code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowercase =numpy.array([0, 0]) lowercase =numpy.array([0.5, 0.866_0254]) lowercase =numpy.array([1, 0]) lowercase =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase__ ( __lowerCamelCase : list[numpy.ndarray] , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : Optional[int] =initial_vectors for _ in range(__snake_case ): _UpperCAmelCase : Dict =iteration_step(__snake_case ) return vectors def lowerCamelCase__ ( __lowerCamelCase : list[numpy.ndarray] ): '''simple docstring''' _UpperCAmelCase : Any =[] for i, start_vector in enumerate(vectors[:-1] ): _UpperCAmelCase : str =vectors[i + 1] new_vectors.append(__snake_case ) _UpperCAmelCase : Dict =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase__ ( __lowerCamelCase : numpy.ndarray , __lowerCamelCase : float ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =numpy.radians(__snake_case ) _UpperCAmelCase : Tuple =numpy.cos(__snake_case ), numpy.sin(__snake_case ) _UpperCAmelCase : Tuple =numpy.array(((c, -s), (s, c)) ) return numpy.dot(__snake_case , __snake_case ) def lowerCamelCase__ ( __lowerCamelCase : list[numpy.ndarray] ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCAmelCase : Dict =zip(*__snake_case ) plt.plot(__snake_case , __snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowercase =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
446
from math import sqrt def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" snake_case__ :List[str] = True # 0 and 1 are none primes. if number <= 1: snake_case__ :List[str] = False for divisor in range(2 , int(round(sqrt(__snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: snake_case__ :Optional[int] = False break # precondition assert isinstance(__snake_case , __snake_case ), "'status' must been from type bool" return status def lowercase_ ( __snake_case : Optional[Any] ) -> Dict: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N snake_case__ :Union[str, Any] = list(range(2 , n + 1 ) ) snake_case__ :Dict = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__snake_case ) ): for j in range(i + 1 , len(__snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): snake_case__ :List[Any] = 0 # filters actual prime numbers. snake_case__ :Tuple = [x for x in begin_list if x != 0] # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def lowercase_ ( __snake_case : str ) -> int: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" snake_case__ :List[str] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__snake_case ): ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def lowercase_ ( __snake_case : Union[str, Any] ) -> List[Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and number >= 0, "'number' must been an int and >= 0" snake_case__ :int = [] # this list will be returns of the function. # potential prime number factors. snake_case__ :Tuple = 2 snake_case__ :Union[str, Any] = number if number == 0 or number == 1: ans.append(__snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__snake_case ): while quotient != 1: if is_prime(__snake_case ) and (quotient % factor == 0): ans.append(__snake_case ) quotient /= factor else: factor += 1 else: ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def lowercase_ ( __snake_case : Any ) -> List[str]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case__ :Union[str, Any] = 0 # prime factorization of 'number' snake_case__ :List[Any] = prime_factorization(__snake_case ) snake_case__ :Any = max(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def lowercase_ ( __snake_case : Optional[int] ) -> int: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case__ :Union[str, Any] = 0 # prime factorization of 'number' snake_case__ :Tuple = prime_factorization(__snake_case ) snake_case__ :Dict = min(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def lowercase_ ( __snake_case : Optional[int] ) -> Optional[Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , __snake_case ), "compare bust been from type bool" return number % 2 == 0 def lowercase_ ( __snake_case : Optional[int] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , __snake_case ), "compare bust been from type bool" return number % 2 != 0 def lowercase_ ( __snake_case : Optional[Any] ) -> str: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and (number > 2) and is_even(__snake_case ) ), "'number' must been an int, even and > 2" snake_case__ :Dict = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' snake_case__ :int = get_prime_numbers(__snake_case ) snake_case__ :Tuple = len(__snake_case ) # run variable for while-loops. snake_case__ :List[Any] = 0 snake_case__ :Tuple = None # exit variable. for break up the loops snake_case__ :Any = True while i < len_pn and loop: snake_case__ :List[str] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: snake_case__ :Optional[int] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and (len(__snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowercase_ ( __snake_case : Optional[int] , __snake_case : Tuple ) -> int: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." snake_case__ :Optional[Any] = 0 while numbera != 0: snake_case__ :int = numbera % numbera snake_case__ :Any = numbera snake_case__ :List[Any] = rest # precondition assert isinstance(__snake_case , __snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> List[Any]: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." snake_case__ :List[str] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' snake_case__ :Tuple = prime_factorization(__snake_case ) snake_case__ :Union[str, Any] = prime_factorization(__snake_case ) elif numbera == 1 or numbera == 1: snake_case__ :Tuple = [] snake_case__ :Dict = [] snake_case__ :str = max(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = 0 snake_case__ :List[Any] = 0 snake_case__ :str = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: snake_case__ :Union[str, Any] = prime_fac_a.count(__snake_case ) snake_case__ :Tuple = prime_fac_a.count(__snake_case ) for _ in range(max(__snake_case , __snake_case ) ): ans *= n else: snake_case__ :str = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: snake_case__ :Any = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowercase_ ( __snake_case : Optional[Any] ) -> int: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'number' must been a positive int" snake_case__ :Tuple = 0 snake_case__ :List[Any] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__snake_case ): ans += 1 # precondition assert isinstance(__snake_case , __snake_case ) and is_prime( __snake_case ), "'ans' must been a prime number and from type int" return ans def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[Any]: '''simple docstring''' assert ( is_prime(__snake_case ) and is_prime(__snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" snake_case__ :Any = p_number_a + 1 # jump to the next number snake_case__ :List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__snake_case ): number += 1 while number < p_number_a: ans.append(__snake_case ) number += 1 # fetch the next prime number. while not is_prime(__snake_case ): number += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and ans[0] != p_number_a and ans[len(__snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowercase_ ( __snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n >= 1), "'n' must been int and >= 1" snake_case__ :Optional[int] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__snake_case ) # precondition assert ans[0] == 1 and ans[len(__snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowercase_ ( __snake_case : Tuple ) -> Tuple: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" snake_case__ :List[str] = get_divisors(__snake_case ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (divisors[0] == 1) and (divisors[len(__snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowercase_ ( __snake_case : str , __snake_case : Any ) -> str: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. snake_case__ :Union[str, Any] = gcd(abs(__snake_case ) , abs(__snake_case ) ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowercase_ ( __snake_case : Tuple ) -> int: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been a int and >= 0" snake_case__ :int = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been an int and >= 0" snake_case__ :Union[str, Any] = 0 snake_case__ :int = 1 snake_case__ :int = 1 # this will be return for _ in range(n - 1 ): snake_case__ :List[Any] = ans ans += fiba snake_case__ :Optional[Any] = tmp return ans
241
0
"""simple docstring""" class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> Tuple: A = 0 A = 0 A = {} def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> int: if vertex not in self.adjacency: A = {} self.num_vertices += 1 def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[Any]: self.add_vertex(lowerCamelCase_ ) self.add_vertex(lowerCamelCase_ ) if head == tail: return A = weight A = weight def UpperCamelCase__ ( self ) -> int: A = self.get_edges() for edge in edges: A , A , A = edge edges.remove((tail, head, weight) ) for i in range(len(lowerCamelCase_ ) ): A = list(edges[i] ) edges.sort(key=lambda lowerCamelCase_ : e[2] ) for i in range(len(lowerCamelCase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: A = edges[i][2] + 1 for edge in edges: A , A , A = edge A = weight A = weight def __str__( self ) -> List[str]: A = """""" for tail in self.adjacency: for head in self.adjacency[tail]: A = self.adjacency[head][tail] string += f'{head} -> {tail} == {weight}\n' return string.rstrip("""\n""" ) def UpperCamelCase__ ( self ) -> Any: A = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def UpperCamelCase__ ( self ) -> str: return self.adjacency.keys() @staticmethod def UpperCamelCase__ ( lowerCamelCase_=None ,lowerCamelCase_=None ) -> Optional[int]: A = Graph() if vertices is None: A = [] if edges is None: A = [] for vertex in vertices: g.add_vertex(lowerCamelCase_ ) for edge in edges: g.add_edge(*lowerCamelCase_ ) return g class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> List[str]: A = {} A = {} def __len__( self ) -> int: return len(self.parent ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Union[str, Any]: if item in self.parent: return self.find(lowerCamelCase_ ) A = item A = 0 return item def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> str: if item not in self.parent: return self.make_set(lowerCamelCase_ ) if item != self.parent[item]: A = self.find(self.parent[item] ) return self.parent[item] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = self.find(lowerCamelCase_ ) A = self.find(lowerCamelCase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: A = roota return roota if self.rank[roota] < self.rank[roota]: A = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 A = roota return roota return None @staticmethod def UpperCamelCase__ ( lowerCamelCase_ ) -> Dict: A = graph.num_vertices A = Graph.UnionFind() A = [] while num_components > 1: A = {} for vertex in graph.get_vertices(): A = -1 A = graph.get_edges() for edge in edges: A , A , A = edge edges.remove((tail, head, weight) ) for edge in edges: A , A , A = edge A = union_find.find(lowerCamelCase_ ) A = union_find.find(lowerCamelCase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: A , A , A = cheap_edge[vertex] if union_find.find(lowerCamelCase_ ) != union_find.find(lowerCamelCase_ ): union_find.union(lowerCamelCase_ ,lowerCamelCase_ ) mst_edges.append(cheap_edge[vertex] ) A = num_components - 1 A = Graph.build(edges=lowerCamelCase_ ) return mst
703
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCAmelCase =logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase =256 class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = ['''melgan'''] def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,) -> None: super().__init__() # From MELGAN A = math.log(1E-5 ) # Matches MelGAN training. A = 4.0 # Largest value for most examples A = 1_2_8 self.register_modules( notes_encoder=lowerCamelCase_ ,continuous_encoder=lowerCamelCase_ ,decoder=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,melgan=lowerCamelCase_ ,) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=(-1.0, 1.0) ,lowerCamelCase_=False ) -> str: A , A = output_range if clip: A = torch.clip(lowerCamelCase_ ,self.min_value ,self.max_value ) # Scale to [0, 1]. A = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=(-1.0, 1.0) ,lowerCamelCase_=False ) -> Optional[Any]: A , A = input_range A = torch.clip(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) if clip else outputs # Scale to [0, 1]. A = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Dict: A = input_tokens > 0 A , A = self.notes_encoder( encoder_input_tokens=lowerCamelCase_ ,encoder_inputs_mask=lowerCamelCase_ ) A , A = self.continuous_encoder( encoder_inputs=lowerCamelCase_ ,encoder_inputs_mask=lowerCamelCase_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = noise_time if not torch.is_tensor(lowerCamelCase_ ): A = torch.tensor([timesteps] ,dtype=torch.long ,device=input_tokens.device ) elif torch.is_tensor(lowerCamelCase_ ) and len(timesteps.shape ) == 0: A = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A = timesteps * torch.ones(input_tokens.shape[0] ,dtype=timesteps.dtype ,device=timesteps.device ) A = self.decoder( encodings_and_masks=lowerCamelCase_ ,decoder_input_tokens=lowerCamelCase_ ,decoder_noise_time=lowerCamelCase_ ) return logits @torch.no_grad() def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = 1_0_0 ,lowerCamelCase_ = True ,lowerCamelCase_ = "numpy" ,lowerCamelCase_ = None ,lowerCamelCase_ = 1 ,) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(lowerCamelCase_ )}.' ) A = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] ,dtype=np.floataa ) A = np.zeros([1, 0, self.n_dims] ,np.floataa ) A = torch.ones((1, TARGET_FEATURE_LENGTH) ,dtype=lowerCamelCase_ ,device=self.device ) for i, encoder_input_tokens in enumerate(lowerCamelCase_ ): if i == 0: A = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device ,dtype=self.decoder.dtype ) # The first chunk has no previous context. A = torch.zeros((1, TARGET_FEATURE_LENGTH) ,dtype=lowerCamelCase_ ,device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. A = ones A = self.scale_features( lowerCamelCase_ ,output_range=[-1.0, 1.0] ,clip=lowerCamelCase_ ) A = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) ,continuous_inputs=lowerCamelCase_ ,continuous_mask=lowerCamelCase_ ,) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop A = randn_tensor( shape=encoder_continuous_inputs.shape ,generator=lowerCamelCase_ ,device=self.device ,dtype=self.decoder.dtype ,) # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): A = self.decode( encodings_and_masks=lowerCamelCase_ ,input_tokens=lowerCamelCase_ ,noise_time=t / self.scheduler.config.num_train_timesteps ,) # Compute previous output: x_t -> x_t-1 A = self.scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,generator=lowerCamelCase_ ).prev_sample A = self.scale_to_features(lowerCamelCase_ ,input_range=[-1.0, 1.0] ) A = mel[:1] A = mel.cpu().float().numpy() A = np.concatenate([full_pred_mel, pred_mel[:1]] ,axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase_ ,lowerCamelCase_ ) logger.info("""Generated segment""" ,lowerCamelCase_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": A = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: A = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=lowerCamelCase_ )
255
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : str = '''xlm-roberta''' def __init__( self : List[Any] , UpperCAmelCase_ : List[str]=3_0522 , UpperCAmelCase_ : str=768 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : int=3072 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[str]=1E-12 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : List[str]="absolute" , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : List[Any] , ): super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : str = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE : Optional[int] = classifier_dropout class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @property def _A ( self : Tuple ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
62
import math import flax.linen as nn import jax.numpy as jnp def lowerCamelCase__ ( lowercase , lowercase , lowercase = 1 , lowercase = 1 , lowercase = 1.0E4 , lowercase = False , lowercase = 1.0 , ): """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' SCREAMING_SNAKE_CASE : Union[str, Any] = float(embedding_dim // 2 ) SCREAMING_SNAKE_CASE : Dict = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) SCREAMING_SNAKE_CASE : Optional[Any] = min_timescale * jnp.exp(jnp.arange(lowercase , dtype=jnp.floataa ) * -log_timescale_increment ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.expand_dims(lowercase , 1 ) * jnp.expand_dims(lowercase , 0 ) # scale embeddings SCREAMING_SNAKE_CASE : Optional[int] = scale * emb if flip_sin_to_cos: SCREAMING_SNAKE_CASE : List[Any] = jnp.concatenate([jnp.cos(lowercase ), jnp.sin(lowercase )] , axis=1 ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate([jnp.sin(lowercase ), jnp.cos(lowercase )] , axis=1 ) SCREAMING_SNAKE_CASE : Tuple = jnp.reshape(lowercase , [jnp.shape(lowercase )[0], embedding_dim] ) return signal class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' UpperCamelCase_ : int = 3_2 UpperCamelCase_ : jnp.dtype = jnp.floataa @nn.compact def __call__( self : Tuple , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Any = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_1" )(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.silu(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_2" )(UpperCAmelCase_ ) return temb class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' UpperCamelCase_ : int = 3_2 UpperCamelCase_ : bool = False UpperCamelCase_ : float = 1 @nn.compact def __call__( self : Optional[int] , UpperCAmelCase_ : int ): return get_sinusoidal_embeddings( UpperCAmelCase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
62
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,*A__ ,A__=None ,A__=None ,**A__): super().__init__(*A__ ,**A__) lowercase = eval_examples lowercase = post_process_function def A__ ( self ,A__ = None ,A__=None ,A__ = None ,A__ = "eval" ,**A__ ,): lowercase = gen_kwargs.copy() lowercase = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''') is not None else self.args.generation_max_length ) lowercase = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''') is not None else self.args.generation_num_beams ) lowercase = gen_kwargs lowercase = self.eval_dataset if eval_dataset is None else eval_dataset lowercase = self.get_eval_dataloader(A__) lowercase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase = self.compute_metrics lowercase = None lowercase = time.time() lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase = eval_loop( A__ ,description='''Evaluation''' ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=A__ ,metric_key_prefix=A__ ,) finally: lowercase = compute_metrics lowercase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( A__ ,A__ ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size) ,)) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase = self.post_process_function(A__ ,A__ ,A__) lowercase = self.compute_metrics(A__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'{metric_key_prefix}_'): lowercase = metrics.pop(A__) metrics.update(output.metrics) else: lowercase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(A__) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) lowercase = self.callback_handler.on_evaluate(self.args ,self.state ,self.control ,A__) return metrics def A__ ( self ,A__ ,A__ ,A__=None ,A__ = "test" ,**A__): lowercase = gen_kwargs.copy() lowercase = self.get_test_dataloader(A__) # Temporarily disable metric computation, we will do it in the loop here. lowercase = self.compute_metrics lowercase = None lowercase = time.time() lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase = eval_loop( A__ ,description='''Prediction''' ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=A__ ,metric_key_prefix=A__ ,) finally: lowercase = compute_metrics lowercase = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( A__ ,A__ ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size) ,)) if self.post_process_function is None or self.compute_metrics is None: return output lowercase = self.post_process_function(A__ ,A__ ,A__ ,'''predict''') lowercase = self.compute_metrics(A__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'{metric_key_prefix}_'): lowercase = metrics.pop(A__) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions ,label_ids=predictions.label_ids ,metrics=A__)
633
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase , lowercase = emb.weight.shape lowercase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) lowercase = emb.weight.data return lin_layer def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) lowercase = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] lowercase = mam_aaa['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase = MaMaaaConfig( vocab_size=lowerCAmelCase__ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) lowercase = state_dict['''decoder.embed_tokens.weight'''] lowercase = MaMaaaForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowercase__ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") lowercase__ :Tuple = parser.parse_args() lowercase__ :int = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
633
1
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCamelCase__ : Optional[Any] = True except ImportError: lowerCamelCase__ : str = False try: from torch.hub import _get_torch_home lowerCamelCase__ : List[str] = _get_torch_home() except ImportError: lowerCamelCase__ : Any = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) lowerCamelCase__ : Optional[int] = os.path.join(torch_cache_home, """transformers""") lowerCamelCase__ : Optional[Any] = """https://cdn.huggingface.co""" lowerCamelCase__ : Union[str, Any] = """https://s3.amazonaws.com/models.huggingface.co/bert""" lowerCamelCase__ : Tuple = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) lowerCamelCase__ : Dict = os.path.join(PATH, """config.yaml""") lowerCamelCase__ : Dict = os.path.join(PATH, """attributes.txt""") lowerCamelCase__ : Optional[int] = os.path.join(PATH, """objects.txt""") lowerCamelCase__ : Any = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) lowerCamelCase__ : Any = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) lowerCamelCase__ : Optional[int] = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) lowerCamelCase__ : Dict = """pytorch_model.bin""" lowerCamelCase__ : Union[str, Any] = """config.yaml""" def UpperCamelCase ( lowercase_=OBJECTS , lowercase_=ATTRIBUTES ) -> Tuple: '''simple docstring''' lowercase__ : List[Any] = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_classes.append(object.split(""",""" )[0].lower().strip() ) lowercase__ : List[str] = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(""",""" )[0].lower().strip() ) return vg_classes, vg_attrs def UpperCamelCase ( lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : List[Any] = OrderedDict() with open(lowercase_ , """rb""" ) as f: lowercase__ : int = pkl.load(lowercase_ )["""model"""] for k in copy.deepcopy(list(ckp.keys() ) ): lowercase__ : List[Any] = ckp.pop(lowercase_ ) if isinstance(lowercase_ , np.ndarray ): lowercase__ : List[str] = torch.tensor(lowercase_ ) else: assert isinstance(lowercase_ , torch.tensor ), type(lowercase_ ) lowercase__ : Tuple = v return r class _snake_case : __lowerCAmelCase : str = {} def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "root" , SCREAMING_SNAKE_CASE_=0): '''simple docstring''' lowercase__ : Dict = name lowercase__ : List[Any] = level lowercase__ : Tuple = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowercase__ : Optional[int] = copy.deepcopy(SCREAMING_SNAKE_CASE_) lowercase__ : str = copy.deepcopy(SCREAMING_SNAKE_CASE_) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : Any = Config(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , level=level + 1) lowercase__ : Tuple = v setattr(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = d def __repr__( self): '''simple docstring''' return str(list((self._pointer.keys()))) def __setattr__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = val lowercase__ : Optional[Any] = val lowercase__ : Union[str, Any] = key.split(""".""") lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) - 1 lowercase__ : Tuple = self._pointer if len(SCREAMING_SNAKE_CASE_) > 1: for i, l in enumerate(SCREAMING_SNAKE_CASE_): if hasattr(self , SCREAMING_SNAKE_CASE_) and isinstance(getattr(self , SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_): setattr(getattr(self , SCREAMING_SNAKE_CASE_) , """.""".join(levels[i:]) , SCREAMING_SNAKE_CASE_) if l == last_level: lowercase__ : Dict = val else: lowercase__ : List[str] = pointer[l] def lowercase__ ( self): '''simple docstring''' return self._pointer def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' with open(f'{file_name}' , """w""") as stream: dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' with open(f'{file_name}' , """w""") as stream: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @staticmethod def lowercase__ ( SCREAMING_SNAKE_CASE_): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_) as stream: lowercase__ : int = load(SCREAMING_SNAKE_CASE_ , Loader=SCREAMING_SNAKE_CASE_) return data def __str__( self): '''simple docstring''' lowercase__ : str = """ """ if self._name != "root": lowercase__ : List[Any] = f'{t * (self._level-1)}{self._name}:\n' else: lowercase__ : Dict = """""" lowercase__ : Optional[int] = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): r += f'{t * (self._level)}{v}\n' self._level += 1 else: r += f'{t * (self._level)}{k}: {v} ({type(SCREAMING_SNAKE_CASE_).__name__})\n' lowercase__ : Dict = level return r[:-1] @classmethod def lowercase__ ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return cls(SCREAMING_SNAKE_CASE_) @classmethod def lowercase__ ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[int] = kwargs.pop("""cache_dir""" , SCREAMING_SNAKE_CASE_) lowercase__ : Any = kwargs.pop("""force_download""" , SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = kwargs.pop("""resume_download""" , SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = kwargs.pop("""proxies""" , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = kwargs.pop("""local_files_only""" , SCREAMING_SNAKE_CASE_) if os.path.isdir(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif os.path.isfile(SCREAMING_SNAKE_CASE_) or is_remote_url(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[int] = pretrained_model_name_or_path else: lowercase__ : int = hf_bucket_url(SCREAMING_SNAKE_CASE_ , filename=SCREAMING_SNAKE_CASE_ , use_cdn=SCREAMING_SNAKE_CASE_) try: # Load from URL or cache if already cached lowercase__ : Optional[int] = cached_path( SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowercase__ : Union[str, Any] = Config.load_yaml(SCREAMING_SNAKE_CASE_) except EnvironmentError: lowercase__ : Optional[Any] = """Can't load config for""" raise EnvironmentError(SCREAMING_SNAKE_CASE_) if resolved_config_file == config_file: print("""loading configuration file from path""") else: print("""loading configuration file cache""") return Config.load_yaml(SCREAMING_SNAKE_CASE_), kwargs def UpperCamelCase ( lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : str = torch.load("""dump.pt""" , map_location=in_tensor.device ) lowercase__ : int = in_tensor.numpy() lowercase__ : Optional[Any] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(lowercase_ , lowercase_ , rtol=0.01 , atol=0.1 ), ( F'{sum([1 for x in np.isclose(lowercase_ , lowercase_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %' " element-wise mismatch" ) raise Exception("""tensors are all good""" ) # Hugging face functions below def UpperCamelCase ( lowercase_ ) -> Dict: '''simple docstring''' lowercase__ : Any = urlparse(lowercase_ ) return parsed.scheme in ("http", "https") def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=True ) -> str: '''simple docstring''' lowercase__ : Optional[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowercase__ : Dict = """/""" not in model_id if legacy_format: return F'{endpoint}/{model_id}-{filename}' else: return F'{endpoint}/{model_id}/{filename}' def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=0 , lowercase_=None , ) -> Optional[int]: '''simple docstring''' lowercase__ : Dict = """python/{}""".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowercase_ , lowercase_ ): ua += "; " + "; ".join("""{}/{}""".format(lowercase_ , lowercase_ ) for k, v in user_agent.items() ) elif isinstance(lowercase_ , lowercase_ ): ua += "; " + user_agent lowercase__ : Any = {"""user-agent""": ua} if resume_size > 0: lowercase__ : Tuple = """bytes=%d-""" % (resume_size,) lowercase__ : Union[str, Any] = requests.get(lowercase_ , stream=lowercase_ , proxies=lowercase_ , headers=lowercase_ ) if response.status_code == 4_16: # Range not satisfiable return lowercase__ : Tuple = response.headers.get("""Content-Length""" ) lowercase__ : Optional[int] = resume_size + int(lowercase_ ) if content_length is not None else None lowercase__ : Dict = tqdm( unit="""B""" , unit_scale=lowercase_ , total=lowercase_ , initial=lowercase_ , desc="""Downloading""" , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowercase_ ) ) temp_file.write(lowercase_ ) progress.close() def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=False , lowercase_=None , lowercase_=10 , lowercase_=False , lowercase_=None , lowercase_=False , ) -> Tuple: '''simple docstring''' if cache_dir is None: lowercase__ : int = TRANSFORMERS_CACHE if isinstance(lowercase_ , lowercase_ ): lowercase__ : str = str(lowercase_ ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowercase__ : Optional[int] = None if not local_files_only: try: lowercase__ : List[Any] = requests.head(lowercase_ , allow_redirects=lowercase_ , proxies=lowercase_ , timeout=lowercase_ ) if response.status_code == 2_00: lowercase__ : List[Any] = response.headers.get("""ETag""" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowercase__ : List[Any] = url_to_filename(lowercase_ , lowercase_ ) # get cache path to put the file lowercase__ : Optional[Any] = os.path.join(lowercase_ , lowercase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowercase_ ): return cache_path else: lowercase__ : Tuple = [ file for file in fnmatch.filter(os.listdir(lowercase_ ) , filename + """.*""" ) if not file.endswith(""".json""" ) and not file.endswith(""".lock""" ) ] if len(lowercase_ ) > 0: return os.path.join(lowercase_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( """Cannot find the requested files in the cached path and outgoing traffic has been""" """ disabled. To enable model look-ups and downloads online, set 'local_files_only'""" """ to False.""" ) return None # From now on, etag is not None. if os.path.exists(lowercase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowercase__ : int = cache_path + """.lock""" with FileLock(lowercase_ ): # If the download just completed while the lock was activated. if os.path.exists(lowercase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowercase__ : Any = cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(lowercase_ , """a+b""" ) as f: yield f lowercase__ : List[Any] = _resumable_file_manager if os.path.exists(lowercase_ ): lowercase__ : str = os.stat(lowercase_ ).st_size else: lowercase__ : Union[str, Any] = 0 else: lowercase__ : int = partial(tempfile.NamedTemporaryFile , dir=lowercase_ , delete=lowercase_ ) lowercase__ : Dict = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( """%s not found in cache or force_download set to True, downloading to %s""" , lowercase_ , temp_file.name , ) http_get( lowercase_ , lowercase_ , proxies=lowercase_ , resume_size=lowercase_ , user_agent=lowercase_ , ) os.replace(temp_file.name , lowercase_ ) lowercase__ : Any = {"""url""": url, """etag""": etag} lowercase__ : List[Any] = cache_path + """.json""" with open(lowercase_ , """w""" ) as meta_file: json.dump(lowercase_ , lowercase_ ) return cache_path def UpperCamelCase ( lowercase_ , lowercase_=None ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = url.encode("""utf-8""" ) lowercase__ : Optional[int] = shaaaa(lowercase_ ) lowercase__ : int = url_hash.hexdigest() if etag: lowercase__ : Any = etag.encode("""utf-8""" ) lowercase__ : Any = shaaaa(lowercase_ ) filename += "." + etag_hash.hexdigest() if url.endswith(""".h5""" ): filename += ".h5" return filename def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=False , lowercase_=None , lowercase_=False , lowercase_=None , lowercase_=False , lowercase_=False , lowercase_=False , ) -> int: '''simple docstring''' if cache_dir is None: lowercase__ : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(lowercase_ , lowercase_ ): lowercase__ : int = str(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): lowercase__ : int = str(lowercase_ ) if is_remote_url(lowercase_ ): # URL, so get it from the cache (downloading if necessary) lowercase__ : Union[str, Any] = get_from_cache( lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , proxies=lowercase_ , resume_download=lowercase_ , user_agent=lowercase_ , local_files_only=lowercase_ , ) elif os.path.exists(lowercase_ ): # File, and it exists. lowercase__ : Optional[int] = url_or_filename elif urlparse(lowercase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("""file {} not found""".format(lowercase_ ) ) else: # Something unknown raise ValueError("""unable to parse {} as a URL or as a local path""".format(lowercase_ ) ) if extract_compressed_file: if not is_zipfile(lowercase_ ) and not tarfile.is_tarfile(lowercase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowercase__ , lowercase__ : int = os.path.split(lowercase_ ) lowercase__ : Optional[int] = output_file.replace(""".""" , """-""" ) + """-extracted""" lowercase__ : Dict = os.path.join(lowercase_ , lowercase_ ) if os.path.isdir(lowercase_ ) and os.listdir(lowercase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowercase__ : Optional[int] = output_path + """.lock""" with FileLock(lowercase_ ): shutil.rmtree(lowercase_ , ignore_errors=lowercase_ ) os.makedirs(lowercase_ ) if is_zipfile(lowercase_ ): with ZipFile(lowercase_ , """r""" ) as zip_file: zip_file.extractall(lowercase_ ) zip_file.close() elif tarfile.is_tarfile(lowercase_ ): lowercase__ : Tuple = tarfile.open(lowercase_ ) tar_file.extractall(lowercase_ ) tar_file.close() else: raise EnvironmentError("""Archive format of {} could not be identified""".format(lowercase_ ) ) return output_path_extracted return output_path def UpperCamelCase ( lowercase_ , lowercase_="," ) -> str: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) if os.path.isfile(lowercase_ ): with open(lowercase_ ) as f: lowercase__ : List[Any] = eval(f.read() ) else: lowercase__ : Union[str, Any] = requests.get(lowercase_ ) try: lowercase__ : List[str] = requests.json() except Exception: lowercase__ : List[Any] = req.content.decode() assert data is not None, "could not connect" try: lowercase__ : Optional[Any] = eval(lowercase_ ) except Exception: lowercase__ : Optional[int] = data.split("""\n""" ) req.close() return data def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : str = requests.get(lowercase_ ) lowercase__ : List[Any] = np.array(Image.open(BytesIO(response.content ) ) ) return img def UpperCamelCase ( lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : Union[str, Any] = url.split("""/""" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowercase_ ) with open(lowercase_ , """rb""" ) as stream: lowercase__ : Union[str, Any] = pkl.load(lowercase_ ) lowercase__ : Tuple = weights.pop("""model""" ) lowercase__ : int = {} for k, v in model.items(): lowercase__ : int = torch.from_numpy(lowercase_ ) if "running_var" in k: lowercase__ : Optional[Any] = torch.tensor([0] ) lowercase__ : Optional[int] = k.replace("""running_var""" , """num_batches_tracked""" ) lowercase__ : List[Any] = zero return new def UpperCamelCase ( ) -> List[str]: '''simple docstring''' print(F'{os.path.abspath(os.path.join(lowercase_ , os.pardir ) )}/demo.ipynb' ) def UpperCamelCase ( lowercase_ , lowercase_="RGB" ) -> Tuple: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) if os.path.isfile(lowercase_ ): lowercase__ : Optional[Any] = cva.imread(lowercase_ ) else: lowercase__ : str = get_image_from_url(lowercase_ ) assert img is not None, F'could not connect to: {im}' lowercase__ : Union[str, Any] = cva.cvtColor(lowercase_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": lowercase__ : List[Any] = img[:, :, ::-1] return img def UpperCamelCase ( lowercase_ , lowercase_=1 ) -> str: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(lowercase_ ) , lowercase_ ))
12
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
1
"""simple docstring""" import argparse import importlib from pathlib import Path # Test all the extensions added in the setup _UpperCamelCase : Tuple = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": _UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') _UpperCamelCase : str = parser.parse_args() if args.check_lib: _UpperCamelCase : str = importlib.import_module('transformers') _UpperCamelCase : str = Path(transformers_module.__file__).parent else: _UpperCamelCase : Dict = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
134
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase : Optional[Any] = Lock() def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__snake_case ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowercase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowercase = min(__snake_case , __snake_case ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__snake_case ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowercase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowercase = max(__snake_case , __snake_case ) # after all swaps are performed, send the values back to main result_pipe[1].send(__snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] ): '''simple docstring''' lowercase = [] lowercase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowercase = Pipe() lowercase = Pipe() process_array_.append( Process( target=__snake_case , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowercase = temp_rs lowercase = temp_rr for i in range(1 , len(__snake_case ) - 1 ): lowercase = Pipe() lowercase = Pipe() process_array_.append( Process( target=__snake_case , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowercase = temp_rs lowercase = temp_rr process_array_.append( Process( target=__snake_case , args=( len(__snake_case ) - 1, arr[len(__snake_case ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__snake_case ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__snake_case ) ): lowercase = result_pipe[p][0].recv() process_array_[p].join() return arr def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*__snake_case ) lowercase = odd_even_transposition(__snake_case ) print('Sorted List\n' ) print(*__snake_case ) if __name__ == "__main__": main()
134
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> List[Any]: """simple docstring""" UpperCamelCase = [] for part_id in partition_order: UpperCamelCase = df.where(F'SPARK_PARTITION_ID() = {part_id}').collect() for row_idx, row in enumerate(_UpperCamelCase): expected_row_ids_and_row_dicts.append((F'{part_id}_{row_idx}', row.asDict())) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowercase__ ( ) -> str: """simple docstring""" UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]').appName('pyspark').getOrCreate() UpperCamelCase = spark.range(1_00).repartition(1) UpperCamelCase = Spark(_UpperCamelCase) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowercase__ ( ) -> int: """simple docstring""" UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]').appName('pyspark').getOrCreate() UpperCamelCase = spark.range(10).repartition(2) UpperCamelCase = [1, 0] UpperCamelCase = _generate_iterable_examples(_UpperCamelCase , _UpperCamelCase) # Reverse the partitions. UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , _UpperCamelCase) for i, (row_id, row_dict) in enumerate(generate_fn()): UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowercase__ ( ) -> List[Any]: """simple docstring""" UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]').appName('pyspark').getOrCreate() UpperCamelCase = spark.range(10).repartition(1) UpperCamelCase = SparkExamplesIterable(_UpperCamelCase) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_UpperCamelCase): assert row_id == F'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowercase__ ( ) -> List[str]: """simple docstring""" UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]').appName('pyspark').getOrCreate() UpperCamelCase = spark.range(30).repartition(3) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator') as generator_mock: UpperCamelCase = lambda _UpperCamelCase: x.reverse() UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , [2, 1, 0]) UpperCamelCase = SparkExamplesIterable(_UpperCamelCase).shuffle_data_sources(_UpperCamelCase) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_UpperCamelCase): UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]').appName('pyspark').getOrCreate() UpperCamelCase = spark.range(20).repartition(4) # Partitions 0 and 2 UpperCamelCase = SparkExamplesIterable(_UpperCamelCase).shard_data_sources(worker_id=0 , num_workers=2) assert shard_it_a.n_shards == 2 UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , [0, 2]) for i, (row_id, row_dict) in enumerate(_UpperCamelCase): UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCamelCase = SparkExamplesIterable(_UpperCamelCase).shard_data_sources(worker_id=1 , num_workers=2) assert shard_it_a.n_shards == 2 UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , [1, 3]) for i, (row_id, row_dict) in enumerate(_UpperCamelCase): UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowercase__ ( ) -> List[str]: """simple docstring""" UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]').appName('pyspark').getOrCreate() UpperCamelCase = spark.range(1_00).repartition(1) UpperCamelCase = Spark(_UpperCamelCase) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
280
from pathlib import Path import fire def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Optional[int]: """simple docstring""" UpperCamelCase = Path(_UpperCamelCase) UpperCamelCase = Path(_UpperCamelCase) dest_dir.mkdir(exist_ok=_UpperCamelCase) for path in src_dir.iterdir(): UpperCamelCase = [x.rstrip() for x in list(path.open().readlines())][:n] UpperCamelCase = dest_dir.joinpath(path.name) print(_UpperCamelCase) dest_path.open('w').write('\n'.join(_UpperCamelCase)) if __name__ == "__main__": fire.Fire(minify)
280
1
__SCREAMING_SNAKE_CASE = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # Return True if there is node that has not iterated. A : Any = [False] * len(_lowerCamelCase ) A : str = [s] A : List[str] = True while queue: A : Any = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) A : List[str] = True A : int = u return visited[t] def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : str = [-1] * (len(_lowerCamelCase )) A : Tuple = 0 A : Union[str, Any] = [] A : str = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : Optional[Any] = float("Inf" ) A : Optional[Any] = sink while s != source: # Find the minimum value in select path A : Optional[int] = min(_lowerCamelCase , graph[parent[s]][s] ) A : Optional[Any] = parent[s] max_flow += path_flow A : Dict = sink while v != source: A : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow A : Optional[Any] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
17
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __SCREAMING_SNAKE_CASE = 1.0_5_4_5_7_1_8_1_7e-3_4 # unit of ℏ : J * s __SCREAMING_SNAKE_CASE = 3e8 # unit of c : m * s^-1 def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: A : int = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: A : Tuple = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: A : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = self.dummy_uncond_unet UpperCAmelCase__ = KarrasVeScheduler() UpperCAmelCase__ = KarrasVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe(num_inference_steps=2 , generator=_UpperCAmelCase , output_type="""numpy""" ).images UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe(num_inference_steps=2 , generator=_UpperCAmelCase , output_type="""numpy""" , return_dict=_UpperCAmelCase )[0] UpperCAmelCase__ = image[0, -3:, -3:, -1] UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = """google/ncsnpp-celebahq-256""" UpperCAmelCase__ = UNetaDModel.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = KarrasVeScheduler() UpperCAmelCase__ = KarrasVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe(num_inference_steps=20 , generator=_UpperCAmelCase , output_type="""numpy""" ).images UpperCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCAmelCase__ = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
603
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
603
1
def lowercase ( __A : list ) -> list: '''simple docstring''' if len(__A ) <= 1: return lst snake_case : int = 1 while i < len(__A ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case , snake_case : Optional[int] = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case : List[str] = 1 return lst if __name__ == "__main__": __lowercase : Any = input('''Enter numbers separated by a comma:\n''').strip() __lowercase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
315
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __lowerCamelCase : List[str] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Union[str, Any] = AudioClassificationPipeline(model=SCREAMING_SNAKE_CASE_ ,feature_extractor=SCREAMING_SNAKE_CASE_ ) # test with a raw waveform snake_case : Optional[int] = np.zeros((34000,) ) snake_case : List[Any] = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case , snake_case : List[str] = examples snake_case : Union[str, Any] = audio_classifier(SCREAMING_SNAKE_CASE_ ) # by default a model is initialized with num_labels=2 self.assertEqual( SCREAMING_SNAKE_CASE_ ,[ {"""score""": ANY(SCREAMING_SNAKE_CASE_ ), """label""": ANY(SCREAMING_SNAKE_CASE_ )}, {"""score""": ANY(SCREAMING_SNAKE_CASE_ ), """label""": ANY(SCREAMING_SNAKE_CASE_ )}, ] ,) snake_case : Dict = audio_classifier(SCREAMING_SNAKE_CASE_ ,top_k=1 ) self.assertEqual( SCREAMING_SNAKE_CASE_ ,[ {"""score""": ANY(SCREAMING_SNAKE_CASE_ ), """label""": ANY(SCREAMING_SNAKE_CASE_ )}, ] ,) self.run_torchaudio(SCREAMING_SNAKE_CASE_ ) @require_torchaudio def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' import datasets # test with a local file snake_case : Optional[Any] = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" ,"""clean""" ,split="""validation""" ) snake_case : Any = dataset[0]["""audio"""]["""array"""] snake_case : Optional[Any] = audio_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ ,[ {"""score""": ANY(SCREAMING_SNAKE_CASE_ ), """label""": ANY(SCREAMING_SNAKE_CASE_ )}, {"""score""": ANY(SCREAMING_SNAKE_CASE_ ), """label""": ANY(SCREAMING_SNAKE_CASE_ )}, ] ,) @require_torch def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = """anton-l/wav2vec2-random-tiny-classifier""" snake_case : Union[str, Any] = pipeline("""audio-classification""" ,model=SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = np.ones((8000,) ) snake_case : int = audio_classifier(SCREAMING_SNAKE_CASE_ ,top_k=4 ) snake_case : List[Any] = [ {"""score""": 0.08_42, """label""": """no"""}, {"""score""": 0.08_38, """label""": """up"""}, {"""score""": 0.08_37, """label""": """go"""}, {"""score""": 0.08_34, """label""": """right"""}, ] snake_case : Dict = [ {"""score""": 0.08_45, """label""": """stop"""}, {"""score""": 0.08_44, """label""": """on"""}, {"""score""": 0.08_41, """label""": """right"""}, {"""score""": 0.08_34, """label""": """left"""}, ] self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) snake_case : Optional[int] = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} snake_case : Tuple = audio_classifier(SCREAMING_SNAKE_CASE_ ,top_k=4 ) self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def snake_case_ ( self ): '''simple docstring''' import datasets snake_case : Tuple = """superb/wav2vec2-base-superb-ks""" snake_case : List[str] = pipeline("""audio-classification""" ,model=SCREAMING_SNAKE_CASE_ ) snake_case : int = datasets.load_dataset("""anton-l/superb_dummy""" ,"""ks""" ,split="""test""" ) snake_case : Tuple = np.array(dataset[3]["""speech"""] ,dtype=np.floataa ) snake_case : List[Any] = audio_classifier(SCREAMING_SNAKE_CASE_ ,top_k=4 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=3 ) ,[ {"""score""": 0.9_81, """label""": """go"""}, {"""score""": 0.0_07, """label""": """up"""}, {"""score""": 0.0_06, """label""": """_unknown_"""}, {"""score""": 0.0_01, """label""": """down"""}, ] ,) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def snake_case_ ( self ): '''simple docstring''' pass
315
1
from copy import deepcopy class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None ) -> None: if arr is None and size is not None: UpperCamelCase :int = size UpperCamelCase :str = [0] * size elif arr is not None: self.init(SCREAMING_SNAKE_CASE_ ) else: raise ValueError('''Either arr or size must be specified''' ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase :Dict = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = deepcopy(SCREAMING_SNAKE_CASE_ ) for i in range(1 , self.size ): UpperCamelCase :Union[str, Any] = self.next_(SCREAMING_SNAKE_CASE_ ) if j < self.size: self.tree[j] += self.tree[i] def UpperCAmelCase ( self ) -> list[int]: UpperCamelCase :str = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase :int = self.next_(SCREAMING_SNAKE_CASE_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ) -> int: return index + (index & (-index)) @staticmethod def UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ) -> int: return index - (index & (-index)) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase :Any = self.next_(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: self.add(SCREAMING_SNAKE_CASE_ , value - self.get(SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> int: if right == 0: return 0 UpperCamelCase :Dict = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase :str = self.prev(SCREAMING_SNAKE_CASE_ ) return result def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: return self.prefix(SCREAMING_SNAKE_CASE_ ) - self.prefix(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> int: return self.query(SCREAMING_SNAKE_CASE_ , index + 1 ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase :Dict = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase :Dict = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
658
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Optional[int] =(CMStochasticIterativeScheduler,) UpperCamelCase_ : Any =10 def UpperCAmelCase ( self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase :str = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def UpperCAmelCase ( self ) -> str: UpperCamelCase :Optional[Any] = 10 UpperCamelCase :Optional[Any] = self.get_scheduler_config() UpperCamelCase :Dict = self.scheduler_classes[0](**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = scheduler.timesteps[0] UpperCamelCase :Union[str, Any] = scheduler.timesteps[1] UpperCamelCase :str = self.dummy_sample UpperCamelCase :List[str] = 0.1 * sample UpperCamelCase :List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase :str = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase ( self ) -> List[str]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :List[Any] = self.scheduler_classes[0] UpperCamelCase :List[Any] = self.get_scheduler_config() UpperCamelCase :Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = 1 scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = scheduler.timesteps UpperCamelCase :Union[str, Any] = torch.manual_seed(0 ) UpperCamelCase :Union[str, Any] = self.dummy_model() UpperCamelCase :List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. scale model input UpperCamelCase :List[str] = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase :Optional[int] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase :List[Any] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase :Tuple = pred_prev_sample UpperCamelCase :Any = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase :Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCAmelCase ( self ) -> str: UpperCamelCase :Dict = self.scheduler_classes[0] UpperCamelCase :Optional[Any] = self.get_scheduler_config() UpperCamelCase :Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = [106, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = scheduler.timesteps UpperCamelCase :int = torch.manual_seed(0 ) UpperCamelCase :str = self.dummy_model() UpperCamelCase :List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCamelCase :List[Any] = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase :int = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase :Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase :int = pred_prev_sample UpperCamelCase :Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase :int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :List[str] = self.scheduler_classes[0] UpperCamelCase :Tuple = self.get_scheduler_config() UpperCamelCase :List[str] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = [39, 30, 12, 15, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> str: UpperCamelCase :List[str] = self.scheduler_classes[0] UpperCamelCase :List[Any] = self.get_scheduler_config() UpperCamelCase :Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = [39, 30, 12, 1, 0] UpperCamelCase :Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> str: UpperCamelCase :Optional[int] = self.scheduler_classes[0] UpperCamelCase :List[str] = self.get_scheduler_config() UpperCamelCase :Dict = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ )
