCamelCase ( self : Any,_A : float = 0.01 ): """simple docstring""" from matplotlib import pyplot as plt # type: ignore SCREAMING_SNAKE_CASE_ : list[float] = [] # x coordinates of points to plot SCREAMING_SNAKE_CASE_ : list[float] = [] # y coordinates of points to plot SCREAMING_SNAKE_CASE_ : Tuple = 0.0 while t <= 1: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.bezier_curve_function(_A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size SCREAMING_SNAKE_CASE_ : Tuple = [i[0] for i in self.list_of_points] SCREAMING_SNAKE_CASE_ : Tuple = [i[1] for i in self.list_of_points] plt.plot( _A,_A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(_A,_A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
316
1
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowercase : Any = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _lowercase : Dict = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" _lowercase : int = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Dict: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def _UpperCAmelCase ( self , a__ , a__ , a__ = CHRF.CHAR_ORDER , a__ = CHRF.WORD_ORDER , a__ = CHRF.BETA , a__ = False , a__ = False , a__ = False , ) -> Union[str, Any]: A = len(references[0] ) if any(len(a__ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) A = [[refs[i] for refs in references] for i in range(a__ )] A = CHRF(a__ , a__ , a__ , a__ , a__ , a__ ) A = sb_chrf.corpus_score(a__ , a__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
641
def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] ) -> Dict: """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _lowerCAmelCase ( UpperCamelCase__: dict[int, list[int]] ) -> list[tuple[int, int]]: """simple docstring""" A = 0 A = len(UpperCamelCase__ ) # No of vertices in graph A = [0] * n A = [False] * n def dfs(UpperCamelCase__: Union[str, Any] , UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Any ): A = True A = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , id_ ) A = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge A = min(low[at] , low[to] ) A = [] for i in range(UpperCamelCase__ ): if not visited[i]: dfs(UpperCamelCase__ , -1 , UpperCamelCase__ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
641
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
115
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase__ ( nn.Module ): a_ =42 a_ =42 a_ =0.0 a_ =1 a_ =1 a_ =True a_ =False a_ =False a_ =False a_ =jnp.floataa def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(self.num_layers ): lowerCAmelCase__ = self.in_channels if i == 0 else self.out_channels lowerCAmelCase__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) lowerCAmelCase__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) lowerCAmelCase__ = resnets lowerCAmelCase__ = attentions if self.add_downsample: lowerCAmelCase__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True )-> str: '''simple docstring''' lowerCAmelCase__ = () for resnet, attn in zip(self.resnets , self.attentions ): lowerCAmelCase__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) lowerCAmelCase__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: lowerCAmelCase__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase__ ( nn.Module ): a_ =42 a_ =42 a_ =0.0 a_ =1 a_ =True a_ =jnp.floataa def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = [] for i in range(self.num_layers ): lowerCAmelCase__ = self.in_channels if i == 0 else self.out_channels lowerCAmelCase__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) lowerCAmelCase__ = resnets if self.add_downsample: lowerCAmelCase__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True )-> int: '''simple docstring''' lowerCAmelCase__ = () for resnet in self.resnets: lowerCAmelCase__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: lowerCAmelCase__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase__ ( nn.Module ): a_ =42 a_ =42 a_ =42 a_ =0.0 a_ =1 a_ =1 a_ =True a_ =False a_ =False a_ =False a_ =jnp.floataa def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(self.num_layers ): lowerCAmelCase__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCAmelCase__ = self.prev_output_channel if i == 0 else self.out_channels lowerCAmelCase__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) lowerCAmelCase__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) lowerCAmelCase__ = resnets lowerCAmelCase__ = attentions if self.add_upsample: lowerCAmelCase__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True )-> Dict: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states lowerCAmelCase__ = res_hidden_states_tuple[-1] lowerCAmelCase__ = res_hidden_states_tuple[:-1] lowerCAmelCase__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCAmelCase__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) lowerCAmelCase__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: lowerCAmelCase__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowercase__ ( nn.Module ): a_ =42 a_ =42 a_ =42 a_ =0.0 a_ =1 a_ =True a_ =jnp.floataa def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = [] for i in range(self.num_layers ): lowerCAmelCase__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCAmelCase__ = self.prev_output_channel if i == 0 else self.out_channels lowerCAmelCase__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) lowerCAmelCase__ = resnets if self.add_upsample: lowerCAmelCase__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True )-> int: '''simple docstring''' for resnet in self.resnets: # pop res hidden states lowerCAmelCase__ = res_hidden_states_tuple[-1] lowerCAmelCase__ = res_hidden_states_tuple[:-1] lowerCAmelCase__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCAmelCase__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: lowerCAmelCase__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowercase__ ( nn.Module ): a_ =42 a_ =0.0 a_ =1 a_ =1 a_ =False a_ =False a_ =jnp.floataa def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] lowerCAmelCase__ = [] for _ in range(self.num_layers ): lowerCAmelCase__ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) lowerCAmelCase__ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) lowerCAmelCase__ = resnets lowerCAmelCase__ = attentions def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = self.resnets[0](__UpperCAmelCase , __UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): lowerCAmelCase__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) lowerCAmelCase__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) return hidden_states
115
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowerCamelCase__ ( _a): random.seed(_a) np.random.seed(_a) torch.manual_seed(_a) torch.cuda.manual_seed_all(_a) # ^^ safe to call this function even if cuda is not available class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , a : Iterable[torch.nn.Parameter] , a : float = 0.9999 , a : float = 0.0 , a : int = 0 , a : bool = False , a : Union[float, int] = 1.0 , a : Union[float, int] = 2 / 3 , a : Optional[Any] = None , a : Dict[str, Any] = None , **a : Dict , ) -> Tuple: """simple docstring""" if isinstance(a , torch.nn.Module ): SCREAMING_SNAKE_CASE : Optional[Any] = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , a , standard_warn=a , ) SCREAMING_SNAKE_CASE : Optional[Any] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility SCREAMING_SNAKE_CASE : Tuple = True if kwargs.get("max_value" , a ) is not None: SCREAMING_SNAKE_CASE : List[Any] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value" , "1.0.0" , a , standard_warn=a ) SCREAMING_SNAKE_CASE : str = kwargs["max_value"] if kwargs.get("min_value" , a ) is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value" , "1.0.0" , a , standard_warn=a ) SCREAMING_SNAKE_CASE : List[Any] = kwargs["min_value"] SCREAMING_SNAKE_CASE : Optional[int] = list(a ) SCREAMING_SNAKE_CASE : str = [p.clone().detach() for p in parameters] if kwargs.get("device" , a ) is not None: SCREAMING_SNAKE_CASE : int = "The `device` argument is deprecated. Please use `to` instead." deprecate("device" , "1.0.0" , a , standard_warn=a ) self.to(device=kwargs["device"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[int] = decay SCREAMING_SNAKE_CASE : Tuple = min_decay SCREAMING_SNAKE_CASE : Tuple = update_after_step SCREAMING_SNAKE_CASE : Tuple = use_ema_warmup SCREAMING_SNAKE_CASE : List[Any] = inv_gamma SCREAMING_SNAKE_CASE : int = power SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : List[Any] = None # set in `step()` SCREAMING_SNAKE_CASE : Union[str, Any] = model_cls SCREAMING_SNAKE_CASE : Dict = model_config @classmethod def __UpperCamelCase ( cls : Optional[Any] , a : Optional[int] , a : Tuple ) -> "EMAModel": """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = model_cls.load_config(a , return_unused_kwargs=a ) SCREAMING_SNAKE_CASE : Any = model_cls.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = cls(model.parameters() , model_cls=a , model_config=model.config ) ema_model.load_state_dict(a ) return ema_model def __UpperCamelCase ( self : List[str] , a : Any ) -> List[Any]: """simple docstring""" if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) SCREAMING_SNAKE_CASE : List[Any] = self.model_cls.from_config(self.model_config ) SCREAMING_SNAKE_CASE : List[str] = self.state_dict() state_dict.pop("shadow_params" , a ) model.register_to_config(**a ) self.copy_to(model.parameters() ) model.save_pretrained(a ) def __UpperCamelCase ( self : List[str] , a : int ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE : int = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: SCREAMING_SNAKE_CASE : Any = 1 - (1 + step / self.inv_gamma) ** -self.power else: SCREAMING_SNAKE_CASE : List[str] = (1 + step) / (10 + step) SCREAMING_SNAKE_CASE : Optional[Any] = min(a , self.decay ) # make sure decay is not smaller than min_decay SCREAMING_SNAKE_CASE : str = max(a , self.min_decay ) return cur_decay_value @torch.no_grad() def __UpperCamelCase ( self : Optional[int] , a : Iterable[torch.nn.Parameter] ) -> int: """simple docstring""" if isinstance(a , torch.nn.Module ): SCREAMING_SNAKE_CASE : Tuple = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , a , standard_warn=a , ) SCREAMING_SNAKE_CASE : List[Any] = parameters.parameters() SCREAMING_SNAKE_CASE : List[str] = list(a ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_decay(self.optimization_step ) SCREAMING_SNAKE_CASE : Any = decay SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - decay SCREAMING_SNAKE_CASE : Union[str, Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , a ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): SCREAMING_SNAKE_CASE : List[str] = deepspeed.zero.GatheredParameters(a , modifier_rank=a ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(a ) def __UpperCamelCase ( self : Optional[Any] , a : Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Any = list(a ) for s_param, param in zip(self.shadow_params , a ): param.data.copy_(s_param.to(param.device ).data ) def __UpperCamelCase ( self : List[str] , a : int=None , a : Union[str, Any]=None ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : int = [ p.to(device=a , dtype=a ) if p.is_floating_point() else p.to(device=a ) for p in self.shadow_params ] def __UpperCamelCase ( self : Dict ) -> dict: """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __UpperCamelCase ( self : Tuple , a : Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [param.detach().cpu().clone() for param in parameters] def __UpperCamelCase ( self : Tuple , a : Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , a ): param.data.copy_(c_param.data ) # Better memory-wise. SCREAMING_SNAKE_CASE : Tuple = None def __UpperCamelCase ( self : Optional[int] , a : dict ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : int = copy.deepcopy(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) SCREAMING_SNAKE_CASE : Optional[int] = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , a ): raise ValueError("Invalid min_decay" ) SCREAMING_SNAKE_CASE : List[str] = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , a ): raise ValueError("Invalid optimization_step" ) SCREAMING_SNAKE_CASE : Dict = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , a ): raise ValueError("Invalid update_after_step" ) SCREAMING_SNAKE_CASE : List[Any] = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , a ): raise ValueError("Invalid use_ema_warmup" ) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) SCREAMING_SNAKE_CASE : List[Any] = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) SCREAMING_SNAKE_CASE : Tuple = state_dict.get("shadow_params" , a ) if shadow_params is not None: SCREAMING_SNAKE_CASE : List[Any] = shadow_params if not isinstance(self.shadow_params , a ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(a , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
25
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase =pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ): '''simple docstring''' inspect_dataset(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : List[str] =path + '.py' assert script_name in os.listdir(__lowerCamelCase ) assert "__pycache__" not in os.listdir(__lowerCamelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : str ): '''simple docstring''' inspect_metric(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase : List[Any] =path + '.py' assert script_name in os.listdir(__lowerCamelCase ) assert "__pycache__" not in os.listdir(__lowerCamelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : str ): '''simple docstring''' _UpperCAmelCase : str =get_dataset_config_info(__lowerCamelCase , config_name=__lowerCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ): '''simple docstring''' with pytest.raises(__lowerCamelCase ): get_dataset_config_info(__lowerCamelCase , config_name=__lowerCamelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : List[str] ): '''simple docstring''' _UpperCAmelCase : Dict =get_dataset_config_names(__lowerCamelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] ): '''simple docstring''' _UpperCAmelCase : Optional[int] =get_dataset_infos(__lowerCamelCase ) assert list(infos.keys() ) == expected_configs _UpperCAmelCase : Optional[int] =expected_configs[0] assert expected_config in infos _UpperCAmelCase : Optional[int] =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : str =get_dataset_infos(__lowerCamelCase ) assert expected_config in infos _UpperCAmelCase : Dict =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): '''simple docstring''' with pytest.raises(__lowerCamelCase ): get_dataset_split_names(__lowerCamelCase , config_name=__lowerCamelCase )
446
0
# Lint as: python3 import itertools import os import re UpperCAmelCase__ : int =re.compile(r'''([A-Z]+)([A-Z][a-z])''') UpperCAmelCase__ : Optional[Any] =re.compile(r'''([a-z\d])([A-Z])''') UpperCAmelCase__ : Dict =re.compile(r'''(?<!_)_(?!_)''') UpperCAmelCase__ : Any =re.compile(r'''(_{2,})''') UpperCAmelCase__ : Union[str, Any] =r'''^\w+(\.\w+)*$''' UpperCAmelCase__ : Any =r'''<>:/\|?*''' def _lowercase ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase =_uppercase_uppercase_re.sub(r"""\1_\2""" , _UpperCAmelCase ) lowerCamelCase =_lowercase_uppercase_re.sub(r"""\1_\2""" , _UpperCAmelCase ) return name.lower() def _lowercase ( _UpperCAmelCase ) -> Tuple: lowerCamelCase =_single_underscore_re.split(_UpperCAmelCase ) lowerCamelCase =[_multiple_underscores_re.split(_UpperCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_UpperCAmelCase ) if n != """""" ) def _lowercase ( _UpperCAmelCase ) -> Union[str, Any]: if os.path.basename(_UpperCAmelCase ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(_UpperCAmelCase ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: if os.path.basename(_UpperCAmelCase ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , _UpperCAmelCase ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(_UpperCAmelCase )}-{split}""" def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ) -> str: lowerCamelCase =filename_prefix_for_split(_UpperCAmelCase , _UpperCAmelCase ) if filetype_suffix: prefix += F""".{filetype_suffix}""" lowerCamelCase =os.path.join(_UpperCAmelCase , _UpperCAmelCase ) return F"""{filepath}*""" def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ) -> Any: lowerCamelCase =filename_prefix_for_split(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase =os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if shard_lengths: lowerCamelCase =len(_UpperCAmelCase ) lowerCamelCase =[F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(_UpperCAmelCase )] if filetype_suffix: lowerCamelCase =[filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: lowerCamelCase =prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
269
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCAmelCase__ : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , ) -> int: output_path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , use_external_data_format=_UpperCAmelCase , enable_onnx_checker=_UpperCAmelCase , opset_version=_UpperCAmelCase , ) else: export( _UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , opset_version=_UpperCAmelCase , ) @torch.no_grad() def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False ) -> Tuple: lowerCamelCase =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCamelCase ="""cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: lowerCamelCase ="""cpu""" lowerCamelCase =Path(_UpperCAmelCase ) # VAE DECODER lowerCamelCase =AutoencoderKL.from_pretrained(model_path + """/vae""" ) lowerCamelCase =vae_decoder.config.latent_channels # forward only through the decoder part lowerCamelCase =vae_decoder.decode onnx_export( _UpperCAmelCase , model_args=( torch.randn(1 , _UpperCAmelCase , 25 , 25 ).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=_UpperCAmelCase , ) del vae_decoder if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') UpperCAmelCase__ : Union[str, Any] =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
269
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin snake_case = random.Random() def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=1.0 , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> Optional[Any]: if rng is None: _snake_case = global_rng _snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase ( unittest.TestCase ): def __init__( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : int=7 , __lowerCamelCase : List[Any]=4_0_0 , __lowerCamelCase : Optional[int]=2_0_0_0 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : List[Any]=1_6_0_0_0 , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[int]=True , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = min_seq_length _snake_case = max_seq_length _snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case = feature_size _snake_case = padding_value _snake_case = sampling_rate _snake_case = return_attention_mask _snake_case = do_normalize def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=False ): """simple docstring""" def _flatten(__lowerCamelCase : Any ): return list(itertools.chain(*__lowerCamelCase ) ) if equal_length: _snake_case = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _snake_case = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Tuple = WavaVecaFeatureExtractor def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = WavaVecaFeatureExtractionTester(self ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Optional[Any] ): """simple docstring""" self.assertTrue(np.all(np.mean(__lowerCamelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCamelCase , axis=0 ) - 1 ) < 1E-3 ) ) def __UpperCAmelCase ( self : Any ): """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _snake_case = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _snake_case = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input _snake_case = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values _snake_case = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) ) # Test batched _snake_case = feat_extract(__lowerCamelCase , return_tensors='''np''' ).input_values _snake_case = feat_extract(__lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _snake_case = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _snake_case = np.asarray(__lowerCamelCase ) _snake_case = feat_extract(__lowerCamelCase , return_tensors='''np''' ).input_values _snake_case = feat_extract(__lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _snake_case = ['''longest''', '''max_length''', '''do_not_pad'''] _snake_case = [None, 1_6_0_0, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase ): _snake_case = feat_extract(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors='''np''' ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = range(8_0_0 , 1_4_0_0 , 2_0_0 ) _snake_case = [floats_list((1, x) )[0] for x in lengths] _snake_case = ['''longest''', '''max_length''', '''do_not_pad'''] _snake_case = [None, 1_6_0_0, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase ): _snake_case = feat_extract(__lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _snake_case = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''' ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _snake_case = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''' ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) _snake_case = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _snake_case = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''' ) _snake_case = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" import torch _snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case = np.random.rand(1_0_0 ).astype(np.floataa ) _snake_case = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _snake_case = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _snake_case = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def __UpperCAmelCase ( self : Tuple ): """simple docstring""" # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _snake_case = WavaVecaConfig.from_pretrained(__lowerCamelCase ) _snake_case = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
103
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCamelCase_ = logging.get_logger(__name__) class UpperCamelCase_ : __magic_name__ = 42 __magic_name__ = None @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: raise NotImplementedError def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: raise NotImplementedError def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] ) -> str: raise NotImplementedError def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: if not self.is_available(): raise RuntimeError( f"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple ) -> List[str]: return f"""`pip install {cls.pip_package or cls.name}`""" class UpperCamelCase_ (__A ): __magic_name__ = '''optuna''' @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> List[str]: return is_optuna_available() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : Tuple ) -> int: return run_hp_search_optuna(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Dict ) -> Optional[Any]: return default_hp_space_optuna(lowerCAmelCase_ ) class UpperCamelCase_ (__A ): __magic_name__ = '''ray''' __magic_name__ = '''\'ray[tune]\'''' @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: return is_ray_available() def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : Tuple ) -> List[str]: return run_hp_search_ray(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Tuple ) -> Optional[int]: return default_hp_space_ray(lowerCAmelCase_ ) class UpperCamelCase_ (__A ): __magic_name__ = '''sigopt''' @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: return is_sigopt_available() def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : str ) -> str: return run_hp_search_sigopt(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Any ) -> Any: return default_hp_space_sigopt(lowerCAmelCase_ ) class UpperCamelCase_ (__A ): __magic_name__ = '''wandb''' @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> int: return is_wandb_available() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: return run_hp_search_wandb(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : List[str] ) -> Any: return default_hp_space_wandb(lowerCAmelCase_ ) lowerCamelCase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def snake_case ( ): UpperCAmelCase_ : List[str] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(A__ ) > 0: UpperCAmelCase_ : Optional[Any] = available_backends[0].name if len(A__ ) > 1: logger.info( F"""{len(A__ )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
95
0
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
700
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _UpperCAmelCase : Tuple = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __magic_name__( lowerCamelCase, lowerCamelCase=None): require_version(deps[pkg], lowerCamelCase)
474
0
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : List[Any] , A : str = "▁" , A : bool = True , A : Union[str, AddedToken] = "<unk>" , A : Union[str, AddedToken] = "</s>" , A : Union[str, AddedToken] = "<pad>" , ): _UpperCAmelCase : Union[str, Any] = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } _UpperCAmelCase : List[Any] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _UpperCAmelCase : Optional[int] = token_dict["token"] _UpperCAmelCase : Union[str, Any] = Tokenizer(Unigram() ) _UpperCAmelCase : List[Any] = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) _UpperCAmelCase : Optional[Any] = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=A , add_prefix_space=A ), pre_tokenizers.Digits(individual_digits=A ), pre_tokenizers.Punctuation(), ] ) _UpperCAmelCase : int = decoders.Metaspace(replacement=A , add_prefix_space=A ) _UpperCAmelCase : List[str] = TemplateProcessing( single=F"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) _UpperCAmelCase : Dict = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(A , A ) def _A ( self : Tuple , A : Union[str, List[str]] , A : int = 8000 , A : bool = True , ): _UpperCAmelCase : Optional[Any] = trainers.UnigramTrainer( vocab_size=A , special_tokens=self.special_tokens_list , show_progress=A , ) if isinstance(A , A ): _UpperCAmelCase : Tuple = [files] self._tokenizer.train(A , trainer=A ) self.add_unk_id() def _A ( self : Any , A : Union[Iterator[str], Iterator[Iterator[str]]] , A : int = 8000 , A : bool = True , ): _UpperCAmelCase : Optional[Any] = trainers.UnigramTrainer( vocab_size=A , special_tokens=self.special_tokens_list , show_progress=A , ) self._tokenizer.train_from_iterator(A , trainer=A ) self.add_unk_id() def _A ( self : Any ): _UpperCAmelCase : Union[str, Any] = json.loads(self._tokenizer.to_str() ) _UpperCAmelCase : Optional[Any] = self.special_tokens["unk"]["id"] _UpperCAmelCase : List[Any] = Tokenizer.from_str(json.dumps(A ) )
244
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def _A ( self : str , A : Optional[int] , A : List[str] , A : List[str]=None , A : List[Any]=None ): _UpperCAmelCase : Union[str, Any] = self.layer[current_layer](A , A , head_mask[current_layer] ) _UpperCAmelCase : Tuple = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , snake_case__ , ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : List[Any] , A : Tuple ): super().__init__(A ) _UpperCAmelCase : Optional[Any] = BertEncoderWithPabee(A ) self.init_weights() _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : Any = 0 _UpperCAmelCase : Optional[int] = 0 def _A ( self : Tuple , A : Tuple ): _UpperCAmelCase : Union[str, Any] = threshold def _A ( self : Optional[int] , A : Union[str, Any] ): _UpperCAmelCase : Any = patience def _A ( self : List[Any] ): _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : List[str] = 0 def _A ( self : int ): _UpperCAmelCase : List[Any] = self.inference_layers_num / self.inference_instances_num _UpperCAmelCase : str = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(A ) @add_start_docstrings_to_model_forward(A ) def _A ( self : Optional[int] , A : int=None , A : Union[str, Any]=None , A : int=None , A : List[Any]=None , A : Dict=None , A : Dict=None , A : Optional[int]=None , A : str=None , A : Union[str, Any]=None , A : Any=None , A : List[Any]=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: _UpperCAmelCase : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: _UpperCAmelCase : Tuple = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) _UpperCAmelCase : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _UpperCAmelCase : Optional[int] = torch.ones(A , device=A ) if token_type_ids is None: _UpperCAmelCase : Optional[int] = torch.zeros(A , dtype=torch.long , device=A ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(A , A , A ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = encoder_hidden_states.size() _UpperCAmelCase : Tuple = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _UpperCAmelCase : Tuple = torch.ones(A , device=A ) _UpperCAmelCase : Optional[int] = self.invert_attention_mask(A ) else: _UpperCAmelCase : Optional[int] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _UpperCAmelCase : List[str] = self.get_head_mask(A , self.config.num_hidden_layers ) _UpperCAmelCase : List[Any] = self.embeddings( input_ids=A , position_ids=A , token_type_ids=A , inputs_embeds=A ) _UpperCAmelCase : Optional[Any] = embedding_output if self.training: _UpperCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): _UpperCAmelCase : int = self.encoder.adaptive_forward( A , current_layer=A , attention_mask=A , head_mask=A ) _UpperCAmelCase : Dict = self.pooler(A ) _UpperCAmelCase : List[str] = output_layers[i](output_dropout(A ) ) res.append(A ) elif self.patience == 0: # Use all layers for inference _UpperCAmelCase : Tuple = self.encoder( A , attention_mask=A , head_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _UpperCAmelCase : List[str] = self.pooler(encoder_outputs[0] ) _UpperCAmelCase : str = [output_layers[self.config.num_hidden_layers - 1](A )] else: _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _UpperCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( A , current_layer=A , attention_mask=A , head_mask=A ) _UpperCAmelCase : int = self.pooler(A ) _UpperCAmelCase : Optional[Any] = output_layers[i](A ) if regression: _UpperCAmelCase : Dict = logits.detach() if patient_result is not None: _UpperCAmelCase : Tuple = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _UpperCAmelCase : Dict = 0 else: _UpperCAmelCase : List[str] = logits.detach().argmax(dim=1 ) if patient_result is not None: _UpperCAmelCase : int = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(A ) ): patient_counter += 1 else: _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = logits if patient_counter == self.patience: break _UpperCAmelCase : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , snake_case__ , ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : List[str] , A : str ): super().__init__(A ) _UpperCAmelCase : Union[str, Any] = config.num_labels _UpperCAmelCase : int = BertModelWithPabee(A ) _UpperCAmelCase : List[str] = nn.Dropout(config.hidden_dropout_prob ) _UpperCAmelCase : Any = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(A ) def _A ( self : Union[str, Any] , A : Any=None , A : Optional[int]=None , A : str=None , A : str=None , A : Optional[Any]=None , A : int=None , A : str=None , ): _UpperCAmelCase : Any = self.bert( input_ids=A , attention_mask=A , token_type_ids=A , position_ids=A , head_mask=A , inputs_embeds=A , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _UpperCAmelCase : List[Any] = (logits[-1],) if labels is not None: _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Any = 0 for ix, logits_item in enumerate(A ): if self.num_labels == 1: # We are doing regression _UpperCAmelCase : List[Any] = MSELoss() _UpperCAmelCase : Optional[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _UpperCAmelCase : int = CrossEntropyLoss() _UpperCAmelCase : Any = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _UpperCAmelCase : Dict = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _UpperCAmelCase : List[Any] = (total_loss / total_weights,) + outputs return outputs
244
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : List[Any] = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[Any] = "mgp-str" def __init__( self : int , lowerCAmelCase : int=[32, 128] , lowerCAmelCase : str=4 , lowerCAmelCase : Optional[Any]=3 , lowerCAmelCase : str=27 , lowerCAmelCase : Dict=38 , lowerCAmelCase : str=50257 , lowerCAmelCase : List[Any]=30522 , lowerCAmelCase : Union[str, Any]=768 , lowerCAmelCase : Optional[Any]=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Optional[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Union[str, Any]=1E-5 , lowerCAmelCase : str=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=0.0 , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Union[str, Any]=0.02 , **lowerCAmelCase : int , )-> Any: """simple docstring""" super().__init__(**lowerCAmelCase ) UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = max_token_length UpperCAmelCase = num_character_labels UpperCAmelCase = num_bpe_labels UpperCAmelCase = num_wordpiece_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = mlp_ratio UpperCAmelCase = distilled UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_rate UpperCAmelCase = qkv_bias UpperCAmelCase = attn_drop_rate UpperCAmelCase = drop_path_rate UpperCAmelCase = output_aa_attentions UpperCAmelCase = initializer_range
50
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' config.addinivalue_line( '''markers''', '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''', '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''', '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''', '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''', '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''', '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase__ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(UpperCamelCase__, id=UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[int] ): '''simple docstring''' if exitstatus == 5: UpperCamelCase__ = 0 # Doctest custom flag to ignore output. lowercase = doctest.register_optionflag("""IGNORE_RESULT""") lowercase = doctest.OutputChecker class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def A_ ( self : int , _a : Any , _a : Tuple , _a : Optional[int] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _A , _A , _A ) lowercase = CustomOutputChecker lowercase = HfDoctestModule lowercase = HfDocTestParser
240
from math import isclose, sqrt def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = point_y / 4 / point_x __SCREAMING_SNAKE_CASE : int = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __SCREAMING_SNAKE_CASE : Tuple = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __SCREAMING_SNAKE_CASE : int = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __SCREAMING_SNAKE_CASE : int = outgoing_gradient**2 + 4 __SCREAMING_SNAKE_CASE : List[str] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __SCREAMING_SNAKE_CASE : Optional[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 __SCREAMING_SNAKE_CASE : str = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __SCREAMING_SNAKE_CASE : int = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __SCREAMING_SNAKE_CASE : Dict = x_minus if isclose(snake_case , snake_case ) else x_plus __SCREAMING_SNAKE_CASE : Dict = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a__ ( snake_case = 1.4 , snake_case = -9.6 ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : float = first_x_coord __SCREAMING_SNAKE_CASE : float = first_y_coord __SCREAMING_SNAKE_CASE : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = next_point(snake_case , snake_case , snake_case ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
74
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=30 , lowercase__=400 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=[0.5, 0.5, 0.5] , lowercase__=[0.5, 0.5, 0.5] , lowercase__=True , lowercase__=1 / 255 , lowercase__=True , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_pad def A ( self ) -> Any: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A ( self , lowercase__ , lowercase__=False ) -> str: """simple docstring""" if not batched: SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(lowercase__ , Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE = self.size['shortest_edge'] SCREAMING_SNAKE_CASE = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE = self.size['shortest_edge'] SCREAMING_SNAKE_CASE = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE = max(lowercase__ , key=lambda lowercase__ : item[0] )[0] SCREAMING_SNAKE_CASE = max(lowercase__ , key=lambda lowercase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Optional[int] = YolosImageProcessor if is_vision_available() else None def A ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = YolosImageProcessingTester(self ) @property def A ( self ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase__ , 'image_std' ) ) self.assertTrue(hasattr(lowercase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase__ , 'size' ) ) def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , lowercase__ ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase__ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , lowercase__ ) def A ( self ) -> Optional[Any]: """simple docstring""" pass def A ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowercase__ , batched=lowercase__ ) SCREAMING_SNAKE_CASE = image_processing(lowercase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowercase__ , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowercase__ , batched=lowercase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowercase__ , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowercase__ , batched=lowercase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE = self.image_processing_class(do_resize=lowercase__ , do_normalize=lowercase__ , do_rescale=lowercase__ ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE = image_processing_a.pad(lowercase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE = image_processing_a(lowercase__ , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1E-4 ) ) @slow def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: SCREAMING_SNAKE_CASE = json.loads(f.read() ) SCREAMING_SNAKE_CASE = {'image_id': 39769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) SCREAMING_SNAKE_CASE = image_processing(images=lowercase__ , annotations=lowercase__ , return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase__ ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase__ , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase__ ) ) # verify boxes SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase__ ) SCREAMING_SNAKE_CASE = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase__ , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase__ ) ) # verify class_labels SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase__ ) ) # verify orig_size SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase__ ) ) # verify size SCREAMING_SNAKE_CASE = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase__ ) ) @slow def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: SCREAMING_SNAKE_CASE = json.loads(f.read() ) SCREAMING_SNAKE_CASE = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} SCREAMING_SNAKE_CASE = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE = YolosImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE = image_processing(images=lowercase__ , annotations=lowercase__ , masks_path=lowercase__ , return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase__ ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase__ , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase__ ) ) # verify boxes SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase__ ) SCREAMING_SNAKE_CASE = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase__ , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase__ ) ) # verify class_labels SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase__ ) ) # verify masks SCREAMING_SNAKE_CASE = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase__ ) # verify orig_size SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase__ ) ) # verify size SCREAMING_SNAKE_CASE = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase__ ) )
406
"""simple docstring""" import random def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [], [] for element in data: if element < pivot: less.append(SCREAMING_SNAKE_CASE_ ) elif element > pivot: greater.append(SCREAMING_SNAKE_CASE_ ) else: equal.append(SCREAMING_SNAKE_CASE_ ) return less, equal, greater def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(SCREAMING_SNAKE_CASE_ ) or index < 0: return None SCREAMING_SNAKE_CASE = items[random.randint(0, len(SCREAMING_SNAKE_CASE_ ) - 1 )] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = _partition(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # must be in larger else: return quick_select(SCREAMING_SNAKE_CASE_, index - (m + count) )
406
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
377
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=9_9 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" UpperCamelCase__ : Any = parent UpperCamelCase__ : str = batch_size UpperCamelCase__ : List[Any] = seq_length UpperCamelCase__ : List[Any] = is_training UpperCamelCase__ : Any = use_input_mask UpperCamelCase__ : Dict = use_token_type_ids UpperCamelCase__ : List[str] = use_labels UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : int = num_hidden_layers UpperCamelCase__ : Union[str, Any] = num_attention_heads UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Optional[int] = hidden_act UpperCamelCase__ : Optional[Any] = hidden_dropout_prob UpperCamelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = max_position_embeddings UpperCamelCase__ : Optional[Any] = type_vocab_size UpperCamelCase__ : int = type_sequence_label_size UpperCamelCase__ : Tuple = initializer_range UpperCamelCase__ : Optional[Any] = num_labels UpperCamelCase__ : List[str] = num_choices UpperCamelCase__ : Union[str, Any] = scope def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : Tuple = None if self.use_input_mask: UpperCamelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : int = None if self.use_token_type_ids: UpperCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ : Union[str, Any] = None UpperCamelCase__ : int = None UpperCamelCase__ : Tuple = None if self.use_labels: UpperCamelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ : int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = BioGptModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : Any = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" UpperCamelCase__ : Dict = BioGptForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : str = BioGptModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # create attention mask UpperCamelCase__ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = self.seq_length // 2 UpperCamelCase__ : List[str] = 0 # first forward pass UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase__ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids UpperCamelCase__ : Tuple = ids_tensor((1,) , __SCREAMING_SNAKE_CASE ).item() + 1 UpperCamelCase__ : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) UpperCamelCase__ : int = random_other_next_tokens # append to next input_ids and attn_mask UpperCamelCase__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE )] , dim=1 , ) # get two different outputs UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] # select random slice UpperCamelCase__ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase__ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[str] = BioGptModel(config=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ).eval() UpperCamelCase__ : Union[str, Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) # first forward pass UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ ,UpperCamelCase__ : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ : Any = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase__ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ : Tuple = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] UpperCamelCase__ : int = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE )[ '''last_hidden_state''' ] # select random slice UpperCamelCase__ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[Any] = BioGptForCausalLM(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCamelCase__ : Tuple = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : str = BioGptModel(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.num_labels UpperCamelCase__ : Any = BioGptForTokenClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : int = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) , ) : List[str] = config_and_inputs UpperCamelCase__ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" UpperCamelCase__ : Dict = BioGptModelTester(self ) UpperCamelCase__ : Dict = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ : Optional[Any] = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__SCREAMING_SNAKE_CASE , gradient_checkpointing=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Dict = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCamelCase__ : Optional[Any] = '''left''' # Define PAD Token = EOS Token = 50256 UpperCamelCase__ : Optional[int] = tokenizer.eos_token UpperCamelCase__ : List[str] = model.config.eos_token_id # use different length sentences to test batching UpperCamelCase__ : Optional[int] = [ '''Hello, my dog is a little''', '''Today, I''', ] UpperCamelCase__ : Dict = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = inputs['''input_ids'''].to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = model.generate( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''].to(__SCREAMING_SNAKE_CASE ) , ) UpperCamelCase__ : int = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = model.generate(input_ids=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() UpperCamelCase__ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_length=model.config.max_length - num_paddings ) UpperCamelCase__ : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Optional[int] = BioGptModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : int = 3 UpperCamelCase__ : Tuple = input_dict['''input_ids'''] UpperCamelCase__ : List[Any] = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase__ : Optional[int] = BioGptForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : int = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : List[str] = 3 UpperCamelCase__ : List[Any] = '''multi_label_classification''' UpperCamelCase__ : List[str] = input_dict['''input_ids'''] UpperCamelCase__ : Tuple = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase__ : List[str] = BioGptForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) UpperCamelCase__ : Union[str, Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) UpperCamelCase__ : Tuple = model(__SCREAMING_SNAKE_CASE )[0] UpperCamelCase__ : Optional[Any] = 4_2_3_8_4 UpperCamelCase__ : List[Any] = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCamelCase__ : List[Any] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) UpperCamelCase__ : Dict = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = model.generate( **__SCREAMING_SNAKE_CASE , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
285
0
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def _SCREAMING_SNAKE_CASE( snake_case_ : Optional[int] ) ->Optional[int]: '''simple docstring''' # getting number of pixels in the image _lowercase , _lowercase : str = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): _lowercase : str = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image lowerCamelCase__ = imread('image_data/lena.jpg', 1) # convert to its negative lowerCamelCase__ = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
713
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): '''simple docstring''' def __init__( self : Optional[int] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[int] ) -> None: '''simple docstring''' warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
411
0
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __snake_case ( _lowercase): @slow @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) _lowerCamelCase : Optional[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) _lowerCamelCase : List[Any] = bertabert.config.encoder.vocab_size _lowerCamelCase : Optional[int] = tokenizer.sep_token_id _lowerCamelCase : Any = tokenizer.cls_token_id _lowerCamelCase : Tuple = 1_2_8 _lowerCamelCase : str = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) _lowerCamelCase : List[Any] = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) _lowerCamelCase : Union[str, Any] = train_dataset.select(range(3_2 ) ) _lowerCamelCase : Tuple = val_dataset.select(range(1_6 ) ) _lowerCamelCase : Optional[Any] = 4 def _map_to_encoder_decoder_inputs(__lowerCAmelCase : Union[str, Any] ): # Tokenizer will automatically set [BOS] <text> [EOS] _lowerCamelCase : Union[str, Any] = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__lowerCAmelCase , max_length=5_1_2 ) _lowerCamelCase : Optional[Any] = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__lowerCAmelCase , max_length=1_2_8 ) _lowerCamelCase : Union[str, Any] = inputs.input_ids _lowerCamelCase : Dict = inputs.attention_mask _lowerCamelCase : Union[str, Any] = outputs.input_ids _lowerCamelCase : Optional[int] = outputs.input_ids.copy() _lowerCamelCase : List[str] = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] _lowerCamelCase : List[Any] = outputs.attention_mask assert all(len(__lowerCAmelCase ) == 5_1_2 for x in inputs.input_ids ) assert all(len(__lowerCAmelCase ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCAmelCase : List[str] ): _lowerCamelCase : Union[str, Any] = pred.label_ids _lowerCamelCase : List[Any] = pred.predictions # all unnecessary tokens are removed _lowerCamelCase : Optional[int] = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) _lowerCamelCase : List[str] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCAmelCase ) )] ) / len(__lowerCAmelCase ) return {"accuracy": accuracy} # map train dataset _lowerCamelCase : Optional[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCAmelCase , batch_size=__lowerCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset _lowerCamelCase : Union[str, Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCAmelCase , batch_size=__lowerCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) _lowerCamelCase : Any = self.get_auto_remove_tmp_dir() _lowerCamelCase : Dict = SeqaSeqTrainingArguments( output_dir=__lowerCAmelCase , per_device_train_batch_size=__lowerCAmelCase , per_device_eval_batch_size=__lowerCAmelCase , predict_with_generate=__lowerCAmelCase , evaluation_strategy='''steps''' , do_train=__lowerCAmelCase , do_eval=__lowerCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _lowerCamelCase : Optional[Any] = SeqaSeqTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) # start training trainer.train()
83
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowercase = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __A : UpperCamelCase :Dict = PegasusConfig UpperCamelCase :Dict = {} UpperCamelCase :Union[str, Any] = '''gelu''' def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=False , __magic_name__=99 , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=20 , __magic_name__=2 , __magic_name__=1 , __magic_name__=0 , ): lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : str = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : str = is_training lowerCamelCase__ : int = use_labels lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : int = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : int = eos_token_id lowerCamelCase__ : Tuple = pad_token_id lowerCamelCase__ : List[str] = bos_token_id def _snake_case (self ): lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowerCamelCase__ : Any = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__ : Any = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase__ : Dict = prepare_pegasus_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ ) return config, inputs_dict def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Optional[int] = 20 lowerCamelCase__ : str = model_class_name(__magic_name__ ) lowerCamelCase__ : List[str] = model.encode(inputs_dict["""input_ids"""] ) lowerCamelCase__ ,lowerCamelCase__ : List[Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCamelCase__ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , __magic_name__ , __magic_name__ ) lowerCamelCase__ : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCamelCase__ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__ : str = model.decode( decoder_input_ids[:, :-1] , __magic_name__ , decoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , decoder_position_ids=__magic_name__ , ) lowerCamelCase__ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCamelCase__ : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , __magic_name__ , decoder_attention_mask=__magic_name__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__magic_name__ , ) lowerCamelCase__ : Dict = model.decode(__magic_name__ , __magic_name__ ) lowerCamelCase__ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase__ : List[str] = 20 lowerCamelCase__ : Optional[int] = model_class_name(__magic_name__ ) lowerCamelCase__ : List[Any] = model.encode(inputs_dict["""input_ids"""] ) lowerCamelCase__ ,lowerCamelCase__ : Optional[int] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCamelCase__ : str = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCamelCase__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , __magic_name__ , __magic_name__ ) lowerCamelCase__ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__ : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , __magic_name__ , decoder_attention_mask=__magic_name__ , past_key_values=__magic_name__ , decoder_position_ids=__magic_name__ , ) lowerCamelCase__ : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCamelCase__ : str = model.decode( decoder_input_ids[:, -1:] , __magic_name__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__magic_name__ , decoder_position_ids=__magic_name__ , ) lowerCamelCase__ : Optional[int] = model.decode(__magic_name__ , __magic_name__ , decoder_attention_mask=__magic_name__ ) lowerCamelCase__ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def _A (UpperCamelCase : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : List[str]=None , UpperCamelCase : List[str]=None , ) ->Optional[Any]: '''simple docstring''' if attention_mask is None: lowerCamelCase__ : List[Any] = np.not_equal(UpperCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowerCamelCase__ : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __A ( A_ , unittest.TestCase ): UpperCamelCase :int = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCamelCase :int = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCamelCase :Union[str, Any] = True UpperCamelCase :Optional[int] = False UpperCamelCase :Optional[Any] = False UpperCamelCase :List[str] = False def _snake_case (self ): lowerCamelCase__ : Dict = FlaxPegasusModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__magic_name__ ) def _snake_case (self ): self.config_tester.run_common_tests() def _snake_case (self ): lowerCamelCase__ ,lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__magic_name__ , __magic_name__ , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ ,lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__magic_name__ , __magic_name__ , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ ,lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Any = self._prepare_for_class(__magic_name__ , __magic_name__ ) lowerCamelCase__ : Optional[Any] = model_class(__magic_name__ ) @jax.jit def encode_jitted(__magic_name__ , __magic_name__=None , **__magic_name__ ): return model.encode(input_ids=__magic_name__ , attention_mask=__magic_name__ ) with self.subTest("""JIT Enabled""" ): lowerCamelCase__ : str = encode_jitted(**__magic_name__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCamelCase__ : Optional[Any] = encode_jitted(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) ) for jitted_output, output in zip(__magic_name__ , __magic_name__ ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case (self ): lowerCamelCase__ ,lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Tuple = model_class(__magic_name__ ) lowerCamelCase__ : Any = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) lowerCamelCase__ : str = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(__magic_name__ , __magic_name__ , __magic_name__ ): return model.decode( decoder_input_ids=__magic_name__ , decoder_attention_mask=__magic_name__ , encoder_outputs=__magic_name__ , ) with self.subTest("""JIT Enabled""" ): lowerCamelCase__ : int = decode_jitted(**__magic_name__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCamelCase__ : Optional[int] = decode_jitted(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) ) for jitted_output, output in zip(__magic_name__ , __magic_name__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _snake_case (self ): for model_class_name in self.all_model_classes: lowerCamelCase__ : Tuple = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__magic_name__ ) lowerCamelCase__ : List[Any] = np.ones((1, 1) ) lowerCamelCase__ : Optional[int] = model(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @slow def _snake_case (self ): lowerCamelCase__ : str = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) lowerCamelCase__ : Any = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) lowerCamelCase__ : List[Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowerCamelCase__ : str = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowerCamelCase__ : Optional[Any] = tokenizer(__magic_name__ , return_tensors="""np""" , truncation=__magic_name__ , max_length=512 , padding=__magic_name__ ) lowerCamelCase__ : Union[str, Any] = model.generate(**__magic_name__ , num_beams=2 ).sequences lowerCamelCase__ : List[Any] = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) assert tgt_text == decoded
157
0
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : Optional[int] ): """simple docstring""" _a = nn.functional.normalize(_lowerCAmelCase ) _a = nn.functional.normalize(_lowerCAmelCase ) return torch.mm(_lowerCAmelCase, normalized_text_embeds.t() ) class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Union[str, Any] = CLIPConfig A_ : Optional[Any] = ['CLIPEncoderLayer'] def __init__( self , __UpperCAmelCase ) -> List[Any]: super().__init__(__UpperCAmelCase ) _a = CLIPVisionModel(config.vision_config ) _a = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__UpperCAmelCase ) _a = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__UpperCAmelCase ) _a = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__UpperCAmelCase ) _a = nn.Parameter(torch.ones(17 ) , requires_grad=__UpperCAmelCase ) _a = nn.Parameter(torch.ones(3 ) , requires_grad=__UpperCAmelCase ) @torch.no_grad() def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: _a = self.vision_model(__UpperCAmelCase )[1] # pooled_output _a = self.visual_projection(__UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _a = cosine_distance(__UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _a = cosine_distance(__UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _a = [] _a = image_embeds.shape[0] for i in range(__UpperCAmelCase ): _a = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _a = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _a = special_cos_dist[i][concept_idx] _a = self.special_care_embeds_weights[concept_idx].item() _a = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) _a = 0.01 for concept_idx in range(len(cos_dist[0] ) ): _a = cos_dist[i][concept_idx] _a = self.concept_embeds_weights[concept_idx].item() _a = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__UpperCAmelCase ) result.append(__UpperCAmelCase ) _a = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: _a = self.vision_model(__UpperCAmelCase )[1] # pooled_output _a = self.visual_projection(__UpperCAmelCase ) _a = cosine_distance(__UpperCAmelCase , self.special_care_embeds ) _a = cosine_distance(__UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _a = 0.0 _a = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _a = torch.any(special_scores > 0 , dim=1 ) _a = special_care * 0.01 _a = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _a = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _a = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
285
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
285
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = CTRLTokenizer _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def lowerCAmelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] snake_case_ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) snake_case_ = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] snake_case_ = {"unk_token": "<unk>"} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_lowerCAmelCase ) ) def lowerCAmelCase__ ( self : int , **_lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" snake_case_ = "adapt react readapt apt" snake_case_ = "adapt react readapt apt" return input_text, output_text def lowerCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" snake_case_ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ = "adapt react readapt apt" snake_case_ = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() snake_case_ = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) snake_case_ = tokens + [tokenizer.unk_token] snake_case_ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase )
283
from collections import deque from .hash_table import HashTable class __lowerCAmelCase ( a ): """simple docstring""" def __init__( self : int , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_lowerCAmelCase ) snake_case_ = self.values[key] def lowerCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return ( sum(self.charge_factor - len(_lowerCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCAmelCase__ ( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str]=None ) -> int: """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_lowerCAmelCase ) == 0 ): return key return super()._collision_resolution(_lowerCAmelCase , _lowerCAmelCase )
283
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal UpperCamelCase__ = datasets.utils.logging.get_logger(__name__) UpperCamelCase__ = ['''names''', '''prefix'''] UpperCamelCase__ = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] UpperCamelCase__ = ['''encoding_errors''', '''on_bad_lines'''] UpperCamelCase__ = ['''date_format'''] @dataclass class lowerCamelCase_ ( datasets.BuilderConfig ): lowerCAmelCase__ = "," lowerCAmelCase__ = None lowerCAmelCase__ = "infer" lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = False lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = None lowerCAmelCase__ = "." lowerCAmelCase__ = None lowerCAmelCase__ = '"' lowerCAmelCase__ = 0 lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = None lowerCAmelCase__ = 1_0_0_0_0 lowerCAmelCase__ = None lowerCAmelCase__ = "strict" lowerCAmelCase__ = "error" lowerCAmelCase__ = None def lowercase_ ( self : Optional[int] ): '''simple docstring''' if self.delimiter is not None: UpperCAmelCase__ : Optional[int] = self.delimiter if self.column_names is not None: UpperCAmelCase__ : Any = self.column_names @property def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _A ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowerCamelCase_ ( datasets.ArrowBasedBuilder ): lowerCAmelCase__ = CsvConfig def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowercase_ ( self : Dict , _A : int ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCAmelCase__ : Optional[int] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A , (str, list, tuple) ): UpperCAmelCase__ : List[str] = data_files if isinstance(_A , _A ): UpperCAmelCase__ : List[Any] = [files] UpperCAmelCase__ : str = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] UpperCAmelCase__ : Dict = [] for split_name, files in data_files.items(): if isinstance(_A , _A ): UpperCAmelCase__ : Union[str, Any] = [files] UpperCAmelCase__ : Union[str, Any] = [dl_manager.iter_files(_A ) for file in files] splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'''files''': files} ) ) return splits def lowercase_ ( self : Optional[Any] , _A : pa.Table ): '''simple docstring''' if self.config.features is not None: UpperCAmelCase__ : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(_A ) for feature in self.config.features.values() ): # cheaper cast UpperCAmelCase__ : Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_A ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCAmelCase__ : Any = table_cast(_A , _A ) return pa_table def lowercase_ ( self : int , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCAmelCase__ : str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_A ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_A ) ): UpperCAmelCase__ : Union[str, Any] = pd.read_csv(_A , iterator=_A , dtype=_A , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_A ): UpperCAmelCase__ : List[Any] = pa.Table.from_pandas(_A ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_A ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(_A )}: {e}""" ) raise
312
'''simple docstring''' # Imports import numpy as np class lowerCamelCase_ : def __init__( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Any=None , _A : Dict=None , _A : Any=None ): '''simple docstring''' self.set_matricies(red=_A , green=_A , blue=_A , red_edge=_A , nir=_A ) def lowercase_ ( self : Optional[Any] , _A : Tuple=None , _A : Optional[int]=None , _A : Any=None , _A : Optional[int]=None , _A : int=None ): '''simple docstring''' if red is not None: UpperCAmelCase__ : str = red if green is not None: UpperCAmelCase__ : List[Any] = green if blue is not None: UpperCAmelCase__ : int = blue if red_edge is not None: UpperCAmelCase__ : Any = red_edge if nir is not None: UpperCAmelCase__ : str = nir return True def lowercase_ ( self : Union[str, Any] , _A : int="" , _A : List[str]=None , _A : Optional[Any]=None , _A : List[str]=None , _A : Union[str, Any]=None , _A : Optional[Any]=None ): '''simple docstring''' self.set_matricies(red=_A , green=_A , blue=_A , red_edge=_A , nir=_A ) UpperCAmelCase__ : List[Any] = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def lowercase_ ( self : List[str] ): '''simple docstring''' return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return self.nir * (self.red / (self.green**2)) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def lowercase_ ( self : List[Any] ): '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def lowercase_ ( self : Any ): '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def lowercase_ ( self : List[Any] ): '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def lowercase_ ( self : Any ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def lowercase_ ( self : Tuple ): '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def lowercase_ ( self : str ): '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def lowercase_ ( self : List[Any] ): '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def lowercase_ ( self : Optional[Any] , _A : Tuple=0.0_8 , _A : Optional[Any]=1.2_2 , _A : Optional[Any]=0.0_3 ): '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def lowercase_ ( self : Dict ): '''simple docstring''' return (self.nir / self.green) - 1 def lowercase_ ( self : List[Any] ): '''simple docstring''' return (self.nir / self.redEdge) - 1 def lowercase_ ( self : Optional[int] ): '''simple docstring''' return (self.red - self.blue) / self.red def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def lowercase_ ( self : Dict ): '''simple docstring''' return self.nir - self.green def lowercase_ ( self : Dict ): '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def lowercase_ ( self : Optional[int] , _A : Dict=0.1_6 ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def lowercase_ ( self : str , _A : Optional[Any]=0.5 ): '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def lowercase_ ( self : Optional[Any] , _A : List[str]=None , _A : Optional[int]=None ): '''simple docstring''' return (self.nir - b) / (a * self.red) def lowercase_ ( self : List[Any] ): '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def lowercase_ ( self : int ): '''simple docstring''' return (self.red + self.green + self.blue) / 3_0.5 def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return self.nir / self.red def lowercase_ ( self : Any ): '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def lowercase_ ( self : Dict ): '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def lowercase_ ( self : int ): '''simple docstring''' return self.green / (self.nir + self.red + self.green) def lowercase_ ( self : int ): '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return self.red / (self.nir + self.red + self.green) def lowercase_ ( self : str ): '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def lowercase_ ( self : int ): '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCAmelCase__ : Tuple = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def lowercase_ ( self : Dict ): '''simple docstring''' return self.nir / self.red def lowercase_ ( self : Optional[int] ): '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
312
1
"""simple docstring""" A : Any = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A : int = [{'type': 'code', 'content': INSTALL_CONTENT}] A : List[str] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
636
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowercase_ : _lowerCamelCase = LEDConfig _lowerCamelCase = {} _lowerCamelCase = 'gelu' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=99 , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=20 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=4 , ): _snake_case : Optional[int] = parent _snake_case : str = batch_size _snake_case : int = seq_length _snake_case : Dict = is_training _snake_case : Optional[Any] = use_labels _snake_case : Tuple = vocab_size _snake_case : str = hidden_size _snake_case : int = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : int = intermediate_size _snake_case : List[str] = hidden_dropout_prob _snake_case : List[Any] = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : Union[str, Any] = eos_token_id _snake_case : str = pad_token_id _snake_case : Any = bos_token_id _snake_case : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : List[Any] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : List[str] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCamelCase ( self ): _snake_case : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Any = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[str] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Optional[Any] = prepare_led_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) _snake_case : int = tf.concat( [tf.zeros_like(lowercase_ )[:, :-1], tf.ones_like(lowercase_ )[:, -1:]] , axis=-1 , ) _snake_case : List[Any] = global_attention_mask return config, inputs_dict def UpperCamelCase ( self , lowercase_ , lowercase_ ): _snake_case : Dict = TFLEDModel(config=lowercase_ ).get_decoder() _snake_case : Optional[Any] = inputs_dict["input_ids"] _snake_case : Optional[int] = input_ids[:1, :] _snake_case : int = inputs_dict["attention_mask"][:1, :] _snake_case : int = 1 # first forward pass _snake_case : str = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) _snake_case ,_snake_case : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[str] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : str = model(lowercase_ , attention_mask=lowercase_ )[0] _snake_case : List[str] = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : List[str] = output_from_no_past[:, -3:, random_slice_idx] _snake_case : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) def snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: _snake_case : int = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowercase_ ( __snake_case , __snake_case , unittest.TestCase ): _lowerCamelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCamelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCamelCase ( self ): _snake_case : Optional[Any] = TFLEDModelTester(self ) _snake_case : List[Any] = ConfigTester(self , config_class=lowercase_ ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def UpperCamelCase ( self ): _snake_case ,_snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = tf.zeros_like(inputs_dict["attention_mask"] ) _snake_case : Tuple = 2 _snake_case : Dict = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) _snake_case : Tuple = True _snake_case : Union[str, Any] = self.model_tester.seq_length _snake_case : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase_ ): _snake_case : Optional[Any] = outputs.decoder_attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase_ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Optional[int] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Any = False _snake_case : Any = model_class(lowercase_ ) _snake_case : Union[str, Any] = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) _snake_case : Tuple = len(lowercase_ ) self.assertEqual(config.output_hidden_states , lowercase_ ) check_encoder_attentions_output(lowercase_ ) if self.is_encoder_decoder: _snake_case : int = model_class(lowercase_ ) _snake_case : Union[str, Any] = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(config.output_hidden_states , lowercase_ ) check_decoder_attentions_output(lowercase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : List[Any] = True _snake_case : Any = model_class(lowercase_ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(config.output_hidden_states , lowercase_ ) check_encoder_attentions_output(lowercase_ ) # Check attention is always last and order is fine _snake_case : Optional[int] = True _snake_case : Optional[int] = True _snake_case : List[Any] = model_class(lowercase_ ) _snake_case : Union[str, Any] = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase_ ) ) self.assertEqual(model.config.output_hidden_states , lowercase_ ) check_encoder_attentions_output(lowercase_ ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): # TODO: Head-masking not yet implement pass def snake_case (__lowercase ) -> Optional[Any]: '''simple docstring''' return tf.constant(__lowercase , dtype=tf.intaa ) __SCREAMING_SNAKE_CASE : List[Any] = 1E-4 @slow @require_tf class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self ): _snake_case : Dict = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _snake_case : Union[str, Any] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Optional[int] = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Union[str, Any] = prepare_led_inputs_dict(model.config , lowercase_ , lowercase_ ) _snake_case : Optional[Any] = model(**lowercase_ )[0] _snake_case : str = (1, 1_024, 768) self.assertEqual(output.shape , lowercase_ ) # change to expected output here _snake_case : Optional[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1e-3 ) def UpperCamelCase ( self ): _snake_case : List[Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _snake_case : int = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : int = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Optional[Any] = prepare_led_inputs_dict(model.config , lowercase_ , lowercase_ ) _snake_case : Tuple = model(**lowercase_ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase_ ) # change to expected output here _snake_case : Optional[int] = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1e-3 , rtol=1e-3 )
670
0
"""simple docstring""" from __future__ import annotations __lowerCAmelCase : int = "Muhammad Umer Farooq" __lowerCAmelCase : str = "MIT" __lowerCAmelCase : str = "1.0.0" __lowerCAmelCase : int = "Muhammad Umer Farooq" __lowerCAmelCase : Tuple = "contact@muhammadumerfarooq.me" __lowerCAmelCase : Dict = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class a_ ( _UpperCamelCase ): def __init__( self : List[Any] , snake_case__ : str ): super().__init__() lowerCAmelCase__ = [] lowerCAmelCase__ = domain def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : str , snake_case__ : list[tuple[str, str | None]] ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: lowerCAmelCase__ = parse.urljoin(self.domain , __a ) self.urls.append(__a ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return ".".join(get_sub_domain_name(lowercase_ ).split(""".""" )[-2:] ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return parse.urlparse(lowercase_ ).netloc def _UpperCAmelCase ( lowerCamelCase__ = "https://github.com" ): """simple docstring""" lowerCAmelCase__ = get_domain_name(lowercase_ ) # Initialize the parser lowerCAmelCase__ = Parser(lowercase_ ) try: # Open URL lowerCAmelCase__ = requests.get(lowercase_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through lowerCAmelCase__ = set() for link in parser.urls: # open URL. # read = requests.get(link) try: lowerCAmelCase__ = requests.get(lowercase_ ) # Get the valid email. lowerCAmelCase__ = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowercase_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowercase_ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = emails_from_url("https://github.com") print(F"{len(emails)} emails found:") print("\n".join(sorted(emails)))
707
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : List[str] = ShapEPipeline A_ : Dict = ['prompt'] A_ : Dict = ['prompt'] A_ : Union[str, Any] = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] A_ : List[Any] = False @property def __UpperCamelCase ( self : int ) -> str: return 32 @property def __UpperCamelCase ( self : Tuple ) -> Optional[int]: return 32 @property def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: return self.time_input_dim * 4 @property def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: return 8 @property def __UpperCamelCase ( self : List[str] ) -> Dict: A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(__UpperCamelCase ) @property def __UpperCamelCase ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) A = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } A = PriorTransformer(**__UpperCamelCase ) return model @property def __UpperCamelCase ( self : Any ) -> str: torch.manual_seed(0 ) A = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } A = ShapERenderer(**__UpperCamelCase ) return model def __UpperCamelCase ( self : List[str] ) -> int: A = self.dummy_prior A = self.dummy_text_encoder A = self.dummy_tokenizer A = self.dummy_renderer A = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=__UpperCamelCase , clip_sample=__UpperCamelCase , clip_sample_range=1.0 , ) A = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict=0 ) -> Any: if str(__UpperCamelCase ).startswith('mps' ): A = torch.manual_seed(__UpperCamelCase ) else: A = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) A = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: A = 'cpu' A = self.get_dummy_components() A = self.pipeline_class(**__UpperCamelCase ) A = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) A = output.images[0] A = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : Tuple ) -> Optional[int]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __UpperCamelCase ( self : List[Any] ) -> str: A = torch_device == 'cpu' A = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__UpperCamelCase , relax_max_difference=__UpperCamelCase , ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: A = self.get_dummy_components() A = self.pipeline_class(**__UpperCamelCase ) A = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = 1 A = 2 A = self.get_dummy_inputs(__UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: A = batch_size * [inputs[key]] A = pipe(**__UpperCamelCase , num_images_per_prompt=__UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Any ) -> int: A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) A = ShapEPipeline.from_pretrained('openai/shap-e' ) A = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) A = pipe( 'a shark' , generator=__UpperCamelCase , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