658
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=a_ ) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _UpperCamelCase : ClassVar[Features] = Features({"image": Image()} ) _UpperCamelCase : ClassVar[Features] = Features({"labels": ClassLabel} ) _UpperCamelCase : str = "image" _UpperCamelCase : str = "labels" def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Dict ): '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCamelCase_ ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) _snake_case : str = copy.deepcopy(self ) _snake_case : Tuple = self.label_schema.copy() _snake_case : Any = features[self.label_column] _snake_case : Optional[Any] = label_schema return task_template @property def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
652
def A__( __lowerCAmelCase ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: _snake_case : Any = str(abs(__lowerCAmelCase ) ) _snake_case : List[str] = [list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int(''.join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
652
1
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __A ( a_ : str ,a_ : str ,**a_ : int ): lowerCAmelCase : str = AutoConfig.from_pretrained(a_ ,**a_ ) lowerCAmelCase : Any = AutoModelForSeqaSeqLM.from_config(a_ ) model.save_pretrained(a_ ) AutoTokenizer.from_pretrained(a_ ).save_pretrained(a_ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
525
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __A ( a_ : int ,a_ : str=0.9_9_9 ,a_ : List[str]="cosine" ,): if alpha_transform_type == "cosine": def alpha_bar_fn(a_ : List[Any] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a_ : List[str] ): return math.exp(t * -1_2.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase : Optional[int] = [] for i in range(a_ ): lowerCAmelCase : Dict = i / num_diffusion_timesteps lowerCAmelCase : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a_ ) / alpha_bar_fn(a_ ) ,a_ ) ) return torch.tensor(a_ ,dtype=torch.floataa ) class lowerCamelCase ( _A , _A ): snake_case_ = [e.name for e in KarrasDiffusionSchedulers] snake_case_ = 2 @register_to_config def __init__( self , a_ = 1_000 , a_ = 0.00085 , a_ = 0.012 , a_ = "linear" , a_ = None , a_ = "epsilon" , a_ = False , a_ = False , a_ = 1.0 , a_ = "linspace" , a_ = 0 , ): if trained_betas is not None: lowerCAmelCase : List[Any] = torch.tensor(a_ , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase : List[str] = torch.linspace(a_ , a_ , a_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase : List[Any] = betas_for_alpha_bar(a_ , alpha_transform_type="cosine" ) elif beta_schedule == "exp": lowerCAmelCase : Any = betas_for_alpha_bar(a_ , alpha_transform_type="exp" ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCAmelCase : Optional[int] = 1.0 - self.betas lowerCAmelCase : Optional[Any] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a_ , a_ , a_ ) lowerCAmelCase : Union[str, Any] = use_karras_sigmas def _lowerCamelCase ( self , a_ , a_=None ): if schedule_timesteps is None: lowerCAmelCase : List[str] = self.timesteps lowerCAmelCase : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase : Union[str, Any] = 1 if len(a_ ) > 1 else 0 else: lowerCAmelCase : Tuple = timestep.cpu().item() if torch.is_tensor(a_ ) else timestep lowerCAmelCase : Any = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self , a_ , a_ , ): lowerCAmelCase : Union[str, Any] = self.index_for_timestep(a_ ) lowerCAmelCase : Any = self.sigmas[step_index] lowerCAmelCase : int = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self , a_ , a_ = None , a_ = None , ): lowerCAmelCase : List[Any] = num_inference_steps lowerCAmelCase : Optional[int] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase : Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , a_ , dtype=a_ )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Dict = (np.arange(0 , a_ ) * step_ratio).round()[::-1].copy().astype(a_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase : int = (np.arange(a_ , 0 , -step_ratio )).round().copy().astype(a_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCAmelCase : Any = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase : Any = np.log(a_ ) lowerCAmelCase : int = np.interp(a_ , np.arange(0 , len(a_ ) ) , a_ ) if self.config.use_karras_sigmas: lowerCAmelCase : int = self._convert_to_karras(in_sigmas=a_ , num_inference_steps=self.num_inference_steps ) lowerCAmelCase : Any = np.array([self._sigma_to_t(a_ , a_ ) for sigma in sigmas] ) lowerCAmelCase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase : int = torch.from_numpy(a_ ).to(device=a_ ) lowerCAmelCase : Any = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(a_ ) lowerCAmelCase : Union[str, Any] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a_ ).startswith("mps" ): # mps does not support float64 lowerCAmelCase : str = timesteps.to(a_ , dtype=torch.floataa ) else: lowerCAmelCase : int = timesteps.to(device=a_ ) # empty dt and derivative lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase : int = defaultdict(a_ ) def _lowerCamelCase ( self , a_ , a_ ): # get log sigma lowerCAmelCase : str = np.log(a_ ) # get distribution lowerCAmelCase : int = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase : int = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase : Any = low_idx + 1 lowerCAmelCase : str = log_sigmas[low_idx] lowerCAmelCase : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase : Optional[Any] = (low - log_sigma) / (low - high) lowerCAmelCase : List[str] = np.clip(a_ , 0 , 1 ) # transform interpolation to time range lowerCAmelCase : int = (1 - w) * low_idx + w * high_idx lowerCAmelCase : Dict = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self , a_ , a_ ): lowerCAmelCase : float = in_sigmas[-1].item() lowerCAmelCase : float = in_sigmas[0].item() lowerCAmelCase : str = 7.0 # 7.0 is the value used in the paper lowerCAmelCase : Optional[int] = np.linspace(0 , 1 , a_ ) lowerCAmelCase : Optional[int] = sigma_min ** (1 / rho) lowerCAmelCase : str = sigma_max ** (1 / rho) lowerCAmelCase : List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self ): return self.dt is None def _lowerCamelCase ( self , a_ , a_ , a_ , a_ = True , ): lowerCAmelCase : Optional[int] = self.index_for_timestep(a_ ) # advance index counter by 1 lowerCAmelCase : List[str] = timestep.cpu().item() if torch.is_tensor(a_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase : Optional[Any] = self.sigmas[step_index] lowerCAmelCase : Dict = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase : List[str] = self.sigmas[step_index - 1] lowerCAmelCase : int = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase : int = 0 lowerCAmelCase : Optional[int] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase : int = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase : Tuple = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase : int = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase : Optional[int] = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCAmelCase : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase : Union[str, Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase : Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase : List[str] = derivative lowerCAmelCase : Optional[int] = dt lowerCAmelCase : Dict = sample else: # 2. 2nd order / Heun's method lowerCAmelCase : Dict = (sample - pred_original_sample) / sigma_next lowerCAmelCase : Optional[int] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase : Optional[int] = self.dt lowerCAmelCase : Tuple = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Any = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a_ ) def _lowerCamelCase ( self , a_ , a_ , a_ , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCAmelCase : Tuple = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a_ ): # mps does not support float64 lowerCAmelCase : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase : Dict = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase : List[Any] = self.timesteps.to(original_samples.device ) lowerCAmelCase : str = timesteps.to(original_samples.device ) lowerCAmelCase : Tuple = [self.index_for_timestep(a_ , a_ ) for t in timesteps] lowerCAmelCase : Dict = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase : Any = sigma.unsqueeze(-1 ) lowerCAmelCase : str = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
525
1
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __UpperCamelCase (unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=False , ) -> Optional[Any]: '''simple docstring''' lowercase = size if size is not None else {"""height""": 20, """width""": 20} lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_center_crop lowercase = crop_size lowercase = do_normalize lowercase = image_mean lowercase = image_std lowercase = do_reduce_labels def _a ( self ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def SCREAMING_SNAKE_CASE ( ): lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) lowercase = Image.open(dataset[0]["""file"""] ) lowercase = Image.open(dataset[1]["""file"""] ) return image, map def SCREAMING_SNAKE_CASE ( ): lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) lowercase = Image.open(ds[0]["""file"""] ) lowercase = Image.open(ds[1]["""file"""] ) lowercase = Image.open(ds[2]["""file"""] ) lowercase = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __UpperCamelCase (_UpperCAmelCase , unittest.TestCase ): __A = BeitImageProcessor if is_vision_available() else None def _a ( self ) -> int: '''simple docstring''' lowercase = BeitImageProcessingTester(self ) @property def _a ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_std""" ) ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) lowercase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCAmelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) def _a ( self ) -> int: '''simple docstring''' pass def _a ( self ) -> Tuple: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) lowercase = [] for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input lowercase = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) lowercase , lowercase = prepare_semantic_single_inputs() lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) lowercase , lowercase = prepare_semantic_batch_inputs() lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def _a ( self ) -> Any: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 lowercase , lowercase = prepare_semantic_single_inputs() lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) lowercase = True lowercase = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
653
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
1
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) SCREAMING_SNAKE_CASE_ = 2_99_79_24_58 # Symbols SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = symbols('ct x y z') def UpperCamelCase__ ( _lowercase : float ) -> float: if velocity > c: raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("""Speed must be greater than or equal to 1!""" ) return velocity / c def UpperCamelCase__ ( _lowercase : float ) -> float: return 1 / sqrt(1 - beta(_lowercase ) ** 2 ) def UpperCamelCase__ ( _lowercase : float ) -> np.ndarray: return np.array( [ [gamma(_lowercase ), -gamma(_lowercase ) * beta(_lowercase ), 0, 0], [-gamma(_lowercase ) * beta(_lowercase ), gamma(_lowercase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def UpperCamelCase__ ( _lowercase : float , _lowercase : np.ndarray | None = None ) -> np.ndarray: # Ensure event is not empty if event is None: __UpperCAmelCase: List[str] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_lowercase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: SCREAMING_SNAKE_CASE_ = transform(29_97_92_45) print('Example of four vector: ') print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values SCREAMING_SNAKE_CASE_ = {ct: c, x: 1, y: 1, z: 1} SCREAMING_SNAKE_CASE_ = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
523
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCamelCase__ ( _lowercase : str ) -> List[Any]: __UpperCAmelCase: List[str] = [False] * len(_lowercase ) __UpperCAmelCase: str = [-1] * len(_lowercase ) def dfs(_lowercase : Dict , _lowercase : Optional[int] ): __UpperCAmelCase: Optional[int] = True __UpperCAmelCase: Optional[int] = c for u in graph[v]: if not visited[u]: dfs(_lowercase , 1 - c ) for i in range(len(_lowercase ) ): if not visited[i]: dfs(_lowercase , 0 ) for i in range(len(_lowercase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph SCREAMING_SNAKE_CASE_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
523
1
"""simple docstring""" from __future__ import annotations def a ( __UpperCAmelCase : int | float | str , __UpperCAmelCase : int | float | str ) -> list[str]: if nth_term == "": return [""] __magic_name__: Dict = int(__UpperCAmelCase ) __magic_name__: Any = int(__UpperCAmelCase ) __magic_name__: list[str] = [] for temp in range(int(__UpperCAmelCase ) ): series.append(f'1 / {pow(temp + 1 , int(__UpperCAmelCase ) )}' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = int(input('Enter the last number (nth term) of the P-Series')) __lowerCamelCase = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
702
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = IFInpaintingSuperResolutionPipeline UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) UpperCAmelCase__ = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: return self._get_superresolution_dummy_components() def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any=0 ) -> Dict: if str(__snake_case ).startswith("""mps""" ): __magic_name__: int = torch.manual_seed(__snake_case ) else: __magic_name__: List[Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__: Tuple = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase__ ( self : Dict ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCamelCase__ ( self : Tuple ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase__ ( self : int ) -> str: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase__ ( self : Any ) -> List[Any]: self._test_save_load_local() def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
213
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["input_features", "attention_mask"] def __init__( self : int , lowercase_ : int=80 , lowercase_ : int=16000 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Any=10 , lowercase_ : int=25 , lowercase_ : Tuple="hamming_window" , lowercase_ : Any=3_27_68.0 , lowercase_ : int=0.97 , lowercase_ : List[str]=1.0 , lowercase_ : Any=True , lowercase_ : Union[str, Any]=True , lowercase_ : List[str]=False , **lowercase_ : List[str] , ): '''simple docstring''' super().__init__(feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = feature_size SCREAMING_SNAKE_CASE_ : List[Any] = sampling_rate SCREAMING_SNAKE_CASE_ : Any = padding_value SCREAMING_SNAKE_CASE_ : List[str] = hop_length SCREAMING_SNAKE_CASE_ : List[Any] = win_length SCREAMING_SNAKE_CASE_ : Dict = frame_signal_scale SCREAMING_SNAKE_CASE_ : List[Any] = preemphasis_coeff SCREAMING_SNAKE_CASE_ : Union[str, Any] = mel_floor SCREAMING_SNAKE_CASE_ : Optional[Any] = normalize_means SCREAMING_SNAKE_CASE_ : Dict = normalize_vars SCREAMING_SNAKE_CASE_ : Tuple = win_function SCREAMING_SNAKE_CASE_ : Any = return_attention_mask SCREAMING_SNAKE_CASE_ : List[Any] = win_length * sampling_rate // 1000 SCREAMING_SNAKE_CASE_ : List[str] = hop_length * sampling_rate // 1000 SCREAMING_SNAKE_CASE_ : Dict = optimal_fft_length(self.sample_size) SCREAMING_SNAKE_CASE_ : int = (self.n_fft // 2) + 1 def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : np.array): '''simple docstring''' if self.win_function == "hamming_window": SCREAMING_SNAKE_CASE_ : int = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowercase_) else: SCREAMING_SNAKE_CASE_ : Tuple = window_function(window_length=self.sample_size , name=self.win_function) SCREAMING_SNAKE_CASE_ : Dict = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) SCREAMING_SNAKE_CASE_ : List[Any] = spectrogram( one_waveform * self.frame_signal_scale , window=lowercase_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowercase_ , preemphasis=self.preemphasis_coeff , mel_filters=lowercase_ , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]): '''simple docstring''' if self.normalize_means: SCREAMING_SNAKE_CASE_ : Tuple = x[:input_length].mean(axis=0) SCREAMING_SNAKE_CASE_ : Dict = np.subtract(lowercase_ , lowercase_) if self.normalize_vars: SCREAMING_SNAKE_CASE_ : Union[str, Any] = x[:input_length].std(axis=0) SCREAMING_SNAKE_CASE_ : Dict = np.divide(lowercase_ , lowercase_) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE_ : int = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE_ : Optional[int] = x.astype(np.floataa) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : List[np.ndarray] , lowercase_ : Optional[np.ndarray] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowercase_ , lowercase_ , self.padding_value) for x, n in zip(lowercase_ , lowercase_)] def __call__( self : Any , lowercase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Optional[int] = None , lowercase_ : bool = False , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[int] = None , **lowercase_ : Union[str, Any] , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.') else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') SCREAMING_SNAKE_CASE_ : int = isinstance(lowercase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}') SCREAMING_SNAKE_CASE_ : Tuple = is_batched_numpy or ( isinstance(lowercase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: SCREAMING_SNAKE_CASE_ : int = [np.asarray(lowercase_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(lowercase_ , np.ndarray): SCREAMING_SNAKE_CASE_ : Optional[int] = np.asarray(lowercase_ , dtype=np.floataa) elif isinstance(lowercase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): SCREAMING_SNAKE_CASE_ : int = raw_speech.astype(np.floataa) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ : List[str] = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE_ : Tuple = [self._extract_mfsc_features(lowercase_) for one_waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE_ : Any = BatchFeature({'''input_features''': features}) SCREAMING_SNAKE_CASE_ : List[str] = self.pad( lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) # make sure list is in array format SCREAMING_SNAKE_CASE_ : Any = padded_inputs.get('''input_features''') if isinstance(input_features[0] , lowercase_): SCREAMING_SNAKE_CASE_ : Optional[Any] = [np.asarray(lowercase_ , dtype=np.floataa) for feature in input_features] SCREAMING_SNAKE_CASE_ : str = padded_inputs.get('''attention_mask''') if attention_mask is not None: SCREAMING_SNAKE_CASE_ : Any = [np.asarray(lowercase_ , dtype=np.intaa) for array in attention_mask] if self.normalize_means or self.normalize_vars: SCREAMING_SNAKE_CASE_ : List[Any] = ( np.array(lowercase_ , dtype=np.intaa) if self._get_padding_strategies(lowercase_ , max_length=lowercase_) is not PaddingStrategy.DO_NOT_PAD and padding else None ) SCREAMING_SNAKE_CASE_ : Any = self.normalize( padded_inputs['''input_features'''] , attention_mask=lowercase_) if return_tensors is not None: SCREAMING_SNAKE_CASE_ : Any = padded_inputs.convert_to_tensors(lowercase_) return padded_inputs
512
"""simple docstring""" from torch import nn class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : str , lowercase_ : str): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : int = class_size SCREAMING_SNAKE_CASE_ : Dict = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) SCREAMING_SNAKE_CASE_ : Any = nn.Linear(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.mlp(lowercase_) return logits
512
1
from math import factorial def UpperCamelCase ( _a = 1_0_0 ) -> int: '''simple docstring''' return sum(map(_a , str(factorial(_a ) ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
441
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def UpperCamelCase ( _a ) -> float: '''simple docstring''' return np.dot(_a , _a ) class UpperCamelCase : '''simple docstring''' def __init__( self , *, UpperCamelCase_ = np.inf , UpperCamelCase_ = "linear" , UpperCamelCase_ = 0.0 , ): lowercase_ :Dict = regularization lowercase_ :Optional[Any] = gamma if kernel == "linear": lowercase_ :Optional[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) lowercase_ :Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowercase_ :str = f"Unknown kernel: {kernel}" raise ValueError(UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): return np.dot(UpperCamelCase_ , UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Tuple = observations lowercase_ :Union[str, Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowercase_) , ) :Optional[Any] = np.shape(UpperCamelCase_ ) def to_minimize(UpperCamelCase_ ) -> float: lowercase_ :Dict = 0 ((lowercase_) , ) :Tuple = np.shape(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): for j in range(UpperCamelCase_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(UpperCamelCase_ ) lowercase_ :Dict = LinearConstraint(UpperCamelCase_ , 0 , 0 ) lowercase_ :Optional[Any] = Bounds(0 , self.regularization ) lowercase_ :Any = minimize( UpperCamelCase_ , np.ones(UpperCamelCase_ ) , bounds=UpperCamelCase_ , constraints=[ly_contraint] ).x lowercase_ :Tuple = l_star # calculating mean offset of separation plane to points lowercase_ :str = 0 for i in range(UpperCamelCase_ ): for j in range(UpperCamelCase_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) lowercase_ :List[str] = s / n def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Union[str, Any] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCamelCase_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
441
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
import os import pytest from transformers.dynamic_module_utils import get_imports UpperCamelCase = '\nimport os\n' UpperCamelCase = '\ndef foo():\n import os\n return False\n' UpperCamelCase = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ) -> str: __UpperCamelCase : str = os.path.join(__lowerCAmelCase , """test_file.py""" ) with open(__lowerCAmelCase , """w""" ) as _tmp_file: _tmp_file.write(__lowerCAmelCase ) __UpperCamelCase : Optional[int] = get_imports(__lowerCAmelCase ) assert parsed_imports == ["os"]
269
0
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __A = False class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: List[str] =VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion") pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: List[Any] =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg") lowerCamelCase__: Tuple =torch.manual_seed(0) lowerCamelCase__: List[str] =pipe( image=UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images lowerCamelCase__: int =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__: Union[str, Any] =np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
437
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "falcon" lowercase_ = ["past_key_values"] def __init__(self : str , UpperCAmelCase_ : Optional[Any]=65_024 , UpperCAmelCase_ : Union[str, Any]=4_544 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : str=71 , UpperCAmelCase_ : int=1E-5 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : str=11 , UpperCAmelCase_ : List[Any]=11 , **UpperCAmelCase_ : str , ) ->Any: '''simple docstring''' lowerCamelCase__: Dict =vocab_size # Backward compatibility with n_embed kwarg lowerCamelCase__: List[Any] =kwargs.pop("n_embed" , UpperCAmelCase_) lowerCamelCase__: Dict =hidden_size if n_embed is None else n_embed lowerCamelCase__: Tuple =num_hidden_layers lowerCamelCase__: Dict =num_attention_heads lowerCamelCase__: Optional[Any] =layer_norm_epsilon lowerCamelCase__: Union[str, Any] =initializer_range lowerCamelCase__: Union[str, Any] =use_cache lowerCamelCase__: str =hidden_dropout lowerCamelCase__: Tuple =attention_dropout lowerCamelCase__: Dict =bos_token_id lowerCamelCase__: Union[str, Any] =eos_token_id lowerCamelCase__: Any =num_attention_heads if num_kv_heads is None else num_kv_heads lowerCamelCase__: Dict =alibi lowerCamelCase__: Optional[Any] =new_decoder_architecture lowerCamelCase__: List[str] =multi_query # Ignored when new_decoder_architecture is True lowerCamelCase__: Tuple =parallel_attn lowerCamelCase__: Optional[Any] =bias super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_) @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict: '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[Any]: '''simple docstring''' return not self.alibi
437
1
from manim import * class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ : int = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ : Optional[int] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCamelCase_ : Any = [mem.copy() for i in range(6 )] lowerCamelCase_ : List[Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : Any = VGroup(*a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : int = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : List[Any] = Text("CPU" , font_size=24 ) lowerCamelCase_ : Dict = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a_ ) lowerCamelCase_ : str = [mem.copy() for i in range(4 )] lowerCamelCase_ : Union[str, Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : List[Any] = Text("GPU" , font_size=24 ) lowerCamelCase_ : int = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) gpu.move_to([-1, -1, 0] ) self.add(a_ ) lowerCamelCase_ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCamelCase_ : Union[str, Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : Tuple = Text("Model" , font_size=24 ) lowerCamelCase_ : List[Any] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) model.move_to([3, -1.0, 0] ) self.add(a_ ) lowerCamelCase_ : Tuple = [] lowerCamelCase_ : Any = [] lowerCamelCase_ : int = [] for i, rect in enumerate(a_ ): rect.set_stroke(a_ ) lowerCamelCase_ : Any = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a_ , buff=0.0 ) self.add(a_ ) model_cpu_arr.append(a_ ) self.add(*a_ , *a_ , *a_ ) lowerCamelCase_ : Tuple = [mem.copy() for i in range(6 )] lowerCamelCase_ : Dict = VGroup(*a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : int = Text("Loaded Checkpoint" , font_size=24 ) lowerCamelCase_ : Optional[int] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(a_ ) lowerCamelCase_ : Union[str, Any] = [] lowerCamelCase_ : int = [] for i, rect in enumerate(a_ ): lowerCamelCase_ : Union[str, Any] = fill.copy().set_fill(a_ , opacity=0.7 ) target.move_to(a_ ) ckpt_arr.append(a_ ) lowerCamelCase_ : Optional[int] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a_ ) self.add(*a_ , *a_ ) lowerCamelCase_ : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a_ , a_ ) lowerCamelCase_ : str = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(a_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a_ ) lowerCamelCase_ : List[Any] = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowerCamelCase_ : Optional[Any] = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ : str = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ : List[Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : Union[str, Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : List[Any] = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : Optional[int] = Text("Disk" , font_size=24 ) lowerCamelCase_ : str = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(a_ , run_time=3 ) , Write(a_ , run_time=1 ) , Create(a_ , run_time=1 ) ) lowerCamelCase_ : str = [] for i, rect in enumerate(a_ ): lowerCamelCase_ : Tuple = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a_ , run_time=1.5 ) ) self.play(*a_ ) self.play(FadeOut(a_ ) ) lowerCamelCase_ : Any = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=3 ) ) self.play( FadeOut(a_ , a_ , *a_ , *a_ ) , ) self.wait()
250
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = CanineTokenizer __UpperCAmelCase : int = False def _UpperCamelCase ( self ): super().setUp() lowerCamelCase_ : int = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): return CanineTokenizer.from_pretrained("google/canine-s" ) def _UpperCamelCase ( self , **a_ ): lowerCamelCase_ : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) lowerCamelCase_ : Dict = 1024 return tokenizer @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.canine_tokenizer lowerCamelCase_ : str = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off lowerCamelCase_ : Dict = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on lowerCamelCase_ : List[Any] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) self.assertIsInstance(a_ , a_ ) lowerCamelCase_ : List[str] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(a_ , a_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Any = self.canine_tokenizer lowerCamelCase_ : Tuple = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] lowerCamelCase_ : Union[str, Any] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , a_ ) self.assertIn("attention_mask" , a_ ) self.assertIn("token_type_ids" , a_ ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : int = self.canine_tokenizer lowerCamelCase_ : Tuple = [ "What's the weater?", "It's about 25 degrees.", ] lowerCamelCase_ : Optional[Any] = tokenizer( text_target=a_ , max_length=32 , padding="max_length" , truncation=a_ , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _UpperCamelCase ( self ): # safety check on max_len default value so we are sure the test works lowerCamelCase_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCamelCase_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ : Optional[int] = tempfile.mkdtemp() lowerCamelCase_ : Dict = " He is very happy, UNwant\u00E9d,running" lowerCamelCase_ : Optional[int] = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCamelCase_ : Union[str, Any] = tokenizer.__class__.from_pretrained(a_ ) lowerCamelCase_ : List[Any] = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) shutil.rmtree(a_ ) lowerCamelCase_ : List[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ : List[Any] = tempfile.mkdtemp() lowerCamelCase_ : Tuple = " He is very happy, UNwant\u00E9d,running" lowerCamelCase_ : Dict = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCamelCase_ : List[str] = chr(0Xe007 ) additional_special_tokens.append(a_ ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowerCamelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCamelCase_ : Any = tokenizer.__class__.from_pretrained(a_ ) lowerCamelCase_ : Any = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) self.assertIn(a_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCamelCase_ : int = tokenizer.__class__.from_pretrained(a_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ ,lowerCamelCase_ : str = self.get_clean_sequence(a_ ) # a special token for Canine can be defined as follows: lowerCamelCase_ : Tuple = 0Xe005 lowerCamelCase_ : Dict = chr(a_ ) tokenizer.add_special_tokens({"cls_token": special_token} ) lowerCamelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(len(a_ ) , 1 ) lowerCamelCase_ : List[Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=a_ ) lowerCamelCase_ : List[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Dict = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Any = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(a_ , input_encoded + special_token_id ) lowerCamelCase_ : Optional[int] = tokenizer.decode(a_ , skip_special_tokens=a_ ) self.assertTrue(special_token not in decoded ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Optional[int] = chr(0Xe005 ) lowerCamelCase_ : str = chr(0Xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=a_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) lowerCamelCase_ : Tuple = tokenizer.tokenize(a_ ) lowerCamelCase_ : List[Any] = tokenizer.tokenize(a_ ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(token_a[0] , a_ ) self.assertEqual(token_a[0] , a_ ) @require_tokenizers def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: lowerCamelCase_ : List[str] = 0Xe006 lowerCamelCase_ : Any = chr(a_ ) lowerCamelCase_ : str = AddedToken(a_ , lstrip=a_ ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(a_ ) tokenizer.from_pretrained(a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowerCamelCase_ : List[Any] = json.load(a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowerCamelCase_ : int = json.load(a_ ) # a special token for Canine can be defined as follows: lowerCamelCase_ : Any = 0Xe006 lowerCamelCase_ : List[Any] = chr(a_ ) lowerCamelCase_ : Any = [new_token_a] lowerCamelCase_ : Optional[Any] = [new_token_a] with open(os.path.join(a_ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase_ : str = tokenizer_class.from_pretrained(a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) lowerCamelCase_ : Optional[int] = 0Xe007 lowerCamelCase_ : List[str] = chr(a_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase_ : int = [AddedToken(a_ , lstrip=a_ )] lowerCamelCase_ : Dict = tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Union[str, Any] = "hello world" if self.space_between_special_tokens: lowerCamelCase_ : int = "[CLS] hello world [SEP]" else: lowerCamelCase_ : int = input lowerCamelCase_ : Optional[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Any = tokenizer.decode(a_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(a_ , [output, output.lower()] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Tuple = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowerCamelCase_ : Optional[int] = "a" lowerCamelCase_ : Dict = ord(a_ ) for attr in attributes_list: setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [] ) lowerCamelCase_ : Optional[int] = 0Xe006 lowerCamelCase_ : List[str] = chr(a_ ) setattr(a_ , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass
250
1
def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if length <= 0 or not isinstance(__lowercase ,__lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
70
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) A_ : List[Any] = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(lowercase ) , torch_builtin(lowercase ) ) ) self.assertFalse(torch.allclose(gelu_python(lowercase ) , gelu_new(lowercase ) ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) A_ : str = get_activation('gelu' ) A_ : int = get_activation('gelu_10' ) A_ : Optional[int] = torch_builtin(lowercase ) A_ : Tuple = geluaa(lowercase ) A_ : Dict = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(lowercase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowerCAmelCase_ ( self ): """simple docstring""" get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(lowercase ): get_activation('bogus' ) with self.assertRaises(lowercase ): get_activation(lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : str = get_activation('gelu' ) A_ : List[str] = 1 A_ : Optional[Any] = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(lowercase ): A_ : str = acta.a
70
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCAmelCase : def __init__( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : List[Any]=1_3 , __magic_name__ : str=7 , __magic_name__ : Tuple=True , __magic_name__ : Dict=True , __magic_name__ : Optional[int]=True , __magic_name__ : str=True , __magic_name__ : List[str]=9_9 , __magic_name__ : List[Any]=6_4 , __magic_name__ : Optional[Any]=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : Dict=3_7 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Dict=5_1_2 , __magic_name__ : List[Any]=1_6 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Dict=0.02 , __magic_name__ : List[str]=3 , __magic_name__ : Any=4 , __magic_name__ : Dict=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope UpperCamelCase = vocab_size - 1 def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self : Any ): """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase = True return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ): """simple docstring""" UpperCamelCase = GPTNeoXModel(config=__lowercase ) model.to(__lowercase ) model.eval() UpperCamelCase = model(__lowercase , attention_mask=__lowercase ) UpperCamelCase = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : int , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int ): """simple docstring""" UpperCamelCase = True UpperCamelCase = GPTNeoXModel(__lowercase ) model.to(__lowercase ) model.eval() UpperCamelCase = model(__lowercase , attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[Any] , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any ): """simple docstring""" UpperCamelCase = GPTNeoXForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() UpperCamelCase = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : str ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = GPTNeoXForQuestionAnswering(__lowercase ) model.to(__lowercase ) model.eval() UpperCamelCase = model(__lowercase , attention_mask=__lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Dict , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = GPTNeoXForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = GPTNeoXForTokenClassification(__lowercase ) model.to(__lowercase ) model.eval() UpperCamelCase = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] ): """simple docstring""" UpperCamelCase = True UpperCamelCase = GPTNeoXForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass UpperCamelCase = model(__lowercase , attention_mask=__lowercase , use_cache=__lowercase ) UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase = model(__lowercase , attention_mask=__lowercase , output_hidden_states=__lowercase ) UpperCamelCase = output_from_no_past['hidden_states'][0] UpperCamelCase = model( __lowercase , attention_mask=__lowercase , past_key_values=__lowercase , output_hidden_states=__lowercase , )['hidden_states'][0] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-3 ) ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowercase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowercase = (GPTNeoXForCausalLM,) if is_torch_available() else () lowercase = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = GPTNeoXModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=__lowercase , hidden_size=6_4 , num_attention_heads=8 ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowercase , __lowercase , __lowercase ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__lowercase , __lowercase , __lowercase ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase = None self.model_tester.create_and_check_model_as_decoder(__lowercase , __lowercase , __lowercase ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__lowercase , __lowercase , __lowercase ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__lowercase ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowercase ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowercase ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowerCamelCase_ ( self : List[Any] , __magic_name__ : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ids_tensor([1, 1_0] , config.vocab_size ) UpperCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase = GPTNeoXModel(__lowercase ) original_model.to(__lowercase ) original_model.eval() UpperCamelCase = original_model(__lowercase ).last_hidden_state UpperCamelCase = original_model(__lowercase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase = {'type': scaling_type, 'factor': 1_0.0} UpperCamelCase = GPTNeoXModel(__lowercase ) scaled_model.to(__lowercase ) scaled_model.eval() UpperCamelCase = scaled_model(__lowercase ).last_hidden_state UpperCamelCase = scaled_model(__lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1e-5 ) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: UpperCamelCase = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__lowercase ) UpperCamelCase = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__lowercase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCamelCase = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' UpperCamelCase = model.generate(**__lowercase , do_sample=__lowercase , max_new_tokens=2_0 ) UpperCamelCase = tokenizer.batch_decode(__lowercase )[0] self.assertEqual(__lowercase , __lowercase )
386
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _lowerCamelCase : '''simple docstring''' @property def snake_case__ ( self ): """simple docstring""" return self.get_dummy_input() @property def snake_case__ ( self ): """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def snake_case__ ( self , __lowercase=True , __lowercase=False , __lowercase=False , __lowercase=False , ): """simple docstring""" __A : List[str] = 4 __A : List[Any] = 32 __A : Optional[Any] = (32, 32) __A : List[str] = torch.manual_seed(0 ) __A : Union[str, Any] = torch.device(__lowercase ) __A : Optional[int] = (batch_size, num_channels) + sizes __A : str = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase ) __A : int = {'hidden_states': hidden_states} if include_temb: __A : Optional[Any] = 128 __A : Any = randn_tensor((batch_size, temb_channels) , generator=__lowercase , device=__lowercase ) if include_res_hidden_states_tuple: __A : Any = torch.manual_seed(1 ) __A : List[Any] = (randn_tensor(__lowercase , generator=__lowercase , device=__lowercase ),) if include_encoder_hidden_states: __A : str = floats_tensor((batch_size, 32, 32) ).to(__lowercase ) if include_skip_sample: __A : List[Any] = randn_tensor(((batch_size, 3) + sizes) , generator=__lowercase , device=__lowercase ) return dummy_input def snake_case__ ( self ): """simple docstring""" __A : Tuple = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": __A : int = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) __A : Optional[int] = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self , __lowercase ): """simple docstring""" __A ,__A : List[Any] = self.prepare_init_args_and_inputs_for_common() __A : int = self.block_class(**__lowercase ) unet_block.to(__lowercase ) unet_block.eval() with torch.no_grad(): __A : List[Any] = unet_block(**__lowercase ) if isinstance(__lowercase , __lowercase ): __A : Tuple = output[0] self.assertEqual(output.shape , self.output_shape ) __A : Any = output[0, -1, -3:, -3:] __A : Dict = torch.tensor(__lowercase ).to(__lowercase ) assert torch_all_close(output_slice.flatten() , __lowercase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def snake_case__ ( self ): """simple docstring""" __A ,__A : str = self.prepare_init_args_and_inputs_for_common() __A : Optional[Any] = self.block_class(**__lowercase ) model.to(__lowercase ) model.train() __A : Any = model(**__lowercase ) if isinstance(__lowercase , __lowercase ): __A : Any = output[0] __A : int = torch.device(__lowercase ) __A : Dict = randn_tensor(output.shape , device=__lowercase ) __A : Dict = torch.nn.functional.mse_loss(__lowercase , __lowercase ) loss.backward()
365
0
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE : List[str] = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : """simple docstring""" a = 42 a = 42 a = 42 @dataclass class UpperCAmelCase__ : """simple docstring""" a = 42 a = 42 a = None a = None class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "train" a = "dev" a = "test" class UpperCAmelCase__ : """simple docstring""" @staticmethod def lowercase_ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Union[Split, str] ) -> List[InputExample]: raise NotImplementedError @staticmethod def lowercase_ ( __lowerCamelCase : str ) -> List[str]: raise NotImplementedError @staticmethod def lowercase_ ( __lowerCamelCase : List[InputExample] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple="[CLS]" , __lowerCamelCase : Dict=1 , __lowerCamelCase : Any="[SEP]" , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Any=False , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : int=0 , __lowerCamelCase : str=-100 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Tuple=True , ) -> List[InputFeatures]: SCREAMING_SNAKE_CASE__ = {label: i for i, label in enumerate(__lowerCamelCase )} SCREAMING_SNAKE_CASE__ = [] for ex_index, example in enumerate(__lowerCamelCase ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' , __lowerCamelCase , len(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__lowerCamelCase ) > 0: tokens.extend(__lowerCamelCase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__lowerCamelCase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ = tokenizer.num_special_tokens_to_add() if len(__lowerCamelCase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ = [sequence_a_segment_id] * len(__lowerCamelCase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ = [cls_token] + tokens SCREAMING_SNAKE_CASE__ = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ = [1 if mask_padding_with_zero else 0] * len(__lowerCamelCase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ = max_seq_length - len(__lowerCamelCase ) if pad_on_left: SCREAMING_SNAKE_CASE__ = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__lowerCamelCase ) == max_seq_length assert len(__lowerCamelCase ) == max_seq_length assert len(__lowerCamelCase ) == max_seq_length assert len(__lowerCamelCase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(__lowerCamelCase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(__lowerCamelCase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(__lowerCamelCase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(__lowerCamelCase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(__lowerCamelCase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ = None features.append( InputFeatures( input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , label_ids=__lowerCamelCase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class UpperCAmelCase__ ( A__ ): """simple docstring""" a = 42 a = nn.CrossEntropyLoss().ignore_index def __init__( self : str , __lowerCamelCase : TokenClassificationTask , __lowerCamelCase : str , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Split = Split.train , ) -> List[str]: # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(__lowerCamelCase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ = cached_features_file + '''.lock''' with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) SCREAMING_SNAKE_CASE__ = torch.load(__lowerCamelCase ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) SCREAMING_SNAKE_CASE__ = token_classification_task.read_examples_from_file(__lowerCamelCase , __lowerCamelCase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ = token_classification_task.convert_examples_to_features( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , __lowerCamelCase ) def __len__( self : Tuple ) -> Optional[int]: return len(self.features ) def __getitem__( self : Any , __lowerCamelCase : Optional[Any] ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class UpperCAmelCase__ : """simple docstring""" a = 42 a = -1_00 def __init__( self : Union[str, Any] , __lowerCamelCase : TokenClassificationTask , __lowerCamelCase : str , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Split = Split.train , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = token_classification_task.read_examples_from_file(__lowerCamelCase , __lowerCamelCase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ = token_classification_task.convert_examples_to_features( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ = tf.data.Dataset.from_generator( __lowerCamelCase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ = tf.data.Dataset.from_generator( __lowerCamelCase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase_ ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Tuple ) -> Optional[int]: return len(self.features ) def __getitem__( self : List[str] , __lowerCamelCase : Tuple ) -> InputFeatures: return self.features[i]
472
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : int=32 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Optional[int]=10 , __lowerCamelCase : List[Any]=[8, 16, 32, 64] , __lowerCamelCase : Dict=[1, 1, 2, 1] , __lowerCamelCase : int=True , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[int]="relu" , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=["stage2", "stage3", "stage4"] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[Any]=1 , ) -> List[str]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = embeddings_size SCREAMING_SNAKE_CASE__ = hidden_sizes SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = out_features SCREAMING_SNAKE_CASE__ = out_indices SCREAMING_SNAKE_CASE__ = num_groups def lowercase_ ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, labels def lowercase_ ( self : List[str] ) -> Dict: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = BitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_ ( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = BitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = BitBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = BitBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" a = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a = False a = False a = False a = False a = False def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = BitModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : str ) -> Dict: return @unittest.skip(reason='''Bit does not output attentions''' ) def lowercase_ ( self : Any ) -> Dict: pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def lowercase_ ( self : Tuple ) -> Optional[int]: pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def lowercase_ ( self : Optional[int] ) -> str: pass def lowercase_ ( self : str ) -> str: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def lowercase_ ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def lowercase_ ( self : Any ) -> str: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(config=__lowerCamelCase ) for name, module in model.named_modules(): if isinstance(__lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def lowercase_ ( self : str ) -> Optional[Any]: def check_hidden_states_output(__lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE__ = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE__ = layer_type SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def lowercase_ ( self : List[str] ) -> Dict: pass def lowercase_ ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def lowercase_ ( self : Optional[Any] ) -> Dict: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = BitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self : List[Any] ) -> List[Any]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase_ ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__lowerCamelCase , return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @require_torch class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = (BitBackbone,) if is_torch_available() else () a = BitConfig a = False def lowercase_ ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = BitModelTester(self )
472
1
__UpperCamelCase: Dict = [ (1_0_0_0, """M"""), (9_0_0, """CM"""), (5_0_0, """D"""), (4_0_0, """CD"""), (1_0_0, """C"""), (9_0, """XC"""), (5_0, """L"""), (4_0, """XL"""), (1_0, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def SCREAMING_SNAKE_CASE__ ( _lowercase : str ) -> int: '''simple docstring''' lowercase__ : Any = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} lowercase__ : int = 0 lowercase__ : Optional[int] = 0 while place < len(_lowercase ): if (place + 1 < len(_lowercase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def SCREAMING_SNAKE_CASE__ ( _lowercase : int ) -> str: '''simple docstring''' lowercase__ : Optional[Any] = [] for arabic, roman in ROMAN: ((lowercase__) , (lowercase__)) : Optional[int] = divmod(_lowercase , _lowercase ) result.append(roman * factor ) if number == 0: break return "".join(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
266