106
from bisect import bisect from itertools import accumulate def lowerCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' A = sorted(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , key=lambda lowerCAmelCase__ : x[0] / x[1] , reverse=lowerCAmelCase__ ) A , A = [i[0] for i in r], [i[1] for i in r] A = list(accumulate(lowerCAmelCase__ ) ) A = bisect(lowerCAmelCase__ , lowerCAmelCase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
106
1
"""simple docstring""" def __lowercase ( a : int ) -> str: if isinstance(a , a ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(a , a ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" __snake_case : int =False if num < 0: __snake_case : List[Any] =True __snake_case : List[str] =-num __snake_case : list[int] =[] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(a ) for e in binary ) return "0b" + "".join(str(a ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ : Dict = logging.get_logger(__name__) UpperCamelCase_ : Dict = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class _lowercase ( lowerCAmelCase ): _a : Union[str, Any] = '''xmod''' def __init__( self : Optional[int] , a : Dict=3_0_5_2_2 , a : Any=7_6_8 , a : str=1_2 , a : Optional[int]=1_2 , a : Any=3_0_7_2 , a : int="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=5_1_2 , a : str=2 , a : Any=0.0_2 , a : Tuple=1e-12 , a : Optional[int]=1 , a : Any=0 , a : str=2 , a : str="absolute" , a : List[Any]=True , a : Optional[Any]=None , a : Tuple=False , a : Union[str, Any]=2 , a : Any=False , a : Dict=True , a : int=True , a : str=("en_XX",) , a : Dict=None , **a : Tuple , ): """simple docstring""" super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) __snake_case : Union[str, Any] =vocab_size __snake_case : Union[str, Any] =hidden_size __snake_case : int =num_hidden_layers __snake_case : Union[str, Any] =num_attention_heads __snake_case : Any =hidden_act __snake_case : Tuple =intermediate_size __snake_case : int =hidden_dropout_prob __snake_case : str =attention_probs_dropout_prob __snake_case : int =max_position_embeddings __snake_case : Tuple =type_vocab_size __snake_case : Union[str, Any] =initializer_range __snake_case : Dict =layer_norm_eps __snake_case : Optional[int] =position_embedding_type __snake_case : int =use_cache __snake_case : int =classifier_dropout __snake_case : int =pre_norm __snake_case : Any =adapter_reduction_factor __snake_case : str =adapter_layer_norm __snake_case : Union[str, Any] =adapter_reuse_layer_norm __snake_case : List[str] =ln_before_adapter __snake_case : Optional[int] =list(a ) __snake_case : int =default_language class _lowercase ( lowerCAmelCase ): @property def _UpperCamelCase ( self : Dict ): """simple docstring""" if self.task == "multiple-choice": __snake_case : Tuple ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __snake_case : Tuple ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
497
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
494
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __a = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple, a_: str ): _UpperCAmelCase : Any = state_dict.pop(a_ ) _UpperCAmelCase : Any = val def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : Optional[int] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _UpperCAmelCase : List[str] = key.replace("backbone.0.body", "backbone.conv_encoder.model" ) _UpperCAmelCase : Tuple = value else: _UpperCAmelCase : List[Any] = value return new_state_dict def __UpperCAmelCase ( a_: List[Any] ): _UpperCAmelCase : Any = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCAmelCase : Dict = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _UpperCAmelCase : Dict = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Union[str, Any] = in_proj_weight[:256, :] _UpperCAmelCase : List[str] = in_proj_bias[:256] _UpperCAmelCase : List[Any] = in_proj_weight[256:512, :] _UpperCAmelCase : Any = in_proj_bias[256:512] _UpperCAmelCase : Dict = in_proj_weight[-256:, :] _UpperCAmelCase : List[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCAmelCase : List[str] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _UpperCAmelCase : Dict = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = in_proj_weight[:256, :] _UpperCAmelCase : Union[str, Any] = in_proj_bias[:256] _UpperCAmelCase : int = in_proj_weight[256:512, :] _UpperCAmelCase : Any = in_proj_bias[256:512] _UpperCAmelCase : Tuple = in_proj_weight[-256:, :] _UpperCAmelCase : str = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _UpperCAmelCase : Optional[int] = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) _UpperCAmelCase : Dict = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCAmelCase : Dict = in_proj_weight_cross_attn[:256, :] _UpperCAmelCase : List[Any] = in_proj_bias_cross_attn[:256] _UpperCAmelCase : Tuple = in_proj_weight_cross_attn[256:512, :] _UpperCAmelCase : Any = in_proj_bias_cross_attn[256:512] _UpperCAmelCase : str = in_proj_weight_cross_attn[-256:, :] _UpperCAmelCase : Tuple = in_proj_bias_cross_attn[-256:] def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int] ): _UpperCAmelCase , _UpperCAmelCase : List[Any] = image.size _UpperCAmelCase : List[Any] = max(a_, a_ ) _UpperCAmelCase : Optional[int] = 800 if "detection" in checkpoint_url else 1_000 _UpperCAmelCase : str = target_max_size / current_max_size _UpperCAmelCase : Dict = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : Optional[Any] = F.to_tensor(a_ ) _UpperCAmelCase : Optional[int] = F.normalize(a_, mean=[0.4_85, 0.4_56, 0.4_06], std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def __UpperCAmelCase ( a_: List[Any], a_: Optional[Any], a_: Union[str, Any] ): logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Optional[Any] = torch.hub.load_state_dict_from_url(a_, map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(a_, a_, a_ ) _UpperCAmelCase : List[str] = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCAmelCase : Union[str, Any] = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): _UpperCAmelCase : Optional[int] = state_dict.pop(a_ ) _UpperCAmelCase : Any = val # create HuggingFace model and load state dict _UpperCAmelCase : str = TableTransformerConfig( backbone="resnet18", mask_loss_coefficient=1, dice_loss_coefficient=1, ce_loss_coefficient=1, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.4, class_cost=1, bbox_cost=5, giou_cost=2, ) if "detection" in checkpoint_url: _UpperCAmelCase : Optional[Any] = 15 _UpperCAmelCase : Optional[int] = 2 _UpperCAmelCase : Any = {0: "table", 1: "table rotated"} _UpperCAmelCase : Union[str, Any] = idalabel _UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} else: _UpperCAmelCase : List[str] = 125 _UpperCAmelCase : str = 6 _UpperCAmelCase : Tuple = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } _UpperCAmelCase : Tuple = idalabel _UpperCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : Optional[int] = DetrImageProcessor( format="coco_detection", max_size=800 if "detection" in checkpoint_url else 1_000 ) _UpperCAmelCase : int = TableTransformerForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() # verify our conversion _UpperCAmelCase : Optional[Any] = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" _UpperCAmelCase : Tuple = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename=a_ ) _UpperCAmelCase : Optional[int] = Image.open(a_ ).convert("RGB" ) _UpperCAmelCase : Tuple = normalize(resize(a_, a_ ) ).unsqueeze(0 ) _UpperCAmelCase : List[str] = model(a_ ) if "detection" in checkpoint_url: _UpperCAmelCase : Any = (1, 15, 3) _UpperCAmelCase : Optional[int] = torch.tensor( [[-6.78_97, -16.99_85, 6.79_37], [-8.01_86, -22.21_92, 6.96_77], [-7.31_17, -21.07_08, 7.40_55]] ) _UpperCAmelCase : int = torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: _UpperCAmelCase : List[Any] = (1, 125, 7) _UpperCAmelCase : Any = torch.tensor( [[-18.14_30, -8.32_14, 4.82_74], [-18.46_85, -7.13_61, -4.26_67], [-26.36_93, -9.34_29, -4.99_62]] ) _UpperCAmelCase : List[Any] = torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3], a_, atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) _UpperCAmelCase : Optional[int] = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(a_ ) image_processor.push_to_hub(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
494
1
def UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = [0 for i in range(r + 1 )] # nc0 = 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. SCREAMING_SNAKE_CASE__ : Optional[int] = min(_lowerCamelCase , _lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
26
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( lowercase__ ): """simple docstring""" snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "CLIPImageProcessor" snake_case_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Any , a : List[Any]=None , a : Any=None , **a : int ) ->int: SCREAMING_SNAKE_CASE__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a , ) SCREAMING_SNAKE_CASE__ : List[Any] = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a , a ) def __call__( self : Tuple , a : Tuple=None , a : Union[str, Any]=None , a : List[str]=None , **a : Optional[Any] ) ->Optional[Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE__ : str = self.tokenizer(a , return_tensors=a , **a ) if images is not None: SCREAMING_SNAKE_CASE__ : int = self.image_processor(a , return_tensors=a , **a ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def A_ ( self : Optional[int] , *a : Any , **a : List[str] ) ->Any: return self.tokenizer.batch_decode(*a , **a ) def A_ ( self : Any , *a : Optional[int] , **a : Dict ) ->Any: return self.tokenizer.decode(*a , **a ) @property def A_ ( self : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A_ ( self : Optional[int] ) ->List[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a , ) return self.image_processor_class @property def A_ ( self : Dict ) ->str: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a , ) return self.image_processor
26
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() a = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] a = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowercase_ = int(re.match(r""".*layer_(\d*).*""" , SCREAMING_SNAKE_CASE_ )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def UpperCAmelCase_ ( UpperCAmelCase__ ): if dtype == torch.bool: return 1 / 8 lowercase_ = re.search(r"""[^\d](\d+)$""" , str(SCREAMING_SNAKE_CASE_ ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) lowercase_ = int(bit_search.groups()[0] ) return bit_size // 8 def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if bloom_config_file == "": lowercase_ = BloomConfig() else: lowercase_ = BloomConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) if shard_model: lowercase_ = os.listdir(SCREAMING_SNAKE_CASE_ ) lowercase_ = sorted(filter(lambda UpperCAmelCase__ : s.startswith("""layer""" ) and "model_00" in s , SCREAMING_SNAKE_CASE_ ) ) lowercase_ = {"""weight_map""": {}, """metadata""": {}} lowercase_ = 0 lowercase_ = None lowercase_ = BloomConfig() for j, file in enumerate(SCREAMING_SNAKE_CASE_ ): print("""Processing file: {}""".format(SCREAMING_SNAKE_CASE_ ) ) lowercase_ = None for i in range(SCREAMING_SNAKE_CASE_ ): # load all TP files lowercase_ = file.replace("""model_00""" , F'''model_0{i}''' ) lowercase_ = torch.load(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , map_location="""cpu""" ) # Rename keys in the transformers names lowercase_ = list(temp.keys() ) for key in keys: lowercase_ = temp.pop(SCREAMING_SNAKE_CASE_ ) if tensors is None: lowercase_ = temp else: for key in tensors.keys(): if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowercase_ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowercase_ = torch.cat([tensors[key], temp[key]] , dim=SCREAMING_SNAKE_CASE_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowercase_ = tensors[key] / pretraining_tp torch.save( SCREAMING_SNAKE_CASE_ , os.path.join( SCREAMING_SNAKE_CASE_ , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(SCREAMING_SNAKE_CASE_ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowercase_ = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowercase_ = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(SCREAMING_SNAKE_CASE_ ) ).zfill(5 ) ) lowercase_ = BloomConfig() lowercase_ = pytorch_dump_folder_path + """/""" + CONFIG_NAME lowercase_ = total_size with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: lowercase_ = json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ ) + """\n""" f.write(SCREAMING_SNAKE_CASE_ ) else: lowercase_ = BloomModel(SCREAMING_SNAKE_CASE_ ) lowercase_ = os.listdir(SCREAMING_SNAKE_CASE_ ) lowercase_ = sorted(filter(lambda UpperCAmelCase__ : s.startswith("""layer""" ) and "model_00" in s , SCREAMING_SNAKE_CASE_ ) ) lowercase_ = None for i, file in enumerate(SCREAMING_SNAKE_CASE_ ): lowercase_ = None for i in range(SCREAMING_SNAKE_CASE_ ): # load all TP files lowercase_ = file.replace("""model_00""" , F'''model_0{i}''' ) lowercase_ = torch.load(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , map_location="""cpu""" ) # Rename keys in the transformers names lowercase_ = list(temp.keys() ) for key in keys: lowercase_ = temp.pop(SCREAMING_SNAKE_CASE_ ) if tensors is None: lowercase_ = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowercase_ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowercase_ = torch.cat([tensors[key], temp[key]] , dim=SCREAMING_SNAKE_CASE_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowercase_ = tensors[key] / pretraining_tp lowercase_ = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: lowercase_ = set(other_keys.missing_keys ) else: lowercase_ = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) lowercase_ = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowercase_ = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: lowercase_ = model.to(config.torch_dtype ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) a = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
412
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" _SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def _snake_case ( self ) -> Tuple: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]: _lowerCAmelCase = mean_squared_error( _lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase ) return {"mse": mse}
18
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" for attribute in key.split(""".""" ): lowerCAmelCase__ : str = getattr(UpperCamelCase , UpperCamelCase ) if weight_type is not None: lowerCAmelCase__ : Optional[Any] = getattr(UpperCamelCase , UpperCamelCase ).shape else: lowerCAmelCase__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ : List[str] = value elif weight_type == "weight_g": lowerCAmelCase__ : str = value elif weight_type == "weight_v": lowerCAmelCase__ : List[str] = value elif weight_type == "bias": lowerCAmelCase__ : int = value elif weight_type == "running_mean": lowerCAmelCase__ : int = value elif weight_type == "running_var": lowerCAmelCase__ : str = value elif weight_type == "num_batches_tracked": lowerCAmelCase__ : List[Any] = value elif weight_type == "inv_freq": lowerCAmelCase__ : Dict = value else: lowerCAmelCase__ : Dict = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : str = fairseq_model.state_dict() lowerCAmelCase__ : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ : str = False if "conv_layers" in name: load_conv_layer( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase__ : List[str] = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ : str = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCAmelCase__ : List[str] = True if "*" in mapped_key: lowerCAmelCase__ : Any = name.split(UpperCamelCase )[0].split(""".""" )[-2] lowerCAmelCase__ : List[str] = mapped_key.replace("""*""" , UpperCamelCase ) if "pos_bias_u" in name: lowerCAmelCase__ : Dict = None elif "pos_bias_v" in name: lowerCAmelCase__ : Union[str, Any] = None elif "weight_g" in name: lowerCAmelCase__ : Tuple = """weight_g""" elif "weight_v" in name: lowerCAmelCase__ : str = """weight_v""" elif "bias" in name: lowerCAmelCase__ : str = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ : int = """weight""" elif "running_mean" in name: lowerCAmelCase__ : str = """running_mean""" elif "inv_freq" in name: lowerCAmelCase__ : int = """inv_freq""" elif "running_var" in name: lowerCAmelCase__ : Optional[int] = """running_var""" elif "num_batches_tracked" in name: lowerCAmelCase__ : Tuple = """num_batches_tracked""" else: lowerCAmelCase__ : Any = None set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) continue if not is_used: unused_weights.append(UpperCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase__ : Optional[int] = name.split(""".""" ) lowerCAmelCase__ : Any = int(items[0] ) lowerCAmelCase__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase__ : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=True ): """simple docstring""" if config_path is not None: lowerCAmelCase__ : int = WavaVecaConformerConfig.from_pretrained(UpperCamelCase , hidden_act="""swish""" ) else: lowerCAmelCase__ : int = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCAmelCase__ : str = """rotary""" if is_finetuned: if dict_path: lowerCAmelCase__ : Union[str, Any] = Dictionary.load(UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ : Optional[int] = target_dict.pad_index lowerCAmelCase__ : Tuple = target_dict.bos_index lowerCAmelCase__ : Optional[Any] = target_dict.eos_index lowerCAmelCase__ : Optional[int] = len(target_dict.symbols ) lowerCAmelCase__ : int = os.path.join(UpperCamelCase , """vocab.json""" ) if not os.path.isdir(UpperCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(UpperCamelCase ) ) return os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) lowerCAmelCase__ : int = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Optional[int] = 1 with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Dict = WavaVecaCTCTokenizer( UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=UpperCamelCase , ) lowerCAmelCase__ : List[str] = True if config.feat_extract_norm == """layer""" else False lowerCAmelCase__ : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCamelCase , return_attention_mask=UpperCamelCase , ) lowerCAmelCase__ : List[str] = WavaVecaProcessor(feature_extractor=UpperCamelCase , tokenizer=UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = WavaVecaConformerForCTC(UpperCamelCase ) else: lowerCAmelCase__ : str = WavaVecaConformerForPreTraining(UpperCamelCase ) if is_finetuned: lowerCAmelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowerCAmelCase__ : int = argparse.Namespace(task="""audio_pretraining""" ) lowerCAmelCase__ : Optional[int] = fairseq.tasks.setup_task(UpperCamelCase ) lowerCAmelCase__ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCamelCase ) lowerCAmelCase__ : int = model[0].eval() recursively_load_weights(UpperCamelCase , UpperCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCAmelCase ( unittest.TestCase): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=18 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Union[str, Any]: '''simple docstring''' __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size if size is not None else {'''height''': 18, '''width''': 20} __snake_case = do_thumbnail __snake_case = do_align_axis __snake_case = do_pad __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : Optional[Any] = DonutImageProcessor if is_vision_available() else None def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = DonutImageProcessingTester(self ) @property def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_thumbnail''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_pad''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' pass @is_flaky() def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
24
from math import factorial UpperCAmelCase : Tuple = {str(d): factorial(d) for d in range(10)} def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(SCREAMING_SNAKE_CASE ) ) def _A ( ): """simple docstring""" a__ : Any =7 * factorial(9 ) + 1 return sum(i for i in range(3 , SCREAMING_SNAKE_CASE ) if sum_of_digit_factorial(SCREAMING_SNAKE_CASE ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
563
0
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters UpperCamelCase__ = False UpperCamelCase__ = False def a__ ( lowerCAmelCase__ ) -> List[str]: return TrainCommand(lowerCAmelCase__ ) class lowerCamelCase_ ( __a ): @staticmethod def lowercase_ ( _A : ArgumentParser ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' , type=_A , required=_A , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_A , default=0 , help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' , type=_A , default=1 , help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' , type=_A , default=2 , help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' , type=_A , default='''''' , help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' , type=_A , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_A , default='''./''' , help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' , type=_A , default='''text_classification''' , help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' , type=_A , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' , type=_A , default=32 , help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' , type=_A , default=64 , help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' , type=_A , default=3e-5 , help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' , type=_A , default=1e-08 , help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=_A ) def __init__( self : Dict , _A : Namespace ): '''simple docstring''' UpperCAmelCase__ : Tuple = logging.get_logger('''transformers-cli/training''' ) UpperCAmelCase__ : Optional[int] = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_A ) UpperCAmelCase__ : Tuple = args.output UpperCAmelCase__ : List[Any] = args.column_label UpperCAmelCase__ : Tuple = args.column_text UpperCAmelCase__ : Tuple = args.column_id self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": UpperCAmelCase__ : Optional[Any] = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"""Loading dataset from {args.train_data}""" ) UpperCAmelCase__ : Optional[Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase__ : Optional[Any] = None if args.validation_data: self.logger.info(f"""Loading validation dataset from {args.validation_data}""" ) UpperCAmelCase__ : Tuple = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase__ : Tuple = args.validation_split UpperCAmelCase__ : Optional[int] = args.train_batch_size UpperCAmelCase__ : Optional[Any] = args.valid_batch_size UpperCAmelCase__ : int = args.learning_rate UpperCAmelCase__ : Dict = args.adam_epsilon def lowercase_ ( self : Dict ): '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def lowercase_ ( self : Optional[Any] ): '''simple docstring''' raise NotImplementedError def lowercase_ ( self : Optional[Any] ): '''simple docstring''' self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
718
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'wavlm' def __init__( self : Optional[Any] , _A : Union[str, Any]=32 , _A : Any=768 , _A : Dict=12 , _A : Optional[Any]=12 , _A : Optional[Any]=3_072 , _A : Any="gelu" , _A : Union[str, Any]=0.1 , _A : Any=0.1 , _A : Optional[Any]=0.1 , _A : Dict=0.0 , _A : Tuple=0.1 , _A : str=0.1 , _A : Union[str, Any]=0.0_2 , _A : Optional[Any]=1e-5 , _A : str="group" , _A : int="gelu" , _A : Tuple=(512, 512, 512, 512, 512, 512, 512) , _A : Tuple=(5, 2, 2, 2, 2, 2, 2) , _A : int=(10, 3, 3, 3, 3, 2, 2) , _A : Optional[int]=False , _A : str=128 , _A : str=16 , _A : Optional[int]=320 , _A : Any=800 , _A : Any=False , _A : Tuple=True , _A : Optional[Any]=0.0_5 , _A : str=10 , _A : int=2 , _A : Optional[int]=0.0 , _A : int=10 , _A : List[str]=320 , _A : Tuple=2 , _A : Dict=0.1 , _A : Union[str, Any]=100 , _A : Tuple=256 , _A : Dict=256 , _A : List[str]=0.1 , _A : str="mean" , _A : Optional[int]=False , _A : Optional[Any]=False , _A : Any=256 , _A : Union[str, Any]=(512, 512, 512, 512, 1_500) , _A : str=(5, 3, 3, 1, 1) , _A : Union[str, Any]=(1, 2, 3, 1, 1) , _A : str=512 , _A : Optional[int]=80 , _A : List[Any]=0 , _A : Optional[int]=1 , _A : List[str]=2 , _A : Optional[int]=False , _A : str=3 , _A : Dict=2 , _A : List[str]=3 , _A : Optional[Any]=None , **_A : Tuple , ): '''simple docstring''' super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : Optional[Any] = feat_extract_norm UpperCAmelCase__ : str = feat_extract_activation UpperCAmelCase__ : Tuple = list(_A ) UpperCAmelCase__ : Union[str, Any] = list(_A ) UpperCAmelCase__ : Optional[Any] = list(_A ) UpperCAmelCase__ : Optional[Any] = conv_bias UpperCAmelCase__ : List[Any] = num_buckets UpperCAmelCase__ : Optional[Any] = max_bucket_distance UpperCAmelCase__ : int = num_conv_pos_embeddings UpperCAmelCase__ : Optional[Any] = num_conv_pos_embedding_groups UpperCAmelCase__ : Any = len(self.conv_dim ) UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : List[Any] = hidden_dropout UpperCAmelCase__ : Tuple = attention_dropout UpperCAmelCase__ : str = activation_dropout UpperCAmelCase__ : str = feat_proj_dropout UpperCAmelCase__ : Tuple = final_dropout UpperCAmelCase__ : List[str] = layerdrop UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Any = num_ctc_classes UpperCAmelCase__ : Dict = vocab_size UpperCAmelCase__ : Optional[int] = do_stable_layer_norm UpperCAmelCase__ : Union[str, Any] = use_weighted_layer_sum UpperCAmelCase__ : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ : List[str] = apply_spec_augment UpperCAmelCase__ : str = mask_time_prob UpperCAmelCase__ : int = mask_time_length UpperCAmelCase__ : Optional[int] = mask_time_min_masks UpperCAmelCase__ : int = mask_feature_prob UpperCAmelCase__ : Optional[int] = mask_feature_length # parameters for pretraining with codevector quantized representations UpperCAmelCase__ : Union[str, Any] = num_codevectors_per_group UpperCAmelCase__ : List[str] = num_codevector_groups UpperCAmelCase__ : Optional[int] = contrastive_logits_temperature UpperCAmelCase__ : Optional[int] = num_negatives UpperCAmelCase__ : List[Any] = codevector_dim UpperCAmelCase__ : Union[str, Any] = proj_codevector_dim UpperCAmelCase__ : str = diversity_loss_weight # ctc loss UpperCAmelCase__ : str = ctc_loss_reduction UpperCAmelCase__ : Optional[Any] = ctc_zero_infinity # adapter UpperCAmelCase__ : Union[str, Any] = add_adapter UpperCAmelCase__ : List[Any] = adapter_kernel_size UpperCAmelCase__ : Union[str, Any] = adapter_stride UpperCAmelCase__ : Tuple = num_adapter_layers UpperCAmelCase__ : Optional[int] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase__ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase__ : Optional[int] = list(_A ) UpperCAmelCase__ : str = list(_A ) UpperCAmelCase__ : Any = list(_A ) UpperCAmelCase__ : List[Any] = xvector_output_dim @property def lowercase_ ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
312
0
'''simple docstring''' from __future__ import annotations def snake_case__ ( _A: int = 4 ) -> list[list[int]]: '''simple docstring''' lowerCAmelCase = abs(_A ) or 4 return [[1 + x + y * row_size for x in range(_A )] for y in range(_A )] def snake_case__ ( _A: str ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(_A ) ) # OR.. transpose(reverse_column(matrix)) def snake_case__ ( _A: Any ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(_A ) ) # OR.. reverse_column(reverse_row(matrix)) def snake_case__ ( _A: Any ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(_A ) ) # OR.. transpose(reverse_row(matrix)) def snake_case__ ( _A: Dict ) -> list[list[int]]: '''simple docstring''' lowerCAmelCase = [list(_A ) for x in zip(*_A )] return matrix def snake_case__ ( _A: str ) -> list[list[int]]: '''simple docstring''' lowerCAmelCase = matrix[::-1] return matrix def snake_case__ ( _A: Optional[Any] ) -> list[list[int]]: '''simple docstring''' lowerCAmelCase = [x[::-1] for x in matrix] return matrix def snake_case__ ( _A: Dict ) -> None: '''simple docstring''' for i in matrix: print(*_A ) if __name__ == "__main__": __lowercase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) __lowercase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) __lowercase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
370
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase (__snake_case ): def __init__( self :Any , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] ) ->Dict: super().__init__() # make sure scheduler can always be converted to DDIM lowercase : Optional[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__magic_name__ , scheduler=__magic_name__ ) @torch.no_grad() def __call__( self :Optional[int] , __magic_name__ :int = 1 , __magic_name__ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ :float = 0.0 , __magic_name__ :int = 50 , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[str] = "pil" , __magic_name__ :bool = True , ) ->Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __magic_name__ ): lowercase : int = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowercase : Tuple = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__magic_name__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowercase : Dict = randn_tensor(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__magic_name__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase : Union[str, Any] = self.unet(__magic_name__ , __magic_name__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase : int = self.scheduler.step( __magic_name__ , __magic_name__ , __magic_name__ , eta=__magic_name__ , use_clipped_model_output=__magic_name__ , generator=__magic_name__ ).prev_sample lowercase : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) lowercase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase : Any = self.numpy_to_pil(__magic_name__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=__magic_name__ )
264
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Dict = "open-llama" def __init__(self ,_lowerCamelCase=100000 ,_lowerCamelCase=4096 ,_lowerCamelCase=11008 ,_lowerCamelCase=32 ,_lowerCamelCase=32 ,_lowerCamelCase="silu" ,_lowerCamelCase=2048 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-6 ,_lowerCamelCase=True ,_lowerCamelCase=0 ,_lowerCamelCase=1 ,_lowerCamelCase=2 ,_lowerCamelCase=False ,_lowerCamelCase=True ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> int: '''simple docstring''' __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = initializer_range __lowercase = rms_norm_eps __lowercase = use_cache __lowercase = kwargs.pop( '''use_memorry_efficient_attention''' ,_lowerCamelCase ) __lowercase = hidden_dropout_prob __lowercase = attention_dropout_prob __lowercase = use_stable_embedding __lowercase = shared_input_output_embedding __lowercase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,tie_word_embeddings=_lowerCamelCase ,**_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,_lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) __lowercase = self.rope_scaling.get('''type''' ,_lowerCamelCase ) __lowercase = self.rope_scaling.get('''factor''' ,_lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(_lowerCamelCase ,_lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
717
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase__ ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self : str ,a__ : int = 7_68 ,): super().__init__() a__ = nn.Parameter(torch.zeros(1 ,a__ ) ) a__ = nn.Parameter(torch.ones(1 ,a__ ) ) def lowerCAmelCase_ ( self : List[Any] ,a__ : Optional[Union[str, torch.device]] = None ,a__ : Optional[torch.dtype] = None ,): a__ = nn.Parameter(self.mean.to(a__ ).to(a__ ) ) a__ = nn.Parameter(self.std.to(a__ ).to(a__ ) ) return self def lowerCAmelCase_ ( self : List[str] ,a__ : Optional[int] ): a__ = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase_ ( self : List[str] ,a__ : int ): a__ = (embeds * self.std) + self.mean return embeds
331
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase__ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self : str ,a__ : int ,a__ : int ,a__ : int ,a__ : float ,a__ : int ,a__ : int ,a__ : int ,a__ : int ,a__ : str ,a__ : bool = False ,): super().__init__() a__ = nn.Embedding(a__ ,a__ ) a__ = nn.Embedding(a__ ,a__ ) a__ = False a__ = nn.Dropout(p=a__ ) a__ = TaConfig( vocab_size=a__ ,d_model=a__ ,num_heads=a__ ,d_kv=a__ ,d_ff=a__ ,dropout_rate=a__ ,feed_forward_proj=a__ ,is_decoder=a__ ,is_encoder_decoder=a__ ,) a__ = nn.ModuleList() for lyr_num in range(a__ ): a__ = TaBlock(a__ ) self.encoders.append(a__ ) a__ = TaLayerNorm(a__ ) a__ = nn.Dropout(p=a__ ) def lowerCAmelCase_ ( self : Optional[Any] ,a__ : Tuple ,a__ : Optional[int] ): a__ = self.token_embedder(a__ ) a__ = encoder_input_tokens.shape[1] a__ = torch.arange(a__ ,device=encoder_input_tokens.device ) x += self.position_encoding(a__ ) a__ = self.dropout_pre(a__ ) # inverted the attention mask a__ = encoder_input_tokens.size() a__ = self.get_extended_attention_mask(a__ ,a__ ) for lyr in self.encoders: a__ = lyr(a__ ,a__ )[0] a__ = self.layer_norm(a__ ) return self.dropout_post(a__ ), encoder_inputs_mask
331
1
"""simple docstring""" from __future__ import annotations from typing import TypedDict class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCAmelCase = 42 __UpperCAmelCase = 42 def __lowerCAmelCase ( __lowerCAmelCase : str ) -> list[str]: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(__lowerCAmelCase ) )] def __lowerCAmelCase ( __lowerCAmelCase : str ) -> BWTTransformDict: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) _UpperCamelCase : Any = all_rotations(__lowerCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _UpperCamelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__lowerCAmelCase ), } return response def __lowerCAmelCase ( __lowerCAmelCase : str , __lowerCAmelCase : int ) -> str: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: _UpperCamelCase : Optional[Any] = int(__lowerCAmelCase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(__lowerCAmelCase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) _UpperCamelCase : Any = [""] * len(__lowerCAmelCase ) for _ in range(len(__lowerCAmelCase ) ): for i in range(len(__lowerCAmelCase ) ): _UpperCamelCase : str = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": _SCREAMING_SNAKE_CASE = """Provide a string that I will generate its BWT transform: """ _SCREAMING_SNAKE_CASE = input(entry_msg).strip() _SCREAMING_SNAKE_CASE = bwt_transform(s) print( f'Burrows Wheeler transform for string \'{s}\' results ' f'in \'{result["bwt_string"]}\'' ) _SCREAMING_SNAKE_CASE = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( f'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' f'we get original string \'{original_string}\'' )
239
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _SCREAMING_SNAKE_CASE ( enum.Enum ): '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCAmelCase = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _UpperCamelCase : List[str] = None if self.model.config.prefix is not None: _UpperCamelCase : str = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _UpperCamelCase : Union[str, Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Dict = self._sanitize_parameters(prefix=lowerCAmelCase__ , **self._forward_params ) _UpperCamelCase : str = {**self._preprocess_params, **preprocess_params} _UpperCamelCase : List[str] = {**self._forward_params, **forward_params} def lowercase_ (self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = {} if prefix is not None: _UpperCamelCase : Union[str, Any] = prefix if prefix: _UpperCamelCase : Optional[int] = self.tokenizer( lowerCAmelCase__ , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=self.framework ) _UpperCamelCase : List[str] = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" " [None, 'hole']" ) _UpperCamelCase : Tuple = handle_long_generation preprocess_params.update(lowerCAmelCase__ ) _UpperCamelCase : List[str] = generate_kwargs _UpperCamelCase : Optional[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) _UpperCamelCase : List[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) _UpperCamelCase : List[str] = ReturnType.TENSORS if return_type is not None: _UpperCamelCase : Optional[int] = return_type if clean_up_tokenization_spaces is not None: _UpperCamelCase : Tuple = clean_up_tokenization_spaces if stop_sequence is not None: _UpperCamelCase : Any = self.tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) _UpperCamelCase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase_ (self , *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __call__(self , lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__=None , **lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=self.framework ) _UpperCamelCase : List[str] = prompt_text if handle_long_generation == "hole": _UpperCamelCase : Union[str, Any] = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: _UpperCamelCase : Union[str, Any] = generate_kwargs["max_new_tokens"] else: _UpperCamelCase : str = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: _UpperCamelCase : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) _UpperCamelCase : Tuple = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: _UpperCamelCase : Tuple = inputs["attention_mask"][:, -keep_length:] return inputs def lowercase_ (self , lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Optional[int] = model_inputs["input_ids"] _UpperCamelCase : List[str] = model_inputs.get("attention_mask" , lowerCAmelCase__ ) # Allow empty prompts if input_ids.shape[1] == 0: _UpperCamelCase : List[Any] = None _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : Dict = 1 else: _UpperCamelCase : Any = input_ids.shape[0] _UpperCamelCase : Tuple = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _UpperCamelCase : Tuple = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: _UpperCamelCase : Tuple = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: _UpperCamelCase : List[str] = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _UpperCamelCase : List[str] = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _UpperCamelCase : Optional[Any] = self.model.generate(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase : List[str] = generated_sequence.shape[0] if self.framework == "pt": _UpperCamelCase : str = generated_sequence.reshape(lowerCAmelCase__ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _UpperCamelCase : Union[str, Any] = tf.reshape(lowerCAmelCase__ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__=ReturnType.FULL_TEXT , lowerCAmelCase__=True ): '''simple docstring''' _UpperCamelCase : str = model_outputs["generated_sequence"][0] _UpperCamelCase : Tuple = model_outputs["input_ids"] _UpperCamelCase : Dict = model_outputs["prompt_text"] _UpperCamelCase : str = generated_sequence.numpy().tolist() _UpperCamelCase : Optional[int] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _UpperCamelCase : List[Any] = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _UpperCamelCase : Dict = self.tokenizer.decode( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _UpperCamelCase : int = 0 else: _UpperCamelCase : Optional[int] = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ , ) ) if return_type == ReturnType.FULL_TEXT: _UpperCamelCase : int = prompt_text + text[prompt_length:] else: _UpperCamelCase : Any = text[prompt_length:] _UpperCamelCase : Dict = {"generated_text": all_text} records.append(lowerCAmelCase__ ) return records