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowerCAmelCase : '''simple docstring''' def __init__( self: Any, lowerCamelCase_: Optional[Any], lowerCamelCase_: List[str]=13, lowerCamelCase_: Optional[Any]=7, lowerCamelCase_: Optional[Any]=True, lowerCamelCase_: Tuple=True, lowerCamelCase_: Any=False, lowerCamelCase_: Union[str, Any]=True, lowerCamelCase_: Optional[Any]=99, lowerCamelCase_: Tuple=32, lowerCamelCase_: Any=5, lowerCamelCase_: Tuple=4, lowerCamelCase_: List[Any]=37, lowerCamelCase_: Union[str, Any]="gelu", lowerCamelCase_: str=0.1, lowerCamelCase_: Union[str, Any]=0.1, lowerCamelCase_: Any=512, lowerCamelCase_: Union[str, Any]=16, lowerCamelCase_: Any=2, lowerCamelCase_: str=0.0_2, lowerCamelCase_: Union[str, Any]=3, lowerCamelCase_: List[str]=4, lowerCamelCase_: Tuple=None, ): lowercase__ : List[str] = parent lowercase__ : str = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : List[Any] = is_training lowercase__ : List[str] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : str = use_labels lowercase__ : Optional[Any] = vocab_size lowercase__ : Dict = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : Tuple = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : List[Any] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : Optional[int] = initializer_range lowercase__ : str = num_labels lowercase__ : Optional[int] = num_choices lowercase__ : Dict = scope def snake_case__( self: Union[str, Any] ): lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ : List[Any] = None if self.use_input_mask: lowercase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[Any] = None if self.use_token_type_ids: lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ : str = None lowercase__ : Union[str, Any] = None lowercase__ : Tuple = None if self.use_labels: lowercase__ : Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ : int = ids_tensor([self.batch_size], self.num_choices ) lowercase__ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self: Tuple ): return OpenLlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase_, initializer_range=self.initializer_range, use_stable_embedding=lowerCamelCase_, ) def snake_case__( self: Optional[int], lowerCamelCase_: Optional[int], lowerCamelCase_: List[Any], lowerCamelCase_: List[str], lowerCamelCase_: Optional[int], lowerCamelCase_: Dict, lowerCamelCase_: Optional[int], lowerCamelCase_: str ): lowercase__ : Union[str, Any] = OpenLlamaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowercase__ : Union[str, Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) lowercase__ : List[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self: str, lowerCamelCase_: Optional[Any], lowerCamelCase_: str, lowerCamelCase_: str, lowerCamelCase_: Optional[Any], lowerCamelCase_: Tuple, lowerCamelCase_: Optional[Any], lowerCamelCase_: List[str], lowerCamelCase_: Dict, lowerCamelCase_: Union[str, Any], ): lowercase__ : Tuple = True lowercase__ : int = OpenLlamaModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowercase__ : List[Any] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, encoder_attention_mask=lowerCamelCase_, ) lowercase__ : Optional[int] = model( lowerCamelCase_, attention_mask=lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, ) lowercase__ : str = model(lowerCamelCase_, attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self: List[Any], lowerCamelCase_: Optional[Any], lowerCamelCase_: Any, lowerCamelCase_: str, lowerCamelCase_: List[str], lowerCamelCase_: Any, lowerCamelCase_: Dict, lowerCamelCase_: int, lowerCamelCase_: Any, lowerCamelCase_: str, ): lowercase__ : Optional[Any] = OpenLlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowercase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self: Tuple, lowerCamelCase_: str, lowerCamelCase_: Optional[Any], lowerCamelCase_: Optional[int], lowerCamelCase_: str, lowerCamelCase_: List[Any], lowerCamelCase_: List[Any], lowerCamelCase_: str, lowerCamelCase_: Optional[Any], lowerCamelCase_: Union[str, Any], ): lowercase__ : Optional[int] = True lowercase__ : Optional[int] = True lowercase__ : Tuple = OpenLlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass lowercase__ : Any = model( lowerCamelCase_, attention_mask=lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, encoder_attention_mask=lowerCamelCase_, use_cache=lowerCamelCase_, ) lowercase__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ : Optional[Any] = ids_tensor((self.batch_size, 3), config.vocab_size ) lowercase__ : str = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowercase__ : Tuple = torch.cat([input_ids, next_tokens], dim=-1 ) lowercase__ : List[str] = torch.cat([input_mask, next_mask], dim=-1 ) lowercase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, encoder_attention_mask=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] lowercase__ : int = model( lowerCamelCase_, attention_mask=lowerCamelCase_, encoder_hidden_states=lowerCamelCase_, encoder_attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_, output_hidden_states=lowerCamelCase_, )['hidden_states'][0] # select random slice lowercase__ : Tuple = ids_tensor((1,), output_from_past.shape[-1] ).item() lowercase__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1E-3 ) ) def snake_case__( self: Optional[Any] ): lowercase__ : Dict = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : List[str] = config_and_inputs lowercase__ : Any = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' _A = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _A = (OpenLlamaForCausalLM,) if is_torch_available() else () _A = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _A = False _A = False def snake_case__( self: Any ): lowercase__ : List[Any] = OpenLlamaModelTester(self ) lowercase__ : Dict = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=37 ) def snake_case__( self: Any ): self.config_tester.run_common_tests() def snake_case__( self: Dict ): lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def snake_case__( self: str ): lowercase__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : Dict = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def snake_case__( self: Any ): lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = 3 lowercase__ : Union[str, Any] = input_dict['input_ids'] lowercase__ : Union[str, Any] = input_ids.ne(1 ).to(lowerCamelCase_ ) lowercase__ : int = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) lowercase__ : Optional[Any] = OpenLlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowercase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self: Any ): lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = 3 lowercase__ : Optional[Any] = 'single_label_classification' lowercase__ : Union[str, Any] = input_dict['input_ids'] lowercase__ : str = input_ids.ne(1 ).to(lowerCamelCase_ ) lowercase__ : Any = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) lowercase__ : Dict = OpenLlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowercase__ : Optional[int] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self: Union[str, Any] ): lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = 3 lowercase__ : List[Any] = 'multi_label_classification' lowercase__ : Any = input_dict['input_ids'] lowercase__ : int = input_ids.ne(1 ).to(lowerCamelCase_ ) lowercase__ : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase__ : Optional[int] = OpenLlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowercase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def snake_case__( self: List[str] ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case__( self: Any, lowerCamelCase_: List[Any] ): lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[int] = ids_tensor([1, 10], config.vocab_size ) lowercase__ : Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : str = OpenLlamaModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() lowercase__ : Union[str, Any] = original_model(lowerCamelCase_ ).last_hidden_state lowercase__ : List[str] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : List[str] = {'type': scaling_type, 'factor': 1_0.0} lowercase__ : Union[str, Any] = OpenLlamaModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() lowercase__ : Dict = scaled_model(lowerCamelCase_ ).last_hidden_state lowercase__ : Union[str, Any] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_, lowerCamelCase_, atol=1E-5 ) )
266
1
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class UpperCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=1 , UpperCamelCase_=False , **UpperCamelCase_ ) -> List[Any]: super().__init__(**UpperCamelCase_ ) __lowercase : Tuple = vocab_size __lowercase : Any = d_embed __lowercase : List[Any] = d_proj __lowercase : List[str] = cutoffs + [vocab_size] __lowercase : Dict = [0] + self.cutoffs __lowercase : Any = div_val __lowercase : str = self.cutoffs[0] __lowercase : Optional[int] = len(self.cutoffs ) - 1 __lowercase : Union[str, Any] = self.shortlist_size + self.n_clusters __lowercase : List[Any] = keep_order __lowercase : Union[str, Any] = [] __lowercase : Optional[Any] = [] def _lowerCamelCase ( self , UpperCamelCase_ ) -> str: if self.n_clusters > 0: __lowercase : Dict = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=UpperCamelCase_ , name='''cluster_weight''' ) __lowercase : List[str] = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=UpperCamelCase_ , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: __lowercase : str = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=UpperCamelCase_ , name=F"""out_projs_._{i}""" , ) self.out_projs.append(UpperCamelCase_ ) else: self.out_projs.append(UpperCamelCase_ ) __lowercase : int = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=UpperCamelCase_ , name=F"""out_layers_._{i}_._weight""" , ) __lowercase : Tuple = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=UpperCamelCase_ , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): __lowercase ,__lowercase : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase : Optional[Any] = self.d_embed // (self.div_val**i) __lowercase : Optional[Any] = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=UpperCamelCase_ , name=F"""out_projs_._{i}""" ) self.out_projs.append(UpperCamelCase_ ) __lowercase : Any = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=UpperCamelCase_ , name=F"""out_layers_._{i}_._weight""" , ) __lowercase : List[Any] = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=UpperCamelCase_ , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase_ ) @staticmethod def _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> Optional[int]: __lowercase : Union[str, Any] = x if proj is not None: __lowercase : Dict = tf.einsum('''ibd,ed->ibe''' , UpperCamelCase_ , UpperCamelCase_ ) return tf.einsum('''ibd,nd->ibn''' , UpperCamelCase_ , UpperCamelCase_ ) + b @staticmethod def _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: __lowercase : Dict = shape_list(UpperCamelCase_ ) __lowercase : Tuple = tf.range(lp_size[0] , dtype=target.dtype ) __lowercase : Optional[int] = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=True , UpperCamelCase_=False ) -> Optional[int]: __lowercase : List[Any] = 0 if self.n_clusters == 0: __lowercase : str = self._logit(UpperCamelCase_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: __lowercase : Tuple = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase_ , logits=UpperCamelCase_ ) __lowercase : Dict = tf.nn.log_softmax(UpperCamelCase_ , axis=-1 ) else: __lowercase : str = shape_list(UpperCamelCase_ ) __lowercase : List[Any] = [] __lowercase : Optional[int] = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): __lowercase ,__lowercase : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: __lowercase : Optional[int] = (target >= l_idx) & (target < r_idx) __lowercase : Tuple = tf.where(UpperCamelCase_ ) __lowercase : List[str] = tf.boolean_mask(UpperCamelCase_ , UpperCamelCase_ ) - l_idx if self.div_val == 1: __lowercase : List[Any] = self.out_layers[0][0][l_idx:r_idx] __lowercase : Any = self.out_layers[0][1][l_idx:r_idx] else: __lowercase : List[Any] = self.out_layers[i][0] __lowercase : str = self.out_layers[i][1] if i == 0: __lowercase : Optional[int] = tf.concat([cur_W, self.cluster_weight] , 0 ) __lowercase : Optional[Any] = tf.concat([cur_b, self.cluster_bias] , 0 ) __lowercase : Tuple = self._logit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.out_projs[0] ) __lowercase : List[Any] = tf.nn.log_softmax(UpperCamelCase_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: __lowercase : Union[str, Any] = tf.boolean_mask(UpperCamelCase_ , UpperCamelCase_ ) __lowercase : Union[str, Any] = self._gather_logprob(UpperCamelCase_ , UpperCamelCase_ ) else: __lowercase : int = self._logit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.out_projs[i] ) __lowercase : Dict = tf.nn.log_softmax(UpperCamelCase_ ) __lowercase : Union[str, Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster __lowercase : List[Any] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase_ ) if target is not None: __lowercase : List[str] = tf.boolean_mask(UpperCamelCase_ , UpperCamelCase_ ) __lowercase : Tuple = tf.boolean_mask(UpperCamelCase_ , UpperCamelCase_ ) __lowercase : Dict = self._gather_logprob(UpperCamelCase_ , UpperCamelCase_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase_ , -cur_logprob , shape_list(UpperCamelCase_ ) ) __lowercase : Optional[int] = tf.concat(UpperCamelCase_ , axis=-1 ) if target is not None: if return_mean: __lowercase : List[Any] = tf.reduce_mean(UpperCamelCase_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase_ , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
523
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ ) -> Tuple: __lowercase : Union[str, Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase : List[str] = len(UpperCamelCase_ ) - 1 def _lowerCamelCase ( self , UpperCamelCase_ ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCamelCase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCamelCase_ ) , 5 ) == 1 return output_values def _lowerCamelCase ( self , UpperCamelCase_ ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase : Union[str, Any] = self.basis_function(UpperCamelCase_ ) __lowercase : Dict = 0.0 __lowercase : int = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _lowerCamelCase ( self , UpperCamelCase_ = 0.0_1 ) -> Optional[int]: from matplotlib import pyplot as plt # type: ignore __lowercase : list[float] = [] # x coordinates of points to plot __lowercase : list[float] = [] # y coordinates of points to plot __lowercase : str = 0.0 while t <= 1: __lowercase : Union[str, Any] = self.bezier_curve_function(UpperCamelCase_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase : Dict = [i[0] for i in self.list_of_points] __lowercase : Optional[int] = [i[1] for i in self.list_of_points] plt.plot( UpperCamelCase_ , UpperCamelCase_ , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(UpperCamelCase_ , UpperCamelCase_ , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
523
1
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[str] ): '''simple docstring''' _a : Optional[Any] = '' _a : List[str] = '' _a : List[Any] = [] _a : Dict = 0 _a : Optional[int] = 256 _a : int = 0 _a : Optional[int] = 0 _a : Tuple = 0 _a : Optional[int] = 0 def __lowercase ( self : List[Any] ,_a : Any ): '''simple docstring''' _a : List[Any] = cva.imread(_a ,0 ) _a : int = copy.deepcopy(self.img ) _a, _a, _a : Any = plt.hist(self.img.ravel() ,256 ,[0, 256] ,label='x' ) _a : str = np.sum(_a ) for i in range(len(_a ) ): _a : List[str] = x[i] / self.k self.sk += prk _a : Tuple = (self.L - 1) * self.sk if self.rem != 0: _a : Optional[Any] = int(last % last ) _a : Optional[int] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_a ) _a : Dict = int(np.ma.count(self.img ) / self.img[1].size ) _a : List[Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _a : Union[str, Any] = self.img[j][i] if num != self.last_list[num]: _a : Optional[Any] = self.last_list[num] cva.imwrite('output_data/output.jpg' ,self.img ) def __lowercase ( self : Optional[int] ): '''simple docstring''' plt.hist(self.img.ravel() ,256 ,[0, 256] ) def __lowercase ( self : Dict ): '''simple docstring''' cva.imshow('Output-Image' ,self.img ) cva.imshow('Input-Image' ,self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") __lowerCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
229
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __lowercase : '''simple docstring''' _A : Dict = LEDConfig _A : Tuple = {} _A : Union[str, Any] = '''gelu''' def __init__( self : List[Any] , _a : Tuple , _a : List[Any]=13 , _a : Union[str, Any]=7 , _a : Any=True , _a : List[str]=False , _a : str=99 , _a : Union[str, Any]=32 , _a : List[Any]=2 , _a : int=4 , _a : List[Any]=37 , _a : Optional[Any]=0.1 , _a : Any=0.1 , _a : int=20 , _a : Optional[int]=2 , _a : List[Any]=1 , _a : List[Any]=0 , _a : str=4 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id UpperCamelCase__ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCamelCase__ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCamelCase__ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A_ ( self : int ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCamelCase__ = prepare_led_inputs_dict(_a , _a , _a ) UpperCamelCase__ = tf.concat( [tf.zeros_like(_a )[:, :-1], tf.ones_like(_a )[:, -1:]] , axis=-1 , ) UpperCamelCase__ = global_attention_mask return config, inputs_dict def A_ ( self : str , _a : Any , _a : List[str] ): UpperCamelCase__ = TFLEDModel(config=_a ).get_decoder() UpperCamelCase__ = inputs_dict['''input_ids'''] UpperCamelCase__ = input_ids[:1, :] UpperCamelCase__ = inputs_dict['''attention_mask'''][:1, :] UpperCamelCase__ = 1 # first forward pass UpperCamelCase__ = model(_a , attention_mask=_a , use_cache=_a ) UpperCamelCase__ , UpperCamelCase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase__ = model(_a , attention_mask=_a )[0] UpperCamelCase__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1E-3 ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any], UpperCamelCase__ : List[str], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[int]=None, UpperCamelCase__ : int=None, UpperCamelCase__ : Optional[int]=None, UpperCamelCase__ : List[str]=None, ): '''simple docstring''' if attention_mask is None: UpperCamelCase__ = tf.cast(tf.math.not_equal(UpperCamelCase__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: UpperCamelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: UpperCamelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __lowercase ( A, A, unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _A : Union[str, Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _A : List[str] = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _A : Optional[Any] = True _A : int = False _A : Optional[int] = False _A : int = False def A_ ( self : Optional[int] ): UpperCamelCase__ = TFLEDModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=_a ) def A_ ( self : int ): self.config_tester.run_common_tests() def A_ ( self : Any ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) def A_ ( self : List[Any] ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = tf.zeros_like(inputs_dict['''attention_mask'''] ) UpperCamelCase__ = 2 UpperCamelCase__ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) UpperCamelCase__ = True UpperCamelCase__ = self.model_tester.seq_length UpperCamelCase__ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_a : int ): UpperCamelCase__ = outputs.decoder_attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_a : Any ): UpperCamelCase__ = [t.numpy() for t in outputs.encoder_attentions] UpperCamelCase__ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = model_class(_a ) UpperCamelCase__ = model(self._prepare_for_class(_a , _a ) ) UpperCamelCase__ = len(_a ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) if self.is_encoder_decoder: UpperCamelCase__ = model_class(_a ) UpperCamelCase__ = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_decoder_attentions_output(_a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(_a ) UpperCamelCase__ = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(_a ) UpperCamelCase__ = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_a ) ) self.assertEqual(model.config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def A_ ( self : List[str] ): pass def A_ ( self : Dict ): # TODO: Head-masking not yet implement pass def lowerCamelCase_ ( UpperCamelCase__ : Any ): '''simple docstring''' return tf.constant(UpperCamelCase__, dtype=tf.intaa ) lowercase = 1E-4 @slow @require_tf class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : Any ): UpperCamelCase__ = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here UpperCamelCase__ = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) UpperCamelCase__ = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) UpperCamelCase__ = prepare_led_inputs_dict(model.config , _a , _a ) UpperCamelCase__ = model(**_a )[0] UpperCamelCase__ = (1, 1_024, 768) self.assertEqual(output.shape , _a ) # change to expected output here UpperCamelCase__ = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1E-3 ) def A_ ( self : Optional[Any] ): UpperCamelCase__ = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here UpperCamelCase__ = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) UpperCamelCase__ = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) UpperCamelCase__ = prepare_led_inputs_dict(model.config , _a , _a ) UpperCamelCase__ = model(**_a )[0] UpperCamelCase__ = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , _a ) # change to expected output here UpperCamelCase__ = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1E-3 , rtol=1E-3 )
240
0
'''simple docstring''' class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : int): '''simple docstring''' __lowercase =n __lowercase =[None] * self.n __lowercase =0 # index of the first element __lowercase =0 __lowercase =0 def __len__( self : Any): '''simple docstring''' return self.size def __lowerCamelCase ( self : int): '''simple docstring''' return self.size == 0 def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def __lowerCamelCase ( self : str , _lowerCAmelCase : List[str]): '''simple docstring''' if self.size >= self.n: raise Exception('QUEUE IS FULL') __lowercase =data __lowercase =(self.rear + 1) % self.n self.size += 1 return self def __lowerCamelCase ( self : List[Any]): '''simple docstring''' if self.size == 0: raise Exception('UNDERFLOW') __lowercase =self.array[self.front] __lowercase =None __lowercase =(self.front + 1) % self.n self.size -= 1 return temp
454
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
454
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : List[Any] = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class UpperCamelCase_ ( __a ): _A : Optional[int] = '''swinv2''' _A : int = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case__=2_24 , snake_case__=4 , snake_case__=3 , snake_case__=96 , snake_case__=[2, 2, 6, 2] , snake_case__=[3, 6, 12, 24] , snake_case__=7 , snake_case__=4.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=False , snake_case__=0.02 , snake_case__=1e-5 , snake_case__=32 , **snake_case__ , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = depths UpperCAmelCase = len(lowerCAmelCase__ ) UpperCAmelCase = num_heads UpperCAmelCase = window_size UpperCAmelCase = mlp_ratio UpperCAmelCase = qkv_bias UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = drop_path_rate UpperCAmelCase = hidden_act UpperCAmelCase = use_absolute_embeddings UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase = int(embed_dim * 2 ** (len(lowerCAmelCase__ ) - 1) ) UpperCAmelCase = (0, 0, 0, 0)
673
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __magic_name__ = "<<<<<<< This should probably be modified because it mentions: " __magic_name__ = "=======\n>>>>>>>\n" __magic_name__ = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __magic_name__ = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def _lowerCAmelCase ( UpperCamelCase_ ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" @staticmethod def snake_case_ ( lowerCAmelCase__): __SCREAMING_SNAKE_CASE = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to the HuggingFace Datasets folder.""") train_parser.set_defaults(func=lowerCAmelCase__) def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__): __SCREAMING_SNAKE_CASE = get_logger("""datasets-cli/converting""") __SCREAMING_SNAKE_CASE = tfds_path __SCREAMING_SNAKE_CASE = datasets_directory def snake_case_ ( self): if os.path.isdir(self._tfds_path): __SCREAMING_SNAKE_CASE = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): __SCREAMING_SNAKE_CASE = os.path.dirname(self._tfds_path) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""") __SCREAMING_SNAKE_CASE = os.path.abspath(self._datasets_directory) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}") __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = {} if os.path.isdir(self._tfds_path): __SCREAMING_SNAKE_CASE = os.listdir(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(f"Looking at file {f_name}") __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) if not os.path.isfile(lowerCAmelCase__) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""") continue with open(lowerCAmelCase__ , encoding="""utf-8""") as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = [] for line in lines: __SCREAMING_SNAKE_CASE = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __SCREAMING_SNAKE_CASE = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here __SCREAMING_SNAKE_CASE = """""" continue elif "from absl import logging" in out_line: __SCREAMING_SNAKE_CASE = """from datasets import logging\n""" elif "getLogger" in out_line: __SCREAMING_SNAKE_CASE = out_line.replace("""getLogger""" , """get_logger""") elif any(expression in out_line for expression in TO_HIGHLIGHT): __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = list(filter(lambda lowerCAmelCase__: e in out_line , lowerCAmelCase__)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase__) + """\n""") out_lines.append(lowerCAmelCase__) out_lines.append(lowerCAmelCase__) continue else: for pattern, replacement in TO_CONVERT: __SCREAMING_SNAKE_CASE = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __SCREAMING_SNAKE_CASE = re.match(R"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , lowerCAmelCase__) tfds_imports.extend(imp.strip() for imp in match.group(1).split(""",""")) __SCREAMING_SNAKE_CASE = """from . import """ + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}") if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __SCREAMING_SNAKE_CASE = True out_lines.append(lowerCAmelCase__) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __SCREAMING_SNAKE_CASE = f_name.replace(""".py""" , """""") __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) self._logger.info(f"Adding directory {output_dir}") imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase__) if needs_manual_update: with_manual_update.append(lowerCAmelCase__) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""") as f: f.writelines(lowerCAmelCase__) self._logger.info(f"Converted in {output_file}") for utils_file in utils_files: try: __SCREAMING_SNAKE_CASE = os.path.basename(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = imports_to_builder_map[f_name.replace(""".py""" , """""")] self._logger.info(f"Moving {dest_folder} to {utils_file}") shutil.copy(lowerCAmelCase__ , lowerCAmelCase__) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually.") if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.")
155
0
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : int = logging.get_logger() def lowercase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : LevitConfig , lowerCAmelCase : Path , lowerCAmelCase : bool = True): """simple docstring""" print(f"""Converting {name}...""") with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": _A : Optional[Any] = timm.create_model('''levit_128s''' , pretrained=lowerCAmelCase) else: _A : Any = timm.create_model('''levit_128''' , pretrained=lowerCAmelCase) if hidden_sizes == 192: _A : Optional[Any] = timm.create_model('''levit_192''' , pretrained=lowerCAmelCase) if hidden_sizes == 256: _A : str = timm.create_model('''levit_256''' , pretrained=lowerCAmelCase) if hidden_sizes == 384: _A : List[str] = timm.create_model('''levit_384''' , pretrained=lowerCAmelCase) from_model.eval() _A : Any = LevitForImageClassificationWithTeacher(lowerCAmelCase).eval() _A : List[Any] = OrderedDict() _A : List[Any] = from_model.state_dict() _A : List[str] = list(from_model.state_dict().keys()) _A : Tuple = list(our_model.state_dict().keys()) print(len(lowerCAmelCase) , len(lowerCAmelCase)) for i in range(len(lowerCAmelCase)): _A : str = weights[og_keys[i]] our_model.load_state_dict(lowerCAmelCase) _A : Optional[Any] = torch.randn((2, 3, 224, 224)) _A : Dict = from_model(lowerCAmelCase) _A : Union[str, Any] = our_model(lowerCAmelCase).logits assert torch.allclose(lowerCAmelCase , lowerCAmelCase), "The model logits don't match the original one." _A : Dict = name print(lowerCAmelCase) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name) _A : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name) print(f"""Pushed {checkpoint_name}""") def lowercase ( lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : bool = True): """simple docstring""" _A : Any = '''imagenet-1k-id2label.json''' _A : int = 1000 _A : str = (1, num_labels) _A : str = '''huggingface/label-files''' _A : int = num_labels _A : Optional[int] = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='''dataset''') , '''r''')) _A : Optional[int] = {int(lowerCAmelCase): v for k, v in idalabel.items()} _A : List[Any] = idalabel _A : Any = {v: k for k, v in idalabel.items()} _A : Optional[Any] = partial(lowerCAmelCase , num_labels=lowerCAmelCase , idalabel=lowerCAmelCase , labelaid=lowerCAmelCase) _A : Optional[int] = { '''levit-128S''': 128, '''levit-128''': 128, '''levit-192''': 192, '''levit-256''': 256, '''levit-384''': 384, } _A : List[Any] = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowerCAmelCase , names_to_config[model_name] , lowerCAmelCase , lowerCAmelCase) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) return config, expected_shape if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Optional[Any] = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''ConvNextFeatureExtractor'''] __UpperCamelCase : Union[str, Any] = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
417
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowerCamelCase_ ( lowerCAmelCase__ : Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: '''simple docstring''' A = [] A = [] A = [] for rt in rc.restypes: A = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A = {name: i for i, name in enumerate(lowerCAmelCase__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) A = torch.tensor( lowerCAmelCase__ , dtype=torch.intaa , device=protein['aatype'].device , ) A = torch.tensor( lowerCAmelCase__ , dtype=torch.intaa , device=protein['aatype'].device , ) A = torch.tensor( lowerCAmelCase__ , dtype=torch.floataa , device=protein['aatype'].device , ) A = protein['aatype'].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A = restype_atomaa_to_atomaa[protein_aatype] A = restype_atomaa_mask[protein_aatype] A = residx_atomaa_mask A = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A = restype_atomaa_to_atomaa[protein_aatype] A = residx_atomaa_to_atomaa.long() # create the corresponding mask A = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['aatype'].device ) for restype, restype_letter in enumerate(rc.restypes ): A = rc.restype_atoa[restype_letter] A = rc.residue_atoms[restype_name] for atom_name in atom_names: A = rc.atom_order[atom_name] A = 1 A = restype_atomaa_mask[protein_aatype] A = residx_atomaa_mask return protein def lowerCamelCase_ ( lowerCAmelCase__ : Dict[str, torch.Tensor] ) -> Dict[str, np.ndarray]: '''simple docstring''' A = tree_map(lambda lowerCAmelCase__ : torch.tensor(lowerCAmelCase__ , device=batch['aatype'].device ) , lowerCAmelCase__ , np.ndarray ) A = tensor_tree_map(lambda lowerCAmelCase__ : np.array(lowerCAmelCase__ ) , make_atomaa_masks(lowerCAmelCase__ ) ) return out
106
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class lowerCAmelCase_ ( enum.Enum ): '''simple docstring''' _snake_case = 0 _snake_case = 1 @add_end_docstrings(A__ ) class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''generated''' def __init__( self , *snake_case_ , **snake_case_ ) -> Optional[int]: super().__init__(*snake_case_ , **snake_case_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def A__ ( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: __lowerCAmelCase = {} if truncation is not None: __lowerCAmelCase = truncation __lowerCAmelCase = generate_kwargs __lowerCAmelCase = {} if return_tensors is not None and return_type is None: __lowerCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __lowerCAmelCase = return_type if clean_up_tokenization_spaces is not None: __lowerCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: __lowerCAmelCase = self.tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) if len(snake_case_ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) __lowerCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Any: return True def A__ ( self , *snake_case_ , snake_case_ ) -> Dict: __lowerCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , snake_case_ ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) __lowerCAmelCase = ([prefix + arg for arg in args[0]],) __lowerCAmelCase = True elif isinstance(args[0] , snake_case_ ): __lowerCAmelCase = (prefix + args[0],) __lowerCAmelCase = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) __lowerCAmelCase = self.tokenizer(*snake_case_ , padding=snake_case_ , truncation=snake_case_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *snake_case_ , **snake_case_ ) -> Dict: __lowerCAmelCase = super().__call__(*snake_case_ , **snake_case_ ) if ( isinstance(args[0] , snake_case_ ) and all(isinstance(snake_case_ , snake_case_ ) for el in args[0] ) and all(len(snake_case_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def A__ ( self , snake_case_ , snake_case_=TruncationStrategy.DO_NOT_TRUNCATE , **snake_case_ ) -> Tuple: __lowerCAmelCase = self._parse_and_tokenize(snake_case_ , truncation=snake_case_ , **snake_case_ ) return inputs def A__ ( self , snake_case_ , **snake_case_ ) -> Union[str, Any]: if self.framework == "pt": __lowerCAmelCase , __lowerCAmelCase = model_inputs["""input_ids"""].shape elif self.framework == "tf": __lowerCAmelCase , __lowerCAmelCase = tf.shape(model_inputs["""input_ids"""] ).numpy() __lowerCAmelCase = generate_kwargs.get("""min_length""" , self.model.config.min_length ) __lowerCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(snake_case_ , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) __lowerCAmelCase = self.model.generate(**snake_case_ , **snake_case_ ) __lowerCAmelCase = output_ids.shape[0] if self.framework == "pt": __lowerCAmelCase = output_ids.reshape(snake_case_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": __lowerCAmelCase = tf.reshape(snake_case_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def A__ ( self , snake_case_ , snake_case_=ReturnType.TEXT , snake_case_=False ) -> Dict: __lowerCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __lowerCAmelCase = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: __lowerCAmelCase = { f"""{self.return_name}_text""": self.tokenizer.decode( snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ , ) } records.append(snake_case_ ) return records @add_end_docstrings(A__ ) class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''summary''' def __call__( self , *snake_case_ , **snake_case_ ) -> Tuple: return super().__call__(*snake_case_ , **snake_case_ ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(A__ ) class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''translation''' def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def A__ ( self , *snake_case_ , snake_case_=TruncationStrategy.DO_NOT_TRUNCATE , snake_case_=None , snake_case_=None ) -> List[Any]: if getattr(self.tokenizer , """_build_translation_inputs""" , snake_case_ ): return self.tokenizer._build_translation_inputs( *snake_case_ , return_tensors=self.framework , truncation=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ ) else: return super()._parse_and_tokenize(*snake_case_ , truncation=snake_case_ ) def A__ ( self , snake_case_=None , snake_case_=None , **snake_case_ ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = super()._sanitize_parameters(**snake_case_ ) if src_lang is not None: __lowerCAmelCase = src_lang if tgt_lang is not None: __lowerCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __lowerCAmelCase = kwargs.get("""task""" , self.task ) __lowerCAmelCase = task.split("""_""" ) if task and len(snake_case_ ) == 4: # translation, XX, to YY __lowerCAmelCase = items[1] __lowerCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *snake_case_ , **snake_case_ ) -> List[Any]: return super().__call__(*snake_case_ , **snake_case_ )
465
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __A : """simple docstring""" def __init__( self , a__ , a__=13 , a__=7 , a__=6 , a__=17 , a__=23 , a__=11 , a__=True , ): """simple docstring""" _lowerCamelCase : str = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : int = seq_length _lowerCamelCase : List[str] = act_dim _lowerCamelCase : Union[str, Any] = state_dim _lowerCamelCase : int = hidden_size _lowerCamelCase : Any = max_length _lowerCamelCase : int = is_training def __snake_case ( self): """simple docstring""" _lowerCamelCase : Any = floats_tensor((self.batch_size, self.seq_length, self.state_dim)) _lowerCamelCase : int = floats_tensor((self.batch_size, self.seq_length, self.act_dim)) _lowerCamelCase : Dict = floats_tensor((self.batch_size, self.seq_length, 1)) _lowerCamelCase : List[str] = floats_tensor((self.batch_size, self.seq_length, 1)) _lowerCamelCase : Optional[int] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000) _lowerCamelCase : Optional[Any] = random_attention_mask((self.batch_size, self.seq_length)) _lowerCamelCase : Union[str, Any] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __snake_case ( self): """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __snake_case ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): """simple docstring""" _lowerCamelCase : Tuple = DecisionTransformerModel(config=_lowerCAmelCase) model.to(_lowerCAmelCase) model.eval() _lowerCamelCase : Any = model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) self.parent.assertEqual(result.state_preds.shape , states.shape) self.parent.assertEqual(result.action_preds.shape , actions.shape) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size)) # seq length *3 as there are 3 modelities: states, returns and actions def __snake_case ( self): """simple docstring""" _lowerCamelCase : Dict = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Union[str, Any] = config_and_inputs _lowerCamelCase : str = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __A ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () UpperCAmelCase__ = () UpperCAmelCase__ = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids UpperCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def __snake_case ( self): """simple docstring""" _lowerCamelCase : Optional[int] = DecisionTransformerModelTester(self) _lowerCamelCase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37) def __snake_case ( self): """simple docstring""" self.config_tester.run_common_tests() def __snake_case ( self): """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase) @slow def __snake_case ( self): """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int = DecisionTransformerModel.from_pretrained(_lowerCAmelCase) self.assertIsNotNone(_lowerCAmelCase) def __snake_case ( self): """simple docstring""" _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(_lowerCAmelCase) _lowerCamelCase : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : str = [*signature.parameters.keys()] _lowerCamelCase : int = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(_lowerCAmelCase)] , _lowerCAmelCase) @require_torch class __A ( unittest.TestCase ): """simple docstring""" @slow def __snake_case ( self): """simple docstring""" _lowerCamelCase : Dict = 2 # number of steps of autoregressive prediction we will perform _lowerCamelCase : int = 10 # defined by the RL environment, may be normalized _lowerCamelCase : Optional[Any] = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''') _lowerCamelCase : List[Any] = model.to(_lowerCAmelCase) _lowerCamelCase : Union[str, Any] = model.config torch.manual_seed(0) _lowerCamelCase : Optional[int] = torch.randn(1 , 1 , config.state_dim).to(device=_lowerCAmelCase , dtype=torch.floataa) # env.reset() _lowerCamelCase : Optional[int] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=_lowerCAmelCase) _lowerCamelCase : int = torch.tensor(_lowerCAmelCase , device=_lowerCAmelCase , dtype=torch.floataa).reshape(1 , 1 , 1) _lowerCamelCase : Any = state _lowerCamelCase : Optional[int] = torch.zeros(1 , 0 , config.act_dim , device=_lowerCAmelCase , dtype=torch.floataa) _lowerCamelCase : Optional[Any] = torch.zeros(1 , 0 , device=_lowerCAmelCase , dtype=torch.floataa) _lowerCamelCase : List[Any] = torch.tensor(0 , device=_lowerCAmelCase , dtype=torch.long).reshape(1 , 1) for step in range(_lowerCAmelCase): _lowerCamelCase : Optional[int] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_lowerCAmelCase)] , dim=1) _lowerCamelCase : Tuple = torch.cat([rewards, torch.zeros(1 , 1 , device=_lowerCAmelCase)] , dim=1) _lowerCamelCase : List[Any] = torch.ones(1 , states.shape[1]).to(dtype=torch.long , device=states.device) with torch.no_grad(): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = model( states=_lowerCAmelCase , actions=_lowerCAmelCase , rewards=_lowerCAmelCase , returns_to_go=_lowerCAmelCase , timesteps=_lowerCAmelCase , attention_mask=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4)) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = ( # env.step(action) torch.randn(1 , 1 , config.state_dim).to(device=_lowerCAmelCase , dtype=torch.floataa), 1.0, False, {}, ) _lowerCamelCase : Union[str, Any] = action_pred[0, -1] _lowerCamelCase : Dict = torch.cat([states, state] , dim=1) _lowerCamelCase : Optional[int] = returns_to_go[0, -1] - reward _lowerCamelCase : List[str] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1)] , dim=1) _lowerCamelCase : Union[str, Any] = torch.cat( [timesteps, torch.ones((1, 1) , device=_lowerCAmelCase , dtype=torch.long) * (step + 1)] , dim=1)
709
import math def __UpperCAmelCase( lowercase_ , lowercase_ ): _lowerCamelCase : List[str] = len(lowercase_ ) _lowerCamelCase : Optional[int] = int(math.floor(math.sqrt(lowercase_ ) ) ) _lowerCamelCase : Tuple = 0 while arr[min(lowercase_ , lowercase_ ) - 1] < x: _lowerCamelCase : Optional[Any] = step step += int(math.floor(math.sqrt(lowercase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _lowerCamelCase : int = prev + 1 if prev == min(lowercase_ , lowercase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] _lowerCamelCase = int(input('Enter the number to be searched:\n')) _lowerCamelCase = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F'''Number {x} is at index {res}''')
613
0
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : List[Any], lowerCAmelCase : Tuple ) -> Union[str, Any]: # Construct model if openai_config_file == "": A = OpenAIGPTConfig() else: A = OpenAIGPTConfig.from_json_file(lowerCAmelCase ) A = OpenAIGPTModel(lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) # Save pytorch-model A = pytorch_dump_folder_path + '/' + WEIGHTS_NAME A = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict(), lowerCAmelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowerCAmelCase, 'w', encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _UpperCAmelCase = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
699
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase = TypeVar("T") class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : T ): A = data A = None def __str__( self : Optional[int] ): return f'''{self.data}''' class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): A = None def __iter__( self : int ): A = self.top while node: yield node.data A = node.next def __str__( self : Any ): return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self : Dict ): return len(tuple(iter(self ) ) ) def UpperCamelCase ( self : List[str] ): return self.top is None def UpperCamelCase ( self : Dict , UpperCamelCase__ : T ): A = Node(UpperCamelCase__ ) if not self.is_empty(): A = self.top A = node def UpperCamelCase ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCamelCase__ ) A = self.top A = self.top.next return pop_node.data def UpperCamelCase ( self : List[str] ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase ( self : List[str] ): A = None if __name__ == "__main__": from doctest import testmod testmod()
699
1
from typing import Any import numpy as np def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Tuple ) -> bool: return np.array_equal(__snake_case , matrix.conjugate().T ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ : Dict =v.conjugate().T SCREAMING_SNAKE_CASE_ : List[str] =v_star.dot(__snake_case ) assert isinstance(__snake_case , np.ndarray ) return (v_star_dot.dot(__snake_case )) / (v_star.dot(__snake_case )) def SCREAMING_SNAKE_CASE_ ( ) -> None: SCREAMING_SNAKE_CASE_ : Optional[int] =np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) SCREAMING_SNAKE_CASE_ : Optional[Any] =np.array([[1], [2], [3]] ) assert is_hermitian(__snake_case ), f'{a} is not hermitian.' print(rayleigh_quotient(__snake_case , __snake_case ) ) SCREAMING_SNAKE_CASE_ : Tuple =np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__snake_case ), f'{a} is not hermitian.' assert rayleigh_quotient(__snake_case , __snake_case ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
712
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _lowercase = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Dict =['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) _lowercase = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Optional[int] =list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ : Tuple =key for k, v in WHISPER_MAPPING.items(): if k in key: SCREAMING_SNAKE_CASE_ : int =new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(f'{key} -> {new_key}' ) SCREAMING_SNAKE_CASE_ : Any =s_dict.pop(UpperCAmelCase_ ) return s_dict def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[str] ) -> int: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any =emb.weight.shape SCREAMING_SNAKE_CASE_ : List[Any] =nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : int =emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> bytes: os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] =os.path.basename(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Any =url.split('''/''' )[-2] SCREAMING_SNAKE_CASE_ : Union[str, Any] =os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if os.path.exists(UpperCAmelCase_ ) and not os.path.isfile(UpperCAmelCase_ ): raise RuntimeError(f'{download_target} exists and is not a regular file' ) if os.path.isfile(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple =open(UpperCAmelCase_ , '''rb''' ).read() if hashlib.shaaaa(UpperCAmelCase_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(UpperCAmelCase_ ) as source, open(UpperCAmelCase_ , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=8_0 , unit='''iB''' , unit_scale=UpperCAmelCase_ , unit_divisor=1_0_2_4 ) as loop: while True: SCREAMING_SNAKE_CASE_ : Dict =source.read(8_1_9_2 ) if not buffer: break output.write(UpperCAmelCase_ ) loop.update(len(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE_ : str =open(UpperCAmelCase_ , '''rb''' ).read() if hashlib.shaaaa(UpperCAmelCase_ ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : str ) -> Tuple: if ".pt" not in checkpoint_path: SCREAMING_SNAKE_CASE_ : int =_download(_MODELS[checkpoint_path] ) else: SCREAMING_SNAKE_CASE_ : List[str] =torch.load(UpperCAmelCase_ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE_ : int =original_checkpoint['''dims'''] SCREAMING_SNAKE_CASE_ : Any =original_checkpoint['''model_state_dict'''] SCREAMING_SNAKE_CASE_ : Any =state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(UpperCAmelCase_ ) rename_keys(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =True SCREAMING_SNAKE_CASE_ : int =state_dict['''decoder.layers.0.fc1.weight'''].shape[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] =WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=UpperCAmelCase_ , decoder_ffn_dim=UpperCAmelCase_ , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) SCREAMING_SNAKE_CASE_ : List[str] =WhisperForConditionalGeneration(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] =model.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0 and not set(UpperCAmelCase_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f' but all the following weights are missing {missing}' ) if tie_embeds: SCREAMING_SNAKE_CASE_ : Union[str, Any] =make_linear_from_emb(model.model.decoder.embed_tokens ) else: SCREAMING_SNAKE_CASE_ : Optional[int] =proj_out_weights model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowercase = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
431
0
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class snake_case_ : """simple docstring""" def __init__(self: Tuple , __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: int ) -> str: '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError("Destination width/height should be > 0" ) __a : List[Any] = img __a : Any = img.shape[1] __a : List[str] = img.shape[0] __a : List[str] = dst_width __a : int = dst_height __a : Any = self.src_w / self.dst_w __a : Optional[int] = self.src_h / self.dst_h __a : Dict = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def UpperCAmelCase__ (self: Optional[int] ) -> Optional[int]: '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): __a : List[str] = self.img[self.get_y(__UpperCAmelCase )][self.get_x(__UpperCAmelCase )] def UpperCAmelCase__ (self: int , __UpperCAmelCase: int ) -> int: '''simple docstring''' return int(self.ratio_x * x ) def UpperCAmelCase__ (self: Any , __UpperCAmelCase: int ) -> int: '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": UpperCAmelCase__ , UpperCAmelCase__ = 800, 600 UpperCAmelCase__ = imread('''image_data/lena.jpg''', 1) UpperCAmelCase__ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}", n.output ) waitKey(0) destroyAllWindows()
351
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__(self: Optional[int] , __UpperCAmelCase: str , __UpperCAmelCase: List[str]=13 , __UpperCAmelCase: Any=7 , __UpperCAmelCase: List[str]=True , __UpperCAmelCase: Optional[int]=True , __UpperCAmelCase: Dict=True , __UpperCAmelCase: Optional[Any]=True , __UpperCAmelCase: Optional[int]=99 , __UpperCAmelCase: Optional[Any]=32 , __UpperCAmelCase: int=5 , __UpperCAmelCase: Dict=4 , __UpperCAmelCase: Optional[int]=37 , __UpperCAmelCase: int="gelu" , __UpperCAmelCase: Tuple=0.1 , __UpperCAmelCase: Any=0.1 , __UpperCAmelCase: Union[str, Any]=512 , __UpperCAmelCase: Optional[Any]=16 , __UpperCAmelCase: List[Any]=2 , __UpperCAmelCase: str=0.02 , __UpperCAmelCase: int=4 , ) -> str: '''simple docstring''' __a : Tuple = parent __a : int = batch_size __a : Optional[int] = seq_length __a : List[Any] = is_training __a : Tuple = use_attention_mask __a : Optional[int] = use_token_type_ids __a : Tuple = use_labels __a : str = vocab_size __a : Union[str, Any] = hidden_size __a : List[str] = num_hidden_layers __a : Optional[int] = num_attention_heads __a : Any = intermediate_size __a : Any = hidden_act __a : List[str] = hidden_dropout_prob __a : Dict = attention_probs_dropout_prob __a : Tuple = max_position_embeddings __a : Optional[int] = type_vocab_size __a : Tuple = type_sequence_label_size __a : List[Any] = initializer_range __a : int = num_choices def UpperCAmelCase__ (self: Tuple ) -> List[Any]: '''simple docstring''' __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Dict = None if self.use_attention_mask: __a : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Dict = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ (self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __a : Union[str, Any] = self.prepare_config_and_inputs() __a , __a , __a , __a : Dict = config_and_inputs __a : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def UpperCAmelCase__ (self: Dict ) -> str: '''simple docstring''' __a : Optional[Any] = self.prepare_config_and_inputs() __a , __a , __a , __a : Tuple = config_and_inputs __a : int = True __a : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class snake_case_ ( __UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case__ = True snake_case__ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ (self: Dict ) -> Union[str, Any]: '''simple docstring''' __a : Tuple = FlaxRobertaModelTester(self ) @slow def UpperCAmelCase__ (self: Optional[Any] ) -> List[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained("roberta-base" , from_pt=__UpperCAmelCase ) __a : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
351
1
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : Tuple = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : Union[str, Any] = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowerCAmelCase : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase__ : str = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase__ : Optional[Any] = numpy_to_pil(lowerCAmelCase ) return images def a__ ( lowerCAmelCase : List[Any] ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase__ : str = images[None, ...] UpperCAmelCase__ : str = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase__ : Any = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase__ : List[str] = [Image.fromarray(lowerCAmelCase ) for image in images] return pil_images
660
"""simple docstring""" from timeit import timeit def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Tuple = 0 while number: number &= number - 1 result += 1 return result def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Union[str, Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a__ ( ): '''simple docstring''' def do_benchmark(lowerCAmelCase : int ) -> None: UpperCAmelCase__ : Dict = "import __main__ as z" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Tuple = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=lowerCAmelCase ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Any = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=lowerCAmelCase , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