239
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""", # See all SEW models at https://huggingface.co/models?filter=sew } class _a ( _UpperCAmelCase ): '''simple docstring''' A :Dict = 'sew' def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase=2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __UpperCAmelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=0.0_5 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) a__ : Union[str, Any] = hidden_size a__ : int = feat_extract_norm a__ : Optional[int] = feat_extract_activation a__ : Any = list(SCREAMING_SNAKE_CASE_ ) a__ : Union[str, Any] = list(SCREAMING_SNAKE_CASE_ ) a__ : str = list(SCREAMING_SNAKE_CASE_ ) a__ : Tuple = conv_bias a__ : Dict = num_conv_pos_embeddings a__ : Optional[Any] = num_conv_pos_embedding_groups a__ : Dict = len(self.conv_dim ) a__ : Optional[Any] = num_hidden_layers a__ : Tuple = intermediate_size a__ : List[Any] = squeeze_factor a__ : List[str] = hidden_act a__ : Dict = num_attention_heads a__ : Dict = hidden_dropout a__ : Tuple = attention_dropout a__ : Dict = activation_dropout a__ : Optional[int] = feat_proj_dropout a__ : Tuple = final_dropout a__ : str = layerdrop a__ : int = layer_norm_eps a__ : int = initializer_range a__ : Optional[int] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a__ : Optional[Any] = apply_spec_augment a__ : Tuple = mask_time_prob a__ : Any = mask_time_length a__ : int = mask_time_min_masks a__ : int = mask_feature_prob a__ : Dict = mask_feature_length a__ : List[str] = mask_feature_min_masks # ctc loss a__ : Any = ctc_loss_reduction a__ : List[Any] = ctc_zero_infinity # sequence classification a__ : List[Any] = use_weighted_layer_sum a__ : Union[str, Any] = classifier_proj_size @property def _A ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
191
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A__ : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
13
0
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _snake_case : Optional[int] = logging.get_logger(__name__) # General docstring _snake_case : Any = """ResNetConfig""" # Base docstring _snake_case : List[str] = """microsoft/resnet-50""" _snake_case : Tuple = [1, 2_048, 7, 7] # Image classification docstring _snake_case : Any = """microsoft/resnet-50""" _snake_case : List[Any] = """tiger cat""" _snake_case : Optional[Any] = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class lowerCAmelCase ( nn.Module ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = 3 , UpperCamelCase = 1 , UpperCamelCase = "relu" ): super().__init__() _SCREAMING_SNAKE_CASE = nn.Convad( UpperCamelCase , UpperCamelCase , kernel_size=UpperCamelCase , stride=UpperCamelCase , padding=kernel_size // 2 , bias=UpperCamelCase ) _SCREAMING_SNAKE_CASE = nn.BatchNormad(UpperCamelCase ) _SCREAMING_SNAKE_CASE = ACTaFN[activation] if activation is not None else nn.Identity() def lowercase ( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = self.convolution(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.normalization(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.activation(UpperCamelCase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self , UpperCamelCase ): super().__init__() _SCREAMING_SNAKE_CASE = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _SCREAMING_SNAKE_CASE = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _SCREAMING_SNAKE_CASE = config.num_channels def lowercase ( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) _SCREAMING_SNAKE_CASE = self.embedder(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.pooler(UpperCamelCase ) return embedding class lowerCAmelCase ( nn.Module ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = 2 ): super().__init__() _SCREAMING_SNAKE_CASE = nn.Convad(UpperCamelCase , UpperCamelCase , kernel_size=1 , stride=UpperCamelCase , bias=UpperCamelCase ) _SCREAMING_SNAKE_CASE = nn.BatchNormad(UpperCamelCase ) def lowercase ( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = self.convolution(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.normalization(UpperCamelCase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 , UpperCamelCase = "relu" ): super().__init__() _SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 _SCREAMING_SNAKE_CASE = ( ResNetShortCut(UpperCamelCase , UpperCamelCase , stride=UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) _SCREAMING_SNAKE_CASE = nn.Sequential( ResNetConvLayer(UpperCamelCase , UpperCamelCase , stride=UpperCamelCase ) , ResNetConvLayer(UpperCamelCase , UpperCamelCase , activation=UpperCamelCase ) , ) _SCREAMING_SNAKE_CASE = ACTaFN[activation] def lowercase ( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = hidden_state _SCREAMING_SNAKE_CASE = self.layer(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.shortcut(UpperCamelCase ) hidden_state += residual _SCREAMING_SNAKE_CASE = self.activation(UpperCamelCase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 , UpperCamelCase = "relu" , UpperCamelCase = 4 ): super().__init__() _SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 _SCREAMING_SNAKE_CASE = out_channels // reduction _SCREAMING_SNAKE_CASE = ( ResNetShortCut(UpperCamelCase , UpperCamelCase , stride=UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) _SCREAMING_SNAKE_CASE = nn.Sequential( ResNetConvLayer(UpperCamelCase , UpperCamelCase , kernel_size=1 ) , ResNetConvLayer(UpperCamelCase , UpperCamelCase , stride=UpperCamelCase ) , ResNetConvLayer(UpperCamelCase , UpperCamelCase , kernel_size=1 , activation=UpperCamelCase ) , ) _SCREAMING_SNAKE_CASE = ACTaFN[activation] def lowercase ( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = hidden_state _SCREAMING_SNAKE_CASE = self.layer(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.shortcut(UpperCamelCase ) hidden_state += residual _SCREAMING_SNAKE_CASE = self.activation(UpperCamelCase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 2 , UpperCamelCase = 2 , ): super().__init__() _SCREAMING_SNAKE_CASE = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer _SCREAMING_SNAKE_CASE = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(UpperCamelCase , UpperCamelCase , stride=UpperCamelCase , activation=config.hidden_act ) , *[layer(UpperCamelCase , UpperCamelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowercase ( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = input for layer in self.layers: _SCREAMING_SNAKE_CASE = layer(UpperCamelCase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self , UpperCamelCase ): super().__init__() _SCREAMING_SNAKE_CASE = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( UpperCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _SCREAMING_SNAKE_CASE = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCamelCase , config.depths[1:] ): self.stages.append(ResNetStage(UpperCamelCase , UpperCamelCase , UpperCamelCase , depth=UpperCamelCase ) ) def lowercase ( self , UpperCamelCase , UpperCamelCase = False , UpperCamelCase = True ): _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) _SCREAMING_SNAKE_CASE = stage_module(UpperCamelCase ) if output_hidden_states: _SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=UpperCamelCase , hidden_states=UpperCamelCase , ) class lowerCAmelCase ( __UpperCAmelCase ): a : Optional[Any] = ResNetConfig a : str = """resnet""" a : List[Any] = """pixel_values""" a : Optional[int] = True def lowercase ( self , UpperCamelCase ): if isinstance(UpperCamelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowercase ( self , UpperCamelCase , UpperCamelCase=False ): if isinstance(UpperCamelCase , UpperCamelCase ): _SCREAMING_SNAKE_CASE = value _snake_case : Union[str, Any] = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _snake_case : Optional[int] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , __UpperCAmelCase , ) class lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , UpperCamelCase ): super().__init__(UpperCamelCase ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = ResNetEmbeddings(UpperCamelCase ) _SCREAMING_SNAKE_CASE = ResNetEncoder(UpperCamelCase ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase ( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None ): _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.embedder(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.encoder( UpperCamelCase , output_hidden_states=UpperCamelCase , return_dict=UpperCamelCase ) _SCREAMING_SNAKE_CASE = encoder_outputs[0] _SCREAMING_SNAKE_CASE = self.pooler(UpperCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCamelCase , pooler_output=UpperCamelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , __UpperCAmelCase , ) class lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , UpperCamelCase ): super().__init__(UpperCamelCase ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = ResNetModel(UpperCamelCase ) # classification head _SCREAMING_SNAKE_CASE = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase ( self , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , ): _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.resnet(UpperCamelCase , output_hidden_states=UpperCamelCase , return_dict=UpperCamelCase ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(UpperCamelCase ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = "single_label_classification" else: _SCREAMING_SNAKE_CASE = "multi_label_classification" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCamelCase , UpperCamelCase ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCamelCase , UpperCamelCase ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCamelCase , logits=UpperCamelCase , hidden_states=outputs.hidden_states ) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ , __UpperCAmelCase , ) class lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): def __init__( self , UpperCamelCase ): super().__init__(UpperCamelCase ) super()._init_backbone(UpperCamelCase ) _SCREAMING_SNAKE_CASE = [config.embedding_size] + config.hidden_sizes _SCREAMING_SNAKE_CASE = ResNetEmbeddings(UpperCamelCase ) _SCREAMING_SNAKE_CASE = ResNetEncoder(UpperCamelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCamelCase ) @replace_return_docstrings(output_type=UpperCamelCase , config_class=_CONFIG_FOR_DOC ) def lowercase ( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None ): _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = self.embedder(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.encoder(UpperCamelCase , output_hidden_states=UpperCamelCase , return_dict=UpperCamelCase ) _SCREAMING_SNAKE_CASE = outputs.hidden_states _SCREAMING_SNAKE_CASE = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _SCREAMING_SNAKE_CASE = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=UpperCamelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCamelCase , )
493
'''simple docstring''' import numpy # List of input, output pairs _snake_case : Optional[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _snake_case : Any = (((515, 22, 13), 555), ((61, 35, 49), 150)) _snake_case : Any = [2, 4, 1, 5] _snake_case : str = len(train_data) _snake_case : int = 0.009 def _a ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any]="train" ): return calculate_hypothesis_value(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - output( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE : List[Any] ): _SCREAMING_SNAKE_CASE = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _a ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _a ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _a ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int]=m ): _SCREAMING_SNAKE_CASE = 0 for i in range(_SCREAMING_SNAKE_CASE ): if index == -1: summation_value += _error(_SCREAMING_SNAKE_CASE ) else: summation_value += _error(_SCREAMING_SNAKE_CASE ) * train_data[i][0][index] return summation_value def _a ( _SCREAMING_SNAKE_CASE : Optional[Any] ): _SCREAMING_SNAKE_CASE = summation_of_cost_derivative(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / m return cost_derivative_value def _a ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output _SCREAMING_SNAKE_CASE = 0.000_002 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 while True: j += 1 _SCREAMING_SNAKE_CASE = [0, 0, 0, 0] for i in range(0 , len(_SCREAMING_SNAKE_CASE ) ): _SCREAMING_SNAKE_CASE = get_cost_derivative(i - 1 ) _SCREAMING_SNAKE_CASE = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE , rtol=_SCREAMING_SNAKE_CASE , ): break _SCREAMING_SNAKE_CASE = temp_parameter_vector print(("Number of iterations:", j) ) def _a ( ): for i in range(len(_SCREAMING_SNAKE_CASE ) ): print(("Actual output value:", output(_SCREAMING_SNAKE_CASE , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(_SCREAMING_SNAKE_CASE , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
493
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
"""simple docstring""" import mpmath # for roots of unity import numpy as np class _snake_case : """simple docstring""" def __init__( self : Any , _A : Optional[int]=None , _A : int=None): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = list(poly_a or [0])[:] _SCREAMING_SNAKE_CASE : Optional[Any] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _SCREAMING_SNAKE_CASE : Optional[int] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() _SCREAMING_SNAKE_CASE : str = len(self.polyB) # Add 0 to make lengths equal a power of 2 _SCREAMING_SNAKE_CASE : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform _SCREAMING_SNAKE_CASE : Optional[Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product _SCREAMING_SNAKE_CASE : List[Any] = self.__multiply() def _lowerCAmelCase ( self : List[str] , _A : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(_A) <= 1: return dft[0] # _SCREAMING_SNAKE_CASE : int = self.c_max_length // 2 while next_ncol > 0: _SCREAMING_SNAKE_CASE : Union[str, Any] = [[] for i in range(_A)] _SCREAMING_SNAKE_CASE : Any = self.root**next_ncol # First half of next step _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_A): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step _SCREAMING_SNAKE_CASE : Optional[int] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_A): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update _SCREAMING_SNAKE_CASE : Optional[int] = new_dft _SCREAMING_SNAKE_CASE : List[str] = next_ncol // 2 return dft[0] def _lowerCAmelCase ( self : Any): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = self.__dft("""A""") _SCREAMING_SNAKE_CASE : Any = self.__dft("""B""") _SCREAMING_SNAKE_CASE : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT _SCREAMING_SNAKE_CASE : Any = 2 while next_ncol <= self.c_max_length: _SCREAMING_SNAKE_CASE : int = [[] for i in range(_A)] _SCREAMING_SNAKE_CASE : List[str] = self.root ** (next_ncol // 2) _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update _SCREAMING_SNAKE_CASE : str = new_inverse_c next_ncol *= 2 # Unpack _SCREAMING_SNAKE_CASE : List[Any] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : List[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """A = """ + """ + """.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A])) _SCREAMING_SNAKE_CASE : Optional[int] = """B = """ + """ + """.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B])) _SCREAMING_SNAKE_CASE : Tuple = """A*B = """ + """ + """.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.product)) return f"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
338
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : '''simple docstring''' def __init__( self: int , _lowerCamelCase: str , _lowerCamelCase: Union[str, Any]=13 , _lowerCamelCase: Dict=7 , _lowerCamelCase: Union[str, Any]=True , _lowerCamelCase: Optional[Any]=True , _lowerCamelCase: str=True , _lowerCamelCase: List[Any]=True , _lowerCamelCase: List[Any]=True , _lowerCamelCase: List[str]=False , _lowerCamelCase: Dict=False , _lowerCamelCase: Tuple=False , _lowerCamelCase: List[Any]=2 , _lowerCamelCase: List[Any]=99 , _lowerCamelCase: Optional[int]=0 , _lowerCamelCase: Union[str, Any]=32 , _lowerCamelCase: Optional[Any]=5 , _lowerCamelCase: str=4 , _lowerCamelCase: str=0.1 , _lowerCamelCase: Optional[int]=0.1 , _lowerCamelCase: List[Any]=5_12 , _lowerCamelCase: List[Any]=2 , _lowerCamelCase: Union[str, Any]=0.02 , _lowerCamelCase: str=2 , _lowerCamelCase: str=4 , _lowerCamelCase: Any="last" , _lowerCamelCase: Optional[int]=True , _lowerCamelCase: List[Any]=None , _lowerCamelCase: Union[str, Any]=0 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_input_lengths SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = gelu_activation SCREAMING_SNAKE_CASE_ = sinusoidal_embeddings SCREAMING_SNAKE_CASE_ = causal SCREAMING_SNAKE_CASE_ = asm SCREAMING_SNAKE_CASE_ = n_langs SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = n_special SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = summary_type SCREAMING_SNAKE_CASE_ = use_proj SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = bos_token_id def _A ( self: Tuple ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A ( self: Any ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _A ( self: List[str] , _lowerCamelCase: List[Any] , _lowerCamelCase: str , _lowerCamelCase: Optional[int] , _lowerCamelCase: Tuple , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: List[Any] , _lowerCamelCase: Any , _lowerCamelCase: Any , ): SCREAMING_SNAKE_CASE_ = XLMModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , lengths=_lowerCamelCase , langs=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , langs=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self: int , _lowerCamelCase: Optional[Any] , _lowerCamelCase: int , _lowerCamelCase: Tuple , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Tuple , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Optional[int] , _lowerCamelCase: int , ): SCREAMING_SNAKE_CASE_ = XLMWithLMHeadModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self: List[Any] , _lowerCamelCase: str , _lowerCamelCase: Dict , _lowerCamelCase: int , _lowerCamelCase: List[str] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: int , _lowerCamelCase: List[Any] , _lowerCamelCase: Optional[int] , _lowerCamelCase: List[Any] , ): SCREAMING_SNAKE_CASE_ = XLMForQuestionAnsweringSimple(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self: Dict , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Optional[int] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Tuple , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Optional[int] , _lowerCamelCase: List[Any] , ): SCREAMING_SNAKE_CASE_ = XLMForQuestionAnswering(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model( _lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , cls_index=_lowerCamelCase , is_impossible=_lowerCamelCase , p_mask=_lowerCamelCase , ) SCREAMING_SNAKE_CASE_ = model( _lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , cls_index=_lowerCamelCase , is_impossible=_lowerCamelCase , ) ((SCREAMING_SNAKE_CASE_) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase ) ((SCREAMING_SNAKE_CASE_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A ( self: Any , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Tuple , _lowerCamelCase: Optional[Any] , _lowerCamelCase: int , _lowerCamelCase: Any , _lowerCamelCase: List[str] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Tuple , ): SCREAMING_SNAKE_CASE_ = XLMForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A ( self: str , _lowerCamelCase: List[Any] , _lowerCamelCase: List[str] , _lowerCamelCase: Optional[int] , _lowerCamelCase: Any , _lowerCamelCase: Any , _lowerCamelCase: str , _lowerCamelCase: int , _lowerCamelCase: Optional[int] , _lowerCamelCase: Union[str, Any] , ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = XLMForTokenClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self: List[Any] , _lowerCamelCase: List[Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: str , _lowerCamelCase: Tuple , _lowerCamelCase: Any , _lowerCamelCase: str , _lowerCamelCase: List[str] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: List[Any] , ): SCREAMING_SNAKE_CASE_ = self.num_choices SCREAMING_SNAKE_CASE_ = XLMForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : List[Any] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE__ : str = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def _A ( self: Dict , _lowerCamelCase: List[Any] , _lowerCamelCase: str , _lowerCamelCase: List[str] , _lowerCamelCase: List[Any] , _lowerCamelCase: str ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A ( self: Tuple , _lowerCamelCase: List[str] , _lowerCamelCase: Tuple , _lowerCamelCase: int=False ): SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": SCREAMING_SNAKE_CASE_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCamelCase ) return inputs_dict def _A ( self: Any ): SCREAMING_SNAKE_CASE_ = XLMModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCamelCase , emb_dim=37 ) def _A ( self: Tuple ): self.config_tester.run_common_tests() def _A ( self: List[str] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_lowerCamelCase ) def _A ( self: Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_lowerCamelCase ) def _A ( self: str ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_lowerCamelCase ) def _A ( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_lowerCamelCase ) def _A ( self: List[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_lowerCamelCase ) def _A ( self: Dict ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_lowerCamelCase ) def _A ( self: Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_lowerCamelCase ) def _A ( self: Any , _lowerCamelCase: Optional[Any] , _lowerCamelCase: int , _lowerCamelCase: Tuple , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Optional[int] , _lowerCamelCase: str=False , _lowerCamelCase: List[Any]=1 ): self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual( [isinstance(_lowerCamelCase , _lowerCamelCase ) for iter_attentions in attentions] , [True] * len(_lowerCamelCase ) ) self.assertEqual(len(_lowerCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_lowerCamelCase ): # adds PAD dummy token SCREAMING_SNAKE_CASE_ = min_length + idx + 1 SCREAMING_SNAKE_CASE_ = min_length + idx + 1 SCREAMING_SNAKE_CASE_ = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_lowerCamelCase ) ) def _A ( self: List[Any] , _lowerCamelCase: Optional[int] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: str , _lowerCamelCase: Optional[int] , _lowerCamelCase: int , _lowerCamelCase: Union[str, Any]=False , _lowerCamelCase: Optional[int]=1 ): self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual( [isinstance(_lowerCamelCase , _lowerCamelCase ) for iter_hidden_states in hidden_states] , [True] * len(_lowerCamelCase ) , ) self.assertEqual(len(_lowerCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_lowerCamelCase ): # adds PAD dummy token SCREAMING_SNAKE_CASE_ = min_length + idx + 1 SCREAMING_SNAKE_CASE_ = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_lowerCamelCase ) , ) pass @slow def _A ( self: List[str] ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = XLMModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_torch class __magic_name__ ( unittest.TestCase): '''simple docstring''' @slow def _A ( self: str ): SCREAMING_SNAKE_CASE_ = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor([[14, 4_47]] , dtype=torch.long , device=_lowerCamelCase ) # the president SCREAMING_SNAKE_CASE_ = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference SCREAMING_SNAKE_CASE_ = model.generate(_lowerCamelCase , do_sample=_lowerCamelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _lowerCamelCase )
89
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = fname.split(os.path.sep )[-1] return re.search(R'''^(.*)_\d+\.jpg$''' , _lowerCAmelCase ).groups()[0] class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' def __init__( self: Union[str, Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Tuple=None , _lowerCamelCase: str=None ): SCREAMING_SNAKE_CASE_ = file_names SCREAMING_SNAKE_CASE_ = image_transform SCREAMING_SNAKE_CASE_ = label_to_id def __len__( self: Any ): return len(self.file_names ) def __getitem__( self: Union[str, Any] , _lowerCamelCase: Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.file_names[idx] SCREAMING_SNAKE_CASE_ = PIL.Image.open(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = raw_image.convert('''RGB''' ) if self.image_transform is not None: SCREAMING_SNAKE_CASE_ = self.image_transform(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = extract_label(_lowerCamelCase ) if self.label_to_id is not None: SCREAMING_SNAKE_CASE_ = self.label_to_id[label] return {"image": image, "label": label} def a (_lowerCAmelCase , _lowerCAmelCase ): # Initialize accelerator if args.with_tracking: SCREAMING_SNAKE_CASE_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: SCREAMING_SNAKE_CASE_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ = config['''lr'''] SCREAMING_SNAKE_CASE_ = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE_ = int(config['''seed'''] ) SCREAMING_SNAKE_CASE_ = int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE_ = config['''image_size'''] if not isinstance(_lowerCAmelCase , (list, tuple) ): SCREAMING_SNAKE_CASE_ = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": SCREAMING_SNAKE_CASE_ = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): SCREAMING_SNAKE_CASE_ = int(args.checkpointing_steps ) else: raise ValueError( F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: SCREAMING_SNAKE_CASE_ = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: SCREAMING_SNAKE_CASE_ = os.path.split(_lowerCAmelCase )[-1].split('''.''' )[0] accelerator.init_trackers(_lowerCAmelCase , _lowerCAmelCase ) # Grab all the image filenames SCREAMING_SNAKE_CASE_ = [os.path.join(args.data_dir , _lowerCAmelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences SCREAMING_SNAKE_CASE_ = [extract_label(_lowerCAmelCase ) for fname in file_names] SCREAMING_SNAKE_CASE_ = list(set(_lowerCAmelCase ) ) id_to_label.sort() SCREAMING_SNAKE_CASE_ = {lbl: i for i, lbl in enumerate(_lowerCAmelCase )} # Set the seed before splitting the data. np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # Split our filenames between train and validation SCREAMING_SNAKE_CASE_ = np.random.permutation(len(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = int(0.8 * len(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = random_perm[:cut] SCREAMING_SNAKE_CASE_ = random_perm[cut:] # For training we use a simple RandomResizedCrop SCREAMING_SNAKE_CASE_ = Compose([RandomResizedCrop(_lowerCAmelCase , scale=(0.5, 1.0) ), ToTensor()] ) SCREAMING_SNAKE_CASE_ = PetsDataset( [file_names[i] for i in train_split] , image_transform=_lowerCAmelCase , label_to_id=_lowerCAmelCase ) # For evaluation, we use a deterministic Resize SCREAMING_SNAKE_CASE_ = Compose([Resize(_lowerCAmelCase ), ToTensor()] ) SCREAMING_SNAKE_CASE_ = PetsDataset([file_names[i] for i in eval_split] , image_transform=_lowerCAmelCase , label_to_id=_lowerCAmelCase ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(_lowerCAmelCase , shuffle=_lowerCAmelCase , batch_size=_lowerCAmelCase , num_workers=4 ) SCREAMING_SNAKE_CASE_ = DataLoader(_lowerCAmelCase , shuffle=_lowerCAmelCase , batch_size=_lowerCAmelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ = create_model('''resnet50d''' , pretrained=_lowerCAmelCase , num_classes=len(_lowerCAmelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_ = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): SCREAMING_SNAKE_CASE_ = False for param in model.get_classifier().parameters(): SCREAMING_SNAKE_CASE_ = True # We normalize the batches of images to be a bit faster. SCREAMING_SNAKE_CASE_ = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) SCREAMING_SNAKE_CASE_ = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ = torch.optim.Adam(params=model.parameters() , lr=lr / 2_5 ) # Instantiate learning rate scheduler SCREAMING_SNAKE_CASE_ = OneCycleLR(optimizer=_lowerCAmelCase , max_lr=_lowerCAmelCase , epochs=_lowerCAmelCase , steps_per_epoch=len(_lowerCAmelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE_ = 0 # We also need to keep track of the starting epoch so files are named properly SCREAMING_SNAKE_CASE_ = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" ) accelerator.load_state(args.resume_from_checkpoint ) SCREAMING_SNAKE_CASE_ = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint SCREAMING_SNAKE_CASE_ = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) SCREAMING_SNAKE_CASE_ = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` SCREAMING_SNAKE_CASE_ = os.path.splitext(_lowerCAmelCase )[0] if "epoch" in training_difference: SCREAMING_SNAKE_CASE_ = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 SCREAMING_SNAKE_CASE_ = None else: SCREAMING_SNAKE_CASE_ = int(training_difference.replace('''step_''' , '''''' ) ) SCREAMING_SNAKE_CASE_ = resume_step // len(_lowerCAmelCase ) resume_step -= starting_epoch * len(_lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase , _lowerCAmelCase ): model.train() if args.with_tracking: SCREAMING_SNAKE_CASE_ = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step SCREAMING_SNAKE_CASE_ = accelerator.skip_first_batches(_lowerCAmelCase , _lowerCAmelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader SCREAMING_SNAKE_CASE_ = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. SCREAMING_SNAKE_CASE_ = {k: v.to(accelerator.device ) for k, v in batch.items()} SCREAMING_SNAKE_CASE_ = (batch['''image'''] - mean) / std SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.cross_entropy(_lowerCAmelCase , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = F"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: SCREAMING_SNAKE_CASE_ = os.path.join(args.output_dir , _lowerCAmelCase ) accelerator.save_state(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. SCREAMING_SNAKE_CASE_ = {k: v.to(accelerator.device ) for k, v in batch.items()} SCREAMING_SNAKE_CASE_ = (batch['''image'''] - mean) / std with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.gather_for_metrics((predictions, batch['''label''']) ) SCREAMING_SNAKE_CASE_ = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() SCREAMING_SNAKE_CASE_ = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}: {1_0_0 * eval_metric:.2f}" ) if args.with_tracking: accelerator.log( { '''accuracy''': 1_0_0 * eval_metric, '''train_loss''': total_loss.item() / len(_lowerCAmelCase ), '''epoch''': epoch, } , step=_lowerCAmelCase , ) if checkpointing_steps == "epoch": SCREAMING_SNAKE_CASE_ = F"epoch_{epoch}" if args.output_dir is not None: SCREAMING_SNAKE_CASE_ = os.path.join(args.output_dir , _lowerCAmelCase ) accelerator.save_state(_lowerCAmelCase ) if args.with_tracking: accelerator.end_training() def a (): SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=_lowerCAmelCase , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=_lowerCAmelCase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=_lowerCAmelCase , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {'''lr''': 3e-2, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 6_4, '''image_size''': 2_2_4} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
89
1
import math from collections.abc import Callable def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" lowerCamelCase__ : float = xa lowerCamelCase__ : float = xa while True: if x_n == x_na or function(UpperCAmelCase ) == function(UpperCAmelCase ): raise ZeroDivisionError('''float division by zero, could not find root''' ) lowerCamelCase__ : float = x_na - ( function(UpperCAmelCase ) / ((function(UpperCAmelCase ) - function(UpperCAmelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na lowerCamelCase__ : Any = x_na lowerCamelCase__ : int = x_na def _a ( UpperCAmelCase ) -> float: """simple docstring""" return math.pow(UpperCAmelCase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
315
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _A : List[str] = logging.getLogger(__name__) _A : Any = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _A : Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __SCREAMING_SNAKE_CASE : _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } ,) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase_ )} ,) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } ,) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) _UpperCAmelCase : bool = field( default=lowerCAmelCase_ ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,) _UpperCAmelCase : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) _UpperCAmelCase : bool = field( default=lowerCAmelCase_ ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) def __lowerCamelCase ( self : int ) ->Optional[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class __SCREAMING_SNAKE_CASE : _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "The name of the dataset to use (via the datasets library)."} ) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) _UpperCAmelCase : Optional[str] = field(default=lowerCAmelCase_ ,metadata={"help": "The input training data file (a text file)."} ) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} ,) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} ,) _UpperCAmelCase : Optional[str] = field( default=lowerCAmelCase_ ,metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} ,) _UpperCAmelCase : bool = field( default=lowerCAmelCase_ ,metadata={"help": "Overwrite the cached training and evaluation sets"} ) _UpperCAmelCase : Optional[int] = field( default=5 ,metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } ,) _UpperCAmelCase : Optional[int] = field( default=lowerCAmelCase_ ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) } ,) _UpperCAmelCase : Optional[int] = field( default=lowerCAmelCase_ ,metadata={"help": "The number of processes to use for the preprocessing."} ,) _UpperCAmelCase : float = field( default=0.15 ,metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) _UpperCAmelCase : bool = field( default=lowerCAmelCase_ ,metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } ,) def __lowerCamelCase ( self : List[Any] ) ->List[str]: if self.train_file is not None: lowerCamelCase__ : int = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCamelCase__ : Tuple = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _a ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: lowerCamelCase__ : str = [json.loads(UpperCAmelCase ) for line in f.read().splitlines() if (len(UpperCAmelCase ) > 0 and not line.isspace())] assert len(UpperCAmelCase ) == len(UpperCAmelCase ) lowerCamelCase__ : int = {c: dataset[c] for c in dataset.column_names} lowerCamelCase__ : str = refs return Dataset.from_dict(UpperCAmelCase ) def _a ( ) -> Optional[Any]: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCamelCase__ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase__ : Union[str, Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowerCamelCase__ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"train[:{data_args.validation_split_percentage}%]" , ) lowerCamelCase__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"train[{data_args.validation_split_percentage}%:]" , ) else: lowerCamelCase__ : List[Any] = {} if data_args.train_file is not None: lowerCamelCase__ : List[Any] = data_args.train_file if data_args.validation_file is not None: lowerCamelCase__ : Optional[int] = data_args.validation_file lowerCamelCase__ : Tuple = data_args.train_file.split('''.''' )[-1] if extension == "txt": lowerCamelCase__ : List[Any] = '''text''' lowerCamelCase__ : Tuple = load_dataset(UpperCAmelCase , data_files=UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Optional[int] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase__ : int = AutoConfig.from_pretrained(model_args.config_name , **UpperCAmelCase ) elif model_args.model_name_or_path: lowerCamelCase__ : Dict = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: lowerCamelCase__ : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) lowerCamelCase__ : List[str] = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **UpperCAmelCase ) elif model_args.model_name_or_path: lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: lowerCamelCase__ : Tuple = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowerCamelCase__ : List[Any] = AutoModelForMaskedLM.from_config(UpperCAmelCase ) model.resize_token_embeddings(len(UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCamelCase__ : Optional[int] = datasets['''train'''].column_names else: lowerCamelCase__ : Optional[int] = datasets['''validation'''].column_names lowerCamelCase__ : List[str] = '''text''' if '''text''' in column_names else column_names[0] lowerCamelCase__ : Dict = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(UpperCAmelCase ): # Remove empty lines lowerCamelCase__ : int = [line for line in examples['''text'''] if len(UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=data_args.max_seq_length ) lowerCamelCase__ : Optional[int] = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCamelCase__ : Optional[Any] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowerCamelCase__ : str = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowerCamelCase__ : int = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCamelCase__ : Tuple = False # Data collator # This one will take care of randomly masking the tokens. lowerCamelCase__ : List[Any] = DataCollatorForWholeWordMask(tokenizer=UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCamelCase__ : Tuple = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCamelCase__ : Optional[Any] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowerCamelCase__ : Union[str, Any] = model_args.model_name_or_path else: lowerCamelCase__ : List[str] = None lowerCamelCase__ : Dict = trainer.train(resume_from_checkpoint=UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase__ : Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(UpperCAmelCase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation lowerCamelCase__ : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase__ : Tuple = trainer.evaluate() lowerCamelCase__ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) lowerCamelCase__ : str = perplexity lowerCamelCase__ : List[Any] = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(UpperCAmelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) return results def _a ( UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
315
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE__ : Optional[int] = 16 SCREAMING_SNAKE_CASE__ : List[str] = 32 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 16 ): SCREAMING_SNAKE_CASE_ :List[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ :int = load_dataset('glue' , 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ :str = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_ :Tuple = datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ :int = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_ :List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_ :List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_ :Dict = 8 else: SCREAMING_SNAKE_CASE_ :List[Any] = None return tokenizer.pad( SCREAMING_SNAKE_CASE , padding='longest' , max_length=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_tensors='pt' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ :Dict = DataLoader( tokenized_datasets['train'] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[int] = DataLoader( tokenized_datasets['validation'] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE__ : str = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , SCREAMING_SNAKE_CASE ) == "1": SCREAMING_SNAKE_CASE_ :Tuple = 2 # Initialize accelerator SCREAMING_SNAKE_CASE_ :Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ :int = config['lr'] SCREAMING_SNAKE_CASE_ :List[str] = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE_ :int = int(config['seed'] ) SCREAMING_SNAKE_CASE_ :Optional[int] = int(config['batch_size'] ) SCREAMING_SNAKE_CASE_ :Optional[Any] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_ :Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_ :Any = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_ :List[str] = MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Dict = get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ :Any = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_ :Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ :Tuple = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) # Instantiate scheduler SCREAMING_SNAKE_CASE_ :Tuple = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :List[str] = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_ :List[Any] = model(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Tuple = outputs.loss SCREAMING_SNAKE_CASE_ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() SCREAMING_SNAKE_CASE_ :Union[str, Any] = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ :int = model(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Any = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :int = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(SCREAMING_SNAKE_CASE ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples SCREAMING_SNAKE_CASE_ :Optional[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE_ :Any = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ :str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE_ :Optional[int] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE_ :List[str] = parser.parse_args() SCREAMING_SNAKE_CASE_ :int = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
233
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class __lowerCAmelCase( lowerCAmelCase__ ): __snake_case : Tuple = 'xlm' __snake_case : int = { 'hidden_size': 'emb_dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', 'n_words': 'vocab_size', # For backward compatibility } def __init__( self : str , SCREAMING_SNAKE_CASE : Dict=30_145 , SCREAMING_SNAKE_CASE : str=2_048 , SCREAMING_SNAKE_CASE : Optional[int]=12 , SCREAMING_SNAKE_CASE : Union[str, Any]=16 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : Dict=1 , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : str=512 , SCREAMING_SNAKE_CASE : Any=2_048**-0.5 , SCREAMING_SNAKE_CASE : Dict=1E-12 , SCREAMING_SNAKE_CASE : int=0.02 , SCREAMING_SNAKE_CASE : Dict=0 , SCREAMING_SNAKE_CASE : int=1 , SCREAMING_SNAKE_CASE : Optional[Any]=2 , SCREAMING_SNAKE_CASE : List[Any]=3 , SCREAMING_SNAKE_CASE : Union[str, Any]=5 , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : Optional[int]="first" , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : Tuple=0.1 , SCREAMING_SNAKE_CASE : Any=5 , SCREAMING_SNAKE_CASE : str=5 , SCREAMING_SNAKE_CASE : List[Any]=0 , SCREAMING_SNAKE_CASE : Tuple=0 , SCREAMING_SNAKE_CASE : Dict=2 , SCREAMING_SNAKE_CASE : Optional[Any]=0 , **SCREAMING_SNAKE_CASE : Optional[Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_ :List[str] = emb_dim SCREAMING_SNAKE_CASE_ :Any = n_layers SCREAMING_SNAKE_CASE_ :List[Any] = n_heads SCREAMING_SNAKE_CASE_ :List[Any] = dropout SCREAMING_SNAKE_CASE_ :Dict = attention_dropout SCREAMING_SNAKE_CASE_ :Optional[Any] = gelu_activation SCREAMING_SNAKE_CASE_ :Any = sinusoidal_embeddings SCREAMING_SNAKE_CASE_ :Any = causal SCREAMING_SNAKE_CASE_ :str = asm SCREAMING_SNAKE_CASE_ :Optional[Any] = n_langs SCREAMING_SNAKE_CASE_ :Any = use_lang_emb SCREAMING_SNAKE_CASE_ :Any = layer_norm_eps SCREAMING_SNAKE_CASE_ :int = bos_index SCREAMING_SNAKE_CASE_ :int = eos_index SCREAMING_SNAKE_CASE_ :Optional[int] = pad_index SCREAMING_SNAKE_CASE_ :List[Any] = unk_index SCREAMING_SNAKE_CASE_ :Tuple = mask_index SCREAMING_SNAKE_CASE_ :str = is_encoder SCREAMING_SNAKE_CASE_ :Any = max_position_embeddings SCREAMING_SNAKE_CASE_ :int = embed_init_std SCREAMING_SNAKE_CASE_ :Optional[int] = init_std SCREAMING_SNAKE_CASE_ :Tuple = summary_type SCREAMING_SNAKE_CASE_ :Union[str, Any] = summary_use_proj SCREAMING_SNAKE_CASE_ :Optional[int] = summary_activation SCREAMING_SNAKE_CASE_ :List[str] = summary_proj_to_labels SCREAMING_SNAKE_CASE_ :Tuple = summary_first_dropout SCREAMING_SNAKE_CASE_ :Any = start_n_top SCREAMING_SNAKE_CASE_ :List[Any] = end_n_top SCREAMING_SNAKE_CASE_ :Optional[Any] = mask_token_id SCREAMING_SNAKE_CASE_ :Optional[Any] = lang_id if "n_words" in kwargs: SCREAMING_SNAKE_CASE_ :int = kwargs['n_words'] super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class __lowerCAmelCase( lowerCAmelCase__ ): @property def _lowercase ( self : Optional[Any] ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ :Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ :Tuple = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
233
1
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : Union[str, "sqlalchemy.sql.Selectable"] , UpperCAmelCase_ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__(features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =Sql( cache_dir=UpperCAmelCase_ , features=UpperCAmelCase_ , sql=UpperCAmelCase_ , con=UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Any: '''simple docstring''' lowerCamelCase__: List[Any] =None lowerCamelCase__: Optional[Any] =None lowerCamelCase__: Tuple =None lowerCamelCase__: str =None self.builder.download_and_prepare( download_config=UpperCAmelCase_ , download_mode=UpperCAmelCase_ , verification_mode=UpperCAmelCase_ , base_path=UpperCAmelCase_ , ) # Build dataset for splits lowerCamelCase__: List[str] =self.builder.as_dataset( split="train" , verification_mode=UpperCAmelCase_ , in_memory=self.keep_in_memory) return dataset class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[int] , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Tuple , ) ->str: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""") lowerCamelCase__: Any =dataset lowerCamelCase__: str =name lowerCamelCase__: List[str] =con lowerCamelCase__: Optional[Any] =batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowerCamelCase__: List[str] =num_proc lowerCamelCase__: Dict =to_sql_kwargs def SCREAMING_SNAKE_CASE_ (self : Dict) ->int: '''simple docstring''' lowerCamelCase__: Tuple =self.to_sql_kwargs.pop("sql" , UpperCAmelCase_) lowerCamelCase__: Dict =self.to_sql_kwargs.pop("con" , UpperCAmelCase_) lowerCamelCase__: List[str] =self.to_sql_kwargs.pop("index" , UpperCAmelCase_) lowerCamelCase__: Tuple =self._write(index=UpperCAmelCase_ , **self.to_sql_kwargs) return written def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[str] =args lowerCamelCase__: Union[str, Any] ={**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs lowerCamelCase__: Tuple =query_table( table=self.dataset.data , key=slice(UpperCAmelCase_ , offset + self.batch_size) , indices=self.dataset._indices , ) lowerCamelCase__: Any =batch.to_pandas() lowerCamelCase__: List[Any] =df.to_sql(self.name , self.con , index=UpperCAmelCase_ , **UpperCAmelCase_) return num_rows or len(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[int]) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs)) else: lowerCamelCase__ , lowerCamelCase__: Optional[Any] =len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , UpperCAmelCase_ , UpperCAmelCase_)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
59
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : List[Any] , __lowercase : Tuple , __lowercase : Tuple=7 , __lowercase : List[str]=3 , __lowercase : List[Any]=18 , __lowercase : int=30 , __lowercase : Any=4_00 , __lowercase : Dict=True , __lowercase : Dict=None , __lowercase : Union[str, Any]=True , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : List[Any] =size if size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE__ : Union[str, Any] =parent SCREAMING_SNAKE_CASE__ : List[str] =batch_size SCREAMING_SNAKE_CASE__ : Dict =num_channels SCREAMING_SNAKE_CASE__ : Optional[int] =image_size SCREAMING_SNAKE_CASE__ : Optional[Any] =min_resolution SCREAMING_SNAKE_CASE__ : Dict =max_resolution SCREAMING_SNAKE_CASE__ : Optional[Any] =do_resize SCREAMING_SNAKE_CASE__ : Optional[int] =size SCREAMING_SNAKE_CASE__ : Tuple =apply_ocr def __magic_name__ ( self : Tuple ) -> List[Any]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __magic_name__ ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[Any] =LayoutLMvaImageProcessingTester(self ) @property def __magic_name__ ( self : Union[str, Any] ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''apply_ocr''' ) ) def __magic_name__ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Any =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def __magic_name__ ( self : int ) -> Optional[int]: pass def __magic_name__ ( self : str ) -> Optional[int]: # Initialize image_processing SCREAMING_SNAKE_CASE__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : int =image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , __lowercase ) self.assertIsInstance(encoding.boxes , __lowercase ) # Test batched SCREAMING_SNAKE_CASE__ : Optional[Any] =image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __magic_name__ ( self : Union[str, Any] ) -> Any: # Initialize image_processing SCREAMING_SNAKE_CASE__ : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Any =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Dict =image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __magic_name__ ( self : Dict ) -> Optional[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : str =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Optional[Any] =image_processing(__lowercase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __magic_name__ ( self : Tuple ) -> List[Any]: # with apply_OCR = True SCREAMING_SNAKE_CASE__ : int =LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE__ : Tuple =load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : int =Image.open(ds[0]['''file'''] ).convert('''RGB''' ) SCREAMING_SNAKE_CASE__ : Tuple =image_processing(__lowercase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE__ : Any =[['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 SCREAMING_SNAKE_CASE__ : Optional[Any] =[[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __lowercase ) self.assertListEqual(encoding.boxes , __lowercase ) # with apply_OCR = False SCREAMING_SNAKE_CASE__ : Dict =LayoutLMvaImageProcessor(apply_ocr=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =image_processing(__lowercase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
296
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor A = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _UpperCamelCase ( UpperCamelCase ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase , torch.Tensor ): return image elif isinstance(UpperCamelCase , PIL.Image.Image ): __UpperCAmelCase : int = [image] __UpperCAmelCase : int = [trans(img.convert("RGB" ) ) for img in image] __UpperCAmelCase : Dict = torch.stack(UpperCamelCase ) return image class a__ ( snake_case__ ): def __init__( self : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM __UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=_A , scheduler=_A) def a_ ( self : Any , UpperCamelCase_ : Dict): """simple docstring""" if strength < 0 or strength > 1: raise ValueError(F"The value of strength should in [0.0, 1.0] but is {strength}") def a_ ( self : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any]): """simple docstring""" __UpperCAmelCase : Optional[int] = min(int(num_inference_steps * strength) , _A) __UpperCAmelCase : str = max(num_inference_steps - init_timestep , 0) __UpperCAmelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a_ ( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any]=None): """simple docstring""" if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A)}") __UpperCAmelCase : Union[str, Any] = image.to(device=_A , dtype=_A) if isinstance(_A , _A) and len(_A) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(_A)}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators.") __UpperCAmelCase : Dict = init_latents.shape __UpperCAmelCase : Optional[int] = randn_tensor(_A , generator=_A , device=_A , dtype=_A) # get latents print("add noise to latents at timestep" , _A) __UpperCAmelCase : List[Any] = self.scheduler.add_noise(_A , _A , _A) __UpperCAmelCase : Optional[int] = init_latents return latents @torch.no_grad() def __call__( self : Any , UpperCamelCase_ : Optional[Any] = None , UpperCamelCase_ : Optional[Any] = 0.8 , UpperCamelCase_ : Union[str, Any] = 1 , UpperCamelCase_ : Optional[Any] = None , UpperCamelCase_ : List[str] = 0.0 , UpperCamelCase_ : Optional[int] = 50 , UpperCamelCase_ : Any = None , UpperCamelCase_ : Union[str, Any] = "pil" , UpperCamelCase_ : Union[str, Any] = True , ): """simple docstring""" self.check_inputs(_A) # 2. Preprocess image __UpperCAmelCase : int = preprocess(_A) # 3. set timesteps self.scheduler.set_timesteps(_A , device=self.device) __UpperCAmelCase : Tuple = self.get_timesteps(_A , _A , self.device) __UpperCAmelCase : int = timesteps[:1].repeat(_A) # 4. Prepare latent variables __UpperCAmelCase : Dict = self.prepare_latents(_A , _A , _A , self.unet.dtype , self.device , _A) __UpperCAmelCase : List[Any] = latents # 5. Denoising loop for t in self.progress_bar(_A): # 1. predict noise model_output __UpperCAmelCase : Optional[Any] = self.unet(_A , _A).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCAmelCase : List[Any] = self.scheduler.step( _A , _A , _A , eta=_A , use_clipped_model_output=_A , generator=_A , ).prev_sample __UpperCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(_A) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_A)
711
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Tuple: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __UpperCAmelCase : Optional[int] = mf_knapsack(i - 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: __UpperCAmelCase : Any = max( mf_knapsack(i - 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , mf_knapsack(i - 1 , UpperCamelCase , UpperCamelCase , j - wt[i - 1] ) + val[i - 1] , ) __UpperCAmelCase : str = val return f[i][j] def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[Any]: """simple docstring""" __UpperCAmelCase : List[Any] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __UpperCAmelCase : Tuple = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __UpperCAmelCase : int = dp[i - 1][w_] return dp[n][w_], dp def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" if not (isinstance(UpperCamelCase , (list, tuple) ) and isinstance(UpperCamelCase , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) __UpperCAmelCase : List[Any] = len(UpperCamelCase ) if num_items != len(UpperCamelCase ): __UpperCAmelCase : int = ( "The number of weights must be the same as the number of values.\n" f"But got {num_items} weights and {len(UpperCamelCase )} values" ) raise ValueError(UpperCamelCase ) for i in range(UpperCamelCase ): if not isinstance(wt[i] , UpperCamelCase ): __UpperCAmelCase : Tuple = ( "All weights must be integers but got weight of " f"type {type(wt[i] )} at index {i}" ) raise TypeError(UpperCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Tuple = knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : set = set() _construct_solution(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) return optimal_val, example_optional_set def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: """simple docstring""" # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(UpperCamelCase , UpperCamelCase , i - 1 , UpperCamelCase , UpperCamelCase ) else: optimal_set.add(UpperCamelCase ) _construct_solution(UpperCamelCase , UpperCamelCase , i - 1 , j - wt[i - 1] , UpperCamelCase ) if __name__ == "__main__": A = [3, 2, 4, 4] A = [4, 3, 2, 3] A = 4 A = 6 A = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] A , A = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 A , A = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
487
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets SCREAMING_SNAKE_CASE_: Any =''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' SCREAMING_SNAKE_CASE_: int =''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' SCREAMING_SNAKE_CASE_: Tuple ='''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : List[Any] = None , snake_case_ : List[str] = False , ) -> List[str]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): UpperCAmelCase_ = new_id # turn into Numpy arrays UpperCAmelCase_ = np.array(_UpperCAmelCase ) UpperCAmelCase_ = np.array(_UpperCAmelCase ) if reduce_labels: UpperCAmelCase_ = 2_55 UpperCAmelCase_ = label - 1 UpperCAmelCase_ = 2_55 UpperCAmelCase_ = label != ignore_index UpperCAmelCase_ = np.not_equal(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = pred_label[mask] UpperCAmelCase_ = np.array(_UpperCAmelCase )[mask] UpperCAmelCase_ = pred_label[pred_label == label] UpperCAmelCase_ = np.histogram(_UpperCAmelCase , bins=_UpperCAmelCase , range=(0, num_labels - 1) )[0] UpperCAmelCase_ = np.histogram(_UpperCAmelCase , bins=_UpperCAmelCase , range=(0, num_labels - 1) )[0] UpperCAmelCase_ = np.histogram(_UpperCAmelCase , bins=_UpperCAmelCase , range=(0, num_labels - 1) )[0] UpperCAmelCase_ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : int = None , snake_case_ : int = False , ) -> Any: '''simple docstring''' UpperCAmelCase_ = np.zeros((num_labels,) , dtype=np.floataa ) UpperCAmelCase_ = np.zeros((num_labels,) , dtype=np.floataa ) UpperCAmelCase_ = np.zeros((num_labels,) , dtype=np.floataa ) UpperCAmelCase_ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = intersect_and_union( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Optional[int] = None , snake_case_ : str = None , snake_case_ : List[Any] = False , ) -> Any: '''simple docstring''' UpperCAmelCase_ = total_intersect_and_union( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # compute metrics UpperCAmelCase_ = {} UpperCAmelCase_ = total_area_intersect.sum() / total_area_label.sum() UpperCAmelCase_ = total_area_intersect / total_area_union UpperCAmelCase_ = total_area_intersect / total_area_label UpperCAmelCase_ = np.nanmean(_UpperCAmelCase ) UpperCAmelCase_ = np.nanmean(_UpperCAmelCase ) UpperCAmelCase_ = all_acc UpperCAmelCase_ = iou UpperCAmelCase_ = acc if nan_to_num is not None: UpperCAmelCase_ = {metric: np.nan_to_num(_UpperCAmelCase , nan=_UpperCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def _lowercase (self : Any , __a : List[Any] , __a : int , __a : int , __a : bool , __a : Optional[int] = None , __a : Optional[Dict[int, int]] = None , __a : bool = False , ): UpperCAmelCase_ = mean_iou( results=UpperCAmelCase_ , gt_seg_maps=UpperCAmelCase_ , num_labels=UpperCAmelCase_ , ignore_index=UpperCAmelCase_ , nan_to_num=UpperCAmelCase_ , label_map=UpperCAmelCase_ , reduce_labels=UpperCAmelCase_ , ) return iou_result
78
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A : Optional[Any] = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
343
0
"""simple docstring""" def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any ): '''simple docstring''' lowercase__ : Optional[Any] = len(a__ ) lowercase__ : int = [] for i in range(len(a__ ) - pat_len + 1 ): lowercase__ : str = True for j in range(a__ ): if s[i + j] != pattern[j]: lowercase__ : List[str] = False break if match_found: position.append(a__ ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
714
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=[3_0, 3_0] , a=2 , a=3 , a=True , a=True , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=3 , a=None , a=8 , a=1_0 , ) -> Any: lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = image_size lowercase__ : List[Any] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : str = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Any = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Tuple = n_targets lowercase__ : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ : Tuple = num_patches + 1 + self.num_detection_tokens def _UpperCAmelCase ( self ) -> Any: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ : int = [] for i in range(self.batch_size ): lowercase__ : Optional[Any] = {} lowercase__ : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=a ) lowercase__ : List[str] = torch.rand(self.n_targets , 4 , device=a ) labels.append(a ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[str] = YolosModel(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> Union[str, Any]: lowercase__ : str = YolosForObjectDetection(a ) model.to(a ) model.eval() lowercase__ : Dict = model(pixel_values=a ) lowercase__ : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ : str = model(pixel_values=a , labels=a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCamelCase__ : List[str] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Tuple = False lowerCamelCase__ : Union[str, Any] = False def _UpperCAmelCase ( self , a , a , a=False ) -> Dict: lowercase__ : List[str] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowercase__ : Dict = {} lowercase__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=a , dtype=torch.long ) lowercase__ : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=a , dtype=torch.float ) labels.append(a ) lowercase__ : Union[str, Any] = labels return inputs_dict def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = YolosModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: # YOLOS does not use inputs_embeds pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a ) lowercase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Dict: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True # in YOLOS, the seq_len is different lowercase__ : Tuple = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : str = True lowercase__ : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Optional[int] = True lowercase__ : List[Any] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[str] = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Dict = len(a ) # Check attention is always last and order is fine lowercase__ : Any = True lowercase__ : int = True lowercase__ : int = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(a , a ) ) lowercase__ : Optional[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(a ) ) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _UpperCAmelCase ( self ) -> List[str]: def check_hidden_states_output(a , a , a ): lowercase__ : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a ) ) lowercase__ : int = outputs.hidden_states lowercase__ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a ) , a ) # YOLOS has a different seq_length lowercase__ : Optional[int] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[Any] = True check_hidden_states_output(a , a , a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*a ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = YolosModel.from_pretrained(a ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(a ) lowercase__ : Tuple = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : int = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : int = model(inputs.pixel_values ) # verify outputs lowercase__ : Tuple = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Any = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=a , ) lowercase__ : List[str] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) ) # verify postprocessing lowercase__ : Optional[Any] = image_processor.post_process_object_detection( a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ : str = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(a ) lowercase__ : Any = [7_5, 7_5, 1_7, 6_3, 1_7] lowercase__ : Optional[int] = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , a , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , a ) )
645
0
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") SCREAMING_SNAKE_CASE__ : Optional[int] = get_tests_dir("fixtures/test_sentencepiece_bpe.model") SCREAMING_SNAKE_CASE__ : Any = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = CamembertTokenizer lowercase_ = CamembertTokenizerFast lowercase_ = True lowercase_ = True def __lowercase( self : Tuple )-> str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : Dict = CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase( self : Any )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = '<pad>' SCREAMING_SNAKE_CASE__ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def __lowercase( self : Optional[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(a_ ) , 1004 ) def __lowercase( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def __lowercase( self : List[Any] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : int = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : str = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) SCREAMING_SNAKE_CASE__ : str = tokenizer.encode(a_ , add_special_tokens=a_ ) SCREAMING_SNAKE_CASE__ : List[str] = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.convert_ids_to_tokens(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) def __lowercase( self : Union[str, Any] )-> str: """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ : str = tokenizer.tokenize(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.encode(a_ , add_special_tokens=a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) SCREAMING_SNAKE_CASE__ : int = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.encode(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) @slow def __lowercase( self : List[str] )-> Dict: """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'input_ids': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. SCREAMING_SNAKE_CASE__ : str = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=a_ , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=a_ , )
85
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' _UpperCamelCase = ViTImageProcessor if is_vision_available() else None @property def __snake_case ( self : List[str]) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Optional[Any]) -> List[str]: A_ = (3, 32, 128) A_ = tempfile.mkdtemp() # fmt: off A_ = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on A_ = dict(zip(_lowercase , range(len(_lowercase)))) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(_lowercase) + '\n') A_ = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 128}, } A_ = os.path.join(self.tmpdirname , _lowercase) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(_lowercase , _lowercase) def __snake_case ( self : int , **_lowercase : Optional[int]) -> int: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase) def __snake_case ( self : Optional[int] , **_lowercase : Optional[int]) -> Union[str, Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowercase) def __snake_case ( self : Dict) -> str: shutil.rmtree(self.tmpdirname) def __snake_case ( self : Union[str, Any]) -> Any: A_ = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) A_ = Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) return image_input def __snake_case ( self : Optional[Any]) -> List[Any]: A_ = self.get_tokenizer() A_ = self.get_image_processor() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) processor.save_pretrained(self.tmpdirname) A_ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) def __snake_case ( self : Union[str, Any]) -> Optional[Any]: A_ = self.get_tokenizer() A_ = self.get_image_processor() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) processor.save_pretrained(self.tmpdirname) A_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') A_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) A_ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) def __snake_case ( self : List[Any]) -> str: A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) A_ = self.prepare_image_inputs() A_ = image_processor(_lowercase , return_tensors='np') A_ = processor(images=_lowercase , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def __snake_case ( self : Any) -> str: A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) A_ = 'test' A_ = processor(text=_lowercase) A_ = tokenizer(_lowercase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __snake_case ( self : str) -> Dict: A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) A_ = 'test' A_ = self.prepare_image_inputs() A_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'labels']) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __snake_case ( self : Union[str, Any]) -> Optional[int]: A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.char_decode(_lowercase) A_ = tokenizer.batch_decode(_lowercase) A_ = [seq.replace(' ' , '') for seq in decoded_tok] self.assertListEqual(_lowercase , _lowercase) def __snake_case ( self : List[str]) -> str: A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) A_ = None A_ = self.prepare_image_inputs() A_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def __snake_case ( self : List[str]) -> Any: A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) A_ = torch.randn(1 , 27 , 38) A_ = torch.randn(1 , 27 , 50_257) A_ = torch.randn(1 , 27 , 30_522) A_ = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'])
366
0
from typing import Union import fire import torch from tqdm import tqdm def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] = "cpu" , _lowerCAmelCase : Optional[Any] = None ) -> Union[str, Any]: UpperCAmelCase : Dict = torch.load(A_ , map_location=A_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(A_ , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) UpperCAmelCase : List[str] = v.half() if save_path is None: # overwrite src_path UpperCAmelCase : Dict = src_path torch.save(A_ , A_ ) if __name__ == "__main__": fire.Fire(convert)
710
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def snake_case_ ( ) -> Optional[int]: UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_lowerCAmelCase , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_lowerCAmelCase , default=5 ) parser.add_argument('''--batch_size''' , type=_lowerCAmelCase , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_lowerCAmelCase , default=1 ) parser.add_argument('''--freeze''' , type=_lowerCAmelCase , default=_lowerCAmelCase ) parser.add_argument('''--learning_rate''' , type=_lowerCAmelCase , default=5e-4 ) parser.add_argument('''--seed''' , type=_lowerCAmelCase , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_lowerCAmelCase , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_lowerCAmelCase , default=10 ) parser.add_argument('''--weight_decay''' , type=_lowerCAmelCase , default=0.0_1 ) parser.add_argument('''--output_dir''' , type=_lowerCAmelCase , default='''./results''' ) return parser.parse_args() UpperCamelCase__: Any = load("accuracy") def snake_case_ ( _lowerCAmelCase : int ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = eval_pred UpperCAmelCase : Optional[Any] = np.argmax(_lowerCAmelCase , axis=1 ) return metric.compute(predictions=_lowerCAmelCase , references=_lowerCAmelCase ) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : List[Any] , __snake_case : Optional[int] ) -> None: super().__init__() UpperCAmelCase : Dict = trainer def A ( self : str , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Any , **__snake_case : List[Any] ) -> Dict: if control.should_evaluate: UpperCAmelCase : Optional[int] = deepcopy(__snake_case ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def snake_case_ ( ) -> List[Any]: UpperCAmelCase : Tuple = get_args() set_seed(args.seed ) UpperCAmelCase : List[str] = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) UpperCAmelCase : Dict = dataset.train_test_split(test_size=0.2 ) UpperCAmelCase : Dict = train_test['''test'''].train_test_split(test_size=0.5 ) UpperCAmelCase : List[Any] = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase : Optional[int] = tokenizer.eos_token UpperCAmelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) UpperCAmelCase : List[Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): UpperCAmelCase : Any = False UpperCAmelCase : Optional[Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_lowerCAmelCase : Any ): UpperCAmelCase : List[Any] = tokenizer(example['''src'''] , truncation=_lowerCAmelCase , max_length=1024 ) UpperCAmelCase : Optional[Any] = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } UpperCAmelCase : List[str] = train_test_validation.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=train_test_validation['''train'''].column_names , ) UpperCAmelCase : int = DataCollatorWithPadding(tokenizer=_lowerCAmelCase ) UpperCAmelCase : Tuple = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) UpperCAmelCase : int = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_lowerCAmelCase , data_collator=_lowerCAmelCase , compute_metrics=_lowerCAmelCase , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_lowerCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
528
0
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE( a_ ): def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(UpperCamelCase , 'num_heads' ) ) class __SCREAMING_SNAKE_CASE: def __init__( self: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any]=13 , UpperCamelCase: List[str]=64 , UpperCamelCase: Optional[int]=3 , UpperCamelCase: Optional[Any]=[16, 48, 96] , UpperCamelCase: Optional[Any]=[1, 3, 6] , UpperCamelCase: str=[1, 2, 10] , UpperCamelCase: Dict=[7, 3, 3] , UpperCamelCase: Optional[Any]=[4, 2, 2] , UpperCamelCase: Any=[2, 1, 1] , UpperCamelCase: Optional[Any]=[2, 2, 2] , UpperCamelCase: Tuple=[False, False, True] , UpperCamelCase: Tuple=[0.0, 0.0, 0.0] , UpperCamelCase: Any=0.02 , UpperCamelCase: int=1e-12 , UpperCamelCase: Any=True , UpperCamelCase: List[str]=True , UpperCamelCase: int=2 , ) -> Dict: snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = patch_sizes snake_case__ = patch_stride snake_case__ = patch_padding snake_case__ = is_training snake_case__ = use_labels snake_case__ = num_labels snake_case__ = num_channels snake_case__ = embed_dim snake_case__ = num_heads snake_case__ = stride_kv snake_case__ = depth snake_case__ = cls_token snake_case__ = attention_drop_rate snake_case__ = initializer_range snake_case__ = layer_norm_eps def lowerCAmelCase_ ( self: Tuple ) -> Any: snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self: List[str] ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: int ) -> Union[str, Any]: snake_case__ = CvtModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase ) snake_case__ = (self.image_size, self.image_size) snake_case__ , snake_case__ = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case__ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case__ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Optional[int] ) -> Optional[Any]: snake_case__ = self.num_labels snake_case__ = CvtForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self: int ) -> Optional[int]: snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( a_ , a_ , unittest.TestCase ): _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: snake_case__ = CvtModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self: Dict ) -> List[str]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCAmelCase_ ( self: Tuple ) -> Tuple: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCAmelCase_ ( self: Optional[int] ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCAmelCase_ ( self: Any ) -> List[Any]: pass def lowerCAmelCase_ ( self: Any ) -> str: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(UpperCamelCase ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def lowerCAmelCase_ ( self: Dict ) -> List[Any]: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> List[Any]: def check_hidden_states_output(UpperCamelCase: Union[str, Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] ): snake_case__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) snake_case__ = outputs.hidden_states snake_case__ = len(self.model_tester.depth ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: Any ) -> List[Any]: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self: int ) -> Tuple: pass @slow def lowerCAmelCase_ ( self: Dict ) -> List[Any]: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = CvtModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self: List[Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase_ ( self: Any ) -> Any: snake_case__ = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCamelCase ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=UpperCamelCase , return_tensors='pt' ).to(UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ = model(**UpperCamelCase ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) snake_case__ = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) )
328