660
1
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = f"Input value of [number={number}] must be an integer" raise TypeError(lowerCAmelCase__ ) if number < 1: lowerCamelCase_ = f"Input value of [number={number}] must be > 0" raise ValueError(lowerCAmelCase__ ) elif number == 1: return 3 elif number == 2: return 5 else: lowerCamelCase_ = int(math.log(number // 3 ,2 ) ) + 2 lowerCamelCase_ = [3, 5] lowerCamelCase_ = 2 lowerCamelCase_ = 3 for block in range(1 ,lowerCAmelCase__ ): for _ in range(lowerCAmelCase__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): A_ = 0 try: A_ = proth(number) except ValueError: print(f"ValueError: there is no {number}th Proth number") continue print(f"The {number}th Proth number: {value}")
29
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = (DDPMParallelScheduler,) def _snake_case ( self , **_lowerCAmelCase ) -> int: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def _snake_case ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def _snake_case ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = self.dummy_sample_deter + 0.1 _lowerCAmelCase = self.dummy_sample_deter - 0.1 _lowerCAmelCase = samplea.shape[0] _lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) _lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowerCAmelCase ): if i == len(_lowerCAmelCase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
18
0
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = to_pil_image(lowercase ) _UpperCAmelCase , _UpperCAmelCase = pil_image.size _UpperCAmelCase = pytesseract.image_to_data(lowercase ,lang=lowercase ,output_type="""dict""" ,config=lowercase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates _UpperCAmelCase = [idx for idx, word in enumerate(lowercase ) if not word.strip()] _UpperCAmelCase = [word for idx, word in enumerate(lowercase ) if idx not in irrelevant_indices] _UpperCAmelCase = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] _UpperCAmelCase = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] _UpperCAmelCase = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] _UpperCAmelCase = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _UpperCAmelCase = [] for x, y, w, h in zip(lowercase ,lowercase ,lowercase ,lowercase ): _UpperCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowercase ) # finally, normalize the bounding boxes _UpperCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase ,lowercase ,lowercase ) ) assert len(lowercase ) == len(lowercase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a ( lowerCAmelCase_ ): _snake_case : str = ['pixel_values'] def __init__( self : List[str] , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCAmelCase : bool = True , __lowerCAmelCase : float = 1 / 255 , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[float, Iterable[float]] = None , __lowerCAmelCase : Union[float, Iterable[float]] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[str] = "" , **__lowerCAmelCase : List[Any] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = size if size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase = get_size_dict(__lowerCAmelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_value _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD _UpperCAmelCase = apply_ocr _UpperCAmelCase = ocr_lang _UpperCAmelCase = tesseract_config def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Dict , ): _UpperCAmelCase = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _UpperCAmelCase = (size["""height"""], size["""width"""]) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Union[int, float] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Any , ): return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Union[float, Iterable[float]] , __lowerCAmelCase : Union[float, Iterable[float]] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Any , ): return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : ImageInput , __lowerCAmelCase : bool = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : bool = None , __lowerCAmelCase : float = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Union[float, Iterable[float]] = None , __lowerCAmelCase : Union[float, Iterable[float]] = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCAmelCase : str , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__lowerCAmelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr _UpperCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang _UpperCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config _UpperCAmelCase = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__lowerCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , """pytesseract""" ) _UpperCAmelCase = [] _UpperCAmelCase = [] for image in images: _UpperCAmelCase , _UpperCAmelCase = apply_tesseract(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) words_batch.append(__lowerCAmelCase ) boxes_batch.append(__lowerCAmelCase ) if do_resize: _UpperCAmelCase = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] _UpperCAmelCase = BatchFeature(data={"""pixel_values""": images} , tensor_type=__lowerCAmelCase ) if apply_ocr: _UpperCAmelCase = words_batch _UpperCAmelCase = boxes_batch return data
275
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = abs(lowercase ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = abs(lowercase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __UpperCAmelCase ( lowercase ): """simple docstring""" return sum(int(lowercase ) for c in str(abs(lowercase ) ) ) def __UpperCAmelCase ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase ,lowercase ) -> None: _UpperCAmelCase = f'''{func.__name__}({value})''' _UpperCAmelCase = timeit(f'''__main__.{call}''' ,setup="""import __main__""" ) print(f'''{call:56} = {func(lowercase )} -- {timing:.4f} seconds''' ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowercase ,lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
275
1
import logging from transformers.configuration_utils import PretrainedConfig __UpperCamelCase : List[Any] = logging.getLogger(__name__) class _UpperCamelCase ( A ): '''simple docstring''' a_ : List[Any] = """masked_bert""" def __init__( self : List[str] , _lowerCamelCase : Optional[Any]=3_0_5_2_2 , _lowerCamelCase : Optional[Any]=7_6_8 , _lowerCamelCase : Optional[int]=1_2 , _lowerCamelCase : Optional[Any]=1_2 , _lowerCamelCase : Any=3_0_7_2 , _lowerCamelCase : List[Any]="gelu" , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : str=0.1 , _lowerCamelCase : str=5_1_2 , _lowerCamelCase : int=2 , _lowerCamelCase : Tuple=0.02 , _lowerCamelCase : Tuple=1E-12 , _lowerCamelCase : Any=0 , _lowerCamelCase : int="topK" , _lowerCamelCase : Tuple="constant" , _lowerCamelCase : str=0.0 , **_lowerCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Optional[int] = num_attention_heads __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : Any = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : int = max_position_embeddings __lowerCamelCase : int = type_vocab_size __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Union[str, Any] = layer_norm_eps __lowerCamelCase : Any = pruning_method __lowerCamelCase : Any = mask_init __lowerCamelCase : str = mask_scale
519
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["OwlViTFeatureExtractor"] SCREAMING_SNAKE_CASE__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
631
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase__ ( __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = [False] * len(__lowerCAmelCase ) lowerCAmelCase_ = [-1] * len(__lowerCAmelCase ) def dfs(__lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ): lowerCAmelCase_ = True lowerCAmelCase_ = c for u in graph[v]: if not visited[u]: dfs(__lowerCAmelCase , 1 - c ) for i in range(len(__lowerCAmelCase ) ): if not visited[i]: dfs(__lowerCAmelCase , 0 ) for i in range(len(__lowerCAmelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
279
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class _lowerCAmelCase ( __a ): _lowercase ='''transfo-xl''' _lowercase =['''mems'''] _lowercase ={ '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _UpperCamelCase=267_735 , _UpperCamelCase=[20_000, 40_000, 200_000] , _UpperCamelCase=1_024 , _UpperCamelCase=1_024 , _UpperCamelCase=16 , _UpperCamelCase=64 , _UpperCamelCase=4_096 , _UpperCamelCase=4 , _UpperCamelCase=False , _UpperCamelCase=18 , _UpperCamelCase=1_600 , _UpperCamelCase=1_000 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase=-1 , _UpperCamelCase=True , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=True , _UpperCamelCase="normal" , _UpperCamelCase=0.01 , _UpperCamelCase=0.01 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , **_UpperCamelCase , ) -> Dict: lowerCAmelCase_ = vocab_size lowerCAmelCase_ = [] self.cutoffs.extend(_UpperCamelCase ) if proj_share_all_but_first: lowerCAmelCase_ = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase_ = [False] + [False] * len(self.cutoffs ) lowerCAmelCase_ = d_model lowerCAmelCase_ = d_embed lowerCAmelCase_ = d_head lowerCAmelCase_ = d_inner lowerCAmelCase_ = div_val lowerCAmelCase_ = pre_lnorm lowerCAmelCase_ = n_layer lowerCAmelCase_ = n_head lowerCAmelCase_ = mem_len lowerCAmelCase_ = same_length lowerCAmelCase_ = attn_type lowerCAmelCase_ = clamp_len lowerCAmelCase_ = sample_softmax lowerCAmelCase_ = adaptive lowerCAmelCase_ = dropout lowerCAmelCase_ = dropatt lowerCAmelCase_ = untie_r lowerCAmelCase_ = init lowerCAmelCase_ = init_range lowerCAmelCase_ = proj_init_std lowerCAmelCase_ = init_std lowerCAmelCase_ = layer_norm_epsilon super().__init__(eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def __a ( self ) -> List[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def __a ( self , _UpperCamelCase ) -> str: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
279
1
import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowerCamelCase__ ( a__): """simple docstring""" _A = 'microsoft/speecht5_tts' _A = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) _A = 'text_reader' _A = SpeechTaProcessor _A = SpeechTaForTextToSpeech _A = SpeechTaHifiGan _A = ['text'] _A = ['audio'] def _a (self ): '''simple docstring''' if self.post_processor is None: lowerCamelCase = "microsoft/speecht5_hifigan" super().setup() def _a (self , __a , __a=None ): '''simple docstring''' lowerCamelCase = self.pre_processor(text=_snake_case , return_tensors="pt" , truncation=_snake_case ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCamelCase = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) lowerCamelCase = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _a (self , __a ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**_snake_case ) def _a (self , __a ): '''simple docstring''' with torch.no_grad(): return self.post_processor(_snake_case ).cpu().detach()
623
"""simple docstring""" from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_UpperCAmelCase ).json() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCAmelCase = requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 10 ): lowerCAmelCase = hackernews_top_stories(_UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
0
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=0.0 , UpperCamelCase__ = None , UpperCamelCase__ = "geglu" , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = True , UpperCamelCase__ = "layer_norm" , UpperCamelCase__ = False , ) -> Optional[int]: '''simple docstring''' super().__init__() lowerCamelCase_ = only_cross_attention lowerCamelCase_ = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' lowerCamelCase_ = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowerCamelCase_ = AdaLayerNorm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: lowerCamelCase_ = AdaLayerNormZero(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ = Attention( query_dim=_SCREAMING_SNAKE_CASE , heads=_SCREAMING_SNAKE_CASE , dim_head=_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_SCREAMING_SNAKE_CASE , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowerCamelCase_ = ( AdaLayerNorm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ = Attention( query_dim=_SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_SCREAMING_SNAKE_CASE , dim_head=_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , upcast_attention=_SCREAMING_SNAKE_CASE , ) # is self-attn if encoder_hidden_states is none else: lowerCamelCase_ = None lowerCamelCase_ = None # 3. Feed-forward lowerCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ = FeedForward(_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , activation_fn=_SCREAMING_SNAKE_CASE , final_dropout=_SCREAMING_SNAKE_CASE ) # let chunk size default to None lowerCamelCase_ = None lowerCamelCase_ = 0 def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = chunk_size lowerCamelCase_ = dim def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , ) -> str: '''simple docstring''' if self.use_ada_layer_norm: lowerCamelCase_ = self.norma(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self.norma( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hidden_dtype=hidden_states.dtype ) else: lowerCamelCase_ = self.norma(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowerCamelCase_ = self.attna( _SCREAMING_SNAKE_CASE , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if self.use_ada_layer_norm_zero: lowerCamelCase_ = gate_msa.unsqueeze(1 ) * attn_output lowerCamelCase_ = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowerCamelCase_ = ( self.norma(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else self.norma(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ = self.attna( _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ = attn_output + hidden_states # 3. Feed-forward lowerCamelCase_ = self.norma(_SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: lowerCamelCase_ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) lowerCamelCase_ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowerCamelCase_ = torch.cat( [self.ff(_SCREAMING_SNAKE_CASE ) for hid_slice in norm_hidden_states.chunk(_SCREAMING_SNAKE_CASE , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: lowerCamelCase_ = self.ff(_SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: lowerCamelCase_ = gate_mlp.unsqueeze(1 ) * ff_output lowerCamelCase_ = ff_output + hidden_states return hidden_states class lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = 4 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = "geglu" , UpperCamelCase__ = False , ) -> str: '''simple docstring''' super().__init__() lowerCamelCase_ = int(dim * mult ) lowerCamelCase_ = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowerCamelCase_ = GELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if activation_fn == "gelu-approximate": lowerCamelCase_ = GELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , approximate='''tanh''' ) elif activation_fn == "geglu": lowerCamelCase_ = GEGLU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif activation_fn == "geglu-approximate": lowerCamelCase_ = ApproximateGELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ = nn.ModuleList([] ) # project in self.net.append(_SCREAMING_SNAKE_CASE ) # project dropout self.net.append(nn.Dropout(_SCREAMING_SNAKE_CASE ) ) # project out self.net.append(nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_SCREAMING_SNAKE_CASE ) ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' for module in self.net: lowerCamelCase_ = module(_SCREAMING_SNAKE_CASE ) return hidden_states class lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = "none" ) -> str: '''simple docstring''' super().__init__() lowerCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ = approximate def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' if gate.device.type != "mps": return F.gelu(_SCREAMING_SNAKE_CASE , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.proj(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.gelu(_SCREAMING_SNAKE_CASE ) return hidden_states class lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__() lowerCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , dim_out * 2 ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if gate.device.type != "mps": return F.gelu(_SCREAMING_SNAKE_CASE ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = self.proj(_SCREAMING_SNAKE_CASE ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_SCREAMING_SNAKE_CASE ) class lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' super().__init__() lowerCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.proj(_SCREAMING_SNAKE_CASE ) return x * torch.sigmoid(1.702 * x ) class lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' super().__init__() lowerCamelCase_ = nn.Embedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ = nn.SiLU() lowerCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , embedding_dim * 2 ) lowerCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' lowerCamelCase_ = self.linear(self.silu(self.emb(_SCREAMING_SNAKE_CASE ) ) ) lowerCamelCase_ , lowerCamelCase_ = torch.chunk(_SCREAMING_SNAKE_CASE , 2 ) lowerCamelCase_ = self.norm(_SCREAMING_SNAKE_CASE ) * (1 + scale) + shift return x class lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' super().__init__() lowerCamelCase_ = CombinedTimestepLabelEmbeddings(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ = nn.SiLU() lowerCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , 6 * embedding_dim , bias=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE , eps=1e-6 ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> Any: '''simple docstring''' lowerCamelCase_ = self.linear(self.silu(self.emb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hidden_dtype=_SCREAMING_SNAKE_CASE ) ) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = emb.chunk(6 , dim=1 ) lowerCamelCase_ = self.norm(_SCREAMING_SNAKE_CASE ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = 1e-5 ) -> Dict: '''simple docstring''' super().__init__() lowerCamelCase_ = num_groups lowerCamelCase_ = eps if act_fn is None: lowerCamelCase_ = None else: lowerCamelCase_ = get_activation(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , out_dim * 2 ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' if self.act: lowerCamelCase_ = self.act(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.linear(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ = emb[:, :, None, None] lowerCamelCase_ , lowerCamelCase_ = emb.chunk(2 , dim=1 ) lowerCamelCase_ = F.group_norm(_SCREAMING_SNAKE_CASE , self.num_groups , eps=self.eps ) lowerCamelCase_ = x * (1 + scale) + shift return x
721
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase : """simple docstring""" def __init__( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = '''''' lowerCamelCase_ = '''''' lowerCamelCase_ = [] lowerCamelCase_ = 0 lowerCamelCase_ = 256 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' lowerCamelCase_ = cva.imread(UpperCamelCase__ , 0 ) lowerCamelCase_ = copy.deepcopy(self.img ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) lowerCamelCase_ = np.sum(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): lowerCamelCase_ = x[i] / self.k self.sk += prk lowerCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: lowerCamelCase_ = int(last % last ) lowerCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(UpperCamelCase__ ) lowerCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCamelCase_ = self.img[j][i] if num != self.last_list[num]: lowerCamelCase_ = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def _lowerCAmelCase ( self ) -> str: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def _lowerCAmelCase ( self ) -> int: '''simple docstring''' cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowercase : List[Any] = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") __lowercase : List[str] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
66
0
def SCREAMING_SNAKE_CASE_ ( __A : str , __A : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def SCREAMING_SNAKE_CASE_ ( ) -> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
570
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 SCREAMING_SNAKE_CASE = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class __a ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCamelCase = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str )-> Dict: """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> int: """simple docstring""" UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ , repo_id="test-config" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> List[str]: """simple docstring""" UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase_ , repo_id="valid_org/test-config-org" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : int )-> Union[str, Any]: """simple docstring""" CustomConfig.register_for_auto_class() UpperCamelCase = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) UpperCamelCase = AutoConfig.from_pretrained(f"{USER}/test-dynamic-config" , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class __a ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Any )-> Any: """simple docstring""" UpperCamelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCamelCase = c.n_embd + 1 # int UpperCamelCase = c.resid_pdrop + 1.0 # float UpperCamelCase = not c.scale_attn_weights # bool UpperCamelCase = c.summary_type + "foo" # str c.update_from_string( f"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(UpperCAmelCase_ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(UpperCAmelCase_ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(UpperCAmelCase_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(UpperCAmelCase_ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE ( self : Any )-> List[str]: """simple docstring""" UpperCamelCase = PretrainedConfig() UpperCamelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) UpperCamelCase = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase_ , UpperCAmelCase_ )] if len(UpperCAmelCase_ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f" {', '.join(UpperCAmelCase_ )}." ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Optional[Any]: """simple docstring""" with self.assertRaises(UpperCAmelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Any: """simple docstring""" # A mock response for an HTTP head request to emulate server down UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_ ) as mock_head: UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE ( self : Tuple )-> int: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 UpperCamelCase = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = AutoConfig.from_pretrained("bert-base-cased" ) UpperCamelCase = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase_ ) UpperCamelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase_ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCamelCase = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCamelCase = ["config.42.0.0.json"] UpperCamelCase = 768 configuration.save_pretrained(UpperCAmelCase_ ) shutil.move(os.path.join(UpperCAmelCase_ , "config.4.0.0.json" ) , os.path.join(UpperCAmelCase_ , "config.42.0.0.json" ) ) UpperCamelCase = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 768 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Dict: """simple docstring""" # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. UpperCamelCase = "hf-internal-testing/test-two-configs" import transformers as new_transformers UpperCamelCase = "v4.0.0" UpperCamelCase , UpperCamelCase = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase_ , return_unused_kwargs=UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCamelCase = "v3.0.0" UpperCamelCase = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(old_configuration.hidden_size , 768 )
554
0
"""simple docstring""" import itertools import math def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = 2 while True: if is_prime(lowerCAmelCase_ ): yield num num += 1 def UpperCAmelCase__ (lowerCAmelCase_ = 1_0001 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , lowerCAmelCase_ ) ) if __name__ == "__main__": print(F"{solution() = }")
707
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class UpperCamelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int]=1_3 , UpperCAmelCase__ : str=7 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : List[Any]=9_9 , UpperCAmelCase__ : Any=3_2 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : Any=3_7 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Union[str, Any]=5_1_2 , UpperCAmelCase__ : str=1_6 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : str=None , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : Any ) -> Optional[int]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] ) -> str: __SCREAMING_SNAKE_CASE = LlamaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , ) -> Dict: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = LlamaModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = LlamaForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , ) -> List[str]: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = LlamaForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE = torch.cat([input_mask, next_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )["hidden_states"][0] __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )["hidden_states"][0] # select random slice __SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def UpperCAmelCase_ ( self : Any ) -> str: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Optional[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () snake_case__ : Optional[Any] = (LlamaForCausalLM,) if is_torch_available() else () snake_case__ : int = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Any = False snake_case__ : int = False def UpperCAmelCase_ ( self : str ) -> Tuple: __SCREAMING_SNAKE_CASE = LlamaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def UpperCAmelCase_ ( self : Any ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = input_dict["input_ids"] __SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = LlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = "single_label_classification" __SCREAMING_SNAKE_CASE = input_dict["input_ids"] __SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = LlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self : str ) -> int: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = "multi_label_classification" __SCREAMING_SNAKE_CASE = input_dict["input_ids"] __SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __SCREAMING_SNAKE_CASE = LlamaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def UpperCAmelCase_ ( self : str ) -> List[str]: pass @parameterized.expand([("linear",), ("dynamic",)] ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : List[Any] ) -> str: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ids_tensor([1, 1_0] , config.vocab_size ) __SCREAMING_SNAKE_CASE = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE = LlamaModel(UpperCAmelCase__ ) original_model.to(UpperCAmelCase__ ) original_model.eval() __SCREAMING_SNAKE_CASE = original_model(UpperCAmelCase__ ).last_hidden_state __SCREAMING_SNAKE_CASE = original_model(UpperCAmelCase__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE = {"type": scaling_type, "factor": 10.0} __SCREAMING_SNAKE_CASE = LlamaModel(UpperCAmelCase__ ) scaled_model.to(UpperCAmelCase__ ) scaled_model.eval() __SCREAMING_SNAKE_CASE = scaled_model(UpperCAmelCase__ ).last_hidden_state __SCREAMING_SNAKE_CASE = scaled_model(UpperCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def UpperCAmelCase_ ( self : Dict ) -> Tuple: __SCREAMING_SNAKE_CASE = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] __SCREAMING_SNAKE_CASE = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) __SCREAMING_SNAKE_CASE = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __SCREAMING_SNAKE_CASE = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __SCREAMING_SNAKE_CASE = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] __SCREAMING_SNAKE_CASE = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) __SCREAMING_SNAKE_CASE = model(torch.tensor(UpperCAmelCase__ ) ) # Expected mean on dim = -1 __SCREAMING_SNAKE_CASE = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __SCREAMING_SNAKE_CASE = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def UpperCAmelCase_ ( self : List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] __SCREAMING_SNAKE_CASE = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) __SCREAMING_SNAKE_CASE = model(torch.tensor(UpperCAmelCase__ ) ) # Expected mean on dim = -1 __SCREAMING_SNAKE_CASE = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __SCREAMING_SNAKE_CASE = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def UpperCAmelCase_ ( self : int ) -> str: __SCREAMING_SNAKE_CASE = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] __SCREAMING_SNAKE_CASE = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) __SCREAMING_SNAKE_CASE = model(torch.tensor(UpperCAmelCase__ ) ) __SCREAMING_SNAKE_CASE = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1E-2 , rtol=1E-2 ) # fmt: off __SCREAMING_SNAKE_CASE = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def UpperCAmelCase_ ( self : str ) -> Optional[int]: __SCREAMING_SNAKE_CASE = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" __SCREAMING_SNAKE_CASE = "Simply put, the theory of relativity states that " __SCREAMING_SNAKE_CASE = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) __SCREAMING_SNAKE_CASE = tokenizer.encode(UpperCAmelCase__ , return_tensors="pt" ) __SCREAMING_SNAKE_CASE = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=UpperCAmelCase__ ) # greedy generation outputs __SCREAMING_SNAKE_CASE = model.generate(UpperCAmelCase__ , max_new_tokens=6_4 , top_p=UpperCAmelCase__ , temperature=1 , do_sample=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
553
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") SCREAMING_SNAKE_CASE__ : Any = parser.parse_args() SCREAMING_SNAKE_CASE__ : Dict = "cpu" SCREAMING_SNAKE_CASE__ : Any = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" SCREAMING_SNAKE_CASE__ : Optional[int] = "path-to-your-trained-model" SCREAMING_SNAKE_CASE__ : int = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: SCREAMING_SNAKE_CASE__ : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) SCREAMING_SNAKE_CASE__ : Optional[int] = pipe.to(device) # to channels last SCREAMING_SNAKE_CASE__ : Dict = pipe.unet.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE__ : int = pipe.vae.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE__ : List[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE__ : List[Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex SCREAMING_SNAKE_CASE__ : int = torch.randn(2, 4, 64, 64) SCREAMING_SNAKE_CASE__ : List[str] = torch.rand(1) * 9_99 SCREAMING_SNAKE_CASE__ : Tuple = torch.randn(2, 77, 7_68) SCREAMING_SNAKE_CASE__ : int = (sample, timestep, encoder_hidden_status) try: SCREAMING_SNAKE_CASE__ : int = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: SCREAMING_SNAKE_CASE__ : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE__ : List[str] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE__ : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE__ : Optional[Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute SCREAMING_SNAKE_CASE__ : Optional[Any] = 6_66 SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device).manual_seed(seed) SCREAMING_SNAKE_CASE__ : Dict = {"generator": generator} if args.steps is not None: SCREAMING_SNAKE_CASE__ : List[str] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): SCREAMING_SNAKE_CASE__ : Tuple = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
205
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = FunnelConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(F'Building PyTorch model from configuration: {config}' ) SCREAMING_SNAKE_CASE_ = FunnelBaseModel(SCREAMING_SNAKE_CASE ) if base_model else FunnelModel(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_funnel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
205
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort A : Optional[int] = logging.get_logger(__name__) A : Optional[Any] = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class lowerCamelCase : """simple docstring""" def __init__( self : Dict , __magic_name__ : Optional[Any]=None , **__magic_name__ : Optional[int] ) -> Optional[int]: logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) SCREAMING_SNAKE_CASE_ = model SCREAMING_SNAKE_CASE_ = kwargs.get("model_save_dir" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = kwargs.get("latest_model_name" , __magic_name__ ) def __call__( self : str , **__magic_name__ : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = {k: np.array(__magic_name__ ) for k, v in kwargs.items()} return self.model.run(__magic_name__ , __magic_name__ ) @staticmethod def __A ( __magic_name__ : Union[str, Path] , __magic_name__ : Optional[int]=None , __magic_name__ : List[str]=None ) -> Optional[Any]: if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) SCREAMING_SNAKE_CASE_ = "CPUExecutionProvider" return ort.InferenceSession(__magic_name__ , providers=[provider] , sess_options=__magic_name__ ) def __A ( self : Dict , __magic_name__ : Union[str, Path] , __magic_name__ : Optional[str] = None , **__magic_name__ : int ) -> Dict: SCREAMING_SNAKE_CASE_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME SCREAMING_SNAKE_CASE_ = self.model_save_dir.joinpath(self.latest_model_name ) SCREAMING_SNAKE_CASE_ = Path(__magic_name__ ).joinpath(__magic_name__ ) try: shutil.copyfile(__magic_name__ , __magic_name__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) SCREAMING_SNAKE_CASE_ = self.model_save_dir.joinpath(__magic_name__ ) if src_path.exists(): SCREAMING_SNAKE_CASE_ = Path(__magic_name__ ).joinpath(__magic_name__ ) try: shutil.copyfile(__magic_name__ , __magic_name__ ) except shutil.SameFileError: pass def __A ( self : str , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : int , ) -> Any: if os.path.isfile(__magic_name__ ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) # saving model weights/files self._save_pretrained(__magic_name__ , **__magic_name__ ) @classmethod def __A ( cls : Dict , __magic_name__ : Union[str, Path] , __magic_name__ : Optional[Union[bool, str, None]] = None , __magic_name__ : Optional[Union[str, None]] = None , __magic_name__ : bool = False , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional["ort.SessionOptions"] = None , **__magic_name__ : Any , ) -> Dict: SCREAMING_SNAKE_CASE_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__magic_name__ ): SCREAMING_SNAKE_CASE_ = OnnxRuntimeModel.load_model( os.path.join(__magic_name__ , __magic_name__ ) , provider=__magic_name__ , sess_options=__magic_name__ ) SCREAMING_SNAKE_CASE_ = Path(__magic_name__ ) # load model from hub else: # download model SCREAMING_SNAKE_CASE_ = hf_hub_download( repo_id=__magic_name__ , filename=__magic_name__ , use_auth_token=__magic_name__ , revision=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = Path(__magic_name__ ).parent SCREAMING_SNAKE_CASE_ = Path(__magic_name__ ).name SCREAMING_SNAKE_CASE_ = OnnxRuntimeModel.load_model(__magic_name__ , provider=__magic_name__ , sess_options=__magic_name__ ) return cls(model=__magic_name__ , **__magic_name__ ) @classmethod def __A ( cls : Dict , __magic_name__ : Union[str, Path] , __magic_name__ : bool = True , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = None , **__magic_name__ : List[str] , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = None if len(str(__magic_name__ ).split("@" ) ) == 2: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_id.split("@" ) return cls._from_pretrained( model_id=__magic_name__ , revision=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , use_auth_token=__magic_name__ , **__magic_name__ , )
719
from math import factorial def a__ ( __UpperCamelCase = 1_0_0 ): return sum(int(__UpperCamelCase ) for x in str(factorial(__UpperCamelCase ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
356
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowercase : Dict = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowercase : Any = logging.getLogger() def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("-f") __UpperCamelCase : str = parser.parse_args() return args.f def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : Dict="eval") -> List[Any]: '''simple docstring''' __UpperCamelCase : str = os.path.join(_lowerCamelCase , F'{split}_results.json') if os.path.exists(_lowerCamelCase): with open(_lowerCamelCase , "r") as f: return json.load(_lowerCamelCase) raise ValueError(F'can\'t find {path}') lowercase : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCamelCase__ ( lowercase__): '''simple docstring''' def _lowerCamelCase ( self :int ) -> List[str]: __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , "argv" , SCREAMING_SNAKE_CASE_ ): run_flax_glue.main() __UpperCamelCase : Tuple = get_results(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def _lowerCamelCase ( self :int ) -> int: __UpperCamelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , "argv" , SCREAMING_SNAKE_CASE_ ): run_clm_flax.main() __UpperCamelCase : Tuple = get_results(SCREAMING_SNAKE_CASE_ ) self.assertLess(result["eval_perplexity"] , 1_0_0 ) @slow def _lowerCamelCase ( self :Optional[int] ) -> Tuple: __UpperCamelCase : Any = self.get_auto_remove_tmp_dir() __UpperCamelCase : int = f'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , "argv" , SCREAMING_SNAKE_CASE_ ): run_summarization_flax.main() __UpperCamelCase : Dict = get_results(SCREAMING_SNAKE_CASE_ , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 1_0 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def _lowerCamelCase ( self :List[str] ) -> Dict: __UpperCamelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Dict = f'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , "argv" , SCREAMING_SNAKE_CASE_ ): run_mlm_flax.main() __UpperCamelCase : str = get_results(SCREAMING_SNAKE_CASE_ ) self.assertLess(result["eval_perplexity"] , 4_2 ) @slow def _lowerCamelCase ( self :Union[str, Any] ) -> int: __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : int = f'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , "argv" , SCREAMING_SNAKE_CASE_ ): run_ta_mlm_flax.main() __UpperCamelCase : Tuple = get_results(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def _lowerCamelCase ( self :Union[str, Any] ) -> Optional[int]: __UpperCamelCase : Dict = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , "argv" , SCREAMING_SNAKE_CASE_ ): run_flax_ner.main() __UpperCamelCase : Tuple = get_results(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def _lowerCamelCase ( self :str ) -> List[str]: __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , "argv" , SCREAMING_SNAKE_CASE_ ): run_qa.main() __UpperCamelCase : str = get_results(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(result["eval_f1"] , 3_0 ) self.assertGreaterEqual(result["eval_exact"] , 3_0 )
557
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowercase ( unittest.TestCase ): def UpperCAmelCase (self : Tuple ) -> Optional[int]: """simple docstring""" lowerCAmelCase = '''hf-internal-testing/tiny-random-t5''' lowerCAmelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowerCAmelCase = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowerCAmelCase = model.generate(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowerCAmelCase = model_reloaded.generate(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase (self : str ) -> Tuple: """simple docstring""" lowerCAmelCase = '''hf-internal-testing/tiny-random-t5''' lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): model.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = model.reverse_bettertransformer() model.save_pretrained(SCREAMING_SNAKE_CASE_ )
535
0
def UpperCamelCase ( lowercase_: str , lowercase_: str ) -> bool: A__ : Union[str, Any] = len(lowercase_ ) A__ : List[Any] = len(lowercase_ ) A__ : List[Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] A__ : str = True for i in range(lowercase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: A__ : int = True if a[i].islower(): A__ : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
706
def UpperCamelCase (lowercase_: int ) -> int: if not isinstance(lowercase_ , lowercase_ ): raise TypeError("""Input value must be an 'int' type""" ) A__ : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
64
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed snake_case : Optional[Any] = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( UpperCAmelCase__=2 ,UpperCAmelCase__=3 ,UpperCAmelCase__=16 ,UpperCAmelCase__ = 10 ,UpperCAmelCase__ = 2 ): """simple docstring""" def get_dataset(UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE = torch.randn(batch_size * n_batches ,1 ) return TensorDataset(UpperCAmelCase__ ,a * x + b + 0.1 * torch.randn(batch_size * n_batches ,1 ) ) _SCREAMING_SNAKE_CASE = get_dataset(UpperCAmelCase__ ) _SCREAMING_SNAKE_CASE = get_dataset(UpperCAmelCase__ ) _SCREAMING_SNAKE_CASE = DataLoader(UpperCAmelCase__ ,shuffle=UpperCAmelCase__ ,batch_size=UpperCAmelCase__ ,num_workers=4 ) _SCREAMING_SNAKE_CASE = DataLoader(UpperCAmelCase__ ,shuffle=UpperCAmelCase__ ,batch_size=UpperCAmelCase__ ,num_workers=4 ) return (train_dataloader, valid_dataloader) def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__=None ): """simple docstring""" _SCREAMING_SNAKE_CASE = [] for epoch in range(UpperCAmelCase__ ): # Train quickly model.train() for batch in dataloader: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = batch _SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) _SCREAMING_SNAKE_CASE = torch.nn.functional.mse_loss(UpperCAmelCase__ ,UpperCAmelCase__ ) accelerator.backward(UpperCAmelCase__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __lowercase ( nn.Module ): """simple docstring""" def __init__( self )-> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE = nn.Parameter(torch.randn(1 ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.randn(1 ) ) def __magic_name__ ( self , A_ )-> Union[str, Any]: return x * self.a + self.b class __lowercase ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self )-> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _SCREAMING_SNAKE_CASE = DummyModel() _SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = dummy_dataloaders() _SCREAMING_SNAKE_CASE = ProjectConfiguration(total_limit=1 , project_dir=A_ , automatic_checkpoint_naming=A_ ) # Train baseline _SCREAMING_SNAKE_CASE = Accelerator(project_config=A_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare( A_ , A_ , A_ , A_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __magic_name__ ( self )-> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _SCREAMING_SNAKE_CASE = DummyModel() _SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = dummy_dataloaders() # Train baseline _SCREAMING_SNAKE_CASE = Accelerator() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare( A_ , A_ , A_ , A_ ) # Save initial _SCREAMING_SNAKE_CASE = os.path.join(A_ , 'initial' ) accelerator.save_state(A_ ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE = optimizer.state_dict() _SCREAMING_SNAKE_CASE = train(3 , A_ , A_ , A_ , A_ ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE = optimizer.state_dict() # Train partially set_seed(42 ) _SCREAMING_SNAKE_CASE = DummyModel() _SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = dummy_dataloaders() _SCREAMING_SNAKE_CASE = Accelerator() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare( A_ , A_ , A_ , A_ ) accelerator.load_state(A_ ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) _SCREAMING_SNAKE_CASE = train(2 , A_ , A_ , A_ , A_ ) # Save everything _SCREAMING_SNAKE_CASE = os.path.join(A_ , 'checkpoint' ) accelerator.save_state(A_ ) # Load everything back in and make sure all states work accelerator.load_state(A_ ) test_rands += train(1 , A_ , A_ , A_ , A_ ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) def __magic_name__ ( self )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _SCREAMING_SNAKE_CASE = DummyModel() _SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = dummy_dataloaders() _SCREAMING_SNAKE_CASE = ProjectConfiguration(automatic_checkpoint_naming=A_ ) # Train baseline _SCREAMING_SNAKE_CASE = Accelerator(project_dir=A_ , project_config=A_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare( A_ , A_ , A_ , A_ ) # Save initial accelerator.save_state() ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE = optimizer.state_dict() _SCREAMING_SNAKE_CASE = train(3 , A_ , A_ , A_ , A_ ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE = optimizer.state_dict() # Train partially set_seed(42 ) _SCREAMING_SNAKE_CASE = DummyModel() _SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = dummy_dataloaders() _SCREAMING_SNAKE_CASE = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=A_ ) _SCREAMING_SNAKE_CASE = Accelerator(project_dir=A_ , project_config=A_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare( A_ , A_ , A_ , A_ ) accelerator.load_state(os.path.join(A_ , 'checkpoints' , 'checkpoint_0' ) ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) _SCREAMING_SNAKE_CASE = train(2 , A_ , A_ , A_ , A_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A_ , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , A_ , A_ , A_ , A_ ) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() _SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , A_ ) def __magic_name__ ( self )-> List[str]: _SCREAMING_SNAKE_CASE = torch.tensor([1, 2, 3] ) _SCREAMING_SNAKE_CASE = torch.tensor([2, 3, 4] ) _SCREAMING_SNAKE_CASE = DummyModel() _SCREAMING_SNAKE_CASE = torch.optim.Adam(net.parameters() ) _SCREAMING_SNAKE_CASE = Accelerator() with self.assertRaises(A_ ) as ve: accelerator.register_for_checkpointing(A_ , A_ , A_ , A_ ) _SCREAMING_SNAKE_CASE = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __magic_name__ ( self )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _SCREAMING_SNAKE_CASE = DummyModel() _SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _SCREAMING_SNAKE_CASE = torch.optim.lr_scheduler.StepLR(A_ , step_size=1 , gamma=0.99 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = dummy_dataloaders() _SCREAMING_SNAKE_CASE = ProjectConfiguration(automatic_checkpoint_naming=A_ ) # Train baseline _SCREAMING_SNAKE_CASE = Accelerator(project_dir=A_ , project_config=A_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare( A_ , A_ , A_ , A_ , A_ ) # Save initial accelerator.save_state() _SCREAMING_SNAKE_CASE = scheduler.state_dict() train(3 , A_ , A_ , A_ , A_ , A_ ) self.assertNotEqual(A_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A_ , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(A_ , scheduler.state_dict() ) def __magic_name__ ( self )-> Tuple: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _SCREAMING_SNAKE_CASE = DummyModel() _SCREAMING_SNAKE_CASE = ProjectConfiguration(automatic_checkpoint_naming=A_ , total_limit=2 ) # Train baseline _SCREAMING_SNAKE_CASE = Accelerator(project_dir=A_ , project_config=A_ ) _SCREAMING_SNAKE_CASE = accelerator.prepare(A_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(A_ , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(A_ , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(A_ , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def __magic_name__ ( self )-> Tuple: _SCREAMING_SNAKE_CASE = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": snake_case : str = '/tmp/accelerate/state_checkpointing' snake_case : Any = DummyModel() snake_case : Union[str, Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3) snake_case : Optional[int] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) snake_case , snake_case : str = dummy_dataloaders() snake_case : str = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline snake_case : Optional[int] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) snake_case , snake_case , snake_case , snake_case , snake_case : Union[str, Any] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) snake_case , snake_case : Union[str, Any] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: snake_case : str = group['params'][0].device break assert param_device.type == accelerator.device.type snake_case : List[str] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: snake_case : Dict = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: snake_case : Tuple = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
605
from __future__ import annotations def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" if len(UpperCAmelCase__ ) == 0: return array _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = min(UpperCAmelCase__ ), max(UpperCAmelCase__ ) # Compute the variables _SCREAMING_SNAKE_CASE = _max - _min + 1 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _SCREAMING_SNAKE_CASE = i - _min _SCREAMING_SNAKE_CASE = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _SCREAMING_SNAKE_CASE = 0 for i in range(UpperCAmelCase__ ): while holes_repeat[i] > 0: _SCREAMING_SNAKE_CASE = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() snake_case : Dict = input('Enter numbers separated by comma:\n') snake_case : List[Any] = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
605
1
"""simple docstring""" import os def __UpperCAmelCase ( UpperCAmelCase_ : str = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) as input_file: __snake_case : Any = [ [int(UpperCAmelCase_ ) for element in line.split(',' )] for line in input_file.readlines() ] __snake_case : Any = len(UpperCAmelCase_ ) __snake_case : Optional[int] = len(matrix[0] ) __snake_case : Any = [[-1 for _ in range(UpperCAmelCase_ )] for _ in range(UpperCAmelCase_ )] for i in range(UpperCAmelCase_ ): __snake_case : Any = matrix[i][0] for j in range(1 , UpperCAmelCase_ ): for i in range(UpperCAmelCase_ ): __snake_case : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , UpperCAmelCase_ ): __snake_case : Optional[Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __snake_case : List[str] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
192
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class UpperCamelCase : def __init__(self : Tuple , _A : List[Any] , _A : int=sys.maxsize) -> int: __snake_case : Dict = 'bilinear' __snake_case : int = max_size __snake_case : Any = short_edge_length def __call__(self : Optional[Any] , _A : Any) -> Dict: __snake_case : Any = [] for img in imgs: __snake_case , __snake_case : int = img.shape[:2] # later: provide list and randomly choose index for resize __snake_case : Optional[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __snake_case : int = size * 1.0 / min(_A , _A) if h < w: __snake_case , __snake_case : str = size, scale * w else: __snake_case , __snake_case : List[str] = scale * h, size if max(_A , _A) > self.max_size: __snake_case : str = self.max_size * 1.0 / max(_A , _A) __snake_case : Any = newh * scale __snake_case : Any = neww * scale __snake_case : Optional[int] = int(neww + 0.5) __snake_case : str = int(newh + 0.5) if img.dtype == np.uinta: __snake_case : str = Image.fromarray(_A) __snake_case : str = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __snake_case : Tuple = np.asarray(_A) else: __snake_case : str = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __snake_case : Dict = nn.functional.interpolate( _A , (newh, neww) , mode=self.interp_method , align_corners=_A).squeeze(0) img_augs.append(_A) return img_augs class UpperCamelCase : def __init__(self : List[str] , _A : List[str]) -> Optional[int]: __snake_case : Union[str, Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __snake_case : Union[str, Any] = cfg.INPUT.FORMAT __snake_case : List[Any] = cfg.SIZE_DIVISIBILITY __snake_case : Tuple = cfg.PAD_VALUE __snake_case : int = cfg.INPUT.MAX_SIZE_TEST __snake_case : List[Any] = cfg.MODEL.DEVICE __snake_case : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __snake_case : Any = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __snake_case : Union[str, Any] = lambda _A: (x - self.pixel_mean) / self.pixel_std def _lowercase (self : Tuple , _A : str) -> int: __snake_case : str = tuple(max(_A) for s in zip(*[img.shape for img in images])) __snake_case : int = [im.shape[-2:] for im in images] __snake_case : int = [ nn.functional.pad( _A , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_A , _A) ] return torch.stack(_A), torch.tensor(_A) def __call__(self : Optional[Any] , _A : Dict , _A : Union[str, Any]=False) -> Optional[int]: with torch.no_grad(): if not isinstance(_A , _A): __snake_case : str = [images] if single_image: assert len(_A) == 1 for i in range(len(_A)): if isinstance(images[i] , torch.Tensor): images.insert(_A , images.pop(_A).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _A , torch.as_tensor(img_tensorize(images.pop(_A) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __snake_case : Any = torch.tensor([im.shape[:2] for im in images]) __snake_case : Tuple = self.aug(_A) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __snake_case : List[str] = [self.normalizer(_A) for x in images] # now pad them to do the following operations __snake_case , __snake_case : List[Any] = self.pad(_A) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __snake_case : int = torch.true_divide(_A , _A) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> int: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __UpperCAmelCase ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple[int, int] ) -> Union[str, Any]: '''simple docstring''' assert torch.isfinite(UpperCAmelCase_ ).all(), "Box tensor contains infinite or NaN!" __snake_case , __snake_case : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=UpperCAmelCase_ ) tensor[:, 1].clamp_(min=0 , max=UpperCAmelCase_ ) tensor[:, 2].clamp_(min=0 , max=UpperCAmelCase_ ) tensor[:, 3].clamp_(min=0 , max=UpperCAmelCase_ )