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def __init__( self: int , UpperCamelCase: List[Any] , UpperCamelCase: Optional[int]=7 , UpperCamelCase: List[Any]=3 , UpperCamelCase: List[Any]=30 , UpperCamelCase: List[Any]=4_00 , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Any=None , UpperCamelCase: Tuple=True , UpperCamelCase: List[str]=[0.5, 0.5, 0.5] , UpperCamelCase: Dict=[0.5, 0.5, 0.5] , UpperCamelCase: Tuple=True , UpperCamelCase: List[str]=1 / 2_55 , UpperCamelCase: Union[str, Any]=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = size snake_case__ = do_normalize snake_case__ = image_mean snake_case__ = image_std snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_pad def lowerCAmelCase_ ( self: Dict ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self: Any , UpperCamelCase: List[Any] , UpperCamelCase: Optional[int]=False ) -> int: if not batched: snake_case__ = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): snake_case__ , snake_case__ = image.size else: snake_case__ , snake_case__ = image.shape[1], image.shape[2] if w < h: snake_case__ = int(self.size['shortest_edge'] * h / w ) snake_case__ = self.size['shortest_edge'] elif w > h: snake_case__ = self.size['shortest_edge'] snake_case__ = int(self.size['shortest_edge'] * w / h ) else: snake_case__ = self.size['shortest_edge'] snake_case__ = self.size['shortest_edge'] else: snake_case__ = [] for image in image_inputs: snake_case__ , snake_case__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] snake_case__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: snake_case__ = ConditionalDetrImageProcessingTester(self ) @property def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) def lowerCAmelCase_ ( self: int ) -> Optional[int]: snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) snake_case__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] ) -> List[Any]: pass def lowerCAmelCase_ ( self: Optional[int] ) -> Tuple: # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) snake_case__ = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: Tuple ) -> List[str]: # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]: # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self: str ) -> Any: # prepare image and target snake_case__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {'image_id': 3_97_69, 'annotations': target} # encode them snake_case__ = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) snake_case__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors='pt' ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , UpperCamelCase ) snake_case__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCamelCase ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCamelCase ) snake_case__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCamelCase ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCamelCase ) ) # verify class_labels snake_case__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCamelCase ) ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCamelCase ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCamelCase ) ) @slow def lowerCAmelCase_ ( self: List[Any] ) -> Dict: # prepare image, target and masks_path snake_case__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} snake_case__ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case__ = ConditionalDetrImageProcessor(format='coco_panoptic' ) snake_case__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors='pt' ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , UpperCamelCase ) snake_case__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , UpperCamelCase ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , UpperCamelCase ) snake_case__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , UpperCamelCase ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , UpperCamelCase ) ) # verify class_labels snake_case__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , UpperCamelCase ) ) # verify masks snake_case__ = 82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , UpperCamelCase ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , UpperCamelCase ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , UpperCamelCase ) )
328
1
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : Dict ) -> Optional[int]: __magic_name__: Union[str, Any] = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__UpperCamelCase ) ) def lowerCamelCase__ ( self : Any ) -> Any: __magic_name__: List[str] = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__UpperCamelCase ) ) def lowerCamelCase__ ( self : Dict ) -> Dict: __magic_name__: str = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__UpperCamelCase ) ) def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: __magic_name__: str = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__UpperCamelCase ) ) def lowerCamelCase__ ( self : Tuple ) -> Dict: __magic_name__: Union[str, Any] = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(__UpperCamelCase ) ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: __magic_name__: Optional[Any] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __magic_name__: List[str] = """fp16""" self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def lowerCamelCase__ ( self : Dict ) -> Tuple: __magic_name__: List[Any] = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __magic_name__: Tuple = """fp16""" self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def lowerCamelCase__ ( self : Any ) -> int: __magic_name__: str = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] __magic_name__: Any = """fp16""" self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: __magic_name__: int = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __magic_name__: str = """fp16""" self.assertFalse(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: __magic_name__: Union[str, Any] = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] __magic_name__: Optional[Any] = """fp16""" self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def lowerCamelCase__ ( self : List[str] ) -> List[Any]: __magic_name__: Dict = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] __magic_name__: Optional[Any] = """fp16""" self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def lowerCamelCase__ ( self : Dict ) -> str: __magic_name__: Dict = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __magic_name__: Any = """fp16""" self.assertFalse(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) )
702
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = IFInpaintingSuperResolutionPipeline UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) UpperCAmelCase__ = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: return self._get_superresolution_dummy_components() def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any=0 ) -> Dict: if str(__snake_case ).startswith("""mps""" ): __magic_name__: int = torch.manual_seed(__snake_case ) else: __magic_name__: List[Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__: Tuple = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase__ ( self : Dict ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCamelCase__ ( self : Tuple ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase__ ( self : int ) -> str: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase__ ( self : Any ) -> List[Any]: self._test_save_load_local() def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
213
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class __a( _a ): """simple docstring""" @staticmethod @abstractmethod def a__ ( _SCREAMING_SNAKE_CASE ) -> str: raise NotImplementedError() @abstractmethod def a__ ( self ) -> int: raise NotImplementedError()
30
def _a ( lowerCAmelCase , lowerCAmelCase )-> List[str]: SCREAMING_SNAKE_CASE_ = [1] for i in range(2 , lowerCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = list(range(lowerCAmelCase ) ) # Find permutation while factorials: SCREAMING_SNAKE_CASE_ = factorials.pop() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = divmod(lowerCAmelCase , lowerCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
360
0
def A_ ( ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] SCREAMING_SNAKE_CASE = 6 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1_9_0_1 SCREAMING_SNAKE_CASE = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 SCREAMING_SNAKE_CASE = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 SCREAMING_SNAKE_CASE = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 SCREAMING_SNAKE_CASE = day - days_per_month[month - 2] if month > 1_2: year += 1 SCREAMING_SNAKE_CASE = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
259
import os import re import shutil import sys import tempfile import unittest import black __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __UpperCAmelCase = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class a_( unittest.TestCase ): """simple docstring""" def __UpperCamelCase ( self : Optional[int]) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/')) SCREAMING_SNAKE_CASE = self.transformer_dir shutil.copy( os.path.join(lowerCAmelCase__ , 'src/transformers/models/bert/modeling_bert.py') , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py') , ) def __UpperCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = 'src/transformers' shutil.rmtree(self.transformer_dir) def __UpperCamelCase ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict=None) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9) SCREAMING_SNAKE_CASE = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__) SCREAMING_SNAKE_CASE = os.path.join(self.transformer_dir , 'new_code.py') with open(lowerCAmelCase__ , 'w' , newline='\n') as f: f.write(lowerCAmelCase__) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase__)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase__) with open(lowerCAmelCase__ , 'r') as f: self.assertTrue(f.read() , lowerCAmelCase__) def __UpperCamelCase ( self : List[Any]) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead') self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def __UpperCamelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowerCAmelCase__ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowerCAmelCase__) , ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub('Bert' , lowerCAmelCase__ , lowerCAmelCase__) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowerCAmelCase__ , overwrite_result=re.sub('Bert' , 'TestModel' , lowerCAmelCase__) , ) def __UpperCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = check_copies.LOCALIZED_READMES['README_zh-hans.md'] SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( lowerCAmelCase__ , lowerCAmelCase__ , localized_readme['format_model_list']) self.assertFalse(lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( lowerCAmelCase__ , lowerCAmelCase__ , localized_readme['format_model_list']) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCAmelCase__) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( lowerCAmelCase__ , lowerCAmelCase__ , localized_readme['format_model_list']) # Check if the model link is synchronized. self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
259
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Any=7 , lowerCamelCase__ : str=3 , lowerCamelCase__ : Optional[Any]=1_8 , lowerCamelCase__ : Optional[int]=3_0 , lowerCamelCase__ : Optional[int]=4_0_0 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : List[Any]=3_2 , lowerCamelCase__ : List[str]=True , ): lowerCAmelCase : Union[str, Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : str = image_size lowerCAmelCase : Optional[Any] = min_resolution lowerCAmelCase : str = max_resolution lowerCAmelCase : Optional[Any] = do_resize lowerCAmelCase : Tuple = size_divisor lowerCAmelCase : Optional[int] = do_rescale def _A ( self : List[str] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __magic_name__ ( snake_case, unittest.TestCase ): _lowerCAmelCase = GLPNImageProcessor if is_vision_available() else None def _A ( self : List[Any] ): lowerCAmelCase : List[str] = GLPNImageProcessingTester(self ) @property def _A ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Optional[Any] ): lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''size_divisor''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''resample''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_rescale''' ) ) def _A ( self : List[str] ): pass def _A ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _A ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _A ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
348
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def _A ( *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Dict ): pass def UpperCAmelCase__ ( __magic_name__ : Image ): '''simple docstring''' lowerCAmelCase : List[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def UpperCAmelCase__ ( __magic_name__ : Image ): '''simple docstring''' lowerCAmelCase : Tuple = np.array(__magic_name__ ) lowerCAmelCase : Dict = npimg.shape return {"hash": hashimage(__magic_name__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __magic_name__ ( unittest.TestCase ): _lowerCAmelCase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCAmelCase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _A ( self : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int ): lowerCAmelCase : List[str] = MaskGenerationPipeline(model=lowerCamelCase__ , image_processor=lowerCamelCase__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _A ( self : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _A ( self : Optional[int] ): pass @slow @require_torch def _A ( self : Optional[int] ): lowerCAmelCase : Dict = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) lowerCAmelCase : Optional[Any] = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=2_5_6 ) # Shortening by hashing lowerCAmelCase : List[Any] = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_2_1}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_0_5_3}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_9_6_7}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_9_3}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_9_0_9}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_8_7_9}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_8_3_4}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_7_1_6}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_6_1_2}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_5_9_9}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_5_5_2}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_5_3_2}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_5_1_6}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_9_9}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_8_3}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_6_4}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_0_8}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_3_3_5}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_3_2_6}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_2_6_2}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_9_9_9}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_9_8_6}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_9_8_4}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_8_7_3}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def _A ( self : Any ): lowerCAmelCase : List[str] = '''facebook/sam-vit-huge''' lowerCAmelCase : List[str] = pipeline('''mask-generation''' , model=lowerCamelCase__ ) lowerCAmelCase : List[Any] = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=2_5_6 ) # Shortening by hashing lowerCAmelCase : str = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_2_1_0}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_0_5_3}, ] , )
348
1
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" __a = [False] * len(__SCREAMING_SNAKE_CASE ) __a = [] queue.append(__SCREAMING_SNAKE_CASE ) __a = True while queue: __a = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__SCREAMING_SNAKE_CASE ) __a = True __a = u return visited[t] def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" __a = [-1] * (len(__SCREAMING_SNAKE_CASE )) __a = 0 while bfs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __a = float("""Inf""" ) __a = sink while s != source: # Find the minimum value in select path __a = min(__SCREAMING_SNAKE_CASE , graph[parent[s]][s] ) __a = parent[s] max_flow += path_flow __a = sink while v != source: __a = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __a = parent[v] return max_flow SCREAMING_SNAKE_CASE_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 5 print(ford_fulkerson(graph, source, sink))
201
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" __a = [int(__SCREAMING_SNAKE_CASE ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(__SCREAMING_SNAKE_CASE ) == 4 and all(0 <= int(__SCREAMING_SNAKE_CASE ) <= 254 for octet in octets ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input().strip() SCREAMING_SNAKE_CASE_ = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
201
1
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCAmelCase ( snake_case__ ): '''simple docstring''' A = 42 class lowerCAmelCase ( snake_case__ , snake_case__ ): '''simple docstring''' A = True @register_to_config def __init__( self :str , lowerCamelCase_ :int = 3 , lowerCamelCase_ :int = 3 , lowerCamelCase_ :Tuple[str] = ("DownEncoderBlock2D",) , lowerCamelCase_ :Tuple[str] = ("UpDecoderBlock2D",) , lowerCamelCase_ :Tuple[int] = (6_4,) , lowerCamelCase_ :int = 1 , lowerCamelCase_ :str = "silu" , lowerCamelCase_ :int = 4 , lowerCamelCase_ :int = 3_2 , lowerCamelCase_ :int = 3_2 , lowerCamelCase_ :float = 0.18_215 , ) -> Dict: """simple docstring""" super().__init__() # pass init params to Encoder UpperCamelCase__ = Encoder( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , down_block_types=lowerCamelCase_ , block_out_channels=lowerCamelCase_ , layers_per_block=lowerCamelCase_ , act_fn=lowerCamelCase_ , norm_num_groups=lowerCamelCase_ , double_z=lowerCamelCase_ , ) # pass init params to Decoder UpperCamelCase__ = Decoder( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , up_block_types=lowerCamelCase_ , block_out_channels=lowerCamelCase_ , layers_per_block=lowerCamelCase_ , norm_num_groups=lowerCamelCase_ , act_fn=lowerCamelCase_ , ) UpperCamelCase__ = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCamelCase__ = nn.Convad(lowerCamelCase_ , lowerCamelCase_ , 1 ) UpperCamelCase__ = False UpperCamelCase__ = False # only relevant if vae tiling is enabled UpperCamelCase__ = self.config.sample_size UpperCamelCase__ = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCamelCase__ = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCamelCase__ = 0.25 def lowerCamelCase__ ( self :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[Any]=False ) -> str: """simple docstring""" if isinstance(lowerCamelCase_ , (Encoder, Decoder) ): UpperCamelCase__ = value def lowerCamelCase__ ( self :Any , lowerCamelCase_ :bool = True ) -> List[Any]: """simple docstring""" UpperCamelCase__ = use_tiling def lowerCamelCase__ ( self :Optional[int] ) -> Dict: """simple docstring""" self.enable_tiling(lowerCamelCase_ ) def lowerCamelCase__ ( self :Dict ) -> Dict: """simple docstring""" UpperCamelCase__ = True def lowerCamelCase__ ( self :Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase__ = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase__ ( self :Dict ) -> Dict[str, AttentionProcessor]: """simple docstring""" UpperCamelCase__ = {} def fn_recursive_add_processors(lowerCamelCase_ :str , lowerCamelCase_ :torch.nn.Module , lowerCamelCase_ :Dict[str, AttentionProcessor] ): if hasattr(lowerCamelCase_ , "set_processor" ): UpperCamelCase__ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'{name}.{sub_name}' , lowerCamelCase_ , lowerCamelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return processors def lowerCamelCase__ ( self :Any , lowerCamelCase_ :Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Any: """simple docstring""" UpperCamelCase__ = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) != count: raise ValueError( f'A dict of processors was passed, but the number of processors {len(lowerCamelCase_ )} does not match the' f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(lowerCamelCase_ :str , lowerCamelCase_ :torch.nn.Module , lowerCamelCase_ :List[str] ): if hasattr(lowerCamelCase_ , "set_processor" ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): module.set_processor(lowerCamelCase_ ) else: module.set_processor(processor.pop(f'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'{name}.{sub_name}' , lowerCamelCase_ , lowerCamelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase__ ( self :Optional[Any] ) -> Union[str, Any]: """simple docstring""" self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCamelCase__ ( self :int , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :bool = True ) -> AutoencoderKLOutput: """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowerCamelCase_ , return_dict=lowerCamelCase_ ) if self.use_slicing and x.shape[0] > 1: UpperCamelCase__ = [self.encoder(lowerCamelCase_ ) for x_slice in x.split(1 )] UpperCamelCase__ = torch.cat(lowerCamelCase_ ) else: UpperCamelCase__ = self.encoder(lowerCamelCase_ ) UpperCamelCase__ = self.quant_conv(lowerCamelCase_ ) UpperCamelCase__ = DiagonalGaussianDistribution(lowerCamelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCamelCase_ ) def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowerCamelCase_ , return_dict=lowerCamelCase_ ) UpperCamelCase__ = self.post_quant_conv(lowerCamelCase_ ) UpperCamelCase__ = self.decoder(lowerCamelCase_ ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase_ ) @apply_forward_hook def lowerCamelCase__ ( self :List[Any] , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_slicing and z.shape[0] > 1: UpperCamelCase__ = [self._decode(lowerCamelCase_ ).sample for z_slice in z.split(1 )] UpperCamelCase__ = torch.cat(lowerCamelCase_ ) else: UpperCamelCase__ = self._decode(lowerCamelCase_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowerCamelCase_ ) def lowerCamelCase__ ( self :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = min(a.shape[2] , b.shape[2] , lowerCamelCase_ ) for y in range(lowerCamelCase_ ): UpperCamelCase__ = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = min(a.shape[3] , b.shape[3] , lowerCamelCase_ ) for x in range(lowerCamelCase_ ): UpperCamelCase__ = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCamelCase__ ( self :Optional[int] , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :bool = True ) -> AutoencoderKLOutput: """simple docstring""" UpperCamelCase__ = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCamelCase__ = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCamelCase__ = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCamelCase__ = [] for i in range(0 , x.shape[2] , lowerCamelCase_ ): UpperCamelCase__ = [] for j in range(0 , x.shape[3] , lowerCamelCase_ ): UpperCamelCase__ = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCamelCase__ = self.encoder(lowerCamelCase_ ) UpperCamelCase__ = self.quant_conv(lowerCamelCase_ ) row.append(lowerCamelCase_ ) rows.append(lowerCamelCase_ ) UpperCamelCase__ = [] for i, row in enumerate(lowerCamelCase_ ): UpperCamelCase__ = [] for j, tile in enumerate(lowerCamelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase__ = self.blend_v(rows[i - 1][j] , lowerCamelCase_ , lowerCamelCase_ ) if j > 0: UpperCamelCase__ = self.blend_h(row[j - 1] , lowerCamelCase_ , lowerCamelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCamelCase_ , dim=3 ) ) UpperCamelCase__ = torch.cat(lowerCamelCase_ , dim=2 ) UpperCamelCase__ = DiagonalGaussianDistribution(lowerCamelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCamelCase_ ) def lowerCamelCase__ ( self :int , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" UpperCamelCase__ = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCamelCase__ = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCamelCase__ = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCamelCase__ = [] for i in range(0 , z.shape[2] , lowerCamelCase_ ): UpperCamelCase__ = [] for j in range(0 , z.shape[3] , lowerCamelCase_ ): UpperCamelCase__ = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCamelCase__ = self.post_quant_conv(lowerCamelCase_ ) UpperCamelCase__ = self.decoder(lowerCamelCase_ ) row.append(lowerCamelCase_ ) rows.append(lowerCamelCase_ ) UpperCamelCase__ = [] for i, row in enumerate(lowerCamelCase_ ): UpperCamelCase__ = [] for j, tile in enumerate(lowerCamelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase__ = self.blend_v(rows[i - 1][j] , lowerCamelCase_ , lowerCamelCase_ ) if j > 0: UpperCamelCase__ = self.blend_h(row[j - 1] , lowerCamelCase_ , lowerCamelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCamelCase_ , dim=3 ) ) UpperCamelCase__ = torch.cat(lowerCamelCase_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase_ ) def lowerCamelCase__ ( self :Any , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :bool = False , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" UpperCamelCase__ = sample UpperCamelCase__ = self.encode(lowerCamelCase_ ).latent_dist if sample_posterior: UpperCamelCase__ = posterior.sample(generator=lowerCamelCase_ ) else: UpperCamelCase__ = posterior.mode() UpperCamelCase__ = self.decode(lowerCamelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase_ )
516
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def snake_case__ ( _snake_case : List[Any]=32 , _snake_case : Tuple=10 , _snake_case : str=1_00 , _snake_case : Optional[int]=10_26 , _snake_case : Any=True , _snake_case : str="data/tokenized_stories_train_wikitext103.jbl" , _snake_case : Any="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set UpperCamelCase__ , UpperCamelCase__ = generate_datasets( _snake_case , _snake_case , number=_snake_case , min_len=10_26 , trim=_snake_case ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCamelCase__ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model UpperCamelCase__ = load_gpta("gpt2" ).to(_snake_case ) print("computing perplexity on objective set" ) UpperCamelCase__ = compute_perplexity(_snake_case , _snake_case , _snake_case ).item() print("perplexity on objective set:" , _snake_case ) # collect igf pairs and save to file demo.jbl collect_objective_set(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def snake_case__ ( _snake_case : Any , _snake_case : str=15 , _snake_case : str=1_28 , _snake_case : int=1_00 , _snake_case : Tuple="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model UpperCamelCase__ = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model UpperCamelCase__ = SecondaryLearner(_snake_case ) # Train secondary learner UpperCamelCase__ = train_secondary_learner( _snake_case , _snake_case , max_epochs=_snake_case , batch_size=_snake_case , eval_freq=1_00 , igf_model_path=_snake_case , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def snake_case__ ( _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : List[str]=32 , _snake_case : Tuple=10_00 , _snake_case : List[Any]=16 , _snake_case : str=1.0 , _snake_case : List[str]=recopy_gpta , _snake_case : Optional[int]=None , _snake_case : Optional[int]=10 , _snake_case : Optional[int]="gpt2_finetuned.pt" , ): """simple docstring""" UpperCamelCase__ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) UpperCamelCase__ = RandomSampler(_snake_case ) UpperCamelCase__ = DataLoader(_snake_case , sampler=_snake_case ) UpperCamelCase__ = max_steps // (len(_snake_case )) + 1 UpperCamelCase__ = 0 UpperCamelCase__ = torch.zeros((1, context_len) , dtype=torch.long , device=_snake_case ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = recopy_model(_snake_case , _snake_case , _snake_case ) model.train() if secondary_learner is not None: secondary_learner.to(_snake_case ) secondary_learner.eval() UpperCamelCase__ = [] UpperCamelCase__ = 0 UpperCamelCase__ = [] UpperCamelCase__ = [] # Compute the performance of the transformer model at the beginning UpperCamelCase__ = compute_perplexity(_snake_case , _snake_case , _snake_case ) test_perps.append(_snake_case ) print("Test perplexity, step" , _snake_case , ":" , _snake_case ) for epoch in range(int(_snake_case ) ): for step, example in enumerate(_snake_case ): torch.cuda.empty_cache() UpperCamelCase__ = random.randint(0 , example.size(2 ) - context_len - 1 ) UpperCamelCase__ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCamelCase__ = model(_snake_case , labels=_snake_case ) UpperCamelCase__ = True if secondary_learner is not None: UpperCamelCase__ = secondary_learner.forward( torch.tensor(_snake_case , dtype=torch.long , device=_snake_case ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_snake_case ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCamelCase__ = -1 if predicted_q < threshold: UpperCamelCase__ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) UpperCamelCase__ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCamelCase__ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCamelCase__ = compute_perplexity(_snake_case , _snake_case , _snake_case ) test_perps.append(_snake_case ) print("Test perplexity, step" , _snake_case , ":" , _snake_case ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _snake_case ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=_snake_case , type=_snake_case , required=_snake_case , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=_snake_case , type=_snake_case , required=_snake_case , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=_snake_case , default=_snake_case , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=_snake_case , default=_snake_case , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=_snake_case , type=_snake_case , required=_snake_case , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=_snake_case , type=_snake_case , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=_snake_case , default=_snake_case , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=_snake_case , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=1_00 , type=_snake_case , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=1_00 , type=_snake_case , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=10_00 , type=_snake_case , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=1_28 , type=_snake_case , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=_snake_case , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=_snake_case , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=1_00 , type=_snake_case , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=10_26 , type=_snake_case , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=_snake_case , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=_snake_case , type=_snake_case , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=_snake_case , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=_snake_case , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=_snake_case , type=_snake_case , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=_snake_case , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner UpperCamelCase__ = joblib.load("data/IGF_values.jbl" ) # Train secondary learner UpperCamelCase__ = training_secondary_learner( _snake_case , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model UpperCamelCase__ = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model UpperCamelCase__ , UpperCamelCase__ = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=1_00 , min_len=10_26 , trim=_snake_case ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _snake_case , _snake_case , _snake_case , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=_snake_case , secondary_learner=_snake_case , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
516
1
from collections.abc import Iterable from typing import Generic, TypeVar lowercase_ = TypeVar('_T') class snake_case ( Generic[_T] ): '''simple docstring''' def __init__( self : Dict, _lowerCamelCase : Iterable[_T] | None = None ): '''simple docstring''' __A = list(iterable or [] ) __A = [] def __len__( self : Union[str, Any] ): '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self : int ): '''simple docstring''' return f'Queue({tuple(self._stacka[::-1] + self._stacka )})' def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : _T ): '''simple docstring''' self._stacka.append(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = self._stacka.pop __A = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
718
"""simple docstring""" lowercase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} lowercase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = start # add current to visited visited.append(__UpperCamelCase ) __A = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __A = topological_sort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # if all neighbors visited add current to sort sort.append(__UpperCamelCase ) # if all vertices haven't been visited select a new one to visit if len(__UpperCamelCase ) != len(__UpperCamelCase ): for vertice in vertices: if vertice not in visited: __A = topological_sort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # return sort return sort if __name__ == "__main__": lowercase_ = topological_sort('a', [], []) print(sort)
215
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """megatron-bert""" def __init__(self , __a=29056 , __a=1024 , __a=24 , __a=16 , __a=4096 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=2 , __a=0.02 , __a=1E-1_2 , __a=0 , __a="absolute" , __a=True , **__a , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=__a , **__a ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache
146
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer __SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def UpperCamelCase__ (self ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ = XLMRobertaTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = '<pad>' UpperCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(__a ) , 1002 ) def UpperCamelCase__ (self ) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = XLMRobertaTokenizer(__a , keep_accents=__a ) UpperCAmelCase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase__ = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(__a ) UpperCAmelCase__ = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(__a ) UpperCAmelCase__ = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(__a , legacy_format=__a ) UpperCAmelCase__ = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(__a ) UpperCAmelCase__ = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = tokenizer_r.save_pretrained(__a , legacy_format=__a ) UpperCAmelCase__ = tokenizer_p.save_pretrained(__a ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ = tokenizer_r.from_pretrained(__a ) UpperCAmelCase__ = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) @cached_property def UpperCamelCase__ (self ) -> int: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__a , f.name ) UpperCAmelCase__ = XLMRobertaTokenizer(f.name , keep_accents=__a ) UpperCAmelCase__ = pickle.dumps(__a ) pickle.loads(__a ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = 'I was born in 92000, and this is falsé.' UpperCAmelCase__ = tokenizer.tokenize(__a ) UpperCAmelCase__ = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = tokenizer.encode(__a , add_special_tokens=__a ) UpperCAmelCase__ = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = tokenizer.encode(__a ) UpperCAmelCase__ = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) @slow def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = 'Hello World!' UpperCAmelCase__ = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) UpperCAmelCase__ = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = {'input_ids': [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
146
1
def lowerCamelCase ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : set )-> int: """simple docstring""" a , a =len(UpperCAmelCase_ ), len(grid[0] ) if ( min(UpperCAmelCase_ , UpperCAmelCase_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) a =0 count += depth_first_search(UpperCAmelCase_ , row + 1 , UpperCAmelCase_ , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , row - 1 , UpperCAmelCase_ , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , col + 1 , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , col - 1 , UpperCAmelCase_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
720
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowerCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } _lowerCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } _lowerCamelCase = '''▁''' class UpperCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Tuple = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase = None , **_lowerCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it a =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token a ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) a =vocab_file a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) a ={"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} a =len(self.sp_model ) - 1 a ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a =[self.cls_token_id] a =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): a =[self.sep_token_id] a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self ): return len(self.sp_model ) def lowerCAmelCase__ ( self ): a ={self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self , _lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def lowerCAmelCase__ ( self , _lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a =self.sp_model.PieceToId(_lowerCAmelCase ) return spm_id if spm_id else self.unk_token_id def lowerCAmelCase__ ( self , _lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_lowerCAmelCase ) def lowerCAmelCase__ ( self , _lowerCAmelCase ): a =[] a ="""""" a =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token a =True a =[] else: current_sub_tokens.append(_lowerCAmelCase ) a =False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self ): a =self.__dict__.copy() a =None return state def __setstate__( self , _lowerCAmelCase ): a =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): a ={} a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a =os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: a =self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
321
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : int = {'''vocab_file''': '''vocab.txt'''} __lowerCAmelCase : Union[str, Any] = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } __lowerCAmelCase : Optional[Any] = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } __lowerCAmelCase : Any = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ConvBertTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=True , _lowercase="[UNK]" , _lowercase="[SEP]" , _lowercase="[PAD]" , _lowercase="[CLS]" , _lowercase="[MASK]" , _lowercase=True , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) snake_case_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowercase ) != tokenize_chinese_chars ): snake_case_ : Optional[int] = getattr(_lowercase , normalizer_state.pop("""type""" ) ) snake_case_ : Dict = do_lower_case snake_case_ : str = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : int = normalizer_class(**_lowercase ) snake_case_ : Optional[int] = do_lower_case def UpperCAmelCase__ ( self , _lowercase , _lowercase=None ) -> int: '''simple docstring''' snake_case_ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : int = [self.sep_token_id] snake_case_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' snake_case_ : Optional[int] = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
58
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None, **__snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()] _UpperCamelCase = [x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCamelCase = calculate_rouge(__snake_case, __snake_case, **__snake_case ) if save_path is not None: save_json(__snake_case, __snake_case, indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
19