192
1
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( __snake_case , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = LongformerTokenizer __lowerCAmelCase = True __lowerCAmelCase = LongformerTokenizerFast __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : List[str] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __a : Optional[Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __a : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __a : Optional[Any] = {'''unk_token''': '''<unk>'''} __a : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase__ ) ) def _lowerCamelCase ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _lowerCamelCase ( self , **_UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[Any] = '''lower newer''' __a : Any = '''lower newer''' return input_text, output_text def _lowerCamelCase ( self ): __a : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : List[str] = '''lower newer''' __a : str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __a : Optional[int] = tokenizer.tokenize(lowerCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __a : Optional[Any] = tokens + [tokenizer.unk_token] __a : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) def _lowerCamelCase ( self ): __a : List[str] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowerCamelCase__ ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowerCamelCase__ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _lowerCamelCase ( self ): __a : Union[str, Any] = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __a : Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase__ ) __a : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase__ ) __a : Optional[int] = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) __a : str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) __a : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) __a : str = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowerCamelCase ( self ): __a : Dict = self.get_tokenizer() __a : Any = '''Encode this sequence.''' __a : Any = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __a : List[Any] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) __a : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCamelCase__ , lowerCamelCase__ ) __a : List[Any] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) __a : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __a : int = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __a : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCamelCase__ , lowerCamelCase__ ) # Testing spaces after special tokens __a : Tuple = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ )} ) # mask token has a left space __a : List[Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) __a : Dict = '''Encode <mask> sequence''' __a : Union[str, Any] = '''Encode <mask>sequence''' __a : Union[str, Any] = tokenizer.encode(lowerCamelCase__ ) __a : Optional[Any] = encoded.index(lowerCamelCase__ ) __a : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) __a : List[Any] = tokenizer.encode(lowerCamelCase__ ) __a : str = encoded.index(lowerCamelCase__ ) __a : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : List[str] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __a : int = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __a : Optional[Any] = '''A, <mask> AllenNLP sentence.''' __a : Optional[int] = tokenizer_r.encode_plus(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ ) __a : List[Any] = tokenizer_p.encode_plus(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __a : Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __a : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowerCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _lowerCamelCase ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __a : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) __a : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __a : int = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowerCamelCase__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowerCamelCase__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowerCamelCase__ ) def _lowerCamelCase ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : List[Any] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __a : List[str] = f"""{text_of_1_token} {text_of_1_token}""" __a : List[str] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) __a : Dict = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) __a : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) __a : Dict = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) __a : Any = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) __a : Optional[int] = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ), len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) __a : Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) __a : int = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ), len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) __a : List[str] = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __a : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) __a : Optional[int] = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ) + 1, 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) __a : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) __a : str = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ), 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) __a : Dict = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) __a : List[str] = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ), 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , )
52
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase__ = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Any=None , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : Dict=None , UpperCamelCase : Tuple=None , ): if attention_mask is None: A__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: A__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: A__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _UpperCamelCase : def __init__(self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=9_9 , lowerCamelCase__=1_6 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=3_2 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=0.0_2 , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id A__ = initializer_range def A (self ): """simple docstring""" A__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) A__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) A__ = shift_tokens_right(lowerCamelCase__ , 1 , 2 ) A__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , ) A__ = prepare_blenderbot_inputs_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, inputs_dict def A (self ): """simple docstring""" A__ ,A__ = self.prepare_config_and_inputs() return config, inputs_dict def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" A__ = 2_0 A__ = model_class_name(lowerCamelCase__ ) A__ = model.encode(inputs_dict["""input_ids"""] ) A__ ,A__ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) A__ = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ ) A__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) A__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) A__ = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase__ , ) A__ = model.decode(lowerCamelCase__ , lowerCamelCase__ ) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" A__ = 2_0 A__ = model_class_name(lowerCamelCase__ ) A__ = model.encode(inputs_dict["""input_ids"""] ) A__ ,A__ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) A__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) A__ = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ ) A__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) A__ = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) A__ = model.decode(lowerCamelCase__ , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ ) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class _UpperCamelCase ( unittest.TestCase): __lowerCamelCase = 9_9 def A (self ): """simple docstring""" A__ = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) A__ = input_ids.shape[0] A__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def A (self ): """simple docstring""" A__ ,A__ ,A__ = self._get_config_and_data() A__ = FlaxBlenderbotForConditionalGeneration(lowerCamelCase__ ) A__ = lm_model(input_ids=lowerCamelCase__ ) A__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCamelCase__ ) def A (self ): """simple docstring""" A__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) A__ = FlaxBlenderbotForConditionalGeneration(lowerCamelCase__ ) A__ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) A__ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) A__ = lm_model(input_ids=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ) A__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCamelCase__ ) def A (self ): """simple docstring""" A__ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) A__ = shift_tokens_right(lowerCamelCase__ , 1 , 2 ) A__ = np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum() A__ = np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCamelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _UpperCamelCase ( __snake_case , unittest.TestCase , __snake_case): __lowerCamelCase = True __lowerCamelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __lowerCamelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def A (self ): """simple docstring""" A__ = FlaxBlenderbotModelTester(self ) def A (self ): """simple docstring""" A__ ,A__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def A (self ): """simple docstring""" A__ ,A__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def A (self ): """simple docstring""" A__ ,A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) A__ = model_class(lowerCamelCase__ ) @jax.jit def encode_jitted(lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ): return model.encode(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) with self.subTest("""JIT Enabled""" ): A__ = encode_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A__ = encode_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def A (self ): """simple docstring""" A__ ,A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ = model_class(lowerCamelCase__ ) A__ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) A__ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): return model.decode( decoder_input_ids=lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , encoder_outputs=lowerCamelCase__ , ) with self.subTest("""JIT Enabled""" ): A__ = decode_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A__ = decode_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A (self ): """simple docstring""" for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids A__ = np.ones((1, 1) ) * model.config.eos_token_id A__ = model(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def A (self ): """simple docstring""" A__ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5} A__ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} A__ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCamelCase__ ) A__ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) A__ = ["""Sam"""] A__ = tokenizer(lowerCamelCase__ , return_tensors="""jax""" ) A__ = model.generate(**lowerCamelCase__ , **lowerCamelCase__ ) A__ = """Sam is a great name. It means \"sun\" in Gaelic.""" A__ = tokenizer.batch_decode(lowerCamelCase__ , **lowerCamelCase__ ) assert generated_txt[0].strip() == tgt_text
574
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __magic_name__ = logging.getLogger(__name__) __magic_name__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __magic_name__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a__ : """simple docstring""" A__ : Optional[str] = field( default=_snake_case , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) A__ : Optional[str] = field( default=_snake_case , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(_snake_case )} , ) A__ : Optional[str] = field( default=_snake_case , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) A__ : Optional[str] = field( default=_snake_case , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A__ : Optional[str] = field( default=_snake_case , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) A__ : Optional[str] = field( default=_snake_case , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) A__ : bool = field( default=_snake_case , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) A__ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) A__ : bool = field( default=_snake_case , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def __UpperCAmelCase ( self :List[Any] ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class a__ : """simple docstring""" A__ : Optional[str] = field( default=_snake_case , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) A__ : Optional[str] = field( default=_snake_case , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) A__ : Optional[str] = field(default=_snake_case , metadata={'''help''': '''The input training data file (a text file).'''} ) A__ : Optional[str] = field( default=_snake_case , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) A__ : Optional[str] = field( default=_snake_case , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) A__ : Optional[str] = field( default=_snake_case , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) A__ : bool = field( default=_snake_case , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) A__ : Optional[int] = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) A__ : Optional[int] = field( default=_snake_case , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) A__ : Optional[int] = field( default=_snake_case , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) A__ : float = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) A__ : bool = field( default=_snake_case , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def __UpperCAmelCase ( self :Union[str, Any] ): if self.train_file is not None: lowercase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowercase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: lowercase = [json.loads(_UpperCAmelCase ) for line in f.read().splitlines() if (len(_UpperCAmelCase ) > 0 and not line.isspace())] assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowercase = {c: dataset[c] for c in dataset.column_names} lowercase = refs return Dataset.from_dict(_UpperCAmelCase ) def __snake_case ( ): """simple docstring""" lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""train[:{data_args.validation_split_percentage}%]""" , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""train[{data_args.validation_split_percentage}%:]""" , ) else: lowercase = {} if data_args.train_file is not None: lowercase = data_args.train_file if data_args.validation_file is not None: lowercase = data_args.validation_file lowercase = data_args.train_file.split('.' )[-1] if extension == "txt": lowercase = 'text' lowercase = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) lowercase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: lowercase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) lowercase = AutoModelForMaskedLM.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowercase = datasets['train'].column_names else: lowercase = datasets['validation'].column_names lowercase = 'text' if 'text' in column_names else column_names[0] lowercase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_UpperCAmelCase ): # Remove empty lines lowercase = [line for line in examples['text'] if len(_UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length ) lowercase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowercase = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowercase = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowercase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowercase = False # Data collator # This one will take care of randomly masking the tokens. lowercase = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowercase = model_args.model_name_or_path else: lowercase = None lowercase = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation lowercase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowercase = trainer.evaluate() lowercase = math.exp(eval_output['eval_loss'] ) lowercase = perplexity lowercase = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) return results def __snake_case ( _UpperCAmelCase ): """simple docstring""" main() if __name__ == "__main__": main()
314
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
1
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = PriorTransformer __magic_name__ = 'hidden_states' @property def a_ ( self ): snake_case = 4 snake_case = 8 snake_case = 7 snake_case = floats_tensor((batch_size, embedding_dim) ).to(__snake_case ) snake_case = floats_tensor((batch_size, embedding_dim) ).to(__snake_case ) snake_case = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(__snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def a_ ( self , __snake_case=0 ): torch.manual_seed(__snake_case ) snake_case = 4 snake_case = 8 snake_case = 7 snake_case = torch.randn((batch_size, embedding_dim) ).to(__snake_case ) snake_case = torch.randn((batch_size, embedding_dim) ).to(__snake_case ) snake_case = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(__snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def a_ ( self ): return (4, 8) @property def a_ ( self ): return (4, 8) def a_ ( self ): snake_case = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } snake_case = self.dummy_input return init_dict, inputs_dict def a_ ( self ): snake_case , snake_case = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__snake_case ) snake_case = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def a_ ( self ): snake_case , snake_case = self.prepare_init_args_and_inputs_for_common() snake_case = self.model_class(**__snake_case ) snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] , __snake_case ) def a_ ( self ): snake_case = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) snake_case = model.to(__snake_case ) if hasattr(__snake_case , '''set_default_attn_processor''' ): model.set_default_attn_processor() snake_case = self.get_dummy_seed_input() with torch.no_grad(): snake_case = model(**__snake_case )[0] snake_case = output[0, :5].flatten().cpu() print(__snake_case ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. snake_case = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(__snake_case , __snake_case , rtol=1E-2 ) ) @slow class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self , __snake_case=1 , __snake_case=7_6_8 , __snake_case=7_7 , __snake_case=0 ): torch.manual_seed(__snake_case ) snake_case = batch_size snake_case = embedding_dim snake_case = num_embeddings snake_case = torch.randn((batch_size, embedding_dim) ).to(__snake_case ) snake_case = torch.randn((batch_size, embedding_dim) ).to(__snake_case ) snake_case = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(__snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def a_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [3_7, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def a_ ( self , __snake_case , __snake_case ): snake_case = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' , subfolder='''prior''' ) model.to(__snake_case ) snake_case = self.get_dummy_seed_input(seed=__snake_case ) with torch.no_grad(): snake_case = model(**__snake_case )[0] assert list(sample.shape ) == [1, 7_6_8] snake_case = sample[0, :8].flatten().cpu() print(__snake_case ) snake_case = torch.tensor(__snake_case ) assert torch_all_close(__snake_case , __snake_case , atol=1E-3 )
550
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
550
1
from math import pi, sqrt def UpperCAmelCase__ ( lowercase__ ) -> float: if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(lowercase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowercase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def UpperCAmelCase__ ( ) -> None: assert gamma(0.5 ) == sqrt(lowercase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase__ = 1.0 while num: UpperCamelCase__ = float(input("Gamma of: ")) print(F"""gamma({num}) = {gamma(num)}""") print("\nEnter 0 to exit...")
634
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
634
1
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> int: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> str: UpperCamelCase = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase_ , model.state_dict()) UpperCamelCase = os.path.join(lowerCamelCase_ , '''index.json''') self.assertTrue(os.path.isfile(lowerCamelCase_)) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: UpperCamelCase = os.path.join(lowerCamelCase_ , F'{key}.dat') self.assertTrue(os.path.isfile(lowerCamelCase_)) # TODO: add tests on the fact weights are properly loaded def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: UpperCamelCase = torch.randn(2 , 3 , dtype=lowerCamelCase_) with TemporaryDirectory() as tmp_dir: UpperCamelCase = offload_weight(lowerCamelCase_ , '''weight''' , lowerCamelCase_ , {}) UpperCamelCase = os.path.join(lowerCamelCase_ , '''weight.dat''') self.assertTrue(os.path.isfile(lowerCamelCase_)) self.assertDictEqual(lowerCamelCase_ , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(lowerCamelCase_).split('''.''')[1]}}) UpperCamelCase = load_offloaded_weight(lowerCamelCase_ , index['''weight''']) self.assertTrue(torch.equal(lowerCamelCase_ , lowerCamelCase_)) def UpperCAmelCase__ ( self) -> str: UpperCamelCase = ModelForTest() UpperCamelCase = model.state_dict() UpperCamelCase = {k: v for k, v in state_dict.items() if '''linear2''' not in k} UpperCamelCase = {k: v for k, v in state_dict.items() if '''linear2''' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = OffloadedWeightsLoader(state_dict=lowerCamelCase_ , save_folder=lowerCamelCase_) # Every key is there with the right value self.assertEqual(sorted(lowerCamelCase_) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCamelCase_ , weight_map[key])) UpperCamelCase = {k: v for k, v in state_dict.items() if '''weight''' in k} UpperCamelCase = {k: v for k, v in state_dict.items() if '''weight''' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = OffloadedWeightsLoader(state_dict=lowerCamelCase_ , save_folder=lowerCamelCase_) # Every key is there with the right value self.assertEqual(sorted(lowerCamelCase_) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCamelCase_ , weight_map[key])) with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase_ , lowerCamelCase_) # Duplicates are removed UpperCamelCase = OffloadedWeightsLoader(state_dict=lowerCamelCase_ , save_folder=lowerCamelCase_) # Every key is there with the right value self.assertEqual(sorted(lowerCamelCase_) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCamelCase_ , weight_map[key])) def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2} UpperCamelCase = extract_submodules_state_dict(lowerCamelCase_ , ['''a.1''', '''a.2''']) self.assertDictEqual(lowerCamelCase_ , {'''a.1''': 0, '''a.2''': 2}) UpperCamelCase = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2} UpperCamelCase = extract_submodules_state_dict(lowerCamelCase_ , ['''a.1''', '''a.2''']) self.assertDictEqual(lowerCamelCase_ , {'''a.1.a''': 0, '''a.2.a''': 2})
34
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __SCREAMING_SNAKE_CASE : def __init__( self, _a, _a=99, _a=13, _a=7, _a=9, _a=True, _a=True, _a=False, _a=32, _a=5, _a=4, _a=37, _a=8, _a=0.1, _a=0.002, _a=1, _a=0, _a=0, _a=None, _a=None, ) -> Optional[int]: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = encoder_seq_length __SCREAMING_SNAKE_CASE = decoder_seq_length # For common tests __SCREAMING_SNAKE_CASE = self.decoder_seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_attention_mask __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = d_ff __SCREAMING_SNAKE_CASE = relative_attention_num_buckets __SCREAMING_SNAKE_CASE = dropout_rate __SCREAMING_SNAKE_CASE = initializer_factor __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = decoder_start_token_id __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = decoder_layers def __lowerCAmelCase ( self ) -> Optional[int]: return TaConfig.from_pretrained("google/umt5-base" ) def __lowerCAmelCase ( self, _a, _a, _a, _a=None, _a=None, _a=None, _a=None, _a=None, ) -> int: if attention_mask is None: __SCREAMING_SNAKE_CASE = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __SCREAMING_SNAKE_CASE = torch.ones(config.num_hidden_layers, config.num_attention_heads, device=_a ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = torch.ones(config.num_decoder_layers, config.num_attention_heads, device=_a ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = torch.ones( config.num_decoder_layers, config.num_attention_heads, device=_a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __lowerCAmelCase ( self ) -> Tuple: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __SCREAMING_SNAKE_CASE = input_ids.clamp(self.pad_token_id + 1 ) __SCREAMING_SNAKE_CASE = decoder_input_ids.clamp(self.pad_token_id + 1 ) __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = config.num_attention_heads __SCREAMING_SNAKE_CASE = self.prepare_inputs_dict(_a, _a, _a ) return config, input_dict def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCAmelCase ( self ) -> Optional[int]: return TaConfig( vocab_size=1_66, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ) def __lowerCAmelCase ( self ) -> Union[str, Any]: return TaConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ) def __lowerCAmelCase ( self, _a, _a, _a, _a, _a, _a, ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = UMTaModel(config=_a ) model.to(_a ) model.eval() __SCREAMING_SNAKE_CASE = model( input_ids=_a, decoder_input_ids=_a, attention_mask=_a, decoder_attention_mask=_a, ) __SCREAMING_SNAKE_CASE = model(input_ids=_a, decoder_input_ids=_a ) __SCREAMING_SNAKE_CASE = result.last_hidden_state __SCREAMING_SNAKE_CASE = result.past_key_values __SCREAMING_SNAKE_CASE = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_a ), config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ), 4 ) def __lowerCAmelCase ( self, _a, _a, _a, _a, _a, _a, ) -> Tuple: __SCREAMING_SNAKE_CASE = UMTaModel(config=_a ).get_decoder().to(_a ).eval() # first forward pass __SCREAMING_SNAKE_CASE = model(_a, use_cache=_a ) __SCREAMING_SNAKE_CASE = model(_a ) __SCREAMING_SNAKE_CASE = model(_a, use_cache=_a ) self.parent.assertTrue(len(_a ) == len(_a ) ) self.parent.assertTrue(len(_a ) == len(_a ) + 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1), config.vocab_size ) # append to next input_ids and __SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens], dim=-1 ) __SCREAMING_SNAKE_CASE = model(_a )["last_hidden_state"] __SCREAMING_SNAKE_CASE = model(_a, past_key_values=_a )["last_hidden_state"] # select random slice __SCREAMING_SNAKE_CASE = ids_tensor((1,), output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE = output_from_no_past[:, -1, random_slice_idx].detach() __SCREAMING_SNAKE_CASE = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a, _a, atol=1E-3 ) ) def __lowerCAmelCase ( self, _a, _a, ) -> Optional[int]: __SCREAMING_SNAKE_CASE = UMTaModel(config=_a ).to(_a ).half().eval() __SCREAMING_SNAKE_CASE = model(**_a )["last_hidden_state"] self.parent.assertFalse(torch.isnan(_a ).any().item() ) @require_torch class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ =( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ =(UMTaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ =( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ =True SCREAMING_SNAKE_CASE__ =False SCREAMING_SNAKE_CASE__ =False SCREAMING_SNAKE_CASE__ =True SCREAMING_SNAKE_CASE__ =True # The small UMT5 model needs higher percentages for CPU/MP tests SCREAMING_SNAKE_CASE__ =[0.8, 0.9] def __lowerCAmelCase ( self ) -> str: __SCREAMING_SNAKE_CASE = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def __lowerCAmelCase ( self ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = UMTaModel(config_and_inputs[0] ).to(_a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _a, (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]), f'''{tmpdirname}/t5_test.onnx''', export_params=_a, opset_version=9, input_names=["input_ids", "decoder_input_ids"], ) @unittest.skipIf(torch_device == "cpu", "Cant do half precision" ) def __lowerCAmelCase ( self ) -> str: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_a ) def __lowerCAmelCase ( self ) -> Tuple: __SCREAMING_SNAKE_CASE = ["encoder_attentions", "decoder_attentions", "cross_attentions"] __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = config_and_inputs[0] __SCREAMING_SNAKE_CASE = UMTaForConditionalGeneration(_a ).eval() model.to(_a ) __SCREAMING_SNAKE_CASE = { "head_mask": torch.zeros(config.num_layers, config.num_heads, device=_a ), "decoder_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=_a ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=_a ), } for attn_name, (name, mask) in zip(_a, head_masking.items() ): __SCREAMING_SNAKE_CASE = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __SCREAMING_SNAKE_CASE = torch.ones( config.num_decoder_layers, config.num_heads, device=_a ) __SCREAMING_SNAKE_CASE = model.generate( config_and_inputs[1]["input_ids"], num_beams=1, max_length=3, output_attentions=_a, return_dict_in_generate=_a, **_a, ) # We check the state of decoder_attentions and cross_attentions just from the last step __SCREAMING_SNAKE_CASE = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ), 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def __lowerCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def __lowerCAmelCase ( self ) -> List[Any]: __SCREAMING_SNAKE_CASE = UMTaForConditionalGeneration.from_pretrained("google/umt5-small", return_dict=_a ).to(_a ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("google/umt5-small", use_fast=_a, legacy=_a ) __SCREAMING_SNAKE_CASE = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] __SCREAMING_SNAKE_CASE = tokenizer(_a, return_tensors="pt", padding=_a ).input_ids # fmt: off __SCREAMING_SNAKE_CASE = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(_a, _a ) __SCREAMING_SNAKE_CASE = model.generate(input_ids.to(_a ) ) __SCREAMING_SNAKE_CASE = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(_a ) self.assertEqual(_a, _a )
693
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase__ ( unittest.TestCase): def __A ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = 3 SCREAMING_SNAKE_CASE : Tuple = (32, 32) SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase__ ) return image @property def __A ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def __A ( self : str ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __A ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCamelCase__ ) @property def __A ( self : Optional[Any] ): '''simple docstring''' def extract(*UpperCamelCase__ : str , **UpperCamelCase__ : str ): class lowercase__ : def __init__( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = torch.ones([0] ) def __A ( self : int , UpperCamelCase__ : int ): '''simple docstring''' self.pixel_values.to(UpperCamelCase__ ) return self return Out() return extract def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_cond_unet SCREAMING_SNAKE_CASE : Tuple = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_vae SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Optional[int] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) SCREAMING_SNAKE_CASE : Dict = 77 SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_image.to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE : Any = AltDiffusionImgaImgPipeline( unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE : str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = alt_pipe.to(UpperCamelCase__ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE : Any = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = alt_pipe( [prompt] , generator=UpperCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = alt_pipe( [prompt] , generator=UpperCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.dummy_cond_unet SCREAMING_SNAKE_CASE : str = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = self.dummy_vae SCREAMING_SNAKE_CASE : Dict = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) SCREAMING_SNAKE_CASE : Tuple = 77 SCREAMING_SNAKE_CASE : Dict = self.dummy_image.to(UpperCamelCase__ ) # put models in fp16 SCREAMING_SNAKE_CASE : int = unet.half() SCREAMING_SNAKE_CASE : Optional[int] = vae.half() SCREAMING_SNAKE_CASE : Tuple = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE : Tuple = AltDiffusionImgaImgPipeline( unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE : Any = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = alt_pipe.to(UpperCamelCase__ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = alt_pipe( [prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type='''np''' , image=UpperCamelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE : Union[str, Any] = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE : Any = '''BAAI/AltDiffusion''' SCREAMING_SNAKE_CASE : int = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : Optional[int] = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase__ , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE : Optional[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowercase__ ( unittest.TestCase): def __A ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) SCREAMING_SNAKE_CASE : int = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) SCREAMING_SNAKE_CASE : Any = '''BAAI/AltDiffusion''' SCREAMING_SNAKE_CASE : Tuple = AltDiffusionImgaImgPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : int = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , strength=0.75 , guidance_scale=7.5 , generator=UpperCamelCase__ , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Dict = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
34
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """deberta-v2""" def __init__( self : Optional[Any] , UpperCamelCase__ : Any=12_8100 , UpperCamelCase__ : Optional[int]=1536 , UpperCamelCase__ : Dict=24 , UpperCamelCase__ : List[str]=24 , UpperCamelCase__ : Tuple=6144 , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : Optional[Any]=0 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : List[Any]=1E-7 , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : str=-1 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=0 , UpperCamelCase__ : str="gelu" , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = relative_attention SCREAMING_SNAKE_CASE : Optional[Any] = max_relative_positions SCREAMING_SNAKE_CASE : Optional[int] = pad_token_id SCREAMING_SNAKE_CASE : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCamelCase__ ) == str: SCREAMING_SNAKE_CASE : Optional[int] = [x.strip() for x in pos_att_type.lower().split('''|''' )] SCREAMING_SNAKE_CASE : Any = pos_att_type SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Dict = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''pooler_hidden_size''' , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = pooler_dropout SCREAMING_SNAKE_CASE : Union[str, Any] = pooler_hidden_act class lowercase__ ( UpperCamelCase_): @property def __A ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __A ( self : Union[str, Any] ): '''simple docstring''' return 12 def __A ( self : Dict , UpperCamelCase__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional["TensorType"] = None , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 40 , UpperCamelCase__ : int = 40 , UpperCamelCase__ : "PreTrainedTokenizerBase" = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = super().generate_dummy_inputs(preprocessor=UpperCamelCase__ , framework=UpperCamelCase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
34
1
import math from datetime import datetime, timedelta def snake_case( __magic_name__ ) -> datetime: '''simple docstring''' lowercase : Dict = year % 19 lowercase : Optional[Any] = year % 4 lowercase : Optional[int] = year % 7 lowercase : Union[str, Any] = math.floor(year / 1_00 ) lowercase : Union[str, Any] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) lowercase : Union[str, Any] = leap_day_inhibits / 4 lowercase : Dict = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 lowercase : str = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowercase : Optional[Any] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon lowercase : Dict = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowerCamelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowerCamelCase , 4 , 18 ) else: return datetime(__lowerCamelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): lowerCAmelCase_ = """will be""" if year > datetime.now().year else """was""" print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
217
_SCREAMING_SNAKE_CASE : str = 8.3_144_598 def _lowercase ( __lowerCamelCase : float ,__lowerCamelCase : float ) -> float: '''simple docstring''' if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _SCREAMING_SNAKE_CASE : List[str] = 300 _SCREAMING_SNAKE_CASE : Any = 28 _SCREAMING_SNAKE_CASE : Any = rms_speed_of_molecule(temperature, molar_mass) print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
344
0
"""simple docstring""" def A_ (__a , __a ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) A_ = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" A_ = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" A_ = max(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase__ ) , b_binary.zfill(UpperCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" from collections import deque class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , _snake_case : str , _snake_case : int , _snake_case : int ) -> None: """simple docstring""" A_ = process_name # process name A_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A_ = arrival_time A_ = burst_time # remaining burst time A_ = 0 # total time of the process wait in ready queue A_ = 0 # time from arrival time to completion time class __lowerCAmelCase : """simple docstring""" def __init__( self : str , _snake_case : int , _snake_case : list[int] , _snake_case : deque[Process] , _snake_case : int , ) -> None: """simple docstring""" # total number of mlfq's queues A_ = number_of_queues # time slice of queues that round robin algorithm applied A_ = time_slices # unfinished process is in this ready_queue A_ = queue # current time A_ = current_time # finished process is in this sequence queue A_ = deque() def lowerCamelCase__ ( self : List[str] ) -> list[str]: """simple docstring""" A_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCamelCase__ ( self : str , _snake_case : list[Process] ) -> list[int]: """simple docstring""" A_ = [] for i in range(len(_snake_case ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCamelCase__ ( self : Tuple , _snake_case : list[Process] ) -> list[int]: """simple docstring""" A_ = [] for i in range(len(_snake_case ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCamelCase__ ( self : Tuple , _snake_case : list[Process] ) -> list[int]: """simple docstring""" A_ = [] for i in range(len(_snake_case ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCamelCase__ ( self : Optional[int] , _snake_case : deque[Process] ) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def lowerCamelCase__ ( self : int , _snake_case : Process ) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCamelCase__ ( self : Dict , _snake_case : deque[Process] ) -> deque[Process]: """simple docstring""" A_ = deque() # sequence deque of finished process while len(_snake_case ) != 0: A_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_snake_case ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A_ = 0 # set the process's turnaround time because it is finished A_ = self.current_time - cp.arrival_time # set the completion time A_ = self.current_time # add the process to queue that has finished queue finished.append(_snake_case ) self.finish_queue.extend(_snake_case ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCamelCase__ ( self : List[str] , _snake_case : deque[Process] , _snake_case : int ) -> tuple[deque[Process], deque[Process]]: """simple docstring""" A_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_snake_case ) ): A_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_snake_case ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_snake_case ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A_ = 0 # set the finish time A_ = self.current_time # update the process' turnaround time because it is finished A_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_snake_case ) self.finish_queue.extend(_snake_case ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCamelCase__ ( self : Any ) -> deque[Process]: """simple docstring""" # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): A_ , A_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest UpperCamelCase_ : Tuple = Process('''P1''', 0, 53) UpperCamelCase_ : List[Any] = Process('''P2''', 0, 17) UpperCamelCase_ : Optional[int] = Process('''P3''', 0, 68) UpperCamelCase_ : Union[str, Any] = Process('''P4''', 0, 24) UpperCamelCase_ : Any = 3 UpperCamelCase_ : List[str] = [17, 25] UpperCamelCase_ : List[str] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) UpperCamelCase_ : str = Process('''P1''', 0, 53) UpperCamelCase_ : Dict = Process('''P2''', 0, 17) UpperCamelCase_ : List[Any] = Process('''P3''', 0, 68) UpperCamelCase_ : int = Process('''P4''', 0, 24) UpperCamelCase_ : Dict = 3 UpperCamelCase_ : str = [17, 25] UpperCamelCase_ : Optional[int] = deque([Pa, Pa, Pa, Pa]) UpperCamelCase_ : str = MLFQ(number_of_queues, time_slices, queue, 0) UpperCamelCase_ : int = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( F"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( F"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
482
0
from collections import deque class lowerCamelCase__ : '''simple docstring''' def __init__( self :Any , a :str , a :int , a :int ) -> None: __UpperCamelCase : Optional[int] = process_name # process name __UpperCamelCase : int = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCamelCase : Optional[Any] = arrival_time __UpperCamelCase : Dict = burst_time # remaining burst time __UpperCamelCase : str = 0 # total time of the process wait in ready queue __UpperCamelCase : int = 0 # time from arrival time to completion time class lowerCamelCase__ : '''simple docstring''' def __init__( self :Dict , a :int , a :list[int] , a :deque[Process] , a :int , ) -> None: # total number of mlfq's queues __UpperCamelCase : Optional[Any] = number_of_queues # time slice of queues that round robin algorithm applied __UpperCamelCase : List[str] = time_slices # unfinished process is in this ready_queue __UpperCamelCase : int = queue # current time __UpperCamelCase : List[Any] = current_time # finished process is in this sequence queue __UpperCamelCase : deque[Process] = deque() def _lowerCamelCase ( self :List[Any] ) -> list[str]: __UpperCamelCase : Dict = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _lowerCamelCase ( self :Dict , a :list[Process] ) -> list[int]: __UpperCamelCase : Optional[Any] = [] for i in range(len(a ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _lowerCamelCase ( self :List[Any] , a :list[Process] ) -> list[int]: __UpperCamelCase : List[str] = [] for i in range(len(a ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _lowerCamelCase ( self :Optional[Any] , a :list[Process] ) -> list[int]: __UpperCamelCase : List[Any] = [] for i in range(len(a ) ): completion_times.append(queue[i].stop_time ) return completion_times def _lowerCamelCase ( self :List[str] , a :deque[Process] ) -> list[int]: return [q.burst_time for q in queue] def _lowerCamelCase ( self :int , a :Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _lowerCamelCase ( self :List[str] , a :deque[Process] ) -> deque[Process]: __UpperCamelCase : deque[Process] = deque() # sequence deque of finished process while len(a ) != 0: __UpperCamelCase : int = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(a ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCamelCase : Union[str, Any] = 0 # set the process's turnaround time because it is finished __UpperCamelCase : int = self.current_time - cp.arrival_time # set the completion time __UpperCamelCase : Dict = self.current_time # add the process to queue that has finished queue finished.append(a ) self.finish_queue.extend(a ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _lowerCamelCase ( self :Tuple , a :deque[Process] , a :int ) -> tuple[deque[Process], deque[Process]]: __UpperCamelCase : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(a ) ): __UpperCamelCase : Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(a ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCamelCase : List[Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(a ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCamelCase : int = 0 # set the finish time __UpperCamelCase : Tuple = self.current_time # update the process' turnaround time because it is finished __UpperCamelCase : Union[str, Any] = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(a ) self.finish_queue.extend(a ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _lowerCamelCase ( self :int ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowercase : Dict = Process('P1', 0, 53) lowercase : Tuple = Process('P2', 0, 17) lowercase : Dict = Process('P3', 0, 68) lowercase : Tuple = Process('P4', 0, 24) lowercase : List[Any] = 3 lowercase : Any = [17, 25] lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) lowercase : int = Process('P1', 0, 53) lowercase : Dict = Process('P2', 0, 17) lowercase : List[Any] = Process('P3', 0, 68) lowercase : Union[str, Any] = Process('P4', 0, 24) lowercase : Tuple = 3 lowercase : Union[str, Any] = [17, 25] lowercase : List[Any] = deque([Pa, Pa, Pa, Pa]) lowercase : List[str] = MLFQ(number_of_queues, time_slices, queue, 0) lowercase : Union[str, Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
557
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowercase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :Dict , *a :Tuple , **a :List[Any] ) -> None: warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , a , ) super().__init__(*a , **a )
557
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> int: """simple docstring""" if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> str: """simple docstring""" for char in word: snake_case_ = ord(SCREAMING_SNAKE_CASE ) if not _is_chinese_char(SCREAMING_SNAKE_CASE ): return 0 return 1 def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = set() for token in tokens: snake_case_ = len(SCREAMING_SNAKE_CASE ) > 1 and is_chinese(SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE ) snake_case_ = list(SCREAMING_SNAKE_CASE ) return word_list def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Optional[int]: """simple docstring""" if not chinese_word_set: return bert_tokens snake_case_ = max([len(SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) snake_case_ = bert_tokens snake_case_ , snake_case_ = 0, len(SCREAMING_SNAKE_CASE ) while start < end: snake_case_ = True if is_chinese(bert_word[start] ): snake_case_ = min(end - start , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , 1 , -1 ): snake_case_ = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case_ = '''##''' + bert_word[j] snake_case_ = start + i snake_case_ = False break if single_word: start += 1 return bert_word def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): snake_case_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] snake_case_ = [get_chinese_word(SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) snake_case_ = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): snake_case_ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) snake_case_ = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case_ = [] for id in input_ids: snake_case_ = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE ) input_tokens.append(SCREAMING_SNAKE_CASE ) snake_case_ = add_sub_symbol(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE ): if token[:2] == "##": snake_case_ = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE ) ): ref_id.append(SCREAMING_SNAKE_CASE ) ref_ids.append(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) return ref_ids def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> str: """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: snake_case_ = f.readlines() snake_case_ = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case_ = LTP(args.ltp ) # faster in GPU device snake_case_ = BertTokenizer.from_pretrained(args.bert ) snake_case_ = prepare_ref(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: snake_case_ = [json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") UpperCAmelCase = parser.parse_args() main(args)
531
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) snake_case_ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) snake_case_ = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): for example in examples: snake_case_ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'''score''': ANY(_UpperCAmelCase ), '''label''': ANY(_UpperCAmelCase )}, {'''score''': ANY(_UpperCAmelCase ), '''label''': ANY(_UpperCAmelCase )}, ] , ) @require_torch def UpperCamelCase__ ( self ): snake_case_ = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' snake_case_ = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) snake_case_ = pipeline( '''video-classification''' , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) snake_case_ = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) snake_case_ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}] , ) snake_case_ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def UpperCamelCase__ ( self ): pass
531
1
'''simple docstring''' def UpperCamelCase ( lowercase_ : str ) -> bool: '''simple docstring''' lowercase =0 for ch in input_str: lowercase =ord(lowercase_ ) lowercase =pow(2 , lowercase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
72
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __lowercase : Dict = logging.get_logger(__name__) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Optional[int] = ['''pixel_values'''] def __init__( self ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = 1 / 255 ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = True ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = size if size is not None else {"""shortest_edge""": 224} snake_case : str = get_size_dict(SCREAMING_SNAKE_CASE_ ,default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : str = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} snake_case : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ,param_name="""crop_size""" ) snake_case : Optional[Any] = do_resize snake_case : Union[str, Any] = size snake_case : Dict = resample snake_case : Dict = do_rescale snake_case : Dict = rescale_factor snake_case : List[str] = do_center_crop snake_case : Dict = crop_size snake_case : Any = do_flip_channel_order def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = PIL.Image.BILINEAR ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : str = get_size_dict(SCREAMING_SNAKE_CASE_ ,default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) snake_case : List[Any] = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ ,size=size["""shortest_edge"""] ,default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ ,size=SCREAMING_SNAKE_CASE_ ,resample=SCREAMING_SNAKE_CASE_ ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(SCREAMING_SNAKE_CASE_ ,size=(size["""height"""], size["""width"""]) ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ ,scale=SCREAMING_SNAKE_CASE_ ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' return flip_channel_order(SCREAMING_SNAKE_CASE_ ,data_format=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : List[Any] = do_resize if do_resize is not None else self.do_resize snake_case : List[str] = resample if resample is not None else self.resample snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Union[str, Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) snake_case : Tuple = size if size is not None else self.size snake_case : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ,default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : str = crop_size if crop_size is not None else self.crop_size snake_case : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ,param_name="""crop_size""" ) snake_case : List[Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. snake_case : Dict = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: snake_case : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ ,size=SCREAMING_SNAKE_CASE_ ,resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: snake_case : Optional[Any] = [self.center_crop(image=SCREAMING_SNAKE_CASE_ ,size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: snake_case : Dict = [self.rescale(image=SCREAMING_SNAKE_CASE_ ,scale=SCREAMING_SNAKE_CASE_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: snake_case : Optional[int] = [self.flip_channel_order(image=SCREAMING_SNAKE_CASE_ ) for image in images] snake_case : List[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) for image in images] snake_case : int = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ ,tensor_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): snake_case : int = target_sizes.numpy() snake_case : Optional[Any] = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): snake_case : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: snake_case : Tuple = logits.argmax(dim=1 ) snake_case : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