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Tuple = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Dict = 'rwkv' A_ : List[str] = {'max_position_embeddings': 'context_length'} def __init__( self : Union[str, Any] , __snake_case : Dict=50_277 , __snake_case : Any=1_024 , __snake_case : Optional[Any]=4_096 , __snake_case : Tuple=32 , __snake_case : Any=None , __snake_case : str=None , __snake_case : Tuple=1E-5 , __snake_case : Union[str, Any]=0 , __snake_case : List[Any]=0 , __snake_case : Optional[Any]=6 , __snake_case : str=False , __snake_case : int=True , **__snake_case : str , ): '''simple docstring''' UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Tuple = context_length UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Optional[int] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ : int = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ : List[Any] = layer_norm_epsilon UpperCAmelCase_ : Union[str, Any] = rescale_every UpperCAmelCase_ : Tuple = use_cache UpperCAmelCase_ : Optional[int] = bos_token_id UpperCAmelCase_ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowerCamelCase ( _snake_case : List[str] ): '''simple docstring''' lowercase__ = DPTConfig() if "large" in checkpoint_url: lowercase__ = 1_024 lowercase__ = 4_096 lowercase__ = 24 lowercase__ = 16 lowercase__ = [5, 11, 17, 23] lowercase__ = [256, 512, 1_024, 1_024] lowercase__ = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ = True lowercase__ = 150 lowercase__ = "huggingface/label-files" lowercase__ = "ade20k-id2label.json" lowercase__ = json.load(open(cached_download(hf_hub_url(_snake_case ,_snake_case ,repo_type="dataset" ) ) ,"r" ) ) lowercase__ = {int(_snake_case ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = [1, 150, 480, 480] return config, expected_shape def lowerCamelCase ( _snake_case : List[Any] ): '''simple docstring''' lowercase__ = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_snake_case ,_snake_case ) def lowerCamelCase ( _snake_case : Dict ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ = name.replace("pretrained.model" ,"dpt.encoder" ) if "pretrained.model" in name: lowercase__ = name.replace("pretrained.model" ,"dpt.embeddings" ) if "patch_embed" in name: lowercase__ = name.replace("patch_embed" ,"patch_embeddings" ) if "pos_embed" in name: lowercase__ = name.replace("pos_embed" ,"position_embeddings" ) if "attn.proj" in name: lowercase__ = name.replace("attn.proj" ,"attention.output.dense" ) if "proj" in name and "project" not in name: lowercase__ = name.replace("proj" ,"projection" ) if "blocks" in name: lowercase__ = name.replace("blocks" ,"layer" ) if "mlp.fc1" in name: lowercase__ = name.replace("mlp.fc1" ,"intermediate.dense" ) if "mlp.fc2" in name: lowercase__ = name.replace("mlp.fc2" ,"output.dense" ) if "norm1" in name: lowercase__ = name.replace("norm1" ,"layernorm_before" ) if "norm2" in name: lowercase__ = name.replace("norm2" ,"layernorm_after" ) if "scratch.output_conv" in name: lowercase__ = name.replace("scratch.output_conv" ,"head" ) if "scratch" in name: lowercase__ = name.replace("scratch" ,"neck" ) if "layer1_rn" in name: lowercase__ = name.replace("layer1_rn" ,"convs.0" ) if "layer2_rn" in name: lowercase__ = name.replace("layer2_rn" ,"convs.1" ) if "layer3_rn" in name: lowercase__ = name.replace("layer3_rn" ,"convs.2" ) if "layer4_rn" in name: lowercase__ = name.replace("layer4_rn" ,"convs.3" ) if "refinenet" in name: lowercase__ = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ = name.replace(f'''refinenet{layer_idx}''' ,f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowercase__ = name.replace("out_conv" ,"projection" ) if "resConfUnit1" in name: lowercase__ = name.replace("resConfUnit1" ,"residual_layer1" ) if "resConfUnit2" in name: lowercase__ = name.replace("resConfUnit2" ,"residual_layer2" ) if "conv1" in name: lowercase__ = name.replace("conv1" ,"convolution1" ) if "conv2" in name: lowercase__ = name.replace("conv2" ,"convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ = name.replace("pretrained.act_postprocess1.0.project.0" ,"neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ = name.replace("pretrained.act_postprocess2.0.project.0" ,"neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ = name.replace("pretrained.act_postprocess3.0.project.0" ,"neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ = name.replace("pretrained.act_postprocess4.0.project.0" ,"neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ = name.replace("pretrained.act_postprocess1.3" ,"neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowercase__ = name.replace("pretrained.act_postprocess1.4" ,"neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowercase__ = name.replace("pretrained.act_postprocess2.3" ,"neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowercase__ = name.replace("pretrained.act_postprocess2.4" ,"neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowercase__ = name.replace("pretrained.act_postprocess3.3" ,"neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowercase__ = name.replace("pretrained.act_postprocess4.3" ,"neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowercase__ = name.replace("pretrained.act_postprocess4.4" ,"neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowercase__ = name.replace("pretrained" ,"dpt" ) if "bn" in name: lowercase__ = name.replace("bn" ,"batch_norm" ) if "head" in name: lowercase__ = name.replace("head" ,"head.head" ) if "encoder.norm" in name: lowercase__ = name.replace("encoder.norm" ,"layernorm" ) if "auxlayer" in name: lowercase__ = name.replace("auxlayer" ,"auxiliary_head.head" ) return name def lowerCamelCase ( _snake_case : str ,_snake_case : Optional[Any] ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowercase__ = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[: config.hidden_size, :] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = in_proj_bias[-config.hidden_size :] def lowerCamelCase ( ): '''simple docstring''' lowercase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ = Image.open(requests.get(_snake_case ,stream=_snake_case ).raw ) return im @torch.no_grad() def lowerCamelCase ( _snake_case : Optional[Any] ,_snake_case : Optional[Any] ,_snake_case : Dict ,_snake_case : Dict ): '''simple docstring''' lowercase__ , lowercase__ = get_dpt_config(_snake_case ) # load original state_dict from URL lowercase__ = torch.hub.load_state_dict_from_url(_snake_case ,map_location="cpu" ) # remove certain keys remove_ignore_keys_(_snake_case ) # rename keys for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(_snake_case ) lowercase__ = val # read in qkv matrices read_in_q_k_v(_snake_case ,_snake_case ) # load HuggingFace model lowercase__ = DPTForSemanticSegmentation(_snake_case ) if "ade" in checkpoint_url else DPTForDepthEstimation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # Check outputs on an image lowercase__ = 480 if "ade" in checkpoint_url else 384 lowercase__ = DPTImageProcessor(size=_snake_case ) lowercase__ = prepare_img() lowercase__ = image_processor(_snake_case ,return_tensors="pt" ) # forward pass lowercase__ = model(**_snake_case ).logits if "ade" in checkpoint_url else model(**_snake_case ).predicted_depth # Assert logits lowercase__ = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: lowercase__ = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(_snake_case ) assert ( torch.allclose(outputs[0, 0, :3, :3] ,_snake_case ,atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] ,_snake_case ) ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(_snake_case ,_snake_case ) ,organization="nielsr" ,commit_message="Add model" ,use_temp_dir=_snake_case ,) image_processor.push_to_hub( repo_path_or_name=Path(_snake_case ,_snake_case ) ,organization="nielsr" ,commit_message="Add image processor" ,use_temp_dir=_snake_case ,) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
267
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( _snake_case : float ,_snake_case : int ): '''simple docstring''' lowercase__ = u for i in range(1 ,_snake_case ): lowercase__ = temp * (u - i) return temp def lowerCamelCase ( ): '''simple docstring''' lowercase__ = int(input("enter the numbers of values: " ) ) lowercase__ = [] for _ in range(_snake_case ): y.append([] ) for i in range(_snake_case ): for j in range(_snake_case ): y[i].append(_snake_case ) lowercase__ = 0 print("enter the values of parameters in a list: " ) lowercase__ = list(map(_snake_case ,input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(_snake_case ): lowercase__ = float(input() ) lowercase__ = int(input("enter the value to interpolate: " ) ) lowercase__ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 ,_snake_case ): for j in range(n - i ): lowercase__ = y[j + 1][i - 1] - y[j][i - 1] lowercase__ = y[0][0] for i in range(1 ,_snake_case ): summ += (ucal(_snake_case ,_snake_case ) * y[0][i]) / math.factorial(_snake_case ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
267
1
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=30 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=[0, 1, 2, 3] , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = parent SCREAMING_SNAKE_CASE__ : Optional[int] = 1_00 SCREAMING_SNAKE_CASE__ : Optional[int] = batch_size SCREAMING_SNAKE_CASE__ : Tuple = image_size SCREAMING_SNAKE_CASE__ : int = patch_size SCREAMING_SNAKE_CASE__ : str = num_channels SCREAMING_SNAKE_CASE__ : Union[str, Any] = is_training SCREAMING_SNAKE_CASE__ : Dict = use_labels SCREAMING_SNAKE_CASE__ : Any = hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : List[str] = initializer_range SCREAMING_SNAKE_CASE__ : Optional[Any] = scope SCREAMING_SNAKE_CASE__ : List[Any] = out_indices SCREAMING_SNAKE_CASE__ : Any = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ : Any = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : Any = num_patches + 1 def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ (self ) -> Any: """simple docstring""" return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = BeitModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = BeitForMaskedImageModeling(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ : int = BeitForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ : str = 1 SCREAMING_SNAKE_CASE__ : str = BeitForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : str = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE__ : List[Any] = BeitForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = config_and_inputs SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Dict = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase : Optional[Any] = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Dict = False def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = BeitModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def __magic_name__ (self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def __magic_name__ (self ) -> Tuple: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def __magic_name__ (self ) -> Any: """simple docstring""" pass def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Tuple = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = model_class(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Union[str, Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> int: """simple docstring""" if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Tuple = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(SCREAMING_SNAKE_CASE__ ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE__ : Tuple = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.train() SCREAMING_SNAKE_CASE__ : str = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = model(**SCREAMING_SNAKE_CASE__ ).loss loss.backward() def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(SCREAMING_SNAKE_CASE__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE__ : int = model_class(SCREAMING_SNAKE_CASE__ ) model.gradient_checkpointing_enable() model.to(SCREAMING_SNAKE_CASE__ ) model.train() SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = model(**SCREAMING_SNAKE_CASE__ ).loss loss.backward() def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : int = _config_zero_init(SCREAMING_SNAKE_CASE__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(config=SCREAMING_SNAKE_CASE__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __magic_name__ (self ) -> Any: """simple docstring""" for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Dict = BeitModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE__ : List[str] = prepare_img() SCREAMING_SNAKE_CASE__ : str = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values.to(SCREAMING_SNAKE_CASE__ ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE__ : str = torch.ones((1, 1_96) , dtype=torch.bool ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = model(pixel_values=SCREAMING_SNAKE_CASE__ , bool_masked_pos=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = outputs.logits # verify the logits SCREAMING_SNAKE_CASE__ : List[Any] = torch.Size((1, 1_96, 81_92) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) ) @slow def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = self.default_image_processor SCREAMING_SNAKE_CASE__ : str = prepare_img() SCREAMING_SNAKE_CASE__ : Any = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE__ : str = torch.Size((1, 10_00) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) SCREAMING_SNAKE_CASE__ : List[str] = 2_81 self.assertEqual(logits.argmax(-1 ).item() , SCREAMING_SNAKE_CASE__ ) @slow def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : List[Any] = prepare_img() SCREAMING_SNAKE_CASE__ : List[str] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = outputs.logits # verify the logits SCREAMING_SNAKE_CASE__ : Tuple = torch.Size((1, 2_18_41) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = torch.tensor([1.6881, -0.2787, 0.5901] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 23_96 self.assertEqual(logits.argmax(-1 ).item() , SCREAMING_SNAKE_CASE__ ) @slow def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) SCREAMING_SNAKE_CASE__ : Dict = model.to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = BeitImageProcessor(do_resize=SCREAMING_SNAKE_CASE__ , size=6_40 , do_center_crop=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = Image.open(ds[0]["""file"""] ) SCREAMING_SNAKE_CASE__ : int = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE__ : Dict = torch.Size((1, 1_50, 1_60, 1_60) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=SCREAMING_SNAKE_CASE__ , ) else: SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=SCREAMING_SNAKE_CASE__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) SCREAMING_SNAKE_CASE__ : Any = model.to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = BeitImageProcessor(do_resize=SCREAMING_SNAKE_CASE__ , size=6_40 , do_center_crop=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) SCREAMING_SNAKE_CASE__ : Dict = Image.open(ds[0]["""file"""] ) SCREAMING_SNAKE_CASE__ : str = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE__ , target_sizes=[(5_00, 3_00)] ) SCREAMING_SNAKE_CASE__ : Tuple = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.Size((1_60, 1_60) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE__ )
545
"""simple docstring""" import math import os import sys def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = """""" try: with open(_snake_case ,"""rb""" ) as binary_file: SCREAMING_SNAKE_CASE__ : str = binary_file.read() for dat in data: SCREAMING_SNAKE_CASE__ : int = f'''{dat:08b}''' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): lexicon.pop(_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[int] = last_match_id if math.loga(_snake_case ).is_integer(): for curr_key in lexicon: SCREAMING_SNAKE_CASE__ : Optional[int] = """0""" + lexicon[curr_key] SCREAMING_SNAKE_CASE__ : Tuple = bin(_snake_case )[2:] def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = {"""0""": """0""", """1""": """1"""} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = """""", """""" SCREAMING_SNAKE_CASE__ : int = len(_snake_case ) for i in range(len(_snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue SCREAMING_SNAKE_CASE__ : Dict = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_snake_case ,_snake_case ,_snake_case ,_snake_case ) index += 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": SCREAMING_SNAKE_CASE__ : Optional[int] = lexicon[curr_string] result += last_match_id return result def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : str = os.path.getsize(_snake_case ) SCREAMING_SNAKE_CASE__ : Any = bin(_snake_case )[2:] SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(_snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Tuple = 8 try: with open(_snake_case ,"""wb""" ) as opened_file: SCREAMING_SNAKE_CASE__ : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 ,len(_snake_case ) ,_snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_snake_case ,2 ).to_bytes(1 ,byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = read_file_binary(_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = compress_data(_snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = add_file_length(_snake_case ,_snake_case ) write_file_binary(_snake_case ,_snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
545
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _snake_case : Optional[int] = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): pass @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger " __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=_a, generator=_a, guidance_scale=7.5, num_inference_steps=2, output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_a ) __SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained(_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = generator.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=_a, generator=_a, guidance_scale=7.5, num_inference_steps=2, output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __lowerCAmelCase ( self ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion", torch_dtype=torch.floataa ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger " __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=_a, generator=_a, guidance_scale=7.5, num_inference_steps=50, output_type="numpy" ).images __SCREAMING_SNAKE_CASE = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __SCREAMING_SNAKE_CASE = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
693
from __future__ import annotations def lowercase_ ( __snake_case : list[int] ) -> int: '''simple docstring''' if not nums: return 0 snake_case__ :Union[str, Any] = nums[0] snake_case__ :List[Any] = 0 for num in nums[1:]: snake_case__ , snake_case__ :Optional[Any] = ( max_excluding + num, max(__snake_case , __snake_case ), ) return max(__snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
241
0
import os def __lowercase( ) -> Tuple: with open(os.path.dirname(__snake_case ) + '/grid.txt' ) as f: __snake_case = [] # noqa: E741 for _ in range(20 ): l.append([int(__snake_case ) for x in f.readline().split()] ) __snake_case = 0 # right for i in range(20 ): for j in range(17 ): __snake_case = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __snake_case = temp # down for i in range(17 ): for j in range(20 ): __snake_case = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __snake_case = temp # diagonal 1 for i in range(17 ): for j in range(17 ): __snake_case = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __snake_case = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): __snake_case = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __snake_case = temp return maximum if __name__ == "__main__": print(solution())
345
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) class _lowerCamelCase (lowerCamelCase ): lowercase__ = CLIPConfig lowercase__ = ["""CLIPEncoderLayer"""] def __init__( self , SCREAMING_SNAKE_CASE_ ): super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = CLIPVisionModelWithProjection(config.vision_config ) __snake_case = nn.Linear(config.vision_config.projection_dim , 1 ) __snake_case = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.5 , SCREAMING_SNAKE_CASE_=0.5 ): __snake_case = self.vision_model(SCREAMING_SNAKE_CASE_ )[0] __snake_case = self.p_head(SCREAMING_SNAKE_CASE_ ) __snake_case = nsfw_detected.flatten() __snake_case = nsfw_detected > p_threshold __snake_case = nsfw_detected.tolist() if any(SCREAMING_SNAKE_CASE_ ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(SCREAMING_SNAKE_CASE_ ): if nsfw_detected_: __snake_case = np.zeros(images[idx].shape ) __snake_case = self.w_head(SCREAMING_SNAKE_CASE_ ) __snake_case = watermark_detected.flatten() __snake_case = watermark_detected > w_threshold __snake_case = watermark_detected.tolist() if any(SCREAMING_SNAKE_CASE_ ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(SCREAMING_SNAKE_CASE_ ): if watermark_detected_: __snake_case = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
345
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
560
"""simple docstring""" from ...processing_utils import ProcessorMixin class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Tuple = "SpeechT5FeatureExtractor" lowerCAmelCase : Optional[Any] = "SpeechT5Tokenizer" def __init__( self : Optional[int] ,_snake_case : Union[str, Any] ,_snake_case : str ) -> Tuple: """simple docstring""" super().__init__(_snake_case ,_snake_case ) def __call__( self : str ,*_snake_case : str ,**_snake_case : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : List[str] = kwargs.pop('''audio''' ,_snake_case ) lowercase__ : Union[str, Any] = kwargs.pop('''text''' ,_snake_case ) lowercase__ : Tuple = kwargs.pop('''text_target''' ,_snake_case ) lowercase__ : str = kwargs.pop('''audio_target''' ,_snake_case ) lowercase__ : Union[str, Any] = kwargs.pop('''sampling_rate''' ,_snake_case ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: lowercase__ : Optional[Any] = self.feature_extractor(_snake_case ,*_snake_case ,sampling_rate=_snake_case ,**_snake_case ) elif text is not None: lowercase__ : Dict = self.tokenizer(_snake_case ,**_snake_case ) else: lowercase__ : int = None if audio_target is not None: lowercase__ : Tuple = self.feature_extractor(audio_target=_snake_case ,*_snake_case ,sampling_rate=_snake_case ,**_snake_case ) lowercase__ : List[Any] = targets['''input_values'''] elif text_target is not None: lowercase__ : int = self.tokenizer(_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = targets['''input_ids'''] else: lowercase__ : List[str] = None if inputs is None: return targets if targets is not None: lowercase__ : Tuple = labels lowercase__ : Optional[int] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase__ : str = decoder_attention_mask return inputs def UpperCAmelCase ( self : str ,*_snake_case : List[Any] ,**_snake_case : Union[str, Any] ) -> int: """simple docstring""" lowercase__ : List[str] = kwargs.pop('''input_values''' ,_snake_case ) lowercase__ : Any = kwargs.pop('''input_ids''' ,_snake_case ) lowercase__ : List[Any] = kwargs.pop('''labels''' ,_snake_case ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: lowercase__ : List[Any] = self.feature_extractor.pad(_snake_case ,*_snake_case ,**_snake_case ) elif input_ids is not None: lowercase__ : Union[str, Any] = self.tokenizer.pad(_snake_case ,**_snake_case ) else: lowercase__ : int = None if labels is not None: if "input_ids" in labels or (isinstance(_snake_case ,_snake_case ) and "input_ids" in labels[0]): lowercase__ : List[Any] = self.tokenizer.pad(_snake_case ,**_snake_case ) lowercase__ : Optional[int] = targets['''input_ids'''] else: lowercase__ : int = self.feature_extractor.feature_size lowercase__ : str = self.feature_extractor.num_mel_bins lowercase__ : int = self.feature_extractor.pad(_snake_case ,*_snake_case ,**_snake_case ) lowercase__ : Tuple = feature_size_hack lowercase__ : int = targets['''input_values'''] else: lowercase__ : Union[str, Any] = None if inputs is None: return targets if targets is not None: lowercase__ : str = labels lowercase__ : str = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase__ : Tuple = decoder_attention_mask return inputs def UpperCAmelCase ( self : Optional[int] ,*_snake_case : List[Any] ,**_snake_case : Tuple ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[str] ,*_snake_case : Dict ,**_snake_case : str ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case )
560
1
'''simple docstring''' from __future__ import annotations __lowerCamelCase : Tuple = [] def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" for i in range(len(lowercase__ ) ): if board[row][i] == 1: return False for i in range(len(lowercase__ ) ): if board[i][column] == 1: return False for i, j in zip(range(lowercase__ , -1 , -1 ) , range(lowercase__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowercase__ , -1 , -1 ) , range(lowercase__ , len(lowercase__ ) ) ): if board[i][j] == 1: return False return True def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if row >= len(lowercase__ ): solution.append(lowercase__ ) printboard(lowercase__ ) print() return True for i in range(len(lowercase__ ) ): if is_safe(lowercase__ , lowercase__ , lowercase__ ): _UpperCamelCase =1 solve(lowercase__ , row + 1 ) _UpperCamelCase =0 return False def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" for i in range(len(lowercase__ ) ): for j in range(len(lowercase__ ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) __lowerCamelCase : Dict = 8 __lowerCamelCase : List[Any] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
719
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =cva.getAffineTransform(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return cva.warpAffine(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (rows, cols) ) if __name__ == "__main__": # read original image __lowerCamelCase : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value __lowerCamelCase : List[Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __lowerCamelCase , __lowerCamelCase : Any = gray_img.shape # set different points to rotate image __lowerCamelCase : Optional[Any] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __lowerCamelCase : Any = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __lowerCamelCase : int = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __lowerCamelCase : List[Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __lowerCamelCase : int = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __lowerCamelCase : Optional[Any] = plt.figure(1) __lowerCamelCase : Tuple = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.0_5, right=1.0, top=0.9_5) plt.show()
271
0
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase_ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase_ = {'''facebook/blenderbot_small-90M''': 512} def snake_case ( A__ ): UpperCAmelCase_ : str = set() UpperCAmelCase_ : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Dict = char UpperCAmelCase_ : List[Any] = set(A__ ) return pairs class UpperCamelCase_ (__A ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int]="__start__" , lowerCAmelCase_ : str="__end__" , lowerCAmelCase_ : Union[str, Any]="__unk__" , lowerCAmelCase_ : Union[str, Any]="__null__" , **lowerCAmelCase_ : List[Any] , ) -> str: super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : str = json.load(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="utf-8" ) as merges_handle: UpperCAmelCase_ : Optional[Any] = merges_handle.read().split("\n" )[1:-1] UpperCAmelCase_ : str = [tuple(merge.split() ) for merge in merges] UpperCAmelCase_ : Any = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) UpperCAmelCase_ : Any = {} @property def _SCREAMING_SNAKE_CASE ( self : str ) -> int: return len(self.encoder ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : str ) -> str: if token in self.cache: return self.cache[token] UpperCAmelCase_ : Dict = re.sub("([.,!?()])" , R" \1" , lowerCAmelCase_ ) UpperCAmelCase_ : int = re.sub("(')" , R" \1 " , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = re.sub(R"\s{2,}" , " " , lowerCAmelCase_ ) if "\n" in token: UpperCAmelCase_ : Tuple = token.replace("\n" , " __newln__" ) UpperCAmelCase_ : Tuple = token.split(" " ) UpperCAmelCase_ : int = [] for token in tokens: if not len(lowerCAmelCase_ ): continue UpperCAmelCase_ : Any = token.lower() UpperCAmelCase_ : List[str] = tuple(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase_ : List[Any] = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: UpperCAmelCase_ : Union[str, Any] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Dict = bigram UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Dict = 0 while i < len(lowerCAmelCase_ ): try: UpperCAmelCase_ : int = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) UpperCAmelCase_ : Any = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : Dict = tuple(lowerCAmelCase_ ) UpperCAmelCase_ : Any = new_word if len(lowerCAmelCase_ ) == 1: break else: UpperCAmelCase_ : Union[str, Any] = get_pairs(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = "@@ ".join(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = word[:-4] UpperCAmelCase_ : Optional[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : str ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : List[Any] = re.findall(R"\S+\n?" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(" " ) ) ) return split_tokens def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str ) -> int: UpperCAmelCase_ : List[Any] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : int ) -> str: return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : List[str] ) -> str: UpperCAmelCase_ : List[str] = " ".join(lowerCAmelCase_ ).replace("@@ " , "" ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : Union[str, Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + "\n" ) UpperCAmelCase_ : Any = 0 with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) UpperCAmelCase_ : List[Any] = token_index writer.write(" ".join(lowerCAmelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file
95
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _UpperCamelCase ( _A , _A=False ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = OmegaConf.load(_A ) if display: print(yaml.dump(OmegaConf.to_container(_A ) ) ) return config def _UpperCamelCase ( _A , _A=None , _A=None ) -> List[Any]: """simple docstring""" if conf_path is None: _UpperCAmelCase = """./model_checkpoints/vqgan_only.yaml""" _UpperCAmelCase = load_config(_A , display=_A ) _UpperCAmelCase = VQModel(**config.model.params ) if ckpt_path is None: _UpperCAmelCase = """./model_checkpoints/vqgan_only.pt""" _UpperCAmelCase = torch.load(_A , map_location=_A ) if ".ckpt" in ckpt_path: _UpperCAmelCase = sd["""state_dict"""] model.load_state_dict(_A , strict=_A ) model.to(_A ) del sd return model def _UpperCamelCase ( _A , _A ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = model.encode(_A ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) _UpperCAmelCase = model.decode(_A ) return xrec def _UpperCamelCase ( _A , _A=False ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase ,_UpperCAmelCase = string.rsplit(""".""" , 1 ) if reload: _UpperCAmelCase = importlib.import_module(_A ) importlib.reload(_A ) return getattr(importlib.import_module(_A , package=_A ) , cls ) def _UpperCamelCase ( _A ) -> str: """simple docstring""" if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def _UpperCamelCase ( _A , _A , _A=True , _A=True ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = instantiate_from_config(_A ) if sd is not None: model.load_state_dict(_A ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _UpperCamelCase ( _A , _A , _A , _A ) -> Optional[Any]: """simple docstring""" if ckpt: _UpperCAmelCase = torch.load(_A , map_location="""cpu""" ) _UpperCAmelCase = pl_sd["""global_step"""] print(F"""loaded model from global step {global_step}.""" ) else: _UpperCAmelCase = {"""state_dict""": None} _UpperCAmelCase = None _UpperCAmelCase = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=_A , eval_mode=_A )["""model"""] return model, global_step
555
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE( snake_case_ : list ) ->list: '''simple docstring''' _lowercase : Any = False while is_sorted is False: # Until all the indices are traversed keep looping _lowercase : str = True for i in range(0 , len(snake_case_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _lowercase , _lowercase : int = input_list[i + 1], input_list[i] # swapping if elements not in order _lowercase : Optional[Any] = False for i in range(1 , len(snake_case_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _lowercase , _lowercase : Optional[int] = input_list[i + 1], input_list[i] # swapping if elements not in order _lowercase : Optional[Any] = False return input_list if __name__ == "__main__": print('Enter list to be sorted') lowerCamelCase__ = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCamelCase__ = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
411
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _SCREAMING_SNAKE_CASE( snake_case_ : str ) ->Optional[Any]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _lowercase : Optional[int] = model_type_to_module_name(snake_case_ ) _lowercase : Optional[Any] = importlib.import_module(F".{module_name}" , '''transformers.models''' ) try: return getattr(snake_case_ , snake_case_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case_ , '''__name__''' , snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowercase : int = importlib.import_module('''transformers''' ) if hasattr(snake_case_ , snake_case_ ): return getattr(snake_case_ , snake_case_ ) return None def _SCREAMING_SNAKE_CASE( snake_case_ : Union[str, os.PathLike] , snake_case_ : Optional[Union[str, os.PathLike]] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[Dict[str, str]] = None , snake_case_ : Optional[Union[bool, str]] = None , snake_case_ : Optional[str] = None , snake_case_ : bool = False , **snake_case_ : int , ) ->Union[str, Any]: '''simple docstring''' _lowercase : Dict = get_file_from_repo( snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(snake_case_ , encoding='''utf-8''' ) as reader: return json.load(snake_case_ ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : int ) -> Tuple: '''simple docstring''' raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase_ ) def __lowercase ( cls : str , UpperCamelCase_ : Dict , **UpperCamelCase_ : Any ) -> Tuple: '''simple docstring''' _lowercase : int = kwargs.pop('''config''' , UpperCamelCase_ ) _lowercase : Union[str, Any] = kwargs.pop('''trust_remote_code''' , UpperCamelCase_ ) _lowercase : str = True _lowercase , _lowercase : int = ImageProcessingMixin.get_image_processor_dict(UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Any = config_dict.get('''image_processor_type''' , UpperCamelCase_ ) _lowercase : List[str] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _lowercase : List[str] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _lowercase : str = config_dict.pop('''feature_extractor_type''' , UpperCamelCase_ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _lowercase : Any = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _lowercase : List[str] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] _lowercase : List[str] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : Tuple = AutoConfig.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) # It could be in `config.image_processor_type`` _lowercase : Optional[int] = getattr(UpperCamelCase_ , '''image_processor_type''' , UpperCamelCase_ ) if hasattr(UpperCamelCase_ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _lowercase : List[Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: _lowercase : int = image_processor_class_from_name(UpperCamelCase_ ) _lowercase : str = image_processor_auto_map is not None _lowercase : List[str] = image_processor_class is not None or type(UpperCamelCase_ ) in IMAGE_PROCESSOR_MAPPING _lowercase : Tuple = resolve_trust_remote_code( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if has_remote_code and trust_remote_code: _lowercase : Dict = get_class_from_dynamic_module( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : List[str] = kwargs.pop('''code_revision''' , UpperCamelCase_ ) if os.path.isdir(UpperCamelCase_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCamelCase_ ) in IMAGE_PROCESSOR_MAPPING: _lowercase : List[str] = IMAGE_PROCESSOR_MAPPING[type(UpperCamelCase_ )] return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def __lowercase ( UpperCamelCase_ : Dict , UpperCamelCase_ : Dict ) -> Optional[int]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(UpperCamelCase_ , UpperCamelCase_ )
411
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() A__ : Union[str, Any] = logging.get_logger(__name__) A__ : List[str] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } A__ : str = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> Tuple: __lowerCamelCase : Tuple = {} with open(UpperCAmelCase_ , 'r' ) as file: for line_number, line in enumerate(UpperCAmelCase_ ): __lowerCamelCase : Any = line.strip() if line: __lowerCamelCase : Optional[int] = line.split() __lowerCamelCase : List[Any] = line_number __lowerCamelCase : int = words[0] __lowerCamelCase : List[str] = value return result def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any ) -> Dict: for attribute in key.split('.' ): __lowerCamelCase : Optional[int] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase_ ): __lowerCamelCase : Dict = PARAM_MAPPING[full_name.split('.' )[-1]] __lowerCamelCase : str = 'param' if weight_type is not None and weight_type != "param": __lowerCamelCase : List[Any] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape elif weight_type is not None and weight_type == "param": __lowerCamelCase : Any = hf_pointer for attribute in hf_param_name.split('.' ): __lowerCamelCase : Optional[int] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = shape_pointer.shape # let's reduce dimension __lowerCamelCase : Optional[int] = value[0] else: __lowerCamelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCamelCase : List[str] = value elif weight_type == "weight_g": __lowerCamelCase : Tuple = value elif weight_type == "weight_v": __lowerCamelCase : List[Any] = value elif weight_type == "bias": __lowerCamelCase : Any = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): __lowerCamelCase : Dict = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[str] = value else: __lowerCamelCase : Tuple = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ) -> Dict: __lowerCamelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase_ ): __lowerCamelCase : Tuple = PARAM_MAPPING[full_name.split('.' )[-1]] __lowerCamelCase : Optional[Any] = 'param' if weight_type is not None and weight_type != "param": __lowerCamelCase : List[str] = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __lowerCamelCase : str = '.'.join([key, hf_param_name] ) else: __lowerCamelCase : Dict = key __lowerCamelCase : str = value if 'lm_head' in full_key else value[0] A__ : int = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Tuple=None ) -> List[Any]: __lowerCamelCase : Any = False for key, mapped_key in MAPPING.items(): __lowerCamelCase : str = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCamelCase : Dict = True if "*" in mapped_key: __lowerCamelCase : Union[str, Any] = name.split(UpperCAmelCase_ )[0].split('.' )[-2] __lowerCamelCase : Any = mapped_key.replace('*' , UpperCAmelCase_ ) if "weight_g" in name: __lowerCamelCase : int = 'weight_g' elif "weight_v" in name: __lowerCamelCase : Union[str, Any] = 'weight_v' elif "bias" in name: __lowerCamelCase : Any = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase : str = 'weight' else: __lowerCamelCase : List[str] = None if hf_dict is not None: rename_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return is_used return is_used def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str ) -> Any: __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Union[str, Any] = fairseq_model.state_dict() __lowerCamelCase : int = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase : Union[str, Any] = True else: __lowerCamelCase : Optional[int] = load_wavaveca_layer(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F'Unused weights: {unused_weights}' ) def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ) -> Union[str, Any]: __lowerCamelCase : Tuple = full_name.split('conv_layers.' )[-1] __lowerCamelCase : str = name.split('.' ) __lowerCamelCase : Optional[int] = int(items[0] ) __lowerCamelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCamelCase : List[str] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCamelCase : Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __lowerCamelCase : List[str] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCamelCase : Union[str, Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase_ ) @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=False ) -> Optional[Any]: if config_path is not None: __lowerCamelCase : str = WavaVecaConfig.from_pretrained(UpperCAmelCase_ ) else: __lowerCamelCase : Any = WavaVecaConfig() if is_seq_class: __lowerCamelCase : List[str] = read_txt_into_dict(UpperCAmelCase_ ) __lowerCamelCase : List[Any] = idalabel __lowerCamelCase : str = WavaVecaForSequenceClassification(UpperCAmelCase_ ) __lowerCamelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) feature_extractor.save_pretrained(UpperCAmelCase_ ) elif is_finetuned: if dict_path: __lowerCamelCase : str = Dictionary.load(UpperCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowerCamelCase : Any = target_dict.pad_index __lowerCamelCase : int = target_dict.bos_index __lowerCamelCase : int = target_dict.eos_index __lowerCamelCase : Optional[Any] = len(target_dict.symbols ) __lowerCamelCase : Tuple = os.path.join(UpperCAmelCase_ , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase_ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase_ ) ) return os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) __lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowerCamelCase : Union[str, Any] = 0 __lowerCamelCase : Optional[Any] = 1 with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = WavaVecaCTCTokenizer( UpperCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase_ , ) __lowerCamelCase : List[str] = True if config.feat_extract_norm == 'layer' else False __lowerCamelCase : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) __lowerCamelCase : int = WavaVecaProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) __lowerCamelCase : Any = WavaVecaForCTC(UpperCAmelCase_ ) else: __lowerCamelCase : List[str] = WavaVecaForPreTraining(UpperCAmelCase_ ) if is_finetuned or is_seq_class: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: __lowerCamelCase : Union[str, Any] = argparse.Namespace(task='audio_pretraining' ) __lowerCamelCase : Optional[int] = fairseq.tasks.setup_task(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase_ ) __lowerCamelCase : List[str] = model[0].eval() recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": A__ : Dict = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) A__ : int = parser.parse_args() A__ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