36
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class __SCREAMING_SNAKE_CASE ( __UpperCamelCase ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase( lowerCamelCase ): raise NotImplementedError() @abstractmethod def UpperCamelCase( self ): raise NotImplementedError()
368
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=10 ): '''simple docstring''' _snake_case = [] for _ in range(SCREAMING_SNAKE_CASE__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=10 ): '''simple docstring''' _snake_case = [] for step in range(SCREAMING_SNAKE_CASE__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = os.path.join(SCREAMING_SNAKE_CASE__ , "schedule.bin" ) torch.save(scheduler.state_dict() , SCREAMING_SNAKE_CASE__ ) _snake_case = torch.load(SCREAMING_SNAKE_CASE__ ) scheduler.load_state_dict(SCREAMING_SNAKE_CASE__ ) return lrs @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for a, b in zip(lowerCamelCase , lowerCamelCase ): self.assertAlmostEqual(lowerCamelCase , lowerCamelCase , delta=lowerCamelCase ) def UpperCamelCase( self ): _snake_case = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCamelCase ) _snake_case = torch.tensor([0.4, 0.2, -0.5] ) _snake_case = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _snake_case = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _snake_case = criterion(lowerCamelCase , lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def UpperCamelCase( self ): _snake_case = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCamelCase ) _snake_case = torch.tensor([0.4, 0.2, -0.5] ) _snake_case = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _snake_case = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCamelCase , weight_decay=0.0 , relative_step=lowerCamelCase , scale_parameter=lowerCamelCase , warmup_init=lowerCamelCase , ) for _ in range(1_000 ): _snake_case = criterion(lowerCamelCase , lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ : Any = nn.Linear(50 , 50 ) if is_torch_available() else None UpperCAmelCase__ : str = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 10 def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for a, b in zip(lowerCamelCase , lowerCamelCase ): self.assertAlmostEqual(lowerCamelCase , lowerCamelCase , delta=lowerCamelCase , msg=lowerCamelCase ) def UpperCamelCase( self ): _snake_case = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _snake_case = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _snake_case , _snake_case = data _snake_case = scheduler_func(self.optimizer , **lowerCamelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _snake_case = unwrap_schedule(lowerCamelCase , self.num_steps ) self.assertListAlmostEqual( lowerCamelCase , lowerCamelCase , tol=1e-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) _snake_case = scheduler_func(self.optimizer , **lowerCamelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCamelCase ) # wrap to test picklability of the schedule _snake_case = unwrap_and_save_reload_schedule(lowerCamelCase , self.num_steps ) self.assertListEqual(lowerCamelCase , lowerCamelCase , msg=F'''failed for {scheduler_func} in save and reload''' ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , lowerCamelCase ): _snake_case = fn def __call__( self , *lowerCamelCase , **lowerCamelCase ): return self.fn(*lowerCamelCase , **lowerCamelCase ) @classmethod def UpperCamelCase( self , lowerCamelCase ): _snake_case = list(map(self , scheduler.lr_lambdas ) )
368
1
from __future__ import annotations def a ( snake_case__: list , snake_case__: int , snake_case__: int , snake_case__: int ): '''simple docstring''' lowercase_ = [] lowercase_ , lowercase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowercase_ = result + left + right return input_list def a ( snake_case__: list ): '''simple docstring''' if len(snake_case__ ) <= 1: return input_list lowercase_ = list(snake_case__ ) # iteration for two-way merging lowercase_ = 2 while p <= len(snake_case__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(snake_case__ ) , snake_case__ ): lowercase_ = i lowercase_ = i + p - 1 lowercase_ = (low + high + 1) // 2 lowercase_ = merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # final merge of last two parts if p * 2 >= len(snake_case__ ): lowercase_ = i lowercase_ = merge(snake_case__ , 0 , snake_case__ , len(snake_case__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() if user_input == "": __a = [] else: __a = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
97
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING __lowercase = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"config.{attribute}" in modeling_source or f"getattr(config, \"{attribute}\"" in modeling_source or f"getattr(self.config, \"{attribute}\"" in modeling_source ): A_ = True # Deal with multi-line cases elif ( re.search( Rf"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , SCREAMING_SNAKE_CASE , ) is not None ): A_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: A_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files A_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] A_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed A_ = True if not attribute_used: A_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: A_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: A_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: A_ = True elif attribute.endswith('''_token_id''' ): A_ = True # configuration class specific cases if not case_allowed: A_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) A_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = dict(inspect.signature(config_class.__init__ ).parameters ) A_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] A_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass A_ = {} if len(config_class.attribute_map ) > 0: A_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files A_ = inspect.getsourcefile(SCREAMING_SNAKE_CASE ) A_ = os.path.dirname(SCREAMING_SNAKE_CASE ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. A_ = [os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for fn in os.listdir(SCREAMING_SNAKE_CASE ) if fn.startswith('''modeling_''' )] # Get the source code strings A_ = [] for path in modeling_paths: if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE ) as fp: modeling_sources.append(fp.read() ) A_ = [] for config_param, default_value in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # `attributes` here is all the variant names for `config_param` A_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): unused_attributes.append(attributes[0] ) return sorted(SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( ): '''simple docstring''' A_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) A_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda SCREAMING_SNAKE_CASE : inspect.isclass(SCREAMING_SNAKE_CASE ) and issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and inspect.getmodule(SCREAMING_SNAKE_CASE ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: A_ = check_config_attributes_being_used(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: A_ = unused_attributes if len(SCREAMING_SNAKE_CASE ) > 0: A_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f"{name}: {attributes}\n" raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": check_config_attributes()
203
0
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _lowercase : def __init__( self , _UpperCAmelCase = "cpu" , _UpperCAmelCase = "openai/clip-vit-large-patch14" ): A : List[Any] = device A : Optional[int] = CLIPTokenizerFast.from_pretrained(_UpperCAmelCase ) A : Dict = [0.48145466, 0.4578275, 0.40821073] A : List[str] = [0.26862954, 0.26130258, 0.27577711] A : List[Any] = torchvision.transforms.Normalize(self.image_mean , self.image_std ) A : Dict = torchvision.transforms.Resize(224 ) A : List[str] = torchvision.transforms.CenterCrop(224 ) def snake_case ( self , _UpperCAmelCase ): A : Any = self.resize(_UpperCAmelCase ) A : Optional[int] = self.center_crop(_UpperCAmelCase ) A : List[Any] = self.normalize(_UpperCAmelCase ) return images def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): A : Any = self.tokenizer(text=_UpperCAmelCase , **_UpperCAmelCase ) A : List[str] = self.preprocess_img(_UpperCAmelCase ) A : Any = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _lowercase ( nn.Module ): def __init__( self , _UpperCAmelCase=10 , _UpperCAmelCase=0.01 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase="image" , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , ): super().__init__() A : Any = None A : Dict = device if device else get_device() if vqgan: A : Union[str, Any] = vqgan else: A : List[str] = load_vqgan(self.device , conf_path=_UpperCAmelCase , ckpt_path=_UpperCAmelCase ) self.vqgan.eval() if clip: A : str = clip else: A : Tuple = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) A : Dict = ProcessorGradientFlow(device=self.device ) A : Optional[Any] = iterations A : str = lr A : Dict = log A : Optional[Any] = make_grid A : Union[str, Any] = return_val A : Tuple = quantize A : Optional[Any] = self.vqgan.decoder.z_shape def snake_case ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=5 , _UpperCAmelCase=True ): A : Any = [] if output_path is None: A : List[str] = '''./animation.gif''' if input_path is None: A : Union[str, Any] = self.save_path A : Optional[int] = sorted(glob(input_path + '''/*''' ) ) if not len(_UpperCAmelCase ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(_UpperCAmelCase ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) A : Optional[int] = total_duration / len(_UpperCAmelCase ) A : str = [frame_duration] * len(_UpperCAmelCase ) if extend_frames: A : Any = 1.5 A : Optional[int] = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(_UpperCAmelCase ) ) imageio.mimsave(_UpperCAmelCase , _UpperCAmelCase , duration=_UpperCAmelCase ) print(f'''gif saved to {output_path}''' ) def snake_case ( self , _UpperCAmelCase=None , _UpperCAmelCase=None ): if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError A : Tuple = preprocess(Image.open(_UpperCAmelCase ) , target_image_size=256 ).to(self.device ) A : List[str] = preprocess_vqgan(_UpperCAmelCase ) A, *A : Dict = self.vqgan.encode(_UpperCAmelCase ) return z def snake_case ( self , _UpperCAmelCase ): A : int = self.latent.detach().requires_grad_() A : List[str] = base_latent + transform_vector if self.quantize: A, *A : List[str] = self.vqgan.quantize(_UpperCAmelCase ) else: A : Any = trans_latent return self.vqgan.decode(_UpperCAmelCase ) def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): A : List[str] = self.clip_preprocessor(text=_UpperCAmelCase , images=_UpperCAmelCase , return_tensors='''pt''' , padding=_UpperCAmelCase ) A : int = self.clip(**_UpperCAmelCase ) A : Dict = clip_outputs.logits_per_image if weights is not None: A : Optional[Any] = similarity_logits * weights return similarity_logits.sum() def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): A : List[Any] = self._get_clip_similarity(pos_prompts['''prompts'''] , _UpperCAmelCase , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: A : str = self._get_clip_similarity(neg_prompts['''prompts'''] , _UpperCAmelCase , weights=neg_prompts['''weights'''] ) else: A : Union[str, Any] = torch.tensor([1] , device=self.device ) A : Optional[int] = -torch.log(_UpperCAmelCase ) + torch.log(_UpperCAmelCase ) return loss def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): A : Optional[int] = torch.randn_like(self.latent , requires_grad=_UpperCAmelCase , device=self.device ) A : Optional[int] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() A : List[Any] = self._add_vector(_UpperCAmelCase ) A : str = loop_post_process(_UpperCAmelCase ) A : Optional[int] = self._get_CLIP_loss(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) print('''CLIP loss''' , _UpperCAmelCase ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=_UpperCAmelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): wandb.init(reinit=_UpperCAmelCase , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: A : Optional[Any] = Image.open(_UpperCAmelCase ) A : Dict = image.resize((256, 256) ) wandb.log('''Original Image''' , wandb.Image(_UpperCAmelCase ) ) def snake_case ( self , _UpperCAmelCase ): if not prompts: return [] A : Optional[int] = [] A : int = [] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): A : Tuple = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(_UpperCAmelCase , (tuple, list) ): A : List[str] = prompt[0] A : Any = float(prompt[1] ) elif ":" in prompt: A, A : Optional[int] = prompt.split(''':''' ) A : Optional[int] = float(_UpperCAmelCase ) else: A : int = prompt A : List[str] = 1.0 processed_prompts.append(_UpperCAmelCase ) weights.append(_UpperCAmelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(_UpperCAmelCase , device=self.device ), } def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=None , ): if image_path: A : List[str] = self._get_latent(_UpperCAmelCase ) else: A : List[Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) assert pos_prompts, "You must provide at least one positive prompt." A : Optional[int] = self.process_prompts(_UpperCAmelCase ) A : str = self.process_prompts(_UpperCAmelCase ) if save_final and save_path is None: A : List[Any] = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(_UpperCAmelCase ): os.makedirs(_UpperCAmelCase ) else: A : Union[str, Any] = save_path + '''_''' + get_timestamp() os.makedirs(_UpperCAmelCase ) A : Optional[int] = save_path A : Dict = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(_UpperCAmelCase ) ) A : List[Any] = loop_post_process(_UpperCAmelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ): if show_intermediate: show_pil(_UpperCAmelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'''Image''': wandb.Image(_UpperCAmelCase )} ) if show_final: show_pil(_UpperCAmelCase ) if save_final: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}_final.png''' ) )
537
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class _lowercase ( a , unittest.TestCase ): _UpperCamelCase = XLMProphetNetTokenizer _UpperCamelCase = False _UpperCamelCase = True def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing A : Dict = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): A : Union[str, Any] = '''[PAD]''' A : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def snake_case ( self ): A : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_UpperCAmelCase ) , 1_012 ) def snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def snake_case ( self ): A : Dict = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) A : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A : Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) A : int = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) A : Union[str, Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def snake_case ( self ): return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def snake_case ( self ): A : Union[str, Any] = '''Hello World!''' A : Any = [35_389, 6_672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def snake_case ( self ): # fmt: off A : List[Any] = {'''input_ids''': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
537
1
'''simple docstring''' import cva import numpy as np class _lowerCamelCase : '''simple docstring''' def __init__( self , __lowercase , __lowercase ): """simple docstring""" if k in (0.0_4, 0.0_6): __A : List[str] = k __A : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__( self ): """simple docstring""" return str(self.k ) def snake_case__ ( self , __lowercase ): """simple docstring""" __A : Optional[Any] = cva.imread(__lowercase , 0 ) __A ,__A : Union[str, Any] = img.shape __A : list[list[int]] = [] __A : List[Any] = img.copy() __A : str = cva.cvtColor(__lowercase , cva.COLOR_GRAY2RGB ) __A ,__A : Tuple = np.gradient(__lowercase ) __A : Dict = dx**2 __A : int = dy**2 __A : Optional[Any] = dx * dy __A : Tuple = 0.0_4 __A : List[str] = self.window_size // 2 for y in range(__lowercase , h - offset ): for x in range(__lowercase , w - offset ): __A : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __A : Tuple = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __A : int = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __A : List[str] = (wxx * wyy) - (wxy**2) __A : Union[str, Any] = wxx + wyy __A : Tuple = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase_ : Dict = HarrisCorner(0.04, 3) UpperCAmelCase_ , UpperCAmelCase_ : str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
365
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _lowercase ( ): __A : Dict = ArgumentParser('Accelerate CLI tool', usage='accelerate <command> [<args>]', allow_abbrev=UpperCamelCase__ ) __A : Any = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=UpperCamelCase__ ) env_command_parser(subparsers=UpperCamelCase__ ) launch_command_parser(subparsers=UpperCamelCase__ ) tpu_command_parser(subparsers=UpperCamelCase__ ) test_command_parser(subparsers=UpperCamelCase__ ) # Let's go __A : Optional[Any] = parser.parse_args() if not hasattr(UpperCamelCase__, 'func' ): parser.print_help() exit(1 ) # Run args.func(UpperCamelCase__ ) if __name__ == "__main__": main()
365
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( _lowerCAmelCase ,unittest.TestCase ): A = None A = BloomTokenizerFast A = BloomTokenizerFast A = True A = False A = "tokenizer_file" A = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" super().setUp() lowerCamelCase_ : Optional[Any] = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : Optional[int] , **UpperCamelCase_ : str ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ : List[Any] = self.get_rust_tokenizer() lowerCamelCase_ : List[str] = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] lowerCamelCase_ : List[str] = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] lowerCamelCase_ : str = tokenizer.batch_encode_plus(UpperCamelCase__ )['''input_ids'''] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ : Dict = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __UpperCamelCase ( self : List[Any] , UpperCamelCase_ : Tuple=6 ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ : Any = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowerCamelCase_ : Tuple = '''This is a simple input''' lowerCamelCase_ : int = ['''This is a simple input 1''', '''This is a simple input 2'''] lowerCamelCase_ : Optional[Any] = ('''This is a simple input''', '''This is a pair''') lowerCamelCase_ : Any = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__ ) tokenizer_r.encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__ ) tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__ ) tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__ ) tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__ ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) lowerCamelCase_ : str = None # Hotfixing padding = None self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) # Simple input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) # Simple input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) # Pair input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = self.get_rust_tokenizer() lowerCamelCase_ : int = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=UpperCamelCase__ ) lowerCamelCase_ : List[Any] = next(iter(UpperCamelCase__ ) )['''premise'''] # pick up one data lowerCamelCase_ : str = list(sample_data.values() ) lowerCamelCase_ : Tuple = list(map(tokenizer.encode , UpperCamelCase__ ) ) lowerCamelCase_ : int = [tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) for x in output_tokens] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
700
'''simple docstring''' def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowerCamelCase_ : int = str(bin(__UpperCAmelCase ) )[2:] # remove the leading "0b" lowerCamelCase_ : str = str(bin(__UpperCAmelCase ) )[2:] lowerCamelCase_ : Dict = max(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCAmelCase ) , b_binary.zfill(__UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
418
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : Any ) -> Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Optional[Any] , *__a : Optional[int] , **__a : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Optional[Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : str , *__a : Union[str, Any] , **__a : List[str] ) -> Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : List[Any] , *__a : str , **__a : List[str] ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : List[Any] , *__a : str , **__a : Optional[int] ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Any , **__a : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : str , *__a : List[Any] , **__a : List[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : int , *__a : int , **__a : str ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : List[Any] , *__a : List[str] , **__a : Tuple ) -> Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : List[str] ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : List[Any] , *__a : Tuple , **__a : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[str] , **__a : str ) -> List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : int , *__a : str , **__a : Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Union[str, Any] , *__a : Tuple , **__a : Tuple ) -> Any: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : Optional[int] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : int , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Any , *__a : Dict , **__a : int ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ) -> List[str]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : List[Any] , *__a : int , **__a : Union[str, Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : List[Any] , *__a : List[Any] , **__a : Tuple ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Optional[Any] , *__a : List[Any] , **__a : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : str , *__a : Optional[Any] , **__a : str ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : List[str] , *__a : List[Any] , **__a : int ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Any , *__a : Any , **__a : Tuple ) -> List[str]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Optional[Any] , *__a : int , **__a : Tuple ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Union[str, Any] , *__a : Any , **__a : int ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : List[str] , *__a : List[Any] , **__a : str ) -> Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Optional[Any] , *__a : Optional[Any] , **__a : int ) -> int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Optional[Any] , *__a : Tuple , **__a : List[str] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : List[str] , **__a : Tuple ) -> str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Tuple , *__a : Dict , **__a : int ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : str , *__a : Any , **__a : Any ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) def a_ ( *_UpperCAmelCase : List[Any] ,**_UpperCAmelCase : Any ) -> int: requires_backends(_UpperCAmelCase ,['torch'] ) def a_ ( *_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : str ) -> Optional[Any]: requires_backends(_UpperCAmelCase ,['torch'] ) def a_ ( *_UpperCAmelCase : List[Any] ,**_UpperCAmelCase : Optional[int] ) -> str: requires_backends(_UpperCAmelCase ,['torch'] ) def a_ ( *_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : int ) -> Dict: requires_backends(_UpperCAmelCase ,['torch'] ) def a_ ( *_UpperCAmelCase : int ,**_UpperCAmelCase : List[str] ) -> int: requires_backends(_UpperCAmelCase ,['torch'] ) def a_ ( *_UpperCAmelCase : Union[str, Any] ,**_UpperCAmelCase : str ) -> int: requires_backends(_UpperCAmelCase ,['torch'] ) def a_ ( *_UpperCAmelCase : Optional[Any] ,**_UpperCAmelCase : Optional[int] ) -> List[Any]: requires_backends(_UpperCAmelCase ,['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : int , **__a : List[Any] ) -> str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Union[str, Any] , *__a : Any , **__a : Tuple ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : int , *__a : int , **__a : Any ) -> List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : List[Any] , *__a : Tuple , **__a : List[str] ) -> str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : int , *__a : List[Any] , **__a : List[Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Tuple , *__a : int , **__a : Optional[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Optional[int] , *__a : str , **__a : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : int , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : List[Any] , *__a : List[str] , **__a : List[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Dict , *__a : int , **__a : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Union[str, Any] , *__a : Optional[int] , **__a : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : List[Any] , *__a : Any , **__a : str ) -> List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : int , *__a : int , **__a : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : int , *__a : Optional[Any] , **__a : str ) -> int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : List[str] , *__a : Tuple , **__a : Tuple ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Optional[int] , *__a : Optional[int] , **__a : List[str] ) -> str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Any , *__a : List[str] , **__a : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Optional[int] , *__a : int , **__a : Dict ) -> Any: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : List[str] , *__a : Tuple , **__a : int ) -> Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Union[str, Any] , *__a : str , **__a : str ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : List[Any] , *__a : List[str] , **__a : Dict ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Dict , *__a : Optional[int] , **__a : Dict ) -> Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Dict , *__a : str , **__a : Any ) -> int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : int ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : Union[str, Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Optional[int] , *__a : int , **__a : Tuple ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Tuple , *__a : Optional[int] , **__a : Tuple ) -> int: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : int , *__a : Optional[int] , **__a : Dict ) -> int: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Tuple , *__a : int , **__a : int ) -> Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Optional[Any] , *__a : Dict , **__a : Optional[Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Any , *__a : Any , **__a : List[str] ) -> Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Tuple , *__a : Dict , **__a : Dict ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Dict ) -> List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Any , *__a : str , **__a : Any ) -> List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Dict , *__a : Tuple , **__a : Dict ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Dict , *__a : Tuple , **__a : Dict ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Optional[int] , **__a : int ) -> Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Dict , *__a : List[str] , **__a : Dict ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : List[str] , *__a : Union[str, Any] , **__a : Dict ) -> Any: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : str , *__a : str , **__a : str ) -> List[str]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Tuple , *__a : List[str] , **__a : Union[str, Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : str , *__a : Dict , **__a : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : str , *__a : Any , **__a : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Any , *__a : List[str] , **__a : Any ) -> Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Union[str, Any] , *__a : Optional[Any] , **__a : Optional[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Optional[int] , *__a : Dict , **__a : Dict ) -> int: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Dict , *__a : Any , **__a : Optional[int] ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Optional[int] , *__a : int , **__a : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Tuple , *__a : List[Any] , **__a : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Union[str, Any] , *__a : Dict , **__a : int ) -> int: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : List[Any] , *__a : Optional[int] , **__a : List[str] ) -> Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Dict , *__a : Optional[Any] , **__a : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Dict , *__a : Dict , **__a : Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Dict , *__a : str , **__a : int ) -> str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : int , *__a : Any , **__a : str ) -> List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Dict , *__a : List[Any] , **__a : Optional[Any] ) -> List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : str , *__a : Optional[int] , **__a : Tuple ) -> Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Tuple , *__a : List[Any] , **__a : List[Any] ) -> List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : str , *__a : Dict , **__a : Optional[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Dict , *__a : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : List[str] , *__a : Dict , **__a : Optional[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : str , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Dict , *__a : List[Any] , **__a : Tuple ) -> int: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : str , *__a : int , **__a : Any ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Optional[Any] , *__a : Dict , **__a : List[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Any , *__a : Dict , **__a : List[Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : Any , **__a : Tuple ) -> str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Optional[int] , *__a : Optional[int] , **__a : List[str] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Any , *__a : Union[str, Any] , **__a : str ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : List[str] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Union[str, Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Optional[Any] , *__a : Optional[int] , **__a : Optional[int] ) -> Any: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : str , *__a : List[Any] , **__a : str ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : List[str] , *__a : Tuple , **__a : List[Any] ) -> int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Union[str, Any] , *__a : List[str] , **__a : str ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Optional[int] , *__a : Dict , **__a : Any ) -> Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Any , *__a : Optional[Any] , **__a : Union[str, Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Optional[Any] , *__a : Tuple , **__a : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : str , **__a : int ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Tuple , *__a : Dict , **__a : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Union[str, Any] , *__a : List[Any] , **__a : Optional[int] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : List[Any] , *__a : str , **__a : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : str , *__a : int , **__a : List[str] ) -> Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : str , *__a : int , **__a : Dict ) -> List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Optional[Any] , **__a : Dict ) -> Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : List[str] , *__a : Optional[Any] , **__a : List[Any] ) -> int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Tuple , *__a : List[Any] , **__a : Optional[int] ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Dict , *__a : Optional[Any] , **__a : Dict ) -> Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : str , *__a : str , **__a : Any ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : List[str] , *__a : Tuple , **__a : int ) -> int: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Tuple , *__a : Any , **__a : Union[str, Any] ) -> Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : int , *__a : Any , **__a : Optional[Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : int , *__a : Dict , **__a : List[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : int , *__a : str , **__a : List[str] ) -> Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : str , *__a : Union[str, Any] , **__a : Tuple ) -> Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : str , *__a : Optional[Any] , **__a : str ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Optional[int] , *__a : int , **__a : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Any , *__a : Optional[Any] , **__a : Optional[Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Tuple , *__a : Optional[Any] , **__a : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Union[str, Any] , *__a : int , **__a : Dict ) -> List[str]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Union[str, Any] , *__a : Dict , **__a : Dict ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Optional[Any] , *__a : Union[str, Any] , **__a : Tuple ) -> Any: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Optional[int] , *__a : List[str] , **__a : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Optional[int] , *__a : Optional[Any] , **__a : Optional[int] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Optional[int] , *__a : Any , **__a : Dict ) -> str: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Optional[int] , *__a : Dict , **__a : List[Any] ) -> str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Optional[int] , *__a : str , **__a : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : Tuple , *__a : Dict , **__a : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : int , *__a : Union[str, Any] , **__a : int ) -> Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : Tuple , *__a : Optional[Any] , **__a : Optional[int] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : int , *__a : Union[str, Any] , **__a : Optional[int] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class snake_case__ ( metaclass=SCREAMING_SNAKE_CASE_ ): A__ = ['''torch'''] def __init__( self : Optional[Any] , *__a : Union[str, Any] , **__a : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def A_ ( cls : str , *__a : List[Any] , **__a : Tuple ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def A_ ( cls : int , *__a : Any , **__a : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] )
286
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = BlenderbotSmallTokenizer A__ = False def A_ ( self : Any ) -> str: '''simple docstring''' super().setUp() __snake_case : Any = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __snake_case : str = dict(zip(__a , range(len(__a ) ) ) ) __snake_case : List[Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __snake_case : Tuple = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) def A_ ( self : Tuple , **__a : Optional[int] ) -> List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__a ) def A_ ( self : int , __a : int ) -> List[Any]: '''simple docstring''' __snake_case : List[str] = 'adapt act apte' __snake_case : List[str] = 'adapt act apte' return input_text, output_text def A_ ( self : Dict ) -> str: '''simple docstring''' __snake_case : Dict = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case : List[str] = 'adapt act apte' __snake_case : List[Any] = ['adapt', 'act', 'ap@@', 'te'] __snake_case : Optional[int] = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __snake_case : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __snake_case : List[str] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def A_ ( self : int ) -> str: '''simple docstring''' __snake_case : int = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __snake_case : List[str] = 'I am a small frog.' __snake_case : List[Any] = tok([src_text] , padding=__a , truncation=__a )['input_ids'] __snake_case : int = tok.batch_decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Tuple = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __snake_case : Optional[Any] = 'I am a small frog .' __snake_case : List[str] = '.' __snake_case : List[str] = tok(__a )['input_ids'] __snake_case : str = tok(__a )['input_ids'] assert encoded[-1] == encoded_dot[0]
286
1
"""simple docstring""" def snake_case__ ( _snake_case : int , _snake_case : int ): """simple docstring""" UpperCamelCase__ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): UpperCamelCase__ = n - k # Calculate C(n,k) for i in range(_snake_case ): result *= n - i result //= i + 1 return result def snake_case__ ( _snake_case : int ): """simple docstring""" return binomial_coefficient(2 * node_count , _snake_case ) // (node_count + 1) def snake_case__ ( _snake_case : int ): """simple docstring""" if n < 0: raise ValueError("factorial() not defined for negative values" ) UpperCamelCase__ = 1 for i in range(1 , n + 1 ): result *= i return result def snake_case__ ( _snake_case : int ): """simple docstring""" return catalan_number(_snake_case ) * factorial(_snake_case ) if __name__ == "__main__": A : List[Any] = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( F"Given {node_count} nodes, there are {binary_tree_count(node_count)} " F"binary trees and {catalan_number(node_count)} binary search trees." )
304
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def snake_case__ ( _snake_case : Any ): """simple docstring""" UpperCamelCase__ = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def snake_case__ ( _snake_case : Optional[Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = emb.weight.shape UpperCamelCase__ = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) UpperCamelCase__ = emb.weight.data return lin_layer def snake_case__ ( _snake_case : int ): """simple docstring""" UpperCamelCase__ = torch.load(_snake_case , map_location="cpu" ) UpperCamelCase__ = Namespace(**checkpoint["cfg"]["model"] ) UpperCamelCase__ = checkpoint["model"] remove_ignore_keys_(_snake_case ) UpperCamelCase__ = state_dict["decoder.embed_tokens.weight"].shape[0] UpperCamelCase__ = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()} UpperCamelCase__ = XGLMConfig( vocab_size=_snake_case , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCamelCase__ = XGLMForCausalLM(_snake_case ) UpperCamelCase__ = model.load_state_dict(_snake_case , strict=_snake_case ) print(_snake_case ) UpperCamelCase__ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": A : int = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') A : Dict = parser.parse_args() A : Any = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
304
1
import re def UpperCamelCase_( _A :List[str] )-> Optional[int]: return [char.split() for char in re.split(r"[^ a-z A-Z 0-9 \s]" , str_ )] def UpperCamelCase_( _A :Any )-> str: UpperCamelCase__ = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def UpperCamelCase_( _A :Any , _A :Any , _A :Any )-> Union[str, Any]: try: UpperCamelCase__ = split_input(A__ ) if upper: UpperCamelCase__ = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCamelCase__ = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def UpperCamelCase_( _A :List[str] )-> Optional[Any]: return to_simple_case(A__ ) def UpperCamelCase_( _A :int )-> str: try: UpperCamelCase__ = to_simple_case(A__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def UpperCamelCase_( _A :Tuple , _A :Dict )-> Union[str, Any]: return to_complex_case(A__ , A__ , "_" ) def UpperCamelCase_( _A :Tuple , _A :Tuple )-> Dict: return to_complex_case(A__ , A__ , "-" ) if __name__ == "__main__": __import__('doctest').testmod()
551
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : Union[str, Any] ={ 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict =[ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCAmelCase__ : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
101
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): if len(UpperCAmelCase_ ) <= 1: return lst UpperCAmelCase : List[str] = 1 while i < len(UpperCAmelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCAmelCase : List[str] = 1 return lst if __name__ == "__main__": lowercase__ = input("Enter numbers separated by a comma:\n").strip() lowercase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
695
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
1
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): lowerCamelCase = True from torch.cuda.amp import autocast lowerCamelCase = logging.getLogger(__name__) @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) UpperCamelCase = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) UpperCamelCase = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) UpperCamelCase = field( default=0.9_9_9_9_9_5 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) UpperCAmelCase_ = logging.WARNING if model_args.verbose_logging: UpperCAmelCase_ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): UpperCAmelCase_ = logging.INFO logger.setLevel(lowerCAmelCase__ ) @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) UpperCamelCase = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) UpperCamelCase = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase = field( default=2_0.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = "longest" UpperCamelCase = None UpperCamelCase = None def __call__( self : Optional[int] , _UpperCAmelCase : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = self.feature_extractor.pad( _UpperCAmelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) UpperCAmelCase_ = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) UpperCAmelCase_ = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula UpperCAmelCase_ = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) UpperCAmelCase_ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to UpperCAmelCase_ = 1 UpperCAmelCase_ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices UpperCAmelCase_ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_UpperCAmelCase , min_masks=2 , ) return batch class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , *_UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Optional[Any]=1.0 , **_UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = 0 UpperCAmelCase_ = max_gumbel_temp UpperCAmelCase_ = min_gumbel_temp UpperCAmelCase_ = gumbel_temp_decay def lowercase__ ( self : List[Any] , _UpperCAmelCase : nn.Module , _UpperCAmelCase : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: '''simple docstring''' model.train() UpperCAmelCase_ = self._prepare_inputs(_UpperCAmelCase ) if self.use_amp: with autocast(): UpperCAmelCase_ = self.compute_loss(_UpperCAmelCase , _UpperCAmelCase ) else: UpperCAmelCase_ = self.compute_loss(_UpperCAmelCase , _UpperCAmelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": UpperCAmelCase_ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCAmelCase_ = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: UpperCAmelCase_ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(_UpperCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCAmelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def a__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_args_into_dataclasses() configure_logger(lowerCAmelCase__ , lowerCAmelCase__ ) # Downloading and loading a dataset from the hub. UpperCAmelCase_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" UpperCAmelCase_ = DatasetDict() UpperCAmelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" UpperCAmelCase_ = DatasetDict() UpperCAmelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=lowerCAmelCase__ ) def prepare_dataset(lowerCAmelCase__ ): # check that all files have the correct sampling rate UpperCAmelCase_ , UpperCAmelCase_ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays UpperCAmelCase_ = datasets.map( lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long UpperCAmelCase_ = vectorized_datasets.filter( lambda lowerCAmelCase__ : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowerCAmelCase__ ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` UpperCAmelCase_ = vectorized_datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 UpperCAmelCase_ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) UpperCAmelCase_ = WavaVecaForPreTraining(lowerCAmelCase__ ) UpperCAmelCase_ = DataCollatorForWavaVecaPretraining(model=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaPreTrainer( model=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=lowerCAmelCase__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
82
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
5
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Any = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class snake_case ( _snake_case ): __magic_name__ = 'donut-swin' __magic_name__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] , A : List[Any]=2_2_4 , A : List[str]=4 , A : str=3 , A : Tuple=9_6 , A : Dict=[2, 2, 6, 2] , A : str=[3, 6, 1_2, 2_4] , A : List[str]=7 , A : Dict=4.0 , A : str=True , A : Union[str, Any]=0.0 , A : Union[str, Any]=0.0 , A : str=0.1 , A : Dict="gelu" , A : Union[str, Any]=False , A : Dict=0.02 , A : List[Any]=1E-5 , **A : Any , ): '''simple docstring''' super().__init__(**A ) a : Any = image_size a : Tuple = patch_size a : str = num_channels a : int = embed_dim a : Any = depths a : int = len(A ) a : Any = num_heads a : Tuple = window_size a : List[Any] = mlp_ratio a : Tuple = qkv_bias a : List[Any] = hidden_dropout_prob a : Tuple = attention_probs_dropout_prob a : List[Any] = drop_path_rate a : str = hidden_act a : Optional[Any] = use_absolute_embeddings a : Optional[int] = layer_norm_eps a : List[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a : str = int(embed_dim * 2 ** (len(A ) - 1) )
713
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def snake_case (A_ :int = 1_0_0_0_0_0_0 , A_ :int = 1_0 ): '''simple docstring''' a : defaultdict = defaultdict(A_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: a : Optional[Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: a : Union[str, Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(A_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f'''{solution() = }''')
118
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase = { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""MobileNetV2FeatureExtractor"""] UpperCAmelCase = ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
420
"""simple docstring""" from __future__ import annotations def lowercase ( a__ : list ) -> float: if not nums: raise ValueError('''List is empty''' ) return sum(a__ ) / len(a__ ) if __name__ == "__main__": import doctest doctest.testmod()
420
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
228
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __UpperCAmelCase ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : Any = StableDiffusionControlNetImgaImgPipeline _snake_case : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} _snake_case : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : str = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) _snake_case : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def A ( self : int )-> List[Any]: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) __UpperCamelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCamelCase = CLIPTextModel(A_ ) __UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCamelCase = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A ( self : str , A_ : Optional[int] , A_ : Optional[Any]=0 )-> List[Any]: if str(A_ ).startswith("mps" ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = 2 __UpperCamelCase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A_ , device=torch.device(A_ ) , ) __UpperCamelCase = floats_tensor(control_image.shape , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((64, 64) ) __UpperCamelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def A ( self : List[str] )-> List[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A ( self : List[Any] )-> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def A ( self : Any )-> Dict: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __UpperCAmelCase ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : List[Any] = StableDiffusionControlNetImgaImgPipeline _snake_case : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} _snake_case : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : Optional[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def A ( self : Optional[Any] )-> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(A_ : int ): if isinstance(A_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __UpperCamelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(A_ ) torch.manual_seed(0 ) __UpperCamelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(A_ ) torch.manual_seed(0 ) __UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCamelCase = CLIPTextModel(A_ ) __UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCamelCase = MultiControlNetModel([controlneta, controlneta] ) __UpperCamelCase = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A ( self : int , A_ : Dict , A_ : str=0 )-> Optional[Any]: if str(A_ ).startswith("mps" ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = 2 __UpperCamelCase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A_ , device=torch.device(A_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A_ , device=torch.device(A_ ) , ), ] __UpperCamelCase = floats_tensor(control_image[0].shape , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((64, 64) ) __UpperCamelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def A ( self : List[str] )-> List[str]: __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) pipe.to(A_ ) __UpperCamelCase = 10.0 __UpperCamelCase = 4 __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = steps __UpperCamelCase = scale __UpperCamelCase = pipe(**A_ )[0] __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = steps __UpperCamelCase = scale __UpperCamelCase = pipe(**A_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = steps __UpperCamelCase = scale __UpperCamelCase = pipe(**A_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = steps __UpperCamelCase = scale __UpperCamelCase = pipe(**A_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def A ( self : Optional[int] )-> Any: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A ( self : List[Any] )-> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def A ( self : int )-> Optional[Any]: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def A ( self : List[str] )-> Tuple: __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(A_ ) except NotImplementedError: pass @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : Union[str, Any] )-> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : str )-> Optional[Any]: __UpperCamelCase = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) __UpperCamelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=A_ , controlnet=A_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase = "evil space-punk bird" __UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((5_12, 5_12) ) __UpperCamelCase = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((5_12, 5_12) ) __UpperCamelCase = pipe( A_ , A_ , control_image=A_ , generator=A_ , output_type="np" , num_inference_steps=50 , strength=0.6 , ) __UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) __UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9e-2
228
1
_lowerCamelCase : Dict = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
686
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets __UpperCAmelCase = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' __UpperCAmelCase = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' __UpperCAmelCase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): def UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def UpperCAmelCase ( self : Tuple , a_ : Optional[Any] , a_ : Optional[Any] , a_ : Any=None ) -> Union[str, Any]: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(a_ , a_ , sample_weight=a_ ) ), }
642
0