13
'''simple docstring''' import os from collections.abc import Iterator def __lowerCamelCase ( __lowerCAmelCase : str = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): snake_case = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> Any: return F'''{i * " "}*''' if i else "\n##" def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> str: snake_case = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def __lowerCamelCase ( __lowerCAmelCase : str = "." ) -> None: snake_case = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): snake_case , snake_case = os.path.split(__lowerCAmelCase ) if filepath != old_path: snake_case = print_path(__lowerCAmelCase , __lowerCAmelCase ) snake_case = (filepath.count(os.sep ) + 1) if filepath else 0 snake_case = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) snake_case = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
369
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _a = 250_004 _a = 250_020 @require_sentencepiece @require_tokenizers class __A ( _snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = MBartaaTokenizer lowerCAmelCase_ = MBartaaTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ = MBartaaTokenizer(snake_case_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = "<s>" lowerCamelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(snake_case_ ) , 1_0_5_4 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = MBartaaTokenizer(snake_case_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=snake_case_ ) lowerCamelCase__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(snake_case_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCamelCase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( snake_case_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) lowerCamelCase__ = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual( snake_case_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {"input_ids": [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase__ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) lowerCamelCase__ = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = tokenizer_r.save_pretrained(snake_case_ ) lowerCamelCase__ = tokenizer_p.save_pretrained(snake_case_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCamelCase__ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(snake_case_ , snake_case_ ) # Checks everything loads correctly in the same way lowerCamelCase__ = tokenizer_r.from_pretrained(snake_case_ ) lowerCamelCase__ = tokenizer_p.from_pretrained(snake_case_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case_ , snake_case_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case_ ) # Save tokenizer rust, legacy_format=True lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = tokenizer_r.save_pretrained(snake_case_ , legacy_format=snake_case_ ) lowerCamelCase__ = tokenizer_p.save_pretrained(snake_case_ ) # Checks it save with the same files self.assertSequenceEqual(snake_case_ , snake_case_ ) # Checks everything loads correctly in the same way lowerCamelCase__ = tokenizer_r.from_pretrained(snake_case_ ) lowerCamelCase__ = tokenizer_p.from_pretrained(snake_case_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case_ , snake_case_ ) ) shutil.rmtree(snake_case_ ) # Save tokenizer rust, legacy_format=False lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = tokenizer_r.save_pretrained(snake_case_ , legacy_format=snake_case_ ) lowerCamelCase__ = tokenizer_p.save_pretrained(snake_case_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase__ = tokenizer_r.from_pretrained(snake_case_ ) lowerCamelCase__ = tokenizer_p.from_pretrained(snake_case_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case_ , snake_case_ ) ) shutil.rmtree(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = """facebook/mbart-large-50-one-to-many-mmt""" lowerCAmelCase_ = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] lowerCAmelCase_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] lowerCAmelCase_ = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def __lowerCamelCase ( cls ): '''simple docstring''' lowerCamelCase__ = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) lowerCamelCase__ = 1 return cls def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 2_5_0_0_3_8 ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) lowerCamelCase__ = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] lowerCamelCase__ = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) lowerCamelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ["this is gunna be a long sentence " * 2_0] assert isinstance(src_text[0] , snake_case_ ) lowerCamelCase__ = 1_0 lowerCamelCase__ = self.tokenizer(snake_case_ , max_length=snake_case_ , truncation=snake_case_ ).input_ids[0] self.assertEqual(ids[0] , snake_case_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case_ ) lowerCamelCase__ = MBartaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case_ ) @require_torch def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors='''pt''' ) lowerCamelCase__ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case_ , truncation=snake_case_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowerCamelCase__ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) lowerCamelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer(self.src_text , padding=snake_case_ , truncation=snake_case_ , max_length=3 , return_tensors='''pt''' ) lowerCamelCase__ = self.tokenizer( text_target=self.tgt_text , padding=snake_case_ , truncation=snake_case_ , max_length=1_0 , return_tensors='''pt''' ) lowerCamelCase__ = targets["input_ids"] lowerCamelCase__ = shift_tokens_right(snake_case_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS '''input_ids''': [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
720
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a = logging.get_logger(__name__) class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
29
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def a_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = 1 __SCREAMING_SNAKE_CASE : Dict = 3 __SCREAMING_SNAKE_CASE : int = (32, 32) __SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase ) return image @property def a_ ( self ): torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__lowerCamelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def a_ ( self ): torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def a_ ( self ): torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(__lowerCamelCase ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_cond_unet_upscale __SCREAMING_SNAKE_CASE : List[str] = DDPMScheduler() __SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler(prediction_type="v_prediction" ) __SCREAMING_SNAKE_CASE : List[str] = self.dummy_vae __SCREAMING_SNAKE_CASE : Dict = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionUpscalePipeline( unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=350 , ) __SCREAMING_SNAKE_CASE : int = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) __SCREAMING_SNAKE_CASE : List[Any] = output.images __SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=__lowerCamelCase , )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Any = self.dummy_cond_unet_upscale __SCREAMING_SNAKE_CASE : Union[str, Any] = DDPMScheduler() __SCREAMING_SNAKE_CASE : Dict = DDIMScheduler(prediction_type="v_prediction" ) __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_vae __SCREAMING_SNAKE_CASE : Dict = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __SCREAMING_SNAKE_CASE : List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : Optional[Any] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __SCREAMING_SNAKE_CASE : List[str] = StableDiffusionUpscalePipeline( unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=350 , ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : Any = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) __SCREAMING_SNAKE_CASE : Optional[Any] = output.images assert image.shape[0] == 2 __SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) __SCREAMING_SNAKE_CASE : Optional[Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = self.dummy_cond_unet_upscale __SCREAMING_SNAKE_CASE : Dict = DDPMScheduler() __SCREAMING_SNAKE_CASE : int = DDIMScheduler(prediction_type="v_prediction" ) __SCREAMING_SNAKE_CASE : Any = self.dummy_vae __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __SCREAMING_SNAKE_CASE : Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : Tuple = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __SCREAMING_SNAKE_CASE : str = unet.half() __SCREAMING_SNAKE_CASE : List[str] = text_encoder.half() # make sure here that pndm scheduler skips prk __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionUpscalePipeline( unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=350 , ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=2 , output_type="np" , ).images __SCREAMING_SNAKE_CASE : List[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def a_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) __SCREAMING_SNAKE_CASE : str = '''stabilityai/stable-diffusion-x4-upscaler''' __SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Optional[Any] = '''a cat sitting on a park bench''' __SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , output_type="np" , ) __SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) __SCREAMING_SNAKE_CASE : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) __SCREAMING_SNAKE_CASE : List[Any] = '''stabilityai/stable-diffusion-x4-upscaler''' __SCREAMING_SNAKE_CASE : Dict = StableDiffusionUpscalePipeline.from_pretrained( __lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : str = '''a cat sitting on a park bench''' __SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , output_type="np" , ) __SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def a_ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) __SCREAMING_SNAKE_CASE : Any = '''stabilityai/stable-diffusion-x4-upscaler''' __SCREAMING_SNAKE_CASE : List[str] = StableDiffusionUpscalePipeline.from_pretrained( __lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE : Any = '''a cat sitting on a park bench''' __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , output_type="np" , ) __SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
211
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''', [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''', num_bytes=1_337, num_examples=42, dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''', num_bytes=1_337, num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ], ) def a__ ( UpperCamelCase_ : SplitDict ): UpperCAmelCase__ :List[Any] = split_dict._to_yaml_list() assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCAmelCase__ :Tuple = SplitDict._from_yaml_list(UpperCamelCase_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase__ :Union[str, Any] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase__ :Union[str, Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''', [SplitInfo(), SplitInfo(dataset_name=UpperCamelCase_ ), SplitInfo(dataset_name='''my_dataset''' )] ) def a__ ( UpperCamelCase_ : List[Any] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase__ :List[Any] = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
467
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
600
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCAmelCase: str = """base_with_context""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) _lowercase : Any = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowercase : Optional[Any] = weights[F"""layers_{lyr_num}"""] _lowercase : str = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _lowercase : Optional[Any] = ly_weight["""attention"""] _lowercase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowercase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowercase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowercase : int = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowercase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : int = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowercase : int = weights[F"""layers_{lyr_num}"""] _lowercase : Any = ly_weight["""attention"""] _lowercase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowercase : str = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowercase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowercase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowercase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _lowercase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowercase : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowercase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) _lowercase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowercase : List[Any] = weights[F"""layers_{lyr_num}"""] _lowercase : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) _lowercase : int = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _lowercase : List[Any] = ly_weight["""self_attention"""] _lowercase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowercase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowercase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowercase : Union[str, Any] = ly_weight["""MultiHeadDotProductAttention_0"""] _lowercase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowercase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowercase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowercase : Any = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _lowercase : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowercase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowercase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowercase : str = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) _lowercase : Any = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowercase : List[Any] = jnp.tree_util.tree_map(onp.array , __UpperCAmelCase ) _lowercase : int = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] _lowercase : List[Any] = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) _lowercase : Optional[int] = inference.parse_training_gin_file(__UpperCAmelCase , __UpperCAmelCase ) _lowercase : Optional[Any] = inference.InferenceModel(args.checkpoint_path , __UpperCAmelCase ) _lowercase : List[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) _lowercase : List[str] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _lowercase : Dict = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _lowercase : int = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _lowercase : str = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , __UpperCAmelCase ) _lowercase : Dict = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , __UpperCAmelCase ) _lowercase : List[str] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , __UpperCAmelCase ) _lowercase : Any = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) _lowercase : str = SpectrogramDiffusionPipeline( notes_encoder=__UpperCAmelCase , continuous_encoder=__UpperCAmelCase , decoder=__UpperCAmelCase , scheduler=__UpperCAmelCase , melgan=__UpperCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCAmelCase: Any = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F'{MODEL}/checkpoint_500000', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) UpperCAmelCase: Optional[Any] = parser.parse_args() main(args)
600
1
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class UpperCamelCase_ : '''simple docstring''' def SCREAMING_SNAKE_CASE( self :List[Any] ) ->Optional[int]: torch.manual_seed(0 ) lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , thresholding=__lowercase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def SCREAMING_SNAKE_CASE( self :List[str] ) ->Union[str, Any]: torch.manual_seed(0 ) lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.4_14 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , thresholding=__lowercase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def SCREAMING_SNAKE_CASE( self :List[str] ) ->Union[str, Any]: lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) lowercase = self.get_dummy_inputs(__lowercase ) lowercase = inputs["prompt"] lowercase = inputs["generator"] lowercase = inputs["num_inference_steps"] lowercase = inputs["output_type"] if "image" in inputs: lowercase = inputs["image"] else: lowercase = None if "mask_image" in inputs: lowercase = inputs["mask_image"] else: lowercase = None if "original_image" in inputs: lowercase = inputs["original_image"] else: lowercase = None lowercase , lowercase = pipe.encode_prompt(__lowercase ) # inputs with prompt converted to embeddings lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: lowercase = image if mask_image is not None: lowercase = mask_image if original_image is not None: lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__lowercase , __lowercase , __lowercase ) lowercase = pipe(**__lowercase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowercase ) lowercase = self.pipeline_class.from_pretrained(__lowercase ) pipe_loaded.to(__lowercase ) pipe_loaded.set_progress_bar_config(disable=__lowercase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__lowercase , __lowercase ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase = self.get_dummy_inputs(__lowercase ) lowercase = inputs["generator"] lowercase = inputs["num_inference_steps"] lowercase = inputs["output_type"] # inputs with prompt converted to embeddings lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: lowercase = image if mask_image is not None: lowercase = mask_image if original_image is not None: lowercase = original_image lowercase = pipe_loaded(**__lowercase )[0] lowercase = np.abs(to_np(__lowercase ) - to_np(__lowercase ) ).max() self.assertLess(__lowercase , 1E-4 ) def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->Dict: lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) lowercase = self.get_dummy_inputs(__lowercase ) lowercase = pipe(**__lowercase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowercase ) lowercase = self.pipeline_class.from_pretrained(__lowercase ) pipe_loaded.to(__lowercase ) pipe_loaded.set_progress_bar_config(disable=__lowercase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowercase = self.get_dummy_inputs(__lowercase ) lowercase = pipe_loaded(**__lowercase )[0] lowercase = np.abs(to_np(__lowercase ) - to_np(__lowercase ) ).max() self.assertLess(__lowercase , 1E-4 )
441
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = MobileBertConfig.from_json_file(_A ) print(f"Building PyTorch model from configuration: {config}" ) snake_case_ = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint snake_case_ = load_tf_weights_in_mobilebert(_A , _A , _A ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
376
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowercase_ = logging.get_logger(__name__) def a__ ( snake_case ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = R'''\w+[.]\d+''' __SCREAMING_SNAKE_CASE : Optional[int] = re.findall(snake_case , snake_case ) for pat in pats: __SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(snake_case , '''_'''.join(pat.split('''.''' ) ) ) return key def a__ ( snake_case , snake_case , snake_case ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __SCREAMING_SNAKE_CASE : str = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE : Any = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE : List[str] = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": __SCREAMING_SNAKE_CASE : Dict = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __SCREAMING_SNAKE_CASE : int = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __SCREAMING_SNAKE_CASE : str = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( snake_case , snake_case , snake_case=42 ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __SCREAMING_SNAKE_CASE : Dict = flax_model.init_weights(PRNGKey(snake_case ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = flatten_dict(snake_case ) __SCREAMING_SNAKE_CASE : Dict = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __SCREAMING_SNAKE_CASE : int = rename_key(snake_case ) __SCREAMING_SNAKE_CASE : Dict = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters __SCREAMING_SNAKE_CASE : Optional[int] = rename_key_and_reshape_tensor(snake_case , snake_case , snake_case ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown __SCREAMING_SNAKE_CASE : Any = jnp.asarray(snake_case ) return unflatten_dict(snake_case )
712
from math import pi, sqrt def a__ ( snake_case ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(snake_case ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(snake_case ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def a__ ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(snake_case ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowercase_ = 1.0 while num: lowercase_ = float(input("""Gamma of: """)) print(f'''gamma({num}) = {gamma(num)}''') print("""\nEnter 0 to exit...""")
131
0
'''simple docstring''' from collections.abc import Sequence def UpperCAmelCase__ ( UpperCAmelCase_ : Sequence[float] , UpperCAmelCase_ : bool = False ) -> float: if not arr: return 0 __lowerCamelCase : str = 0 if allow_empty_subarrays else float('-inf' ) __lowerCamelCase : Optional[Any] = 0.0 for num in arr: __lowerCamelCase : Optional[Any] = max(0 if allow_empty_subarrays else num , curr_sum + num ) __lowerCamelCase : str = max(UpperCAmelCase_ , UpperCAmelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() A__ : Tuple = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
_snake_case : Union[str, Any] = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f", } def lowerCAmelCase_ ( snake_case_ ): assert type(snake_case__ ) in (int, float) and decimal == int(snake_case__ ) _A : Any = int(snake_case__ ) _A : Any = """""" _A : Tuple = False if decimal < 0: _A : List[str] = True decimal *= -1 while decimal > 0: _A , _A : int = divmod(snake_case__,16 ) _A : List[str] = values[remainder] + hexadecimal _A : List[str] = """0x""" + hexadecimal if negative: _A : Tuple = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
716
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
0
import re from filelock import FileLock try: import nltk SCREAMING_SNAKE_CASE__ : Tuple = True except (ImportError, ModuleNotFoundError): SCREAMING_SNAKE_CASE__ : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __lowercase ( snake_case ): """simple docstring""" re.sub('''<n>''', '''''', snake_case ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(snake_case ) )
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=1_3 , _UpperCamelCase=3_2 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=[1_0, 2_0, 3_0, 4_0] , _UpperCamelCase=[2, 2, 3, 2] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=3_7 , _UpperCamelCase="gelu" , _UpperCamelCase=1_0 , _UpperCamelCase=0.02 , _UpperCamelCase=["stage2", "stage3", "stage4"] , _UpperCamelCase=[2, 3, 4] , _UpperCamelCase=None , ) -> str: UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : List[Any] = image_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : List[Any] = num_stages UpperCAmelCase_ : str = hidden_sizes UpperCAmelCase_ : Any = depths UpperCAmelCase_ : str = is_training UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : List[str] = out_features UpperCAmelCase_ : Optional[int] = out_indices UpperCAmelCase_ : List[Any] = scope def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : Any = ConvNextModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Optional[Any] = model(_UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : List[str] = ConvNextForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Any = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : List[str] = ConvNextBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : int = model(_UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Tuple = ConvNextBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Tuple = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = config_and_inputs UpperCAmelCase_ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : str = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _snake_case : int = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) _snake_case : Any = True _snake_case : Optional[int] = False _snake_case : Optional[int] = False _snake_case : Union[str, Any] = False _snake_case : List[str] = False def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Dict = ConvNextModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=3_7 ) def __UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self ) -> List[str]: return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def __UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def __UpperCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def __UpperCAmelCase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_UpperCamelCase ) UpperCAmelCase_ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : str = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[int]: def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : List[str] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ : str = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) UpperCAmelCase_ : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Dict = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : int = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> int: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = ConvNextModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ) -> int: return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = prepare_img() UpperCAmelCase_ : Tuple = image_processor(images=_UpperCamelCase , return_tensors='pt' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_UpperCamelCase ) # verify the logits UpperCAmelCase_ : int = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) UpperCAmelCase_ : int = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4 ) ) @require_torch class lowerCamelCase (unittest.TestCase , _snake_case ): '''simple docstring''' _snake_case : Optional[int] = (ConvNextBackbone,) if is_torch_available() else () _snake_case : Union[str, Any] = ConvNextConfig _snake_case : Tuple = False def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Union[str, Any] = ConvNextModelTester(self )
406
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters A_ : Dict =(7_2_0, 1_2_8_0) # Height, Width A_ : Any =(0.4, 0.6) # if height or width lower than this scale, drop it. A_ : Any =1 / 1_0_0 A_ : int ="""""" A_ : Optional[int] ="""""" A_ : List[str] ="""""" A_ : List[str] =2_5_0 def SCREAMING_SNAKE_CASE_ ( )-> None: _lowerCamelCase , _lowerCamelCase = get_dataset(snake_case , snake_case ) for index in range(snake_case ): _lowerCamelCase = random.sample(range(len(snake_case ) ) , 4 ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = update_image_and_anno( snake_case , snake_case , snake_case , snake_case , snake_case , filter_scale=snake_case , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCamelCase = random_chars(32 ) _lowerCamelCase = path.split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCamelCase = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(f'{file_root}.jpg' , snake_case , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) _lowerCamelCase = [] for anno in new_annos: _lowerCamelCase = anno[3] - anno[1] _lowerCamelCase = anno[4] - anno[2] _lowerCamelCase = anno[1] + width / 2 _lowerCamelCase = anno[2] + height / 2 _lowerCamelCase = f'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(snake_case ) with open(f'{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : str )-> tuple[list, list]: _lowerCamelCase = [] _lowerCamelCase = [] for label_file in glob.glob(os.path.join(snake_case , '*.txt' ) ): _lowerCamelCase = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(snake_case ) as in_file: _lowerCamelCase = in_file.readlines() _lowerCamelCase = os.path.join(snake_case , f'{label_name}.jpg' ) _lowerCamelCase = [] for obj_list in obj_lists: _lowerCamelCase = obj_list.rstrip('\n' ).split(' ' ) _lowerCamelCase = float(obj[1] ) - float(obj[3] ) / 2 _lowerCamelCase = float(obj[2] ) - float(obj[4] ) / 2 _lowerCamelCase = float(obj[1] ) + float(obj[3] ) / 2 _lowerCamelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case ) labels.append(snake_case ) return img_paths, labels def SCREAMING_SNAKE_CASE_ ( snake_case : list , snake_case : list , snake_case : list[int] , snake_case : tuple[int, int] , snake_case : tuple[float, float] , snake_case : float = 0.0 , )-> tuple[list, list, str]: _lowerCamelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCamelCase = int(scale_x * output_size[1] ) _lowerCamelCase = int(scale_y * output_size[0] ) _lowerCamelCase = [] _lowerCamelCase = [] for i, index in enumerate(snake_case ): _lowerCamelCase = all_img_list[index] path_list.append(snake_case ) _lowerCamelCase = all_annos[index] _lowerCamelCase = cva.imread(snake_case ) if i == 0: # top-left _lowerCamelCase = cva.resize(snake_case , (divid_point_x, divid_point_y) ) _lowerCamelCase = img for bbox in img_annos: _lowerCamelCase = bbox[1] * scale_x _lowerCamelCase = bbox[2] * scale_y _lowerCamelCase = bbox[3] * scale_x _lowerCamelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCamelCase = cva.resize(snake_case , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCamelCase = img for bbox in img_annos: _lowerCamelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCamelCase = bbox[2] * scale_y _lowerCamelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCamelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCamelCase = cva.resize(snake_case , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCamelCase = img for bbox in img_annos: _lowerCamelCase = bbox[1] * scale_x _lowerCamelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCamelCase = bbox[3] * scale_x _lowerCamelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCamelCase = cva.resize( snake_case , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCamelCase = img for bbox in img_annos: _lowerCamelCase = scale_x + bbox[1] * (1 - scale_x) _lowerCamelCase = scale_y + bbox[2] * (1 - scale_y) _lowerCamelCase = scale_x + bbox[3] * (1 - scale_x) _lowerCamelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCamelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> str: assert number_char > 1, "The number of character should greater than 1" _lowerCamelCase = ascii_lowercase + digits return "".join(random.choice(snake_case ) for _ in range(snake_case ) ) if __name__ == "__main__": main() print("""DONE ✅""")
222
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __a ( lowerCAmelCase__ ): def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=16 , a__=2 , a__=0.02 , a__=False , a__=True , a__="None" , a__=3 , a__=4 , a__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_input_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = num_labels _lowerCamelCase = num_choices _lowerCamelCase = relative_attention _lowerCamelCase = position_biased_input _lowerCamelCase = pos_att_type _lowerCamelCase = scope def snake_case_ ( self ): _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_input_mask: _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowerCamelCase = None if self.use_token_type_ids: _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def snake_case_ ( self , a__ ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = DebertaVaModel(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ )[0] _lowerCamelCase = model(a__ , token_type_ids=a__ )[0] _lowerCamelCase = model(a__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = DebertaVaForMaskedLM(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = DebertaVaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a__ ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = DebertaVaForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = DebertaVaForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model( a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = DebertaVaForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = config_and_inputs _lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : int = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Tuple = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def snake_case_ ( self ): _lowerCamelCase = DebertaVaModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=a__ , hidden_size=37 ) def snake_case_ ( self ): self.config_tester.run_common_tests() def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a__ ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a__ ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a__ ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a__ ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a__ ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*a__ ) @slow def snake_case_ ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = DebertaVaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def snake_case_ ( self ): pass @slow def snake_case_ ( self ): _lowerCamelCase = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) _lowerCamelCase = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _lowerCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCamelCase = model(a__ , attention_mask=a__ )[0] # compare the actual values for a slice. _lowerCamelCase = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a__ , atol=1e-4 ) , F'{output[:, 1:4, 1:4]}' )
222
1
'''simple docstring''' def a__ ( lowercase : int = 1, lowercase : int = 1000 ) -> int: """simple docstring""" _UpperCamelCase = 1 _UpperCamelCase = 0 for divide_by_number in range(lowercase, digit + 1 ): _UpperCamelCase = [] _UpperCamelCase = numerator for _ in range(1, digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase ): _UpperCamelCase = len(lowercase ) _UpperCamelCase = divide_by_number else: has_been_divided.append(lowercase ) _UpperCamelCase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
98
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
1
'''simple docstring''' def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Tuple = 'linear' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'cosine' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'cosine_with_restarts' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'polynomial' __SCREAMING_SNAKE_CASE : Optional[int] = 'constant' __SCREAMING_SNAKE_CASE : str = 'constant_with_warmup' __SCREAMING_SNAKE_CASE : Dict = 'piecewise_constant' def a ( lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' return LambdaLR(lowerCamelCase__ , lambda lowerCamelCase__ : 1 , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1.0 , lowerCamelCase__ ) ) return 1.0 return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' A_ : Optional[Any] = {} A_ : Optional[Any] = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A_, A_ : Union[str, Any] = rule_str.split(""":""" ) A_ : Union[str, Any] = int(lowerCamelCase__ ) A_ : List[Any] = float(lowerCamelCase__ ) A_ : Union[str, Any] = value A_ : Optional[int] = float(rule_list[-1] ) def create_rules_function(lowerCamelCase__ , lowerCamelCase__ ): def rule_func(lowerCamelCase__ ) -> float: A_ : str = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCamelCase__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A_ : str = create_rules_function(lowerCamelCase__ , lowerCamelCase__ ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=-1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 0.5 , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) A_ : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCamelCase__ ) * 2.0 * progress )) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) A_ : int = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCamelCase__ ) * progress) % 1.0) )) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1E-7 , lowerCamelCase__=1.0 , lowerCamelCase__=-1 ): '''simple docstring''' A_ : Optional[Any] = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A_ : str = lr_init - lr_end A_ : Tuple = num_training_steps - num_warmup_steps A_ : Optional[int] = 1 - (current_step - num_warmup_steps) / decay_steps A_ : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase :List[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = -1 , ): '''simple docstring''' A_ : Optional[Any] = SchedulerType(lowerCamelCase__ ) A_ : Tuple = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCamelCase__ , last_epoch=lowerCamelCase__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCamelCase__ , step_rules=lowerCamelCase__ , last_epoch=lowerCamelCase__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , last_epoch=lowerCamelCase__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , num_cycles=lowerCamelCase__ , last_epoch=lowerCamelCase__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , power=lowerCamelCase__ , last_epoch=lowerCamelCase__ , ) return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , last_epoch=lowerCamelCase__ )
686
0