from typing import TYPE_CHECKING from ...utils import _LazyModule _lowercase = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys _lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
526
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : @staticmethod def snake_case_ ( *a__ , **a__): pass def lowerCAmelCase__ ( UpperCamelCase_ : Image )-> str: A__ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCAmelCase ( unittest.TestCase ): UpperCamelCase__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def snake_case_ ( self , a__ , a__ , a__): A__ = DepthEstimationPipeline(model=a__ , image_processor=a__) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case_ ( self , a__ , a__): A__ = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''') self.assertEqual({'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)} , a__) import datasets A__ = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''') A__ = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ]) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, ] , a__ , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''') def snake_case_ ( self): pass @slow @require_torch def snake_case_ ( self): A__ = '''Intel/dpt-large''' A__ = pipeline('''depth-estimation''' , model=a__) A__ = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''') A__ = hashimage(outputs['''depth''']) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item()) , 2_9.3_0_4) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item()) , 2.6_6_2) @require_torch def snake_case_ ( self): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''')
526
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class A ( _A ): UpperCamelCase__ : Dict ='mvp' UpperCamelCase__ : Dict =['past_key_values'] UpperCamelCase__ : int ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Any , lowercase_ : Dict=5_0267 , lowercase_ : Optional[Any]=1024 , lowercase_ : List[Any]=12 , lowercase_ : Tuple=4096 , lowercase_ : Optional[int]=16 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=4096 , lowercase_ : Tuple=16 , lowercase_ : Any=0.0 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]="gelu" , lowercase_ : int=1024 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.0 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Any=0.02 , lowercase_ : List[str]=0.0 , lowercase_ : Any=False , lowercase_ : str=True , lowercase_ : Optional[Any]=1 , lowercase_ : List[Any]=0 , lowercase_ : Union[str, Any]=2 , lowercase_ : Any=True , lowercase_ : Tuple=2 , lowercase_ : Optional[int]=2 , lowercase_ : str=False , lowercase_ : Union[str, Any]=100 , lowercase_ : Optional[int]=800 , **lowercase_ : Optional[Any] , ) -> Any: """simple docstring""" _lowerCamelCase : Tuple =vocab_size _lowerCamelCase : Dict =max_position_embeddings _lowerCamelCase : Any =d_model _lowerCamelCase : List[str] =encoder_ffn_dim _lowerCamelCase : List[Any] =encoder_layers _lowerCamelCase : Union[str, Any] =encoder_attention_heads _lowerCamelCase : List[Any] =decoder_ffn_dim _lowerCamelCase : Tuple =decoder_layers _lowerCamelCase : Optional[int] =decoder_attention_heads _lowerCamelCase : str =dropout _lowerCamelCase : Tuple =attention_dropout _lowerCamelCase : Any =activation_dropout _lowerCamelCase : str =activation_function _lowerCamelCase : List[Any] =init_std _lowerCamelCase : Union[str, Any] =encoder_layerdrop _lowerCamelCase : Union[str, Any] =decoder_layerdrop _lowerCamelCase : Optional[Any] =classifier_dropout _lowerCamelCase : Union[str, Any] =use_cache _lowerCamelCase : Optional[Any] =encoder_layers _lowerCamelCase : int =scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : int =use_prompt _lowerCamelCase : Optional[int] =prompt_length _lowerCamelCase : Optional[int] =prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , UpperCamelCase__ ): _lowerCamelCase : Any =self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' )
464
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = ["""image_processor""", """tokenizer"""] a__ = """BridgeTowerImageProcessor""" a__ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any ) -> Optional[int]: """simple docstring""" super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : Dict , ) -> BatchEncoding: """simple docstring""" __magic_name__ = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask __magic_name__ = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def _lowercase ( self : Optional[Any] , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : str ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : Dict , *UpperCamelCase__ : int , **UpperCamelCase__ : Optional[Any] ) -> str: """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def _lowercase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.tokenizer.model_input_names __magic_name__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
529
0
from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) __a : Union[str, Any] = """pytorch_model.bin""" __a : Any = """pytorch_model.bin.index.json""" __a : Optional[Any] = """adapter_config.json""" __a : str = """adapter_model.bin""" __a : int = """adapter_model.safetensors""" __a : Any = """tf_model.h5""" __a : Any = """tf_model.h5.index.json""" __a : Optional[int] = """model.ckpt""" __a : Optional[Any] = """flax_model.msgpack""" __a : Optional[Any] = """flax_model.msgpack.index.json""" __a : Optional[int] = """model.safetensors""" __a : Dict = """model.safetensors.index.json""" __a : str = """config.json""" __a : str = """preprocessor_config.json""" __a : str = FEATURE_EXTRACTOR_NAME __a : Optional[Any] = """generation_config.json""" __a : List[str] = """modelcard.json""" __a : List[str] = """▁""" __a : List[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility __a : int = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. __a : Union[str, Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] __a : Optional[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def a_ ( __snake_case ) -> List[Any]: '''simple docstring''' if version.parse(__snake_case ) < version.parse(__snake_case ): if "dev" in min_version: UpperCamelCase_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: UpperCamelCase_ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
717
def a_ ( __snake_case ) -> list[int]: '''simple docstring''' UpperCamelCase_ = [0 for i in range(len(__snake_case ) )] # initialize interval's left pointer and right pointer UpperCamelCase_ , UpperCamelCase_ = 0, 0 for i in range(1 , len(__snake_case ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase_ = min(right_pointer - i + 1 , z_result[i - left_pointer] ) UpperCamelCase_ = min_edge while go_next(__snake_case , __snake_case , __snake_case ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase_ , UpperCamelCase_ = i, i + z_result[i] - 1 return z_result def a_ ( __snake_case , __snake_case , __snake_case ) -> bool: '''simple docstring''' return i + z_result[i] < len(__snake_case ) and s[z_result[i]] == s[i + z_result[i]] def a_ ( __snake_case , __snake_case ) -> int: '''simple docstring''' UpperCamelCase_ = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase_ = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__snake_case ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
559
0
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=30 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=10 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=3 , __lowerCAmelCase=None , __lowerCAmelCase=2 , ): """simple docstring""" lowercase = parent lowercase = batch_size lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range lowercase = scope lowercase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase = (image_size // patch_size) ** 2 lowercase = num_patches + 2 def A__ ( self ): """simple docstring""" lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = self.get_config() return config, pixel_values, labels def A__ ( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = DeiTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = DeiTForMaskedImageModeling(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase = 1 lowercase = DeiTForMaskedImageModeling(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase = model(__lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.type_sequence_label_size lowercase = DeiTForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase = 1 lowercase = DeiTForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ): """simple docstring""" lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : List[str] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) snake_case__ : Dict = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) snake_case__ : Optional[Any] = False snake_case__ : Union[str, Any] = False snake_case__ : str = False def A__ ( self ): """simple docstring""" lowercase = DeiTModelTester(self ) lowercase = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def A__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(__lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" lowercase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A__ ( self ): """simple docstring""" if not self.model_tester.is_training: return lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCAmelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() lowercase = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) lowercase = model(**__lowerCAmelCase ).loss loss.backward() def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase = False lowercase = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase = model_class(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(__lowerCAmelCase ) model.train() lowercase = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) lowercase = model(**__lowerCAmelCase ).loss loss.backward() def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCAmelCase ), *get_values(__lowerCAmelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'Testing {model_class} with {problem_type["title"]}' ): lowercase = problem_type["""title"""] lowercase = problem_type["""num_labels"""] lowercase = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() lowercase = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if problem_type["num_labels"] > 1: lowercase = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCAmelCase ) as warning_list: lowercase = model(**__lowerCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def A__ ( self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = DeiTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def A__ ( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def A__ ( self ): """simple docstring""" lowercase = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( __lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**__lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) lowercase = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def A__ ( self ): """simple docstring""" lowercase = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) lowercase = inputs.pixel_values.to(__lowerCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase = model(__lowerCAmelCase )
359
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=32 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=[10, 20, 30, 40] , __lowerCAmelCase=[2, 2, 3, 2] , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=10 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=["stage2", "stage3", "stage4"] , __lowerCAmelCase=[2, 3, 4] , __lowerCAmelCase=None , ): """simple docstring""" lowercase = parent lowercase = batch_size lowercase = image_size lowercase = num_channels lowercase = num_stages lowercase = hidden_sizes lowercase = depths lowercase = is_training lowercase = use_labels lowercase = intermediate_size lowercase = hidden_act lowercase = num_labels lowercase = initializer_range lowercase = out_features lowercase = out_indices lowercase = scope def A__ ( self ): """simple docstring""" lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def A__ ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = ConvNextModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = ConvNextForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = ConvNextBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase = None lowercase = ConvNextBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self ): """simple docstring""" lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : List[str] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) snake_case__ : Optional[Any] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) snake_case__ : List[str] = True snake_case__ : Dict = False snake_case__ : Optional[int] = False snake_case__ : Tuple = False snake_case__ : List[str] = False def A__ ( self ): """simple docstring""" lowercase = ConvNextModelTester(self ) lowercase = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def A__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ): """simple docstring""" return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(__lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): lowercase = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase = self.model_tester.num_stages self.assertEqual(len(__lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = ConvNextModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def A__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def A__ ( self ): """simple docstring""" lowercase = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(__lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**__lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) lowercase = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @require_torch class _A ( unittest.TestCase , lowerCAmelCase ): snake_case__ : int = (ConvNextBackbone,) if is_torch_available() else () snake_case__ : Tuple = ConvNextConfig snake_case__ : Dict = False def A__ ( self ): """simple docstring""" lowercase = ConvNextModelTester(self )
359
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _A = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _A = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _A = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def __a ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="auto" , _UpperCamelCase=-1 , _UpperCamelCase=0.9 , _UpperCamelCase=5 , _UpperCamelCase=500 , _UpperCamelCase="gpt2-large" , _UpperCamelCase=-1 , _UpperCamelCase=1_024 , _UpperCamelCase=25 , _UpperCamelCase=5 , _UpperCamelCase=True , _UpperCamelCase=25 , ) -> str: lowerCAmelCase_ = compute_mauve( p_text=_UpperCamelCase , q_text=_UpperCamelCase , p_features=_UpperCamelCase , q_features=_UpperCamelCase , p_tokens=_UpperCamelCase , q_tokens=_UpperCamelCase , num_buckets=_UpperCamelCase , pca_max_data=_UpperCamelCase , kmeans_explained_var=_UpperCamelCase , kmeans_num_redo=_UpperCamelCase , kmeans_max_iter=_UpperCamelCase , featurize_model_name=_UpperCamelCase , device_id=_UpperCamelCase , max_text_length=_UpperCamelCase , divergence_curve_discretization_size=_UpperCamelCase , mauve_scaling_factor=_UpperCamelCase , verbose=_UpperCamelCase , seed=_UpperCamelCase , ) return out
714
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _A = datasets.load_iris() _A = np.array(data["data"]) _A = np.array(data["target"]) _A = data["target_names"] _A, _A, _A, _A = train_test_split(X, y) def lowerCamelCase__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" return np.linalg.norm(np.array(__lowerCAmelCase ) - np.array(__lowerCAmelCase ) ) def lowerCamelCase__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any=5 ): """simple docstring""" lowerCAmelCase_ = zip(__lowerCAmelCase , __lowerCAmelCase ) # List of distances of all points from the point to be classified lowerCAmelCase_ = [] for data_point in data: lowerCAmelCase_ = euclidean_distance(data_point[0] , __lowerCAmelCase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowerCAmelCase_ = [i[1] for i in sorted(__lowerCAmelCase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCAmelCase_ = Counter(__lowerCAmelCase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
279
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ ( A ): '''simple docstring''' def UpperCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , "embed_dim" ) ) self.parent.assertTrue(hasattr(snake_case__ , "num_heads" ) ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self : int , snake_case__ : str , snake_case__ : str=13 , snake_case__ : int=64 , snake_case__ : Optional[Any]=3 , snake_case__ : Any=[16, 48, 96] , snake_case__ : Dict=[1, 3, 6] , snake_case__ : int=[1, 2, 10] , snake_case__ : Any=[7, 3, 3] , snake_case__ : Dict=[4, 2, 2] , snake_case__ : str=[2, 1, 1] , snake_case__ : str=[2, 2, 2] , snake_case__ : Optional[Any]=[False, False, True] , snake_case__ : List[str]=[0.0, 0.0, 0.0] , snake_case__ : int=0.02 , snake_case__ : Dict=1e-12 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=2 , ): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : List[str] = image_size UpperCAmelCase__ : Tuple = patch_sizes UpperCAmelCase__ : Any = patch_stride UpperCAmelCase__ : int = patch_padding UpperCAmelCase__ : str = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : List[Any] = num_labels UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : Dict = embed_dim UpperCAmelCase__ : int = num_heads UpperCAmelCase__ : Any = stride_kv UpperCAmelCase__ : str = depth UpperCAmelCase__ : List[str] = cls_token UpperCAmelCase__ : Union[str, Any] = attention_drop_rate UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Optional[int] = layer_norm_eps def UpperCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Dict = None if self.use_labels: # create a random int32 tensor of given shape UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ : List[str] = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self : Any ): '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : Any = TFCvtModel(config=snake_case__ ) UpperCAmelCase__ : Optional[int] = model(snake_case__ , training=snake_case__ ) UpperCAmelCase__ : Dict = (self.image_size, self.image_size) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase__ : List[str] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase__ : Optional[int] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCamelCase ( self : str , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.num_labels UpperCAmelCase__ : List[Any] = TFCvtForImageClassification(snake_case__ ) UpperCAmelCase__ : int = model(snake_case__ , labels=snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = config_and_inputs UpperCAmelCase__ : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( A , A , unittest.TestCase ): '''simple docstring''' lowercase_ : str = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowercase_ : str = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) lowercase_ : Tuple = False lowercase_ : int = False lowercase_ : Optional[Any] = False lowercase_ : List[Any] = False lowercase_ : Optional[int] = False def UpperCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = TFCvtModelTester(self ) UpperCAmelCase__ : List[Any] = TFCvtConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def UpperCamelCase ( self : Optional[int] ): '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions" ) def UpperCamelCase ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def UpperCamelCase ( self : str ): '''simple docstring''' pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def UpperCamelCase ( self : Any ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8" ) def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = tf.keras.mixed_precision.Policy("mixed_float16" ) tf.keras.mixed_precision.set_global_policy(snake_case__ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32" ) def UpperCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class(snake_case__ ) UpperCAmelCase__ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Any = [*signature.parameters.keys()] UpperCAmelCase__ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def UpperCamelCase ( self : int ): '''simple docstring''' def check_hidden_states_output(snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Tuple ): UpperCAmelCase__ : Dict = model_class(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) UpperCAmelCase__ : Optional[Any] = outputs.hidden_states UpperCAmelCase__ : Optional[int] = len(self.model_tester.depth ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Tuple = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def UpperCamelCase ( self : Tuple ): '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[int] = TFCvtModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def snake_case_ ( ): UpperCAmelCase__ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase ( self : List[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase__ : List[str] = self.default_image_processor UpperCAmelCase__ : Union[str, Any] = prepare_img() UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass UpperCAmelCase__ : Tuple = model(**snake_case__ ) # verify the logits UpperCAmelCase__ : Optional[Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , snake_case__ ) UpperCAmelCase__ : str = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
199
'''simple docstring''' from math import factorial SCREAMING_SNAKE_CASE = {str(digit): factorial(digit) for digit in range(1_0)} def snake_case_ ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): raise TypeError("Parameter number must be int" ) if number < 0: raise ValueError("Parameter number must be greater than or equal to 0" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase__ ) ) def snake_case_ ( lowercase__ = 6_0 , lowercase__ = 1_0_0_0_0_0_0 ): if not isinstance(lowercase__ , lowercase__ ) or not isinstance(lowercase__ , lowercase__ ): raise TypeError("Parameters chain_length and number_limit must be int" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( "Parameters chain_length and number_limit must be greater than 0" ) # the counter for the chains with the exact desired length UpperCAmelCase__ : Union[str, Any] = 0 # the cached sizes of the previous chains UpperCAmelCase__ : dict[int, int] = {} for start_chain_element in range(1 , lowercase__ ): # The temporary set will contain the elements of the chain UpperCAmelCase__ : Any = set() UpperCAmelCase__ : int = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCAmelCase__ : List[str] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowercase__ ) chain_set_length += 1 UpperCAmelCase__ : List[str] = digit_factorial_sum(lowercase__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCAmelCase__ : List[str] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
199
1
import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def a (lowerCAmelCase__ ): config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def a (lowerCAmelCase__ ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowerCAmelCase ) def a (lowerCAmelCase__ ): from transformers.testing_utils import pytest_terminal_summary_main __a = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(__lowerCAmelCase , id=__lowerCAmelCase ) def a (lowerCAmelCase__ , lowerCAmelCase__ ): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: __a = 0 # Doctest custom flag to ignore output. SCREAMING_SNAKE_CASE = doctest.register_optionflag('IGNORE_RESULT') SCREAMING_SNAKE_CASE = doctest.OutputChecker class __UpperCAmelCase ( UpperCamelCase_ ): """simple docstring""" def snake_case_ ( self , __A , __A , __A ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _a , _a , _a ) SCREAMING_SNAKE_CASE = CustomOutputChecker SCREAMING_SNAKE_CASE = HfDoctestModule SCREAMING_SNAKE_CASE = HfDocTestParser
712
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline SCREAMING_SNAKE_CASE = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , ): output_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , enable_onnx_checker=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) else: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) @torch.no_grad() def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): __a = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __a = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: __a = """cpu""" __a = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ , torch_dtype=lowerCAmelCase__ ).to(lowerCAmelCase__ ) __a = Path(lowerCAmelCase__ ) # TEXT ENCODER __a = pipeline.text_encoder.config.max_position_embeddings __a = pipeline.text_encoder.config.hidden_size __a = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=lowerCAmelCase__ , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=lowerCAmelCase__ , ) del pipeline.text_encoder # UNET __a = pipeline.unet.config.in_channels __a = pipeline.unet.config.sample_size __a = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), torch.randn(2 ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), torch.randn(2 , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=lowerCAmelCase__ , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , ) __a = str(unet_path.absolute().as_posix() ) __a = os.path.dirname(lowerCAmelCase__ ) __a = onnx.load(lowerCAmelCase__ ) # clean up existing tensor files shutil.rmtree(lowerCAmelCase__ ) os.mkdir(lowerCAmelCase__ ) # collate external tensor files into one onnx.save_model( lowerCAmelCase__ , lowerCAmelCase__ , save_as_external_data=lowerCAmelCase__ , all_tensors_to_one_file=lowerCAmelCase__ , location="""weights.pb""" , convert_attribute=lowerCAmelCase__ , ) del pipeline.unet # VAE ENCODER __a = pipeline.vae __a = vae_encoder.config.in_channels __a = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder __a = lambda lowerCAmelCase__ , lowerCAmelCase__ : vae_encoder.encode(lowerCAmelCase__ , lowerCAmelCase__ )[0].sample() onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowerCAmelCase__ , ) # VAE DECODER __a = pipeline.vae __a = vae_decoder.config.latent_channels __a = vae_decoder.config.out_channels # forward only through the decoder part __a = vae_encoder.decode onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowerCAmelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: __a = pipeline.safety_checker __a = safety_checker.config.vision_config.num_channels __a = safety_checker.config.vision_config.image_size __a = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), torch.randn(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=lowerCAmelCase__ , ) del pipeline.safety_checker __a = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) __a = pipeline.feature_extractor else: __a = None __a = None __a = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(lowerCAmelCase__ ) print("""ONNX pipeline saved to""" , lowerCAmelCase__ ) del pipeline del onnx_pipeline __a = OnnxStableDiffusionPipeline.from_pretrained(lowerCAmelCase__ , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=1_4, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') SCREAMING_SNAKE_CASE = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
209
0
from typing import Any import numpy as np def __magic_name__ ( lowercase_ ) -> bool: '''simple docstring''' return np.array_equal(lowercase_ , matrix.conjugate().T ) def __magic_name__ ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' UpperCamelCase = v.conjugate().T UpperCamelCase = v_star.dot(lowercase_ ) assert isinstance(lowercase_ , np.ndarray ) return (v_star_dot.dot(lowercase_ )) / (v_star.dot(lowercase_ )) def __magic_name__ ( ) -> None: '''simple docstring''' UpperCamelCase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) UpperCamelCase = np.array([[1], [2], [3]] ) assert is_hermitian(lowercase_ ), f'''{a} is not hermitian.''' print(rayleigh_quotient(lowercase_ , lowercase_ ) ) UpperCamelCase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase_ ), f'''{a} is not hermitian.''' assert rayleigh_quotient(lowercase_ , lowercase_ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
606
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __a : Optional[Any] = """facebook/wmt19-en-de""" __a : Union[str, Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __a : Optional[int] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __a : Union[str, Any] = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test __a : Optional[Any] = tokenizer(["""Making tiny model"""], return_tensors="""pt""") __a : Optional[Any] = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save __a : Union[str, Any] = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-de
606
1
'''simple docstring''' import math def _lowercase ( UpperCamelCase__ : int = 100 ): __A : Optional[int] = sum(i * i for i in range(1, n + 1 ) ) __A : Union[str, Any] = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
540
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _lowerCamelCase : '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=16 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=3 , __lowercase=4 , __lowercase=None , ): """simple docstring""" __A : Optional[int] = parent __A : Tuple = batch_size __A : Optional[int] = seq_length __A : Tuple = is_training __A : Optional[Any] = use_input_mask __A : Optional[Any] = use_token_type_ids __A : Optional[int] = use_labels __A : str = vocab_size __A : Dict = hidden_size __A : Tuple = num_hidden_layers __A : Optional[int] = num_attention_heads __A : str = intermediate_size __A : List[Any] = hidden_act __A : List[str] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : int = max_position_embeddings __A : int = type_vocab_size __A : int = type_sequence_label_size __A : str = initializer_range __A : str = num_labels __A : str = num_choices __A : Any = scope def snake_case__ ( self ): """simple docstring""" __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Union[str, Any] = None if self.use_input_mask: __A : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __A : str = None if self.use_token_type_ids: __A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A : Union[str, Any] = None __A : Optional[int] = None __A : List[str] = None if self.use_labels: __A : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __A : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , use_stable_embedding=__lowercase , ) def snake_case__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): """simple docstring""" __A : List[str] = OpenLlamaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __A : Any = model(__lowercase , attention_mask=__lowercase ) __A : Dict = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): """simple docstring""" __A : List[str] = True __A : int = OpenLlamaModel(__lowercase ) model.to(__lowercase ) model.eval() __A : List[Any] = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) __A : Optional[Any] = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , ) __A : Optional[Any] = model(__lowercase , attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): """simple docstring""" __A : Dict = OpenLlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() __A : Optional[Any] = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): """simple docstring""" __A : List[Any] = True __A : Optional[int] = True __A : Dict = OpenLlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass __A : List[str] = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , use_cache=__lowercase , ) __A : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __A : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) __A : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __A : int = torch.cat([input_ids, next_tokens] , dim=-1 ) __A : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) __A : Tuple = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , output_hidden_states=__lowercase , )['hidden_states'][0] __A : Any = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , past_key_values=__lowercase , output_hidden_states=__lowercase , )['hidden_states'][0] # select random slice __A : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() __A : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __A : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-3 ) ) def snake_case__ ( self ): """simple docstring""" __A : int = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Optional[Any] = config_and_inputs __A : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowercase : List[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowercase : Optional[int] = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowercase : Union[str, Any] = False __lowercase : Union[str, Any] = False def snake_case__ ( self ): """simple docstring""" __A : Optional[int] = OpenLlamaModelTester(self ) __A : List[str] = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def snake_case__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self ): """simple docstring""" __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def snake_case__ ( self ): """simple docstring""" __A : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A : List[str] = type self.model_tester.create_and_check_model(*__lowercase ) def snake_case__ ( self ): """simple docstring""" __A ,__A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : Union[str, Any] = 3 __A : int = input_dict['input_ids'] __A : int = input_ids.ne(1 ).to(__lowercase ) __A : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A : Optional[Any] = OpenLlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __A : Optional[int] = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self ): """simple docstring""" __A ,__A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = 3 __A : List[str] = 'single_label_classification' __A : Dict = input_dict['input_ids'] __A : Dict = input_ids.ne(1 ).to(__lowercase ) __A : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A : Union[str, Any] = OpenLlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __A : Dict = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self ): """simple docstring""" __A ,__A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __A : str = 3 __A : int = 'multi_label_classification' __A : Union[str, Any] = input_dict['input_ids'] __A : str = input_ids.ne(1 ).to(__lowercase ) __A : Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __A : int = OpenLlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __A : Any = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def snake_case__ ( self ): """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case__ ( self , __lowercase ): """simple docstring""" __A ,__A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __A : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A : Union[str, Any] = OpenLlamaModel(__lowercase ) original_model.to(__lowercase ) original_model.eval() __A : Optional[int] = original_model(__lowercase ).last_hidden_state __A : int = original_model(__lowercase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A : List[Any] = {'type': scaling_type, 'factor': 1_0.0} __A : str = OpenLlamaModel(__lowercase ) scaled_model.to(__lowercase ) scaled_model.eval() __A : Dict = scaled_model(__lowercase ).last_hidden_state __A : List[str] = scaled_model(__lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) )
540
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a : """simple docstring""" a : int a : int class a : """simple docstring""" def __init__( self : Optional[int] , __lowercase : int ) -> List[Any]: __UpperCAmelCase : list[list[Edge]] = [[] for _ in range(__lowercase )] __UpperCAmelCase : Optional[Any] = size def __getitem__( self : int , __lowercase : int ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: return self._size def UpperCAmelCase ( self : List[str] , __lowercase : int , __lowercase : int , __lowercase : int ) -> Any: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(__lowercase , __lowercase ) ) def UpperCAmelCase ( self : Union[str, Any] , __lowercase : int , __lowercase : int ) -> int | None: __UpperCAmelCase : List[str] = deque([start_vertex] ) __UpperCAmelCase : list[int | None] = [None] * self.size __UpperCAmelCase : Optional[int] = 0 while queue: __UpperCAmelCase : Tuple = queue.popleft() __UpperCAmelCase : Tuple = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: __UpperCAmelCase : Any = current_distance + edge.weight __UpperCAmelCase : Tuple = distances[edge.destination_vertex] if ( isinstance(__lowercase , __lowercase ) and new_distance >= dest_vertex_distance ): continue __UpperCAmelCase : Optional[int] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
63
def _a ( __UpperCamelCase : List[Any] ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection lowerCAmelCase__ : Optional[Any] = len(__UpperCamelCase ) lowerCAmelCase__ : Dict = max(__UpperCamelCase ) lowerCAmelCase__ : Optional[int] = min(__UpperCamelCase ) # create the counting array lowerCAmelCase__ : Any = coll_max + 1 - coll_min lowerCAmelCase__ : Any = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 ,__UpperCamelCase ): lowerCAmelCase__ : Any = counting_arr[i] + counting_arr[i - 1] # create the output collection lowerCAmelCase__ : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 ,__UpperCamelCase ) ): lowerCAmelCase__ : Optional[int] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _a ( __UpperCamelCase : int ): return "".join([chr(__UpperCamelCase ) for i in counting_sort([ord(__UpperCamelCase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" A__ : str = input("""Enter numbers separated by a comma:\n""").strip() A__ : List[str] = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
233
0
def _SCREAMING_SNAKE_CASE ( a ) -> bool: if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __A : List[Any] = 4 __A : Any = (1 << p) - 1 for _ in range(p - 2 ): __A : Any = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
709
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Tuple = ProphetNetTokenizer UpperCamelCase : Tuple = False def UpperCAmelCase_ ( self ): super().setUp() __A : Any = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self , _A ): __A : List[Any] = 'UNwant\u00E9d,running' __A : List[str] = 'unwanted, running' return input_text, output_text def UpperCAmelCase_ ( self ): __A : Tuple = self.tokenizer_class(self.vocab_file ) __A : List[Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_A , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] ) def UpperCAmelCase_ ( self ): __A : int = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def UpperCAmelCase_ ( self ): __A : Union[str, Any] = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def UpperCAmelCase_ ( self ): __A : List[str] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCAmelCase_ ( self ): __A : Optional[int] = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCAmelCase_ ( self ): __A : Tuple = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCAmelCase_ ( self ): __A : Tuple = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCAmelCase_ ( self ): __A : Dict = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCAmelCase_ ( self ): __A : List[Any] = BasicTokenizer(do_lower_case=_A , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def UpperCAmelCase_ ( self ): __A : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __A : Optional[int] = {} for i, token in enumerate(_A ): __A : Tuple = i __A : Tuple = WordpieceTokenizer(vocab=_A , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def UpperCAmelCase_ ( self ): __A : int = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __A : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __A : str = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] __A : str = tokenizer(_A , padding=_A , return_tensors='pt' ) self.assertIsInstance(_A , _A ) __A : List[str] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def UpperCAmelCase_ ( self ): self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def UpperCAmelCase_ ( self ): self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def UpperCAmelCase_ ( self ): self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def UpperCAmelCase_ ( self ): __A : Union[str, Any] = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __A : Any = tokenizer.encode('sequence builders' , add_special_tokens=_A ) __A : List[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=_A ) __A : str = tokenizer.build_inputs_with_special_tokens(_A ) __A : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
77
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar _UpperCamelCase : List[str] = TypeVar('T') _UpperCamelCase : int = TypeVar('U') class snake_case__ ( Generic[T, U]): def __init__( self : Tuple , _A : Optional[int] , _A : str ) -> Optional[int]: UpperCAmelCase_ : int = key UpperCAmelCase_ : List[Any] = val UpperCAmelCase_ : DoubleLinkedListNode[T, U] | None = None UpperCAmelCase_ : DoubleLinkedListNode[T, U] | None = None def __repr__( self : List[Any] ) -> Dict: return ( F"Node: key: {self.key}, val: {self.val}, " F"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class snake_case__ ( Generic[T, U]): def __init__( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase_ : Any = self.rear, self.head def __repr__( self : int ) -> Dict: UpperCAmelCase_ : List[str] = ['DoubleLinkedList'] UpperCAmelCase_ : List[str] = self.head while node.next is not None: rep.append(str(__lowerCAmelCase ) ) UpperCAmelCase_ : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(__lowerCAmelCase ) def A ( self : List[Any] , _A : Dict ) -> Union[str, Any]: UpperCAmelCase_ : str = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCAmelCase_ : Optional[Any] = node UpperCAmelCase_ : Union[str, Any] = previous UpperCAmelCase_ : Dict = node UpperCAmelCase_ : Union[str, Any] = self.rear def A ( self : List[str] , _A : str ) -> Tuple: if node.prev is None or node.next is None: return None UpperCAmelCase_ : Dict = node.next UpperCAmelCase_ : str = node.prev UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : str = None return node class snake_case__ ( Generic[T, U]): a_ = {} def __init__( self : List[str] , _A : Union[str, Any] ) -> Dict: UpperCAmelCase_ : DoubleLinkedList[T, U] = DoubleLinkedList() UpperCAmelCase_ : Optional[int] = capacity UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : str ) -> Optional[Any]: return ( F"CacheInfo(hits={self.hits}, misses={self.miss}, " F"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self : int , _A : Tuple ) -> Optional[int]: return key in self.cache def A ( self : Union[str, Any] , _A : Tuple ) -> Optional[int]: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 UpperCAmelCase_ : DoubleLinkedListNode[T, U] = self.cache[key] UpperCAmelCase_ : str = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(__lowerCAmelCase ) return node.val self.miss += 1 return None def A ( self : str , _A : int , _A : Union[str, Any] ) -> int: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCAmelCase_ : int = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(__lowerCAmelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCAmelCase_ : List[str] = DoubleLinkedListNode(__lowerCAmelCase , __lowerCAmelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCAmelCase_ : List[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCAmelCase_ : int = value self.list.add(__lowerCAmelCase ) @classmethod def A ( cls : Optional[int] , _A : Tuple = 1_28 ) -> int: def cache_decorator_inner(_A : Tuple ) -> Callable[..., U]: def cache_decorator_wrapper(*_A : int ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCAmelCase_ : Union[str, Any] = LRUCache(__lowerCAmelCase ) UpperCAmelCase_ : str = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCAmelCase_ : int = func(*__lowerCAmelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , __lowerCAmelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(__lowerCAmelCase , '''cache_info''' , __lowerCAmelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
541
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCAmelCase__: Optional[int] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCAmelCase__: Any = "UperNetConfig" class snake_case_ ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = False , __lowerCAmelCase = 1 , ): super().__init__() SCREAMING_SNAKE_CASE_ : str = nn.Convad( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , bias=__lowerCAmelCase , dilation=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.BatchNormad(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.ReLU() def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Dict = self.conv(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.batch_norm(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.activation(__lowerCAmelCase ) return output class snake_case_ ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() SCREAMING_SNAKE_CASE_ : Tuple = [ nn.AdaptiveAvgPoolad(__lowerCAmelCase ), UperNetConvModule(__lowerCAmelCase , __lowerCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__lowerCAmelCase ) , __lowerCAmelCase ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = input for layer in self.layers: SCREAMING_SNAKE_CASE_ : Tuple = layer(__lowerCAmelCase ) return hidden_state class snake_case_ ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() SCREAMING_SNAKE_CASE_ : Any = pool_scales SCREAMING_SNAKE_CASE_ : List[Any] = align_corners SCREAMING_SNAKE_CASE_ : List[str] = in_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = channels SCREAMING_SNAKE_CASE_ : List[Any] = [] for i, pool_scale in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = UperNetPyramidPoolingBlock(pool_scale=__lowerCAmelCase , in_channels=__lowerCAmelCase , channels=__lowerCAmelCase ) self.blocks.append(__lowerCAmelCase ) self.add_module(str(__lowerCAmelCase ) , __lowerCAmelCase ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for ppm in self.blocks: SCREAMING_SNAKE_CASE_ : List[Any] = ppm(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.functional.interpolate( __lowerCAmelCase , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(__lowerCAmelCase ) return ppm_outs class snake_case_ ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() SCREAMING_SNAKE_CASE_ : Optional[int] = config SCREAMING_SNAKE_CASE_ : Dict = config.pool_scales # e.g. (1, 2, 3, 6) SCREAMING_SNAKE_CASE_ : Union[str, Any] = in_channels SCREAMING_SNAKE_CASE_ : Optional[int] = config.hidden_size SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Dict = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module SCREAMING_SNAKE_CASE_ : List[str] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) SCREAMING_SNAKE_CASE_ : Tuple = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module SCREAMING_SNAKE_CASE_ : Tuple = nn.ModuleList() SCREAMING_SNAKE_CASE_ : str = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer SCREAMING_SNAKE_CASE_ : Optional[int] = UperNetConvModule(__lowerCAmelCase , self.channels , kernel_size=1 ) SCREAMING_SNAKE_CASE_ : List[str] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__lowerCAmelCase ) self.fpn_convs.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __A ( self ): self.apply(self._init_weights ) def __A ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = inputs[-1] SCREAMING_SNAKE_CASE_ : str = [x] psp_outs.extend(self.psp_modules(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : List[str] = torch.cat(__lowerCAmelCase , dim=1 ) SCREAMING_SNAKE_CASE_ : Tuple = self.bottleneck(__lowerCAmelCase ) return output def __A ( self , __lowerCAmelCase ): # build laterals SCREAMING_SNAKE_CASE_ : List[str] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__lowerCAmelCase ) ) # build top-down path SCREAMING_SNAKE_CASE_ : str = len(__lowerCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = laterals[i - 1].shape[2:] SCREAMING_SNAKE_CASE_ : List[str] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__lowerCAmelCase , mode='bilinear' , align_corners=self.align_corners ) # build outputs SCREAMING_SNAKE_CASE_ : Dict = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE_ : Tuple = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) SCREAMING_SNAKE_CASE_ : List[str] = torch.cat(__lowerCAmelCase , dim=1 ) SCREAMING_SNAKE_CASE_ : Tuple = self.fpn_bottleneck(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = self.classifier(__lowerCAmelCase ) return output class snake_case_ ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = 2 , __lowerCAmelCase = 3 , __lowerCAmelCase = 1 ): super().__init__() SCREAMING_SNAKE_CASE_ : str = config SCREAMING_SNAKE_CASE_ : Union[str, Any] = config.auxiliary_in_channels SCREAMING_SNAKE_CASE_ : Dict = config.auxiliary_channels SCREAMING_SNAKE_CASE_ : Tuple = config.auxiliary_num_convs SCREAMING_SNAKE_CASE_ : int = config.auxiliary_concat_input SCREAMING_SNAKE_CASE_ : Dict = in_index SCREAMING_SNAKE_CASE_ : Optional[Any] = (kernel_size // 2) * dilation SCREAMING_SNAKE_CASE_ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , dilation=__lowerCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , dilation=__lowerCAmelCase ) ) if self.num_convs == 0: SCREAMING_SNAKE_CASE_ : List[Any] = nn.Identity() else: SCREAMING_SNAKE_CASE_ : int = nn.Sequential(*__lowerCAmelCase ) if self.concat_input: SCREAMING_SNAKE_CASE_ : List[Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__lowerCAmelCase , padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE_ : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __A ( self ): self.apply(self._init_weights ) def __A ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __A ( self , __lowerCAmelCase ): # just take the relevant feature maps SCREAMING_SNAKE_CASE_ : Any = encoder_hidden_states[self.in_index] SCREAMING_SNAKE_CASE_ : Any = self.convs(__lowerCAmelCase ) if self.concat_input: SCREAMING_SNAKE_CASE_ : str = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) SCREAMING_SNAKE_CASE_ : List[str] = self.classifier(__lowerCAmelCase ) return output class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : List[str] = UperNetConfig __lowerCamelCase : str = 'pixel_values' __lowerCamelCase : Union[str, Any] = True def __A ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __A ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __A ( self , __lowerCAmelCase , __lowerCAmelCase=False ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = value lowerCAmelCase__: Optional[Any] = R"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" lowerCAmelCase__: List[str] = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' , lowerCAmelCase , ) class snake_case_ ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): super().__init__(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) SCREAMING_SNAKE_CASE_ : Optional[Any] = UperNetHead(__lowerCAmelCase , in_channels=self.backbone.channels ) SCREAMING_SNAKE_CASE_ : int = UperNetFCNHead(__lowerCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC ) def __A ( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , ): SCREAMING_SNAKE_CASE_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : Optional[int] = output_attentions if output_attentions is not None else self.config.output_attentions SCREAMING_SNAKE_CASE_ : Optional[int] = self.backbone.forward_with_filtered_kwargs( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , output_attentions=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = outputs.feature_maps SCREAMING_SNAKE_CASE_ : List[Any] = self.decode_head(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = nn.functional.interpolate(__lowerCAmelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = None if self.auxiliary_head is not None: SCREAMING_SNAKE_CASE_ : Dict = self.auxiliary_head(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.functional.interpolate( __lowerCAmelCase , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss SCREAMING_SNAKE_CASE_ : List[Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) SCREAMING_SNAKE_CASE_ : List[Any] = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: SCREAMING_SNAKE_CASE_ : List[Any] = (logits,) + outputs[1:] else: SCREAMING_SNAKE_CASE_ : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
345
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: _lowerCamelCase = None _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 _lowerCamelCase = { '''t5-small''': 5_12, '''t5-base''': 5_12, '''t5-large''': 5_12, '''t5-3b''': 5_12, '''t5-11b''': 5_12, } class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] lowerCamelCase__ = TaTokenizer lowerCamelCase__ = [] def __init__( self :Dict , _lowerCamelCase :Dict=None , _lowerCamelCase :Dict=None , _lowerCamelCase :Optional[int]="</s>" , _lowerCamelCase :Any="<unk>" , _lowerCamelCase :Optional[Any]="<pad>" , _lowerCamelCase :Tuple=1_0_0 , _lowerCamelCase :Tuple=None , **_lowerCamelCase :str , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = [f'''<extra_id_{i}>''' for i in range(_lowerCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __SCREAMING_SNAKE_CASE : int = len(set(filter(lambda _lowerCamelCase : bool('''extra_id_''' in str(_lowerCamelCase ) ) , _lowerCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , extra_ids=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) __SCREAMING_SNAKE_CASE : List[str] = vocab_file __SCREAMING_SNAKE_CASE : Optional[Any] = False if not self.vocab_file else True __SCREAMING_SNAKE_CASE : Dict = extra_ids @staticmethod def SCREAMING_SNAKE_CASE_ ( _lowerCamelCase :Dict , _lowerCamelCase :Optional[int] , _lowerCamelCase :int ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __SCREAMING_SNAKE_CASE : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _lowerCamelCase , ) return max_model_length def SCREAMING_SNAKE_CASE_ ( self :Dict , _lowerCamelCase :str , _lowerCamelCase :Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : Any = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ): __SCREAMING_SNAKE_CASE : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __SCREAMING_SNAKE_CASE : Tuple = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE_ ( self :str , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ): __SCREAMING_SNAKE_CASE : Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): return list( set(filter(lambda _lowerCamelCase : bool(re.search(r'''<extra_id_\d+>''' , _lowerCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE_ ( self :Any ): return [self.convert_tokens_to_ids(_lowerCamelCase ) for token in self.get_sentinel_tokens()]
701
"""simple docstring""" import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class snake_case ( unittest.TestCase ): def __init__( self :str , _lowerCamelCase :Dict , _lowerCamelCase :int=2 , _lowerCamelCase :Any=5_6 , _lowerCamelCase :Union[str, Any]=True , _lowerCamelCase :Optional[int]=True , _lowerCamelCase :List[str]=True , _lowerCamelCase :List[str]=True , _lowerCamelCase :int=9_9 , _lowerCamelCase :Optional[int]=3_2 , _lowerCamelCase :int=2 , _lowerCamelCase :List[str]=2 , _lowerCamelCase :Dict=7 , _lowerCamelCase :Union[str, Any]="gelu_new" , _lowerCamelCase :Dict=0.1 , _lowerCamelCase :int=0.1 , _lowerCamelCase :Union[str, Any]=5_1_2 , _lowerCamelCase :Optional[Any]=1_6 , _lowerCamelCase :int=2 , _lowerCamelCase :str=0.0_2 , _lowerCamelCase :Optional[Any]=4 , _lowerCamelCase :Optional[Any]="block_sparse" , _lowerCamelCase :int=True , _lowerCamelCase :Tuple=False , _lowerCamelCase :int=2 , _lowerCamelCase :int=3 , ): __SCREAMING_SNAKE_CASE : str = parent __SCREAMING_SNAKE_CASE : Optional[Any] = batch_size __SCREAMING_SNAKE_CASE : Any = seq_length __SCREAMING_SNAKE_CASE : Any = is_training __SCREAMING_SNAKE_CASE : Any = use_attention_mask __SCREAMING_SNAKE_CASE : str = use_token_type_ids __SCREAMING_SNAKE_CASE : Dict = use_labels __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : Any = hidden_size __SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : str = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Any = max_position_embeddings __SCREAMING_SNAKE_CASE : str = type_vocab_size __SCREAMING_SNAKE_CASE : int = type_sequence_label_size __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = num_choices __SCREAMING_SNAKE_CASE : str = rescale_embeddings __SCREAMING_SNAKE_CASE : str = attention_type __SCREAMING_SNAKE_CASE : Dict = use_bias __SCREAMING_SNAKE_CASE : List[Any] = block_size __SCREAMING_SNAKE_CASE : Dict = num_random_blocks def SCREAMING_SNAKE_CASE_ ( self :Any ): __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[str] = None if self.use_attention_mask: __SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : str = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): __SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = config_and_inputs __SCREAMING_SNAKE_CASE : Optional[Any] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class snake_case ( __UpperCAmelCase , unittest.TestCase ): lowerCamelCase__ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self :Dict ): __SCREAMING_SNAKE_CASE : str = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE_ ( self :Dict ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE_ ( self :Tuple ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE_ ( self :Any ): super().test_hidden_states_output() @slow def SCREAMING_SNAKE_CASE_ ( self :str ): for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE : List[str] = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE_ ( self :List[str] ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = model_class(_lowerCamelCase ) @jax.jit def model_jitted(_lowerCamelCase :Dict , _lowerCamelCase :Optional[int]=None , **_lowerCamelCase :List[str] ): return model(input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase , **_lowerCamelCase ) with self.subTest('''JIT Enabled''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = model_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE : int = model_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :Any , _lowerCamelCase :str , _lowerCamelCase :Dict , _lowerCamelCase :List[str]=1e-5 , _lowerCamelCase :Dict="outputs" , _lowerCamelCase :str=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
401
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowerCAmelCase ( ctypes.Structure ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def lowercase () -> Optional[int]: if os.name == "nt": SCREAMING_SNAKE_CASE = CursorInfo() SCREAMING_SNAKE_CASE = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = False ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def lowercase () -> int: if os.name == "nt": SCREAMING_SNAKE_CASE = CursorInfo() SCREAMING_SNAKE_CASE = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = True ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def lowercase () -> Dict: try: hide_cursor() yield finally: show_cursor()
247
0
'''simple docstring''' def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] ): def count_of_possible_combinations(lowerCAmelCase__ : Tuple ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__A ) def __a ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple ): def count_of_possible_combinations_with_dp_array( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] a__ : Union[str, Any] = sum( count_of_possible_combinations_with_dp_array(target - item , __A ) for item in array ) a__ : Any = answer return answer a__ : Union[str, Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__A , __A ) def __a ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ): a__ : List[str] = [0] * (target + 1) a__ : Dict = 1 for i in range(1 , target + 1 ): for j in range(__A ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = 5 __SCREAMING_SNAKE_CASE = [1, 2, 5] print(combination_sum_iv(n, array, target))
701
'''simple docstring''' from __future__ import annotations def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): if b == 0: return (1, 0) ((a__) , (a__)) : int = extended_euclid(lowerCAmelCase__ , a % b ) a__ : Optional[int] = a // b return (y, x - k * y) def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ): ((a__) , (a__)) : int = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : int = na * na a__ : Dict = ra * x * na + ra * y * na return (n % m + m) % m def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): ((a__) , (a__)) : Union[str, Any] = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) if b < 0: a__ : Optional[Any] = (b % n + n) % n return b def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ): a__ , a__ : Union[str, Any] = invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ), invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple = na * na a__ : str = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
340
0
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a_ ( a ): A__ : torch.FloatTensor class a_ ( a , a ): @register_to_config def __init__( self : Any , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 20 , UpperCAmelCase__ : int = 768 , UpperCAmelCase__ : Union[str, Any]=77 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : str = "silu" , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = "linear" , UpperCAmelCase__ : Optional[str] = "prd" , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , ): """simple docstring""" super().__init__() snake_case : int = num_attention_heads snake_case : List[str] = attention_head_dim snake_case : Union[str, Any] = num_attention_heads * attention_head_dim snake_case : str = additional_embeddings snake_case : Union[str, Any] = time_embed_dim or inner_dim snake_case : Optional[int] = embedding_proj_dim or embedding_dim snake_case : Optional[Any] = clip_embed_dim or embedding_dim snake_case : Union[str, Any] = Timesteps(UpperCAmelCase__ , UpperCAmelCase__ , 0 ) snake_case : str = TimestepEmbedding(UpperCAmelCase__ , UpperCAmelCase__ , out_dim=UpperCAmelCase__ , act_fn=UpperCAmelCase__ ) snake_case : str = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) if embedding_proj_norm_type is None: snake_case : Dict = None elif embedding_proj_norm_type == "layer": snake_case : Dict = nn.LayerNorm(UpperCAmelCase__ ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) snake_case : Optional[Any] = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) if encoder_hid_proj_type is None: snake_case : Any = None elif encoder_hid_proj_type == "linear": snake_case : str = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) snake_case : Union[str, Any] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCAmelCase__ ) ) if added_emb_type == "prd": snake_case : Dict = nn.Parameter(torch.zeros(1 , 1 , UpperCAmelCase__ ) ) elif added_emb_type is None: snake_case : Tuple = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) snake_case : Any = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , dropout=UpperCAmelCase__ , activation_fn='''gelu''' , attention_bias=UpperCAmelCase__ , ) for d in range(UpperCAmelCase__ ) ] ) if norm_in_type == "layer": snake_case : str = nn.LayerNorm(UpperCAmelCase__ ) elif norm_in_type is None: snake_case : str = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) snake_case : int = nn.LayerNorm(UpperCAmelCase__ ) snake_case : List[Any] = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case : int = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0000.0 ) causal_attention_mask.triu_(1 ) snake_case : Tuple = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , UpperCAmelCase__ , persistent=UpperCAmelCase__ ) snake_case : Dict = nn.Parameter(torch.zeros(1 , UpperCAmelCase__ ) ) snake_case : str = nn.Parameter(torch.zeros(1 , UpperCAmelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase( self : int ): """simple docstring""" snake_case : List[str] = {} def fn_recursive_add_processors(UpperCAmelCase__ : str , UpperCAmelCase__ : torch.nn.Module , UpperCAmelCase__ : Dict[str, AttentionProcessor] ): if hasattr(UpperCAmelCase__ , '''set_processor''' ): snake_case : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , UpperCAmelCase__ , UpperCAmelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return processors def lowerCAmelCase( self : int , UpperCAmelCase__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): """simple docstring""" snake_case : int = len(self.attn_processors.keys() ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(UpperCAmelCase__ )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(UpperCAmelCase__ : str , UpperCAmelCase__ : torch.nn.Module , UpperCAmelCase__ : Any ): if hasattr(UpperCAmelCase__ , '''set_processor''' ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): module.set_processor(UpperCAmelCase__ ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , UpperCAmelCase__ , UpperCAmelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase( self : Dict ): """simple docstring""" self.set_attn_processor(AttnProcessor() ) def lowerCAmelCase( self : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[torch.Tensor, float, int] , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[torch.BoolTensor] = None , UpperCAmelCase__ : bool = True , ): """simple docstring""" snake_case : Union[str, Any] = hidden_states.shape[0] snake_case : Union[str, Any] = timestep if not torch.is_tensor(UpperCAmelCase__ ): snake_case : Optional[Any] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCAmelCase__ ) and len(timesteps.shape ) == 0: snake_case : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case : Any = timesteps * torch.ones(UpperCAmelCase__ , dtype=timesteps.dtype , device=timesteps.device ) snake_case : List[str] = self.time_proj(UpperCAmelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. snake_case : List[Any] = timesteps_projected.to(dtype=self.dtype ) snake_case : Optional[int] = self.time_embedding(UpperCAmelCase__ ) if self.embedding_proj_norm is not None: snake_case : int = self.embedding_proj_norm(UpperCAmelCase__ ) snake_case : Union[str, Any] = self.embedding_proj(UpperCAmelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: snake_case : Union[str, Any] = self.encoder_hidden_states_proj(UpperCAmelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) snake_case : Optional[Any] = self.proj_in(UpperCAmelCase__ ) snake_case : str = self.positional_embedding.to(hidden_states.dtype ) snake_case : Optional[int] = [] snake_case : str = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCAmelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: snake_case : Tuple = hidden_states[:, None, :] snake_case : List[str] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: snake_case : List[Any] = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCAmelCase__ , -1 , -1 ) additional_embeds.append(UpperCAmelCase__ ) snake_case : Optional[int] = torch.cat( UpperCAmelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens snake_case : int = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: snake_case : Optional[int] = F.pad( UpperCAmelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) snake_case : List[str] = hidden_states + positional_embeddings if attention_mask is not None: snake_case : Tuple = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 snake_case : int = F.pad(UpperCAmelCase__ , (0, self.additional_embeddings) , value=0.0 ) snake_case : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) snake_case : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: snake_case : Dict = self.norm_in(UpperCAmelCase__ ) for block in self.transformer_blocks: snake_case : Any = block(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) snake_case : int = self.norm_out(UpperCAmelCase__ ) if self.prd_embedding is not None: snake_case : Optional[int] = hidden_states[:, -1] else: snake_case : Optional[int] = hidden_states[:, additional_embeddings_len:] snake_case : Optional[int] = self.proj_to_clip_embeddings(UpperCAmelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCAmelCase__ ) def lowerCAmelCase( self : Optional[Any] , UpperCAmelCase__ : int ): """simple docstring""" snake_case : Optional[int] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
598
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a : str = logging.get_logger(__name__) class a_ ( a ): def __init__( self : List[str] , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Tuple ): """simple docstring""" warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
598
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class SCREAMING_SNAKE_CASE: def __init__( self , lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = str(id_ ) __lowercase = None __lowercase = None __lowercase = [] __lowercase = {} # {vertex:distance} def __lt__( self , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" return self.key < other.key def __repr__( self ) -> Any: """simple docstring""" return self.id def snake_case__ ( self , lowerCamelCase__ ) -> List[Any]: """simple docstring""" self.neighbors.append(lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" __lowercase = weight def snake_case_ ( a__ : Optional[int] ,a__ : List[str] ,a__ : Dict ,a__ : List[str] ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] ,a__ ) graph[b - 1].add_edge(graph[a - 1] ,a__ ) def snake_case_ ( a__ : list ,a__ : Vertex ): """simple docstring""" __lowercase = [] for u in graph: __lowercase = math.inf __lowercase = None __lowercase = 0 __lowercase = graph[:] while q: __lowercase = min(a__ ) q.remove(a__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __lowercase = u __lowercase = u.edges[v.id] for i in range(1 ,len(a__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case_ ( a__ : list ,a__ : Vertex ): """simple docstring""" for u in graph: __lowercase = math.inf __lowercase = None __lowercase = 0 __lowercase = list(a__ ) hq.heapify(a__ ) while h: __lowercase = hq.heappop(a__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __lowercase = u __lowercase = u.edges[v.id] hq.heapify(a__ ) for i in range(1 ,len(a__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
163
'''simple docstring''' import pprint import requests A : str = """https://zenquotes.io/api""" def snake_case_ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def snake_case_ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": A : int = random_quotes() pprint.pprint(response)
163
1
def _A ( __snake_case :int = 100_0000 ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = {1: 1} for inputa in range(2 , __snake_case ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __SCREAMING_SNAKE_CASE = (3 * number) + 1 counter += 1 if inputa not in counters: __SCREAMING_SNAKE_CASE = counter if counter > pre_counter: __SCREAMING_SNAKE_CASE = inputa __SCREAMING_SNAKE_CASE = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
693
from __future__ import annotations def lowercase_ ( __snake_case : list[int] ) -> int: '''simple docstring''' if not nums: return 0 snake_case__ :Union[str, Any] = nums[0] snake_case__ :List[Any] = 0 for num in nums[1:]: snake_case__ , snake_case__ :Optional[Any] = ( max_excluding + num, max(__snake_case , __snake_case ), ) return max(__snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
241
0
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( lowercase : List[str] , lowercase : Dict , lowercase : int ) ->List[Any]: """simple docstring""" lowercase__ = BertConfig.from_json_file(lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase__ = BertForPreTraining(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowercase , lowercase , lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
318
'''simple docstring''' _lowerCAmelCase = "Input must be a string of 8 numbers plus letter" _lowerCAmelCase = "TRWAGMYFPDXBNJZSQVHLCKE" def _lowerCAmelCase ( lowercase : str ) ->bool: """simple docstring""" if not isinstance(lowercase , lowercase ): lowercase__ = F'''Expected string as input, found {type(lowercase ).__name__}''' raise TypeError(lowercase ) lowercase__ = spanish_id.replace('''-''' , '''''' ).upper() if len(lowercase ) != 9: raise ValueError(lowercase ) try: lowercase__ = int(spanish_id_clean[0:8] ) lowercase__ = spanish_id_clean[8] except ValueError as ex: raise ValueError(lowercase ) from ex if letter.isdigit(): raise ValueError(lowercase ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
318
1
'''simple docstring''' from datetime import datetime as dt import os from github import Github lowercase__ : Optional[int] = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def a__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) _UpperCamelCase = g.get_repo('''huggingface/transformers''' ) _UpperCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: _UpperCamelCase = sorted([comment for comment in issue.get_comments()], key=lambda lowercase : i.created_at, reverse=lowercase ) _UpperCamelCase = comments[0] if len(lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
98
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") _lowerCAmelCase : List[str] = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _lowerCAmelCase : Tuple = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _lowerCAmelCase : Optional[Any] = sorted(arg_to_scheduler.keys()) _lowerCAmelCase : Optional[Any] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case , __snake_case=None , __snake_case="base" , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case , ) -> Union[str, Any]: '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__snake_case ) __a =0 __a =Path(self.hparams.output_dir ) __a =self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __a =AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__snake_case , **__snake_case , ) else: __a =config __a =('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __snake_case , __snake_case ): assert hasattr(self.config , __snake_case ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __snake_case , getattr(self.hparams , __snake_case ) ) if tokenizer is None: __a =AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__snake_case , ) else: __a =tokenizer __a =MODEL_MODES[mode] if model is None: __a =self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__snake_case , ) else: __a =model def __magic_name__ ( self , *__snake_case , **__snake_case ) -> int: '''simple docstring''' __a =self.model_type.from_pretrained(*__snake_case , **__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =arg_to_scheduler[self.hparams.lr_scheduler] __a =get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __a ={'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __magic_name__ ( self ) -> int: '''simple docstring''' __a =self.model __a =['bias', 'LayerNorm.weight'] __a =[ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __a =Adafactor( __snake_case , lr=self.hparams.learning_rate , scale_parameter=__snake_case , relative_step=__snake_case ) else: __a =AdamW( __snake_case , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __a =optimizer __a =self.get_lr_scheduler() return [optimizer], [scheduler] def __magic_name__ ( self , __snake_case , __snake_case ) -> List[str]: '''simple docstring''' return self.validation_step(__snake_case , __snake_case ) def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' return self.validation_end(__snake_case ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __a =self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' if stage == "test": __a =len(self.test_dataloader().dataset ) else: __a =self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__snake_case ) __a =len(self.train_dataloader().dataset ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = False ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' return self.train_loader def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __snake_case , list(filter(__snake_case , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __magic_name__ ( self , __snake_case ) -> None: '''simple docstring''' __a =self.output_dir.joinpath('best_tfmr' ) __a =self.step_count self.model.save_pretrained(__snake_case ) self.tokenizer.save_pretrained(__snake_case ) @staticmethod def __magic_name__ ( __snake_case , __snake_case ) -> Union[str, Any]: '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__snake_case , type=__snake_case , required=__snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__snake_case , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__snake_case , type=__snake_case , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__snake_case ).parent / 'test_run' / 'cache' ) , type=__snake_case , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__snake_case , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__snake_case , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__snake_case , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__snake_case , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5e-5 , type=__snake_case , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__snake_case , metavar=__snake_case , type=__snake_case , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__snake_case , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__snake_case , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__snake_case , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__snake_case ) parser.add_argument('--train_batch_size' , default=32 , type=__snake_case ) parser.add_argument('--eval_batch_size' , default=32 , type=__snake_case ) parser.add_argument('--adafactor' , action='store_true' ) class __magic_name__ ( pl.Callback ): def __magic_name__ ( self , __snake_case , __snake_case ) -> str: '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __magic_name__ ( pl.Callback ): def __magic_name__ ( self , __snake_case , __snake_case ) -> Any: '''simple docstring''' # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__snake_case ) class __magic_name__ ( pl.Callback ): def __magic_name__ ( self , __snake_case , __snake_case ) -> int: '''simple docstring''' __a =trainer.lr_schedulers[0]['scheduler'] __a ={f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case ) -> List[str]: '''simple docstring''' rank_zero_info('***** Validation results *****' ) __a =trainer.callback_metrics # Log results for key in sorted(__snake_case ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__snake_case , str(metrics[key] ) ) ) def __magic_name__ ( self , __snake_case , __snake_case ) -> List[str]: '''simple docstring''' rank_zero_info('***** Test results *****' ) __a =trainer.callback_metrics # Log and save results to file __a =os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__snake_case , 'w' ) as writer: for key in sorted(__snake_case ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__snake_case , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__snake_case , str(metrics[key] ) ) ) def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(_snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=_snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=_snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=_snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=_snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=_snake_case , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(_snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=_snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def UpperCamelCase_( _snake_case : BaseTransformer , _snake_case : argparse.Namespace , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=True , _snake_case : Dict=[] , _snake_case : List[str]=None , _snake_case : Any=None , **_snake_case : str , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __a =Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_snake_case ) # add custom checkpoints if checkpoint_callback is None: __a =pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_snake_case ) if logging_callback is None: __a =LoggingCallback() __a ={} if args.fpaa: __a =16 if args.gpus > 1: __a ='auto' __a ='ddp' __a =args.accumulate_grad_batches __a =None __a ='auto' __a =pl.Trainer.from_argparse_args( _snake_case , weights_summary=_snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **_snake_case , ) if args.do_train: trainer.fit(_snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
242
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __a : def __init__( self : List[str] , snake_case_ : Optional[Any]=2 , snake_case_ : str=3 , snake_case_ : Union[str, Any]=64 , snake_case_ : Dict=None)-> str: __lowerCAmelCase =np.random.default_rng(snake_case_) __lowerCAmelCase =length __lowerCAmelCase =rng.normal(size=(length,)).astype(np.floataa) __lowerCAmelCase =a * self.x + b + rng.normal(scale=0.1 , size=(length,)).astype(np.floataa) def __len__( self : Tuple)-> Dict: return self.length def __getitem__( self : List[str] , snake_case_ : Any)-> Union[str, Any]: return {"x": self.x[i], "y": self.y[i]} class __a ( torch.nn.Module ): def __init__( self : List[str] , snake_case_ : Dict=0 , snake_case_ : Any=0 , snake_case_ : Any=False)-> int: super().__init__() __lowerCAmelCase =torch.nn.Parameter(torch.tensor([2, 3]).float()) __lowerCAmelCase =torch.nn.Parameter(torch.tensor([2, 3]).float()) __lowerCAmelCase =True def UpperCamelCase ( self : Any , snake_case_ : str=None)-> Union[str, Any]: if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""") __lowerCAmelCase =False return x * self.a[0] + self.b[0] class __a ( torch.nn.Module ): def __init__( self : str , snake_case_ : Optional[Any]=0 , snake_case_ : List[str]=0 , snake_case_ : int=False)-> Optional[Any]: super().__init__() __lowerCAmelCase =torch.nn.Parameter(torch.tensor(snake_case_).float()) __lowerCAmelCase =torch.nn.Parameter(torch.tensor(snake_case_).float()) __lowerCAmelCase =True def UpperCamelCase ( self : str , snake_case_ : List[str]=None)-> Union[str, Any]: if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""") __lowerCAmelCase =False return x * self.a + self.b def __lowerCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int = 16 ) -> List[Any]: from datasets import load_dataset from transformers import AutoTokenizer __lowerCAmelCase =AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowerCAmelCase ={"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __lowerCAmelCase =load_dataset("""csv""" , data_files=__lowerCamelCase ) __lowerCAmelCase =datasets["""train"""].unique("""label""" ) __lowerCAmelCase ={v: i for i, v in enumerate(__lowerCamelCase )} def tokenize_function(__lowerCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase =tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCamelCase , max_length=__lowerCamelCase , padding="""max_length""" ) if "label" in examples: __lowerCAmelCase =[label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCAmelCase =datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(__lowerCamelCase : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__lowerCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCAmelCase =DataLoader(tokenized_datasets["""train"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=2 ) __lowerCAmelCase =DataLoader(tokenized_datasets["""validation"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
714
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
456
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=3_2 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=1_6 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=1_0 , __UpperCAmelCase=8 , __UpperCAmelCase=["stage1", "stage2", "stage3"] , __UpperCAmelCase=[1, 2, 3] , ): '''simple docstring''' lowerCAmelCase__ :Tuple = parent lowerCAmelCase__ :str = batch_size lowerCAmelCase__ :List[str] = image_size lowerCAmelCase__ :Optional[int] = patch_size lowerCAmelCase__ :List[str] = num_channels lowerCAmelCase__ :Tuple = embed_dim lowerCAmelCase__ :Optional[int] = depths lowerCAmelCase__ :Optional[Any] = num_heads lowerCAmelCase__ :List[str] = window_size lowerCAmelCase__ :int = mlp_ratio lowerCAmelCase__ :Union[str, Any] = qkv_bias lowerCAmelCase__ :Any = hidden_dropout_prob lowerCAmelCase__ :str = attention_probs_dropout_prob lowerCAmelCase__ :Union[str, Any] = drop_path_rate lowerCAmelCase__ :List[Any] = hidden_act lowerCAmelCase__ :str = use_absolute_embeddings lowerCAmelCase__ :int = patch_norm lowerCAmelCase__ :Tuple = layer_norm_eps lowerCAmelCase__ :Optional[int] = initializer_range lowerCAmelCase__ :List[Any] = is_training lowerCAmelCase__ :Optional[Any] = scope lowerCAmelCase__ :int = use_labels lowerCAmelCase__ :str = type_sequence_label_size lowerCAmelCase__ :List[str] = encoder_stride lowerCAmelCase__ :Tuple = out_features lowerCAmelCase__ :Tuple = out_indices def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ :Any = None if self.use_labels: lowerCAmelCase__ :Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :Any = self.get_config() return config, pixel_values, labels def snake_case ( self ): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = MaskFormerSwinModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :int = model(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ :Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = MaskFormerSwinBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :int = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ :List[str] = ['stem'] lowerCAmelCase__ :Dict = MaskFormerSwinBackbone(config=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = config_and_inputs lowerCAmelCase__ :Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Dict = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __magic_name__ :List[Any] = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} __magic_name__ :List[str] = False __magic_name__ :Optional[Any] = False __magic_name__ :Union[str, Any] = False __magic_name__ :Optional[Any] = False __magic_name__ :str = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = MaskFormerSwinModelTester(self ) lowerCAmelCase__ :Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): '''simple docstring''' return def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCAmelCase ) @unittest.skip('Swin does not use inputs_embeds' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip('Swin does not support feedforward chunking' ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ :Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :Union[str, Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ :Union[str, Any] = [*signature.parameters.keys()] lowerCAmelCase__ :Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ :Dict = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ :Tuple = outputs.hidden_states lowerCAmelCase__ :Any = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swin has a different seq_length lowerCAmelCase__ :Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ :Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ :Dict = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ :Dict = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :Any = 3 lowerCAmelCase__ :List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ :str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ :Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ :List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ :Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ :str = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__UpperCAmelCase ): lowerCAmelCase__ :List[Any] = 0 return t def check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase={} ): with torch.no_grad(): lowerCAmelCase__ :List[str] = model(**__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :Any = model(**__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ).to_tuple() def recursive_check(__UpperCAmelCase , __UpperCAmelCase ): if isinstance(__UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__UpperCAmelCase , __UpperCAmelCase ): recursive_check(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__UpperCAmelCase , __UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__UpperCAmelCase ) , set_nan_tensor_to_zero(__UpperCAmelCase ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(__UpperCAmelCase ).any()} and `inf`: {torch.isinf(__UpperCAmelCase )}. Dict has" F" `nan`: {torch.isnan(__UpperCAmelCase ).any()} and `inf`: {torch.isinf(__UpperCAmelCase )}." ) , ) recursive_check(__UpperCAmelCase , __UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[str] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :int = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) lowerCAmelCase__ :Dict = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'output_hidden_states': True} ) lowerCAmelCase__ :int = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) lowerCAmelCase__ :Dict = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'output_hidden_states': True} ) @require_torch class _lowerCAmelCase ( unittest.TestCase , a ): """simple docstring""" __magic_name__ :Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () __magic_name__ :str = MaskFormerSwinConfig def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = MaskFormerSwinModelTester(self ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :Optional[Any] = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowerCAmelCase__ :Optional[int] = backbone_class(__UpperCAmelCase ) backbone.to(__UpperCAmelCase ) backbone.eval() lowerCAmelCase__ :List[str] = backbone(**__UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowerCAmelCase__ :Any = backbone(**__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Tuple = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowerCAmelCase__ :Tuple = backbone(**__UpperCAmelCase , output_attentions=__UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
93
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict ): __snake_case : List[str] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ] ) return rename_keys def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __snake_case : int = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __snake_case : Tuple = in_proj_weight[ : encoder_config.hidden_size, : ] __snake_case : Tuple = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __snake_case : int = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] ): __snake_case : Any = dct.pop(__UpperCAmelCase ) __snake_case : Optional[int] = val def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if "handwritten" in checkpoint_url: __snake_case : Any = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __snake_case : Union[str, Any] = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg' __snake_case : Any = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert('RGB' ) return im @torch.no_grad() def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : str ): __snake_case : List[Any] = ViTConfig(image_size=3_84 , qkv_bias=__UpperCAmelCase ) __snake_case : int = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __snake_case : List[Any] = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder __snake_case : str = 10_24 __snake_case : List[Any] = 40_96 __snake_case : Tuple = 24 __snake_case : Dict = 16 __snake_case : Union[str, Any] = 10_24 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __snake_case : Optional[Any] = False __snake_case : List[Any] = 'relu' __snake_case : List[str] = 10_24 __snake_case : Union[str, Any] = True __snake_case : Tuple = False __snake_case : Optional[Any] = False # load HuggingFace model __snake_case : List[Any] = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ) __snake_case : Dict = TrOCRForCausalLM(__UpperCAmelCase ) __snake_case : Optional[Any] = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() # load state_dict of original model, rename some keys __snake_case : Any = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='cpu' , check_hash=__UpperCAmelCase )['model'] __snake_case : int = create_rename_keys(__UpperCAmelCase , __UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __snake_case : Dict = state_dict.pop(__UpperCAmelCase ) if key.startswith('decoder' ) and "output_projection" not in key: __snake_case : Optional[int] = val else: __snake_case : Tuple = val # load state dict model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image __snake_case : Dict = ViTImageProcessor(size=encoder_config.image_size ) __snake_case : Union[str, Any] = RobertaTokenizer.from_pretrained('roberta-large' ) __snake_case : List[Any] = TrOCRProcessor(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : Optional[Any] = processor(images=prepare_img(__UpperCAmelCase ) , return_tensors='pt' ).pixel_values # verify logits __snake_case : List[Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __snake_case : List[Any] = model(pixel_values=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) __snake_case : List[Any] = outputs.logits __snake_case : Dict = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: __snake_case : List[str] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: __snake_case : Dict = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: __snake_case : str = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: __snake_case : int = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , __UpperCAmelCase , atol=1E-3 ), "First elements of logits not as expected" Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
576
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=8 ) -> Optional[Any]: _snake_case = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _snake_case = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=512 , lowerCAmelCase_=512 ) -> Any: _snake_case = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _snake_case = np.array(pil_image.convert('''RGB''' ) ) _snake_case = arr.astype(np.floataa ) / 127.5 - 1 _snake_case = np.transpose(lowerCAmelCase_ , [2, 0, 1] ) _snake_case = torch.from_numpy(lowerCAmelCase_ ).unsqueeze(0 ) return image class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Dict , __lowerCamelCase : UNetaDConditionModel , __lowerCamelCase : DDPMScheduler , __lowerCamelCase : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=__lowerCamelCase , scheduler=__lowerCamelCase , movq=__lowerCamelCase , ) _snake_case = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __UpperCAmelCase ( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = min(int(num_inference_steps * strength ) , __lowerCamelCase ) _snake_case = max(num_inference_steps - init_timestep , 0 ) _snake_case = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __UpperCAmelCase ( self : int , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=None ): """simple docstring""" if not isinstance(__lowerCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCamelCase )}""" ) _snake_case = image.to(device=__lowerCamelCase , dtype=__lowerCamelCase ) _snake_case = batch_size * num_images_per_prompt if image.shape[1] == 4: _snake_case = image else: if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCamelCase ) ] _snake_case = torch.cat(__lowerCamelCase , dim=0 ) else: _snake_case = self.movq.encode(__lowerCamelCase ).latent_dist.sample(__lowerCamelCase ) _snake_case = self.movq.config.scaling_factor * init_latents _snake_case = torch.cat([init_latents] , dim=0 ) _snake_case = init_latents.shape _snake_case = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase ) # get latents _snake_case = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = init_latents return latents def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Dict=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _snake_case = torch.device(f"""cuda:{gpu_id}""" ) _snake_case = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : str , __lowerCamelCase : Dict=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _snake_case = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=__lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _snake_case = None for cpu_offloaded_model in [self.unet, self.movq]: _snake_case , _snake_case = cpu_offload_with_hook(__lowerCamelCase , __lowerCamelCase , prev_module_hook=__lowerCamelCase ) # We'll offload the last model manually. _snake_case = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCamelCase ) def __call__( self : Dict , __lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , __lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowerCamelCase : int = 5_1_2 , __lowerCamelCase : int = 5_1_2 , __lowerCamelCase : int = 1_0_0 , __lowerCamelCase : float = 4.0 , __lowerCamelCase : float = 0.3 , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ): """simple docstring""" _snake_case = self._execution_device _snake_case = guidance_scale > 1.0 if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = torch.cat(__lowerCamelCase , dim=0 ) _snake_case = image_embeds.shape[0] if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = torch.cat(__lowerCamelCase , dim=0 ) if do_classifier_free_guidance: _snake_case = image_embeds.repeat_interleave(__lowerCamelCase , dim=0 ) _snake_case = negative_image_embeds.repeat_interleave(__lowerCamelCase , dim=0 ) _snake_case = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCamelCase ) if not isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [image] if not all(isinstance(__lowerCamelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(__lowerCamelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _snake_case = torch.cat([prepare_image(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in image] , dim=0 ) _snake_case = image.to(dtype=image_embeds.dtype , device=__lowerCamelCase ) _snake_case = self.movq.encode(__lowerCamelCase )['''latents'''] _snake_case = latents.repeat_interleave(__lowerCamelCase , dim=0 ) self.scheduler.set_timesteps(__lowerCamelCase , device=__lowerCamelCase ) _snake_case , _snake_case = self.get_timesteps(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _snake_case , _snake_case = downscale_height_and_width(__lowerCamelCase , __lowerCamelCase , self.movq_scale_factor ) _snake_case = self.prepare_latents( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , image_embeds.dtype , __lowerCamelCase , __lowerCamelCase ) for i, t in enumerate(self.progress_bar(__lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance _snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _snake_case = {'''image_embeds''': image_embeds} _snake_case = self.unet( sample=__lowerCamelCase , timestep=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , added_cond_kwargs=__lowerCamelCase , return_dict=__lowerCamelCase , )[0] if do_classifier_free_guidance: _snake_case , _snake_case = noise_pred.split(latents.shape[1] , dim=1 ) _snake_case , _snake_case = noise_pred.chunk(2 ) _snake_case , _snake_case = variance_pred.chunk(2 ) _snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _snake_case = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _snake_case , _snake_case = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase , )[0] # post-processing _snake_case = self.movq.decode(__lowerCamelCase , force_not_quantize=__lowerCamelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _snake_case = image * 0.5 + 0.5 _snake_case = image.clamp(0 , 1 ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
701
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : List[str] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Union[str, Any]=0 ): """simple docstring""" _snake_case = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__lowerCamelCase ) ) _snake_case = np.random.RandomState(__lowerCamelCase ) _snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) # warmup pass to apply optimizations _snake_case = pipe(**self.get_dummy_inputs() ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): @property def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = ort.SessionOptions() _snake_case = False return options def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _snake_case = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = '''A fantasy landscape, trending on artstation''' _snake_case = np.random.RandomState(0 ) _snake_case = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__lowerCamelCase , output_type='''np''' , ) _snake_case = output.images _snake_case = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _snake_case = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _snake_case = init_image.resize((7_6_8, 5_1_2) ) _snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = '''A fantasy landscape, trending on artstation''' _snake_case = np.random.RandomState(0 ) _snake_case = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__lowerCamelCase , output_type='''np''' , ) _snake_case = output.images _snake_case = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _snake_case = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
404
0
def _snake_case ( __snake_case ): _UpperCamelCase = int(__snake_case ) if decimal in (0, 1): # Exit cases for the recursion return str(__snake_case ) _UpperCamelCase , _UpperCamelCase = divmod(__snake_case , 2 ) return binary_recursive(__snake_case ) + str(__snake_case ) def _snake_case ( __snake_case ): _UpperCamelCase = str(__snake_case ).strip() if not number: raise ValueError('''No input value was provided''' ) _UpperCamelCase = '''-''' if number.startswith('''-''' ) else '''''' _UpperCamelCase = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f"""{negative}0b{binary_recursive(int(__snake_case ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
10
from __future__ import annotations import math def lowerCamelCase_ ( lowerCamelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __A =[num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def lowerCamelCase_ ( lowerCamelCase__ ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) lowerCamelCase_ = [] for num in range(len(lowerCamelCase__ ) ): lowerCamelCase_ = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase_ = odd_composites[num] - 2 * i * i if is_prime(lowerCamelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCamelCase__ ) == n: return list_nums return [] def lowerCamelCase_ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
463
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name _a : Dict = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def a_ ( __magic_name__ , __magic_name__ , __magic_name__=8 ) -> str: """simple docstring""" snake_case : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a_ ( a ): def __init__( self : Optional[int] , UpperCAmelCase__ : UNetaDConditionModel , UpperCAmelCase__ : DDPMScheduler , UpperCAmelCase__ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , movq=UpperCAmelCase__ , ) snake_case : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase( self : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any ): """simple docstring""" if latents is None: snake_case : int = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) snake_case : Optional[Any] = latents.to(UpperCAmelCase__ ) snake_case : List[Any] = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase( self : Dict , UpperCAmelCase__ : Optional[int]=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) snake_case : Union[str, Any] = torch.device(F"cuda:{gpu_id}" ) snake_case : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase( self : List[Any] , UpperCAmelCase__ : Any=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) snake_case : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=UpperCAmelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case , snake_case : Optional[int] = cpu_offload_with_hook(UpperCAmelCase__ , UpperCAmelCase__ , prev_module_hook=UpperCAmelCase__ ) # We'll offload the last model manually. snake_case : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase( self : Union[str, Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCAmelCase__ ) def __call__( self : List[str] , UpperCAmelCase__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 100 , UpperCAmelCase__ : float = 4.0 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , ): """simple docstring""" snake_case : Optional[int] = self._execution_device snake_case : Union[str, Any] = guidance_scale > 1.0 if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): snake_case : Any = torch.cat(UpperCAmelCase__ , dim=0 ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): snake_case : Union[str, Any] = torch.cat(UpperCAmelCase__ , dim=0 ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): snake_case : int = torch.cat(UpperCAmelCase__ , dim=0 ) snake_case : List[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: snake_case : Dict = image_embeds.repeat_interleave(UpperCAmelCase__ , dim=0 ) snake_case : Optional[Any] = negative_image_embeds.repeat_interleave(UpperCAmelCase__ , dim=0 ) snake_case : Tuple = hint.repeat_interleave(UpperCAmelCase__ , dim=0 ) snake_case : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase__ ) snake_case : List[str] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase__ ) self.scheduler.set_timesteps(UpperCAmelCase__ , device=UpperCAmelCase__ ) snake_case : str = self.scheduler.timesteps snake_case : Optional[Any] = self.movq.config.latent_channels snake_case , snake_case : Optional[Any] = downscale_height_and_width(UpperCAmelCase__ , UpperCAmelCase__ , self.movq_scale_factor ) # create initial latent snake_case : Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance snake_case : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case : Optional[int] = {'''image_embeds''': image_embeds, '''hint''': hint} snake_case : Any = self.unet( sample=UpperCAmelCase__ , timestep=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , added_cond_kwargs=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , )[0] if do_classifier_free_guidance: snake_case , snake_case : Dict = noise_pred.split(latents.shape[1] , dim=1 ) snake_case , snake_case : Any = noise_pred.chunk(2 ) snake_case , snake_case : Dict = variance_pred.chunk(2 ) snake_case : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case , snake_case : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case : List[Any] = self.scheduler.step( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ , )[0] # post-processing snake_case : List[Any] = self.movq.decode(UpperCAmelCase__ , force_not_quantize=UpperCAmelCase__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: snake_case : Optional[Any] = image * 0.5 + 0.5 snake_case : int = image.clamp(0 , 1 ) snake_case : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case : str = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
84
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _a : Optional[Any] = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' _a : str = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' _a : List[Any] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def lowerCAmelCase( self : Any ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def lowerCAmelCase( self : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[str]="auto" , UpperCAmelCase__ : Tuple=-1 , UpperCAmelCase__ : Optional[int]=0.9 , UpperCAmelCase__ : List[Any]=5 , UpperCAmelCase__ : List[Any]=500 , UpperCAmelCase__ : Union[str, Any]="gpt2-large" , UpperCAmelCase__ : Optional[Any]=-1 , UpperCAmelCase__ : int=1_024 , UpperCAmelCase__ : List[Any]=25 , UpperCAmelCase__ : Union[str, Any]=5 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[Any]=25 , ): """simple docstring""" snake_case : List[str] = compute_mauve( p_text=UpperCAmelCase__ , q_text=UpperCAmelCase__ , p_features=UpperCAmelCase__ , q_features=UpperCAmelCase__ , p_tokens=UpperCAmelCase__ , q_tokens=UpperCAmelCase__ , num_buckets=UpperCAmelCase__ , pca_max_data=UpperCAmelCase__ , kmeans_explained_var=UpperCAmelCase__ , kmeans_num_redo=UpperCAmelCase__ , kmeans_max_iter=UpperCAmelCase__ , featurize_model_name=UpperCAmelCase__ , device_id=UpperCAmelCase__ , max_text_length=UpperCAmelCase__ , divergence_curve_discretization_size=UpperCAmelCase__ , mauve_scaling_factor=UpperCAmelCase__ , verbose=UpperCAmelCase__ , seed=UpperCAmelCase__ , ) return out
84
